
WebSphere as
an e-business server

by D. F. Ferguson
R. Kerth

In this paper, we provide an overview of the
technical functionality of WebSphereTM

Application Servers and several related products
in the WebSphere product family. The paper
specifically addresses the product features that
are essential to today’s e-businesses. We discuss
infrastructure services, business-to-consumer
and business-to-business scenarios and detail
the existing and future support that the
WebSphere product family offers in these areas.
We also include an extensive list of references
for readers who wish to obtain more detailed
information on specific aspects of the
WebSphere product family that are beyond the
scope of this paper.

Today we are witnessing unprecedented demand
for e-business solutions such as portals, e-com-

merce sites, business-to-business commerce solu-
tions, and electronic marketplaces. The quest for in-
telligent solutions in this area has become a top
priority for both technology customers and technol-
ogy suppliers. From the perspective of customers,
exploring the possibilities of the Internet as a global
marketplace has rapidly grown to become an inte-
gral part of their business strategy. From the per-
spective of the suppliers, the requirements of these
customers have created a strong demand for new
products and services.

In the past, many of the simpler e-business solutions
have been built upon Internet relationship manage-
ment products whose prime specialization has been
content management and personalization. This type
of product was adequate for early Web sites present-
ing mainly static content. However, the situation has
rapidly developed beyond that, and the focus has

shifted to more data-driven applications in which cus-
tomers of a business can place orders, see inventory,
book travel, track packages, and do much more. This
shift in focus has led, in an extremely short period
of time, to a need to rapidly develop secure, robust,
and highly scalable enterprise class applications that
access existing corporate data and applications and
that provide high-end transactional capabilities.

This evolution entails many new challenges, some
of which are:

● Simple HyperText Transfer Protocol (HTTP) re-
quests received over the Internet need to trigger
complex business tasks on existing enterprise in-
formation systems (EISs).

● Guaranteed, reliable, and asynchronous delivery
is rapidly gaining importance as an additional
transport mechanism that complements the cur-
rent “best effort” delivery mechanism of the In-
ternet.

● Confidentiality, auditing, and nonrepudiation of
messages become critical characteristics of a re-
quest.

IBM’s strategic initiative to address this market is the
Application Framework for e-business (AFeb).1

Backed by numerous service partners and IBM’s tra-
ditionally strong middleware, the AFeb comprises
a leadership product set that is well-positioned to

rCopyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 0018-8670/01/$5.00 © 2001 IBM FERGUSON AND KERTH 25

satisfy the critical requirements of customers oper-
ating in this rapidly evolving market.

WebSphere* is a family of Web application servers
and the foundation of many development efforts,
both inside and outside IBM. Together with
MQSeries* and DATABASE 2* (DB2*), it is one of the
key technology components of the AFeb. This pa-
per provides an overview of some of the important
features that are incorporated into WebSphere to
address the requirements of a typical e-business.

In the next section of this paper we introduce some
of the generic infrastructure services that the
WebSphere Application Server offers to support
e-business scenarios. The following section then ad-
dresses the particular needs of the business-to-con-
sumer scenarios, and the last section provides de-
tails about business-to-business scenarios.

Many of the features described throughout the pa-
per offer a complex functionality that cannot be cov-
ered in detail in this paper. For this reason, we in-
clude references to additional information where
appropriate.

Infrastructure services

The WebSphere Application Servers offer a wide
range of features that are designed to support the
infrastructure requirements of existing and emerg-
ing e-businesses. This section provides a brief de-
scription of these enabling concepts and services.

The WebSphere programming model. There are
three different editions of WebSphere, the Standard
Edition, the Advanced Edition, and the Enterprise Edi-
tion. Each of these editions addresses a specific set
of requirements of e-business customers as follows:

● The Standard Edition provides support for access-
ing relational databases and for publishing dynamic
Web pages through JavaServer Pages** (JSP**)
and servlets.

● The Advanced Edition extends the Standard Edi-
tion by introducing support for Enterprise
JavaBeans** (EJB). The Advanced Edition also im-
proves scalability by adding support for workload
management.

● The Enterprise Edition includes the Advanced
Edition and adds support for the Common Ob-
ject Request Broker Architecture** (CORBA**) as
well as for CORBA Common Object Services
(CORBA COS). The product supports components

written in the C11 or Java** programming lan-
guage and features a tight integration with legacy
systems.

During the last decade, IBM has invested significant
efforts in working with different standards bodies to
define open standards for software development. The
programming model of the WebSphere Application
Servers2,3 is shaped by these efforts across all edi-
tions. The WebSphere Standard Edition uses serv-
lets and JSP pages to define the presentation layer
and Java Database Connectivity (JDBC**) for data-
base access. The WebSphere Advanced Edition adds
support for EJB and will fully support the program-
ming model of the Java 2 Platform Enterprise Edi-
tion (J2EE**) in a future release. The WebSphere
Enterprise Edition extends J2EE with direct access
to advanced CORBA services for greater flexibility and
improved interoperability.

The WebSphere programming model incorporates
multiple design patterns4 and best practices for de-
veloping scalable, multitiered applications. Some
simple examples of such design patterns are depicted
in Figure 1. In the WebSphere programming model,
a servlet typically functions as a controller that re-
ceives requests from the Internet and controls the
flow on the server side to coordinate the response
to the request. The servlet triggers one or several
command objects that access EJB or back-end sys-
tems to process the request. When the result is re-
turned, the servlet invokes JSP pages to format the
result and to send the response back to the client.

The use of command objects in the above control
flow allows the encapsulation of the communication
protocol for different back-end systems. This use in
turn enables a transparent modification of the pro-
tocol or even a switch to a different target system if
necessary or desirable. For example, a command ac-
cessing a relational database system (RDBS) may use
static Structured Query Language (SQL) instead of
dynamic SQL as a means to improve performance.
It may also switch to using EJB instead of the RDBS
to take advantage of the object-oriented infrastruc-
ture that is associated with EJB. If the command ob-
ject is designed correctly, such internal changes do
not impact the code that uses the command to re-
trieve a result from the back-end system.

The use of EJB as an abstraction layer on top of a
database or on top of a legacy system is recom-
mended to foster encapsulation and modularized
code. Direct access from the presentation layer to

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200126

the back-end system is generally discouraged, except
in cases where optimum performance is a primary
concern. The role of the EJB is to decouple the pre-
sentation layer and the database layer by adding a
business logic layer in the middle, thus increasing
the possibilities of code reuse in all tiers.

Appropriate object-oriented analysis and design
methodology5,6 has to be employed for defining a
domain-specific object model of EJB. SessionBeans
should represent task-oriented components that
drive the interaction with EntityBeans. EntityBeans
should represent state-oriented components that
drive the interaction with persistent storage. Entity-
Beans should be accessed through a facade of Ses-
sionBeans that define the process context and trans-
action scope for any access to persistent storage.

Note that the implementation of an EntityBean can
take advantage of existing command objects to im-
plement the persistence logic in the case of bean-
managed persistence. This allows the EntityBean to
reuse existing implementations of persistence pro-
tocols. EntityBeans with container-managed persis-
tence do not require explicit persistence logic since
the container provides this functionality transpar-
ently to them.

JSP pages are used for formatting the layout of the
response. Different JSP pages can be invoked by the
servlet to communicate different results back to the
client. For example, an error would be displayed by

a different single JSP than would a successful request.
Also, personalized responses can be implemented
through appropriate JSP pages, using the mechanisms
detailed in the later subsection on personalization.

Figure 1 is obviously an instance of the model-view-
controller (MVC) and the command design patterns.
The use of the facade design pattern for accessing
EJB is recommended, although it is not detailed in
Figure 1. In terms of the MVC pattern, the servlet
assumes the functionality of the controller, the JSP
functions as the view, and various back-end systems,
preferably through an abstraction layer of EJB, rep-
resent the models. Commands are used for an en-
capsulation of low-level implementation details.
SessionBeans are employed as facades for Entity-
Beans.

It is important to emphasize that the use of these
design patterns is not an abstract exercise to satisfy
purely theoretical design requirements. Rather, the
patterns structure the code into different functional
modules, essential for the maintainability of the code
and for the scalability of the system. In fact, the MVC
and the command patterns allow independent de-
velopment of the respective components by teams
with appropriate skill sets. This approach speeds up
the development of the individual components and
allows the rapid incorporation of new technologies
when required. Furthermore, the patterns also al-
low a developer to specialize in one type of compo-
nent and to follow the technical evolution of this

Figure 1 The WebSphere programming model: Interaction flow on an HTTP request

COMMAND
HTTP

REQUEST

HTTP

RESPONSE
JSP

EJB

RDBS
COMMAND

COMMAND

LEGACY
SYSTEMSERVLET

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 27

component very closely. This aspect is crucial for
managing the development process and for defin-
ing the skill sets that are required in multitiered ap-
plication development. The facade design pattern en-
hances scalability by reducing network traffic between
client and server. In fact, multiple remote requests

can be bundled on the client before they are sub-
mitted to the server. A SessionBean would receive
such a bundled request through a task-specific in-
terface. EntityBeans do not (and should not) offer
such task-specific interfaces and would require mul-
tiple method invocations for transmitting the same
data. They should therefore not be invoked directly
from the client.

The WebSphere programming model is documented
with the different editions of WebSphere and con-
tains many more design patterns and best practices
along the general guidelines summarized above.

Tool support. The WebSphere product family sup-
ports the programming model described in the pre-
vious subsection not only in the server run times but
also through the development tools.

WebSphere Studio7 is a tool aimed at the develop-
ment of the presentation layer of a multitiered ap-
plication. It allows the user to generate a set of in-
terrelated servlets, JSP pages, and commands that
follow the interaction flow described in Figure 1. If
desired, WebSphere Studio can also generate the
servlet code with session management logic. Sessions
allow a developer to maintain state on the server be-
tween HTTP requests, thus adding to the capabilities
of the inherently stateless HTTP protocol.

VisualAge* for Java8 is a tool for the development
of different tiers of an application, including parts
of the presentation, the business logic, and the data
access tier. In this tool, the generation of complex
commands for accessing different types of legacy sys-
tems is fully supported through SmartGuides (wiz-

ards). The generated commands are JavaBeans**
and can subsequently be used for a visual compo-
sition of servlets. VisualAge also provides support
for EJB through a dedicated development environ-
ment that incorporates many EJB-specific operations.
Additional features that extend and enhance the core
EJB standard have been added to VisualAge: the tool
can automatically generate and maintain associations
between EJB. It also supports inheritance of EJB and
performance optimizations such as dirty detection.
The latter feature indicates to the WebSphere run-
time environment that database updates should only
be executed when the data in memory have actually
changed; the default behavior of the run time is to
always execute updates at the end of a transaction.
Note that dirty detection as generated by VisualAge
for Java is a purely declarative option that does not
require any changes to the EJB code. This approach
allows an EJB that is developed in VisualAge for Java
to execute unmodified in run-time environments
other than WebSphere.

The EJB development environment in VisualAge is
completed by an instance of the WebSphere Ad-
vanced Edition that executes inside VisualAge. The
integration of the application server into the devel-
opment environment facilitates debugging and unit
testing of EJB. In fact, the deployment step in the
server run time becomes trivial and can be executed
in VisualAge through a simple context menu. A test
client to drive requests against the new component
is generated automatically. The VisualAge debug-
ger supports stepping through the server-side code,
allowing the developer to observe the behavior of
the tested component step by step in the server run-
time environment. This mode of operation is par-
ticularly interesting since the same run time can ac-
tually be used in a production environment as a
stand-alone version of the WebSphere Application
Server. Using the same run time avoids behavioral
differences of the component at development time
and at production time.

To address the increasing complexity of application
development, and consequently of the tools used for
this development, IBM has started to structure the
different tools of the WebSphere product family
around a perspective-based development paradigm.
This paradigm allows developers to assume a cer-
tain perspective and to customize the tool for use
with specific component types. By exposing only fea-
tures that are essential for the development of a given
component type and hiding most of the other fea-
tures, thedeveloper can focus on learning only the parts

Tools of the WebSphere
product family are being

structured around a
perspective-based

development paradigm.

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200128

of the tool that are relevant for the component type,
enabling him or her to become productive more rap-
idly.

Pervasive devices. The definition of Wireless Appli-
cation Protocol (WAP) and the Wireless Markup Lan-
guage (WML) will lead to widespread use of perva-
sive devices9 to access services and information on
the Internet. Web servers and application servers
need to support these new protocols and formats in
order to serve requests from such clients.

Content providers on the Internet often do not wish
to develop their content in several formats, with a
separate version for each output device. Instead, they
prefer to develop the content only once, and then
modify it dynamically at run time to match the spe-
cific format required by different output devices. The
process of translating existing content from one for-
mat into another at run time is referred to as
transcoding. 10 Another paper in this issue discusses
transcoding and describes IBM’s technology on the
subject in greater detail. 11

The model-view-controller pattern depicted in Fig-
ure 1 is one of the key enablers for the pervasive
device support provided by WebSphere. The sepa-
ration of concerns inherent in MVC allows an appli-
cation developer to address the input/output require-
ments of the huge variety of pervasive devices
relatively easily, and in a very targeted fashion. In
fact, since the notion of a view is an integral part of
a WebSphere application, it is easy to modify the ap-
plication to customize the view for a specific target
device. Note that the controller performs the view
selection dynamically at run time, which allows it to
take into account the characteristics of the device
that has submitted the request. It is important to
mention in this context that views (JSP pages) are
not limited to outputting HyperText Markup Lan-
guage (HTML), even though it is currently the most
widely used format; they can also be used to gen-
erate other markup languages. In particular, JSP
pages can produce generic markup information in
Extensible Markup Language (XML), or more spe-
cific markup in one of the XML dialects such as WML
or VoiceML.

Workload management. On the list of nonfunctional
requirements, performance and scalability of a Web
site are a primary concern for all customers. The
WebSphere Application Servers offer sophisticated,
patented workload management (WLM)12 to address
these issues.

The WebSphere Administrative Console supports
the notion of a clone that can be configured to ex-
ecute on the same or on a different node on the net-
work. The set of all clones is called a (server) cluster.
All clones in a cluster have the same functionality.
They can thus be used interchangeably to service re-
quests. If one of the clones fails, the remaining clones
can continue to service requests. In the simplest case,
this mechanism does not provide completely trans-
parent failover between clones since the HTTP ses-
sion state in a clone may be lost if the clone fails.
WebSphere allows the session state to be explicitly
protected, as described below, to address this issue.

Inside a server cluster, the distribution of requests
is policy-driven. Incoming requests are directed to
one of the clones, based on the rules specified by
the currently active WLM policy (Figure 2).

The routing of the requests is subject to general con-
sistency rules. WLM needs to preserve session and
transaction affinity, i.e., all requests inside a given
session or transaction need to be routed to a clone
that has access to the previously defined session or
transaction state. Typically, this affinity is achieved
by routing all these requests to the same physical
clone.

Stateless requests do not need to pay attention to
affinity issues; they are directed to an arbitrary clone
that is chosen according to the currently active work-
load policy. Potentially, this clone could be different
for each request.

To protect the session state associated with an HTTP
request in the case of failures, it can be made to per-
sist in a database. This improves the failover char-
acteristics of the application because the session state
can be recovered from the database in case of a clone
failure. If an application is configured to take ad-
vantage of this possibility, the session state can trans-
parently be shared between the different clones in
cluster. Using a database for session persistence is
also essential to ensure transactional semantics for
updates to the session state. It guarantees that the
session state remains valid even if the process using
session persistence dies while updating the session
state. Other approaches to session state protection
in case of a failure, e.g., session state replication in
memory, do not offer this quality of service and can
lead to session state corruption.

On the OS/390* platform, the WLM facilities for
WebSphere Enterprise Edition are implemented us-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 29

ing the WLM component that is part of the operating
system. This implementation provides a tight inte-
gration with existing system management tools for
this platform.

The WebSphere product family includes the (option-
al) WebSphere Performance Pack.13 This product
complements the WLM capabilities of the WebSphere
Application Servers by providing an Internet Pro-
tocol sprayer in front of a cluster of Web servers. It
allows HTTP requests to be routed to different Web
server instances even before they enter a WebSphere
domain and enables extensive horizontal scaling. It
is important to point out that the performance pack
also supports content-based routing, i.e., it detects
the session context of an HTTP request and guaran-
tees session affinity. Other advanced routing options
for the performance pack include rule-based rout-
ing, weighted routing, and automatic node failure
detection.

Caching. Many users are concerned with the overall
scalability of their information technology (IT) in-
frastructure. When investigating the causes for this
concern at typical business-to-consumer sites, IBM
has found that users are generally satisfied with the
scalability of their core business logic executing on
large back-end systems. Their concerns are typically
focused on the presentation layer because this layer
is a fairly new part of their IT infrastructure, it needs
to respond to a steadily growing demand, and it has
to handle increasingly complex presentation logic.
The back-end servers, in contrast, are technically

more sophisticated and tend to accommodate growth
more easily. Also, traffic on the back-end machines
does not increase as sharply as on the front end since
not every Web request leads to a business transac-
tion.

WebSphere specifically addresses performance and
scalability of the presentation layer by incorporat-
ing advanced caching algorithms. The page fragment
cache14 enables caching of partial pages, thus avoid-
ing the overhead of re-executing parts of the pre-
sentation logic on subsequent requests. The main ad-
vantage of the page fragment cache is to make it
possible to selectively cache and refresh fragments
of a page rather than entire pages. Entire page caches
are widely used in proxy servers and edge servers on
the Internet today; however, they fall short of pro-
viding the degree of flexibility that is required by nu-
merous Web sites serving dynamic pages.

Caching page fragments is particularly important in
the context of a business-to-consumer Web site be-
cause it enables flexible integration of personaliza-
tion into individual pages. Personalization typically
leads to a large number of different versions of a page
that simply differ in some personalized aspect. Per-
sonalization makes it difficult to cache a page as an
entire unit because different users have to see dif-
ferent versions of the page. The page fragment cache
resolves this issue by allowing the system to cache
only those parts of a page that do not change be-
tween requests. Thus, even for personalized pages,
some degree of caching becomes possible.

Figure 2 Workload management in the WebSphere Application Server

HTTP

FIREWALL

REQUEST

SESSION
STATE

WEB
SERVER
WEB
SERVER

WEB
SERVER

WEB
SERVER

WEBSPHERE
APPLICATION
SERVER CLONES

PERFORMANCE
PACK

POLICY

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200130

Web servers also attempt to minimize load on the
presentation layer by collaborating with caching serv-
ers across the Internet. These servers are used to de-
liver static content and are located geographically
close to the end user. The WebSphere Application
Server cooperates transparently with these servers;
this does not require additional functionality on be-
half of WebSphere because the caching network uses
standard HTML links to redirect client requests to a
geographically suitable cache server instance.

Security. A critical part of any system that is con-
nected to an open network like the Internet is a sound
security architecture. There are two complementary
aspects to this architecture: application-level secur-
ity and network-level security. In this paper, we fo-
cus on the application-level security that is tightly
integrated with the WebSphere Application Serv-
ers.15,16 Network-level security can be achieved by
careful system administration and should be designed
to have a minimal impact on the application itself.

The WebSphere security architecture is based on the
following, interdependent notions:

● A principal represents an individual user in the sys-
tem.

● A resource is a component that is to be protected
through the security architecture. This component
can be an HTML file, a single JSP or a servlet, or
an EJB. The former three resources are called Web
resources; an EJB is often referred to as an object
resource in this context.

● An application is a set of resources that together
deliver a certain functionality.

● A permission allows a principal to access a resource
inside an application.

WebSphere uses these notions to address the fol-
lowing areas:

● Authentication aims at identifying the user through
different mechanisms and associating a principal
with the user. WebSphere supports a mechanism
based on user name and password as well as a cre-
dential-based mechanism for authentication; the
latter includes digital certificates. Authentication
in WebSphere is policy-driven and allows the sys-
tem administrator to define different qualities of
service for authentication. For example, the sys-
tem administrator may choose to accept user
names and passwords only if they are submitted
through a secure sockets layer (SSL) channel. The
user information accessed during authentication

can be extracted from the user repository main-
tained by the operating system or from a repos-
itory accessible through the Lightweight Directory
Access Protocol (LDAP).

● Authorization checks whether a principal has the
permission to invoke a specific method on a re-
source. Each principal may be granted several per-
missions. If at least one of these permissions al-
lows the invocation, the invocation succeeds;
otherwise it fails with a security exception. By de-
fault, such failures are logged in the system log files
of WebSphere to help uncover attacks on the Web
site.

Authorization in WebSphere is based on the ca-
pability model rather than on access control lists
(ACLs). The difference between these two ap-
proaches is that the capability model associates
permissions with principals, whereas ACLs associ-
ate permissions with resources. The capability
model is often easier to administer than ACLs be-
cause principals change their set of permissions
more often than resources do. This kind of mod-
ification translates more naturally into the capa-
bility model than into an ACL.

● Delegation ensures that the appropriate security
information is propagated with method calls. The
details of propagated security information are de-
termined by a delegation policy; they can be based
on the identity of the client, the server, or the sys-
tem.

The WebSphere security architecture is fully sup-
ported through the administration console. It in-
cludes a graphical user interface that guides the user
through all tasks that are required for security ad-
ministration.

WebSphere supports single sign-on to the Web-
Sphere domain if configured to run on top of an LDAP
repository. The mechanism uses HTTP cookies to
communicate the security information between HTTP
requests. The cookie contains an encrypted and dig-
itally signed credential that authenticates the asso-
ciated principal to different servers in the WebSphere
domain.

Programmatic access to the security architecture is
also possible in WebSphere. It allows the developer
to implement a custom log-in mechanism and to
query the information that has been obtained from
a system-driven log-in.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 31

As indicated above, failed authentication and autho-
rization attempts in WebSphere are subject to au-
diting by default. Additional auditing can be config-
ured to establish accountability for individual actions
on the site. If performance is a primary concern, it
is also possible to disable the auditing functionality.

In future releases of the WebSphere Application
Servers, IBM will integrate the Tivoli SecureWay*
product family with the WebSphere security archi-
tecture.

Connectors. Connectors are the approach taken by
WebSphere for connecting to existing enterprise in-
formation systems (EISs). This WebSphere facility is
particularly important in that it provides the capa-
bility to integrate existing IT assets of an enterprise
(programs and data) into WebSphere applications.
The integration not only covers simple data access
but also allows the WebSphere servers to control var-
ious aspects of the EIS infrastructure services.

IBM’s Common Connector Framework (CCF)8,17 de-
fines an architecture for the interfaces that Web-
Sphere programs can use for such an integration.
Support for the Java 2 connector architecture will
also be integrated into WebSphere in a future re-
lease. As some details of the Java 2 connectors are
still under review, we will focus on CCF in this paper.
In CCF, two key contracts between the client, Web-
Sphere, and the connector guarantee the behavior
of a program as follows:

● The CCF client contract defines a programming in-
terface between the client and the connector. This
interface enables a client to talk to different EISs
by selecting an appropriate connector, without in-
troducing major changes to the client code. Trans-
formations between EIS data formats and client
data formats are supported in a number of differ-
ent styles.

● The CCF infrastructure contract defines a program-
ming interface between the server run time and
the connector. This interface allows the server run
time to manage various infrastructure services for
a CCF connector, e.g., life-cycle management, se-
curity, transactions, sessions, and state manage-
ment. Note that CCF allows different “quality of
service” parameters to be communicated to the
connector through the infrastructure interfaces.
Changes to these parameters do not impact the
application code. Examples of such parameters are
the transaction and the security context.

Figure 3 illustrates the various elements that com-
bine to make up a connector solution. Some of these
elements can be implemented by a third party and
are collectively referred to as a CCF connector. Most
importantly, the CCF connector contains the imple-
mentation of the client contract. Other parts in Fig-
ure 3 belong to the WebSphere run time, e.g., the
server-side implementations of the infrastructure
contract. These parts are implemented by IBM as part
of WebSphere.

Some context properties of a connection, e.g., the
transaction context, are established when acquiring
a connection. A thread context is then employed to
propagate this information throughout the Web-
Sphere server run time until the connection is ex-
ecuted, i.e., until it is used to transmit some data to
the EIS system. Therefore, a connection must not be
shared between different threads; it must remain as-
sociated with only one thread during its lifetime to
preserve the correct run-time context.

The CCF architecture is fully supported in Visual-
Age for Java to ease the development of applications
using CCF.

Personalization. As Web sites become more sophis-
ticated, personalization18 plays an increasingly im-
portant role in the development of the presentation
logic of the site. WebSphere includes flexible and
extensible support for personalization.

On an abstract level, there are three ingredients to
personalization: a user model, a content model, and
a matching technology. The user model captures the
properties of a user of the site and makes them avail-
able to the run-time environment. The content model
captures the information about different types of con-
tent. The matching technology associates users with
content; it employs algorithms that are based on the
attributes defined in the user model and the content
model.

The user model in the WebSphere Application
Server is accessible through a UserManager class and
is represented by instances of a UserProfile class. A
default UserProfile class is delivered with Web-
Sphere. It offers a standard set of properties, e.g.,
name, address, and telephone, and is implemented
as an EJB. It is automatically persisted in a database
using a default database schema. WebSphere allows
the developer to replace or extend the default User-
Profile in different ways. Simple extensions would
just add new properties to the existing UserProfile

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200132

and maintain the existing persistence mechanism.
More sophisticated extensions can be used to retrieve
the UserProfile information from user repositories
on legacy systems and expose them inside the Web-
Sphere Application Servers.

The user model is complemented by a content model.
For WebSphere, content can be stored in and ac-
cessed from a variety of data sources, e.g., file sys-
tems, relational databases, or LDAP directories. The
main requirement on data sources is for them to be
searchable. The content residing in these data
sources is represented to the personalization engine
as a set of attributes that contain meta information
about the content. Typical attributes are a catego-
rization of the content, keywords, validity dates, and
storage location. The meta information is used by
the personalization engine to search and retrieve the
content at run time.

WebSphere personalization uses a common resource
engine to define and manage the user model and con-
tent model. The central component of the resource
engine is the Hierarchical Resource Framework

(HRF) that allows resources to be organized in hi-
erarchies. Nonleaf nodes inside an HRF hierarchy can
be thought of as groups of resources; they carry prop-
erties that apply to all of their (leaf or nonleaf) chil-
dren. Leaf nodes represent individual resources. By
introducing a hierarchical structure for resources, the
HRF enables resource management by groups rather
than by instances. The hierarchies also support dy-
namic registration and lookup of resources.

For example, a Web page designer can insert a group
into a page and reserve some layout space for con-
tent from that group. At run time, the group is
searched for suitable content, taking into account
additional parameters from the current request, and
the result of the search is displayed in the correspond-
ing layout space.

The matching technology in the WebSphere person-
alization engine can use filters or rules as follows:

● The filter-based approach allows matching to oc-
cur based on simple selection criteria that are ob-
tained directly from the user. Typically, the user

Figure 3 The Common Connector Framework in the WebSphere Application Server

CONNECTION
MANAGER

LOGON INFORMATION

CONNECTION FACTORY

COMMUNICATION

CCF CONNECTOR

CONNECTION

RESOURCE

EIS SYSTEM

SESSION
MANAGER

SECURITY
MANAGER

TRANSACTION
MANAGER

LINKED BY COMMON
RUN-TIME CONTEXT

WEBSPHERE SERVER

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 33

explicitly chooses specific contents that he or she
is interested in, e.g., a stock price or a newsletter
on a certain topic. The content matching these se-
lection criteria is then inserted into personalized
pages when the user visits the site.

● Collaborative filtering is a special kind of filter-
ing. In this approach, general usage patterns in the
behavior of all users of a site are analyzed, and
some typical users are distinguished as mentors.
Other users can then be classified in groups that
are associated with these mentors. This classifica-
tion allows personalization recommendations to
be made based on the preferences of the mentor.

● The rule-based matching technology in Web-
Sphere personalization uses the accessible business
rules (ABR) engine that is available as part of Web-
Sphere Enterprise Edition.

In general, rules are more flexible than filters since
they can be defined explicitly, allowing for the in-
corporation of existing business rules into the per-
sonalization logic. For example, rule-based match-
ing allows “gold” customers to be distinguished
from normal customers according to existing bus-
iness criteria, or to respond to requests based on
the current date and time. Rules can also trigger
actions that go beyond simple content selection,
e.g., sorting results or sending e-mail.

ABR permits the high-level formulation of rules,
enabling a business analyst without programming
skills to define and modify the behavior of rules.
ABR will be made fully accessible to users of Web-
Sphere Advanced and Enterprise Editions in a fu-
ture release. Full accessibility will allow users to
extend the use of rules beyond just personaliza-
tion. At this time, rule editing for ABR will be sup-
ported by two versions of a rule editor, one inte-
grated in WebSphere Studio and another one that
does not depend on WebSphere Studio. The lat-
ter version is provided for the benefit of users who
do not have access to an installation of WebSphere
Studio.

The HRF-ABR approach offers a flexible programming
style; in particular, it is not necessary to modify the
page template to achieve personalization. Because
the HRF approach allows dynamic registration of re-
sources, new content and new users can transpar-
ently be incorporated into an existing template. The
different matching technologies in WebSphere per-
sonalization are all wrapped into standard JavaBeans

to offer a uniform access mechanism. These beans
are typically instantiated in servlets or JSP pages and
receive some parameters from the UserProfile and
from the HTTP request to customize the matching
logic. The servlets or JSP pages then extract the re-
sult of the matching process from the bean and po-
sition it correctly in the overall page layout. The re-
sult could be as simple as a reference to a resource
that is available from the Web server, e.g., an image
file or an audio clip. It could also be a complete doc-
ument, formatted in the appropriate markup lan-
guage, that is inserted into the main document. Both
options are transparent to the end user, i.e., the end
user has no means of detecting which parts of the
page have been personalized.

As an example, consider a page that needs to dis-
play appropriate sports equipment to customers, tak-
ing into account the information of their user pro-
files. The page would reserve some layout space to
this effect, specifying that this space needs to be filled
with content from the group called sports equipment.
At run time, the user’s preferences are extracted from
the user hierarchy. Preferences of an individual user
do not need to be hard-coded in his or her user pro-
file; they can be associated with, or inferred from,
the broader group in the HRF that includes the user.
Once the relevant preferences of the user have been
determined, the sports equipment group is searched
for matching content. The result of the search will
reflect the current status of the group and could po-
tentially return content that was not available when
the page was built.

Site analysis. Understanding the behavior of a vis-
itor to the site is the key factor for improving usabil-
ity, acceptance, and responsiveness. In some cases,
it may also impact the profitability of the site; for
example, sites with an advertisement-based business
model strive to maximize their revenues by identi-
fying and classifying their users and offering a tar-
geted advertising campaign to interested parties.

The WebSphere Site Analyzer19 can be used for ex-
tracting the necessary information from the server
log files and analyzing it. Site analysis offers three
different modules:

● Content analysis helps the system administrator
to understand the interdependencies between the
individual components of the Web site. It visual-
izes the entire site and identifies broken links. It
also signals excessively large page and HTML syn-

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200134

tax errors. Content analysis is implemented using
a Web crawler that examines the Web site.

● User analysis aims at classifying the behavior of
visitors to the Web site. The available function-
ality in this module covers statistics for individual
pages, including dynamically generated pages, pa-
rameter tracing for dynamic pages, (Web) origin
determination, and site entry and exit analysis. The
latter data allow individual pages to be classified
in the context of their execution.

● The reporting module allows the system admin-
istrator to extract data from the other two mod-
ules that respond to common questions. Reports
can be scheduled for certain times and are then
executed automatically. The output can be format-
ted in HTML and XML and may include a visual pre-
sentation of the data using various kinds of charts.

Business-to-consumer scenarios

In a business-to-consumer scenario, the typical bus-
iness transaction is an interaction with a consumer
across the Internet. There are two broad types of bus-
iness-to-consumer interactions: portals and on-line
shopping sites. A portal provides personalized ser-
vices and information to customers and has an ad-
vertisement-based revenue model. A shopping site
offers goods in a browseable catalog and sells those
goods on line; its revenue stems mainly from sales
conducted on the site.

Note that some Web sites actually fit into both cat-
egories. Shopping sites that include advertisements
targeted for certain user groups move their business
model into the portal space. They can base their ad-
vertising on their knowledge of a user’s preferences.
Portals, in contrast, often rate shopping sites as part
of their core services to their users. Including strongly
integrated advertisement offerings as part of the rat-
ing can actually lead to an on-line shopping func-
tionality as part of the portal. Nevertheless, it is help-
ful to distinguish between the two types of business-
to-consumer sites, since they have distinct business
models that lead to specific technical requirements
for different functions.

Business-to-consumer sites have obviously the same
fundamental requirements as many other Web sites
in terms of scalability, security, personalization, etc.
The features that the WebSphere product family of-
fers in these areas were described in the previous
sections. In this section, we focus on additional fea-
tures that WebSphere offers on top of these infra-
structure services.

On-line shopping. The WebSphere product family
covers trading-oriented functionality with the Web-
Sphere Commerce Suite (WCS).20 It addresses the
needs of a typical business-to-consumer retail site
and runs on top of the Advanced Edition of the Web-
Sphere Application Server. The Commerce Suite is
also integrated with WebSphere tooling: Specific ex-
tensions to the tools allow the user to easily develop
applications for the Commerce Suite.

The WebSphere Commerce Suite supports servlets
and JSP pages as the fundamental building blocks for
the Web site. The overall interaction flow in the
Commerce Suite follows the pattern described in Fig-
ure 1, i.e., servlets act as a controller, JSP pages de-
fine the view, and commands are used to drive the
interaction with persistent storage. The resulting
structure of a Commerce Suite application supports
rapid modifications of the presentation layer by ex-
changing the views, thus allowing promotions and
other daily changes to be introduced relatively eas-
ily.

The WebSphere Commerce Suite introduces a com-
prehensive set of high-level concepts to model an
on-line store and to support the different operations
that a user can perform in the store. It features sup-
port for cross- and up-selling of products (i.e., the
ability to link to related products or to better ver-
sions of a product on a page displaying a base prod-
uct), accessory selling, and product substitutions
within predefined categories. Personalized views of
the store can be defined. The Commerce Suite also
includes support for auctions that allows a developer
of an on-line store to offer a dynamic pricing mech-
anism to visitors of the site. Finally, the WebSphere
Payment Server, bundled with the Commerce Suite,
offers a complete solution for the payment process-
ing requirements of a retail Web site. The Payment
Server supports the Secure Electronic Transaction
(SET) protocol for credit card processing and allows
support for other protocols to be implemented as
pluggable cassettes. Cassettes are components that
encapsulate the details of a payment protocol while
taking advantage of the general services of the pay-
ment server.

Advanced dynamic trading mechanisms are sup-
ported by the Marketplace Edition of the Web-
Sphere Commerce Suite.21 It supports catalog ag-
gregation and different types of (forward and reverse)
auctions. The Marketplace Edition goes beyond sim-
ple auctions by introducing matchmaking algorithms
for more complex constellations of products, quan-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 35

tity, and price that can be part of an exchange. It
also includes the infrastructure to send e-mail no-
tifications to different participants in the electronic
marketplace at certain stages of an exchange. There-
fore, it starts to address some of the needs of the
typical business-to-business scenario as described in
the next section.

Portals. A portal represents an evolution of the tra-
ditional functionality of the Internet: information dis-
tribution. However, some Web sites offer increas-
ingly sophisticated services, which has solicited the
introduction of a dedicated name for such sites. Por-
tals typically address some or all of the following is-
sues:

● Data aggregation from different sources
● Content management
● Intelligent search and data mining
● Access to Web applications
● Personalization
● Membership administration with anonymous user

support
● Access control with single sign-on
● Transcoding support
● Configurable notification mechanisms (agents)
● Integrated desktops with support for instant mes-

saging

Different kinds of portals have developed over time.
Personal portals provide individuals with general in-
formation and productivity tools. Community por-
tals offer information to a particular group of peo-
ple. Corporate portals are basically a community
portal for the employees of a company. Application
service provider portals concentrate on access to
hosted applications, augmented by some value-added
services. Finally, interenterprise portals give other
companies access to the goods and services offered
by the company that runs the portal.

The common service that all these portals provide
to their users is an integrated, personalized view of
the information available in a specific domain. This
view is usually accessible over the Internet from any-
where in the world.

Note that a portal application requires support in
all tiers: In the data management tier, advanced
search and categorization are required to provide
an integrated view over a wide range of data types,
typically available from a variety of sources. In the
middle tier, customizable business logic must imple-
ment support for personalization, security, notifica-

tion, and other portal services. Finally, in the pre-
sentation tier, different navigational styles as well as
several output devices need to be supported, depend-
ing on the preferences of the user. Thus, support for
portals cannot be limited to one tier. It must span
the entire software stack involved in the implemen-
tation.

IBM addresses the requirements for portals in all
tiers:

● The Enterprise Information Portal (EIP)22 initia-
tive is IBM’s product offering for the data manage-
ment tier. EIP offers support for structured and un-
structured data types and allows searches across
federated back ends. Categorization of search re-
sults is possible through automated meta-data ex-
traction.

● The WebSphere Portal Server23 provides the re-
quired support for portals in the business logic and
in the presentation layer. It includes a set of EJB
and commands to manage users, resources, and
events, as well as a set of servlets or JSP pages to
customize the presentation layer.

The Portal Server is tightly integrated with exist-
ing members of the product family, from a tool per-
spective as well as from a run-time perspective.
Specifically, the portal architecture exploits the
personalization, transcoding, and content manage-
ment functionality of WebSphere as described in
other sections of this paper. Tooling is provided
by wizard-based extensions to WebSphere Studio.

A portal solution with a very specific target audience
is the Raven knowledge portal from Lotus.24 This
solution addresses the collaboration requirements
of large enterprises through a tight integration with
Lotus Domino**. Its collaborative design is built on
the concepts of the theme of “People, Places, and
Things” that allow users to effectively share knowl-
edge across the network.

Content management. Content management (CM)
addresses the need to manage the content of a busi-
ness-to-consumer site through different stages of the
publishing process: preparation, validation, autho-
rization, publication, intelligent search, and rating
of search results. The management chain can be fairly
complex and often requires specialized solutions to
address the needs of a particular business-to-con-
sumer site. For example, news portals need to in-
terface to networks that continuously publish infor-

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200136

mation; they need to select the information that is
relevant to them and integrate the selection into the
existing Web site. Updates occur continuously, but
the volume of data that is to be handled after con-
tent selection is relatively low. On the other extreme,
an on-line shopping site needs to extract the required
information from pre-existing catalogs, possibly
available in different formats, and present it in a stan-
dard template to the user of the Web site. Updates
of the core catalog data do not occur frequently, but
the volume of product data that is to be managed
can be extremely high.

Business-to-consumer sites have a strong need for
CM since it represents the core of their value prop-
osition to the customer. In fact, business-to-con-
sumer sites typically do not provide content that is
unique to the site but rather content that is publicly
available on the Internet or from product manufac-
turers. Therefore, these sites need to distinguish
themselves from their competition by offering a well-
structured view of that content.

IBM’s role in this area is mainly to be an infrastruc-
ture provider. Many of the customized tools used to
address specific business-to-consumer scenarios are
developed by IBM business partners that build their
products on top of this infrastructure. Some of IBM’s
product offerings in this area are part of the DB2 prod-
uct family and are beyond the scope of this paper.
Additional information on these products is avail-
able from Reference 25.

Other product offerings in this area are part of the
WebSphere product family. For example, the Web-
Sphere Catalog Architect26 supports the creation and
administration of product catalogs for shopping sites
that run on top of WebSphere Commerce Suite. The
Catalog Architect offers a tight integration with the
run-time structure of the commerce suite and focuses
on those parts of CM that are directly related to the
server run time, namely content modeling, publish-
ing, and search. The other areas of CM are addressed
through offerings from IBM business partners that
can integrate with the Catalog Architect to access
these run-time services.

Because of the tight integration of the Catalog Ar-
chitect and Commerce Suite, the user of the Cat-
alog Architect can define advanced catalog features
such as personalization, intelligent catalog search,
and merchandising. Catalog entries can be defined
in an object-oriented view of the data, enabling at-
tribute inheritance for similar catalog items and se-

lective overwriting of attributes. The Catalog Archi-
tect verifies the catalog information and helps the
user to catch errors during the data entry process.
It then inserts the gathered information into the da-
tabase that is used by the Commerce Suite. Thus, it
shields the user from most of the low-level details
of data entry.

In addition to the Catalog Architect, the WebSphere
product family provides additional, more generic
functionality in the CM space. IBM offers a distrib-
uted authoring environment called WebSphere con-
tent management that enables distributed CM over
the Web. The environment consists of the following
elements:

● A presentation layer that contains a set of servlets
and JSP pages, executing in WebSphere, that send
and receive requests through the Web-Based Dis-
tributed Authoring and Versioning (WebDaV)
Protocol

● A CM server that executes the business logic for
common tasks such as content contribution, ver-
sion management, preview, and content publish-
ing

● An access control server that is responsible for au-
thenticating and authorizing the user to execute
certain tasks in the system

● A repository that persists different types of content,
referred to as assets in this context. Certain assets
are predefined, e.g., HTML or XML documents, style
sheets, and images. However, it is also possible to
extend the repository with new asset types. The
functionality of the repository is based on existing
CM products from the DB2 product family.

● A workflow engine that ensures that the overall CM
process is correctly executed. The CM process is
user-configurable and uses the organizational hi-
erarchy of the user’s company to define the rules
for content routing. This workflow functionality is
provided by Domino Workflow.

The WebSphere content management environment
is designed to support different content languages.
Furthermore, it integrates with the personalization
framework of WebSphere described previously, i.e.,
it allows the user to publish content into certain
groups of the HRF.

Business-to-business scenarios

Business-to-business (B2B) scenarios describe the in-
teraction between two or more companies when con-
ducting business transactions over the Internet. In

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 37

general, some parts of this interaction can be auto-
mated, whereas other parts may require human in-
tervention. However, the B2B interaction does not
involve a consumer. This characteristic is the main
difference from the business-to-consumer scenarios
described in the previous section.

The most significant new challenge for B2B scenar-
ios is the tight integration between Web technology,
workflow, and messaging. This integration enables
complex, distributed, and asynchronous tasks to be
launched and completed with a minimum of human
intervention.

Another feature of B2B scenarios, above and beyond
many business-to-consumer scenarios, is the use of
XML as the lingua franca of the information exchange.
Since XML is versatile enough to handle many dif-
ferent kinds of information, the use of XML alone
is not sufficient to communicate with other systems.
Standardized formats, or some support for format
translation, are required when exchanging messages
with a remote system.

The rest of this section outlines how these additional
challenges are addressed by the specific B2B features
and functions of the WebSphere product family and
other IBM product families. The infrastructure top-
ics already covered in the previous sections repre-
sent a very important foundation for these extended
features and functions and indeed for the overall suc-
cessful development of any B2B solution.

Enterprise application integration. Enterprise ap-
plication integration (EAI) is the key element for all
B2B scenarios since existing applications need to co-
operate across enterprise boundaries. It is generally
not an option for a company to replace the existing
infrastructure just to satisfy emerging interoperabil-
ity requirements with other companies. Rather, the
existing infrastructure needs to be carefully extended
or aggregated to accommodate more flexible input
and output channels.

The architecture of the WebSphere BtoB Integra-
tor27,28 provides extensive support for this kind of sce-
nario. The BtoB Integrator is based on a comprehen-
sive set of IBM products that includes MQSeries,
MQSeries Workflow, MQSeries Integrator, SecureWay
Policy Director, and the WebSphere Application
Server. It offers an integrated view of the feature set
of the underlying technology.

The BtoB Integrator addresses two main functional
requirements: collaboration and integration. The col-

laboration functionality enables a workflow to span
multiple applications as well as enterprises to exe-
cute a given business task. The integration function-
ality gives access to data in different back-end sys-
tems.

The architecture of the BtoB Integrator introduces
several building blocks to address these functional
requirements, as shown in Figure 4.

● The business flow manager executes business pro-
cesses as a multilevel business transaction, i.e., col-
laborative, state-driven workflow uses short trans-
actions to update the persistent state of an
application. Compensation transactions can be em-
ployed to undo such updates if the business trans-
action needs to be rolled back at a later stage. The
business flow manager is implemented using ca-
pabilities of both the MQ Workflow and Web-
Sphere Application Server. The business flow man-
ager features specialized EJB, the so-called adaptive
documents (ADOCs), that provide a means to ag-
gregate content from multiple applications and
data sources to execute a given task or activity in
a business process. Task and document control-
lers associated with an ADOC define its multilevel
transaction behavior.

● The interaction manager renders role-based and
business-process-sensitive executable content and
provides an integrated user experience in coop-
eration with the access manager and the business
flow manager. The interaction manager maintains
the shared session context in the case of user ac-
cess through the browser and provides a mecha-
nism to integrate presentation layers from various
applications that follow the WebSphere program-
ming model.

● The access manager defines and executes the or-
ganization and trust model. It is implemented us-
ing Java Naming and Directory Interface** (JNDI)
to access the Tivoli Policy Director and LDAP di-
rectory. It can support both the capability and the
access-control-based authorization mechanisms,
and in cooperation with components in the Web-
Sphere Performance Pack (notably the Web Traf-
fic Express) can support single sign-on for multi-
ple back-end systems.

● For a tight integration with existing back-end sys-
tems, the BtoB Integrator architecture introduces
the information delivery manager that is respon-
sible for sending and receiving requests to and from
external systems. This component is realized as a
distributed architecture, with adapters bridging the
disparate application programming interfaces

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200138

(APIs) of legacy applications. The information de-
livery manager uses the Business Object Docu-
ments of the Open Application Group29 as the
messaging standard between participating appli-
cations, thus defining a common data exchange for-
mat. MQSeries is employed in the transport layer
of the information delivery manager, and the
MQSeries Integrator can (optionally) be used for
message routing and transformation.

● The public process gateway, also referred to as the
BtoB Integrator gateway, provides a mechanism
to interchange messages between enterprises us-
ing multiple business, delivery, and transport pro-
tocols.

● Finally, the solution manager provides application-
level logging, generic reliability and serviceability
functionality, and support for exception handling.
It also manages a system registry consisting of rel-
evant configuration parameters that are stored in
LDAP.

Workflow. The formalized process modeling func-
tions of sophisticated workflow products offer an ef-
ficient and robust mechanism for specifying business
transactions. Once modeled as workflows, they de-
pend on workflow engines to control the overall ex-
ecution of the transaction. Human-controlled action
requests may have to be launched at particular points
in a process, and processing must be resumed or re-
routed depending on the result of the users’ actions.

Domino Workflow and MQ Workflow are IBM’s prod-
uct offerings in this area. These two products have
the following different and complementary strengths
in their implementations of workflow management:

● MQ Workflow is a transactional workflow engine,
focused on high-volume, repetitive processing
tasks. In MQ Workflow the activities of each work-
flow step are typically initiated by the user, but
managed by the workflow engine. Each task is ac-

Figure 4 The BtoB Integrator system architecture

CLIENTS: WEB BROWSER, APPLICATION

SOLUTION TEMPLATES

TPAs CLIENT
MODEL

INFORMATION
MODEL

PROCESS
MODEL

APPLICATION
MODEL

SYSTEM
MODEL

PUBLIC
PROCESS
GATEWAY

BUSINESS PROCESS MANAGEMENT

OBJECT BUS MESSAGE BUS

APPLICATION FRAMEWORK FOR E-BUSINESS

SOLUTION MANAGER

INTERACTION
MANAGER

BUSINESS
FLOW
MANAGER

ACCESS
MANAGER

INFORMATION
DELIVERY
MANAGER

TOOLS WEB
APPLICATION
SERVER

SYSTEM AND
SECURITY
MANAGEMENT

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 39

complished by the execution of a single process-
ing step with little control or ad hoc processing on
the part of the user, and is short-lived in duration.

● Domino Workflow is a nontransactional engine
based on the concept that the activities at each
workflow step are more oriented to human-based
processing and data manipulation. In Domino
Workflow, the user typically modifies document
contents and workflow data with processes that are
not directly under control of the workflow system.
Processing of each activity may involve many user
actions over an extended period of time. Domino
Workflow is also closely linked to the organiza-
tional and document routing capabilities of the Lo-
tus Domino application server.

Both systems offer capabilities that allow workflows
to be initiated by messages that can be delivered
across enterprise and workflow engine boundaries.
Thus, the systems are fully interoperable, allowing
different parts of business processes to be supported
by the most appropriate engine.

IBM is working on unifying the programming inter-
faces to these two engines by providing a library of
workflow EJB. The unification will be modeled on
open standards for workflow management. IBM is ac-
tively involved in driving the standardization of work-
flow management interfaces at the Workflow Man-
agement Coalition and at the Object Management
Group (OMG). Along with other companies, IBM has
recently submitted the Workflow Management Fa-
cility Specification to the OMG.30 IBM provides and
will continue to provide standards-based access in-
terfaces to the workflow engines in its product lines.

Messaging. Due to the distributed nature of the In-
ternet, some communications need to be performed
asynchronously because a reasonable response time
cannot be guaranteed. Message brokers have per-
fected this kind of service over the last few years but
are not widely used for sending messages across the
Internet. A tight integration between message bro-
kers and object brokers such as the WebSphere Ap-
plication Servers adds significant capabilities to both
technologies.

IBM addresses this field by integrating the MQSeries
product family31 with the WebSphere Application
Servers. The integration of messaging with objects
is a major focus of IBM’s current development ac-
tivities. Note that the integration of messaging into
the managed environment of an object-based appli-
cation server is technically challenging since it in-

volves receiver activation on message arrival, data
format translation, some degree of transaction co-
ordination, and the definition of a security context
for the incoming request.

The integration of IBM’s message and object broker
technology occurs on several levels and at different
degrees of sophistication:

● The WebSphere Enterprise Edition has already
featured a tight integration with MQSeries for
some time. This integration allows MQSeries-
backed objects to participate in externally coor-
dinated transactions under WebSphere Enterprise.
The developer can put and get messages to and
from queues by creating an object in a specialized
home that is associated with the queue. The ob-
jects can represent incoming or outgoing messages
and behave similarly to normal CORBA objects.

● The CCF architecture, as described earlier, can also
be used to integrate MQSeries with WebSphere.
This approach can be employed in the Advanced
Edition and Enterprise Edition of WebSphere. CCF
enables a simple object/message integration. Mes-
sages can be sent and received by means of the
standard input and output objects that are part of
CCF. The MQSeries CCF connector is fully inte-
grated with VisualAge for Java. However, the ap-
proach does not support receiver activation on
message arrival, and it does not (yet) support ex-
ternal commit coordination across multiple trans-
actional resources.

● The third solution for integrating MQSeries with
WebSphere is the use of a Java Message Service
(JMS) interface to communicate with MQSeries.
A JMS library for accessing MQSeries is available.
It includes support for publish and subscribe along
with the basic support for queues.

Version 2.0 of the EJB standard provides the ar-
chitecture for an integration between EJBs and
JMS-based messaging. When this standard is final-
ized, IBM will incorporate support for it into the
WebSphere product family.

Building on top of the third approach described
above, IBM supports container-managed messaging
(CMM) in WebSphere Enterprise Edition. The goal
of CMM is to make message sending and receiving
as easy as invoking a method on an object. If com-
pared to the three approaches above, the main dif-
ference is that the details of message administration

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200140

are encapsulated in helper objects that are gener-
ated by the WebSphere tools. Therefore, CMM en-
ables a higher-level, more productive use of the mes-
saging technology.

CMM is based on the concept of a MessageBean
which can either be a ReceiverBean or a SenderBean
(Figure 5). ReceiverBeans are currently imple-
mented as stateless SessionBeans but will be based
on the EJB 2.0 concept of a MessageDrivenBean in
a future release. A SenderBean is a standard Java-
Bean that can be used to transparently send mes-
sages. It is typically used by an EJB.

In CMM, a MessageRepository defines a data-map-
ping layer specifying the details of the format that
is used for sending and receiving messages. A Mes-
sageBean can receive and send such messages by in-
voking methods on, and receiving method invoca-
tions from, several generated helper objects as
follows:

● The MessageListener is responsible for listening
for JMS messages from the JMS destination on be-
half of a ReceiverBean. When a message arrives,
it invokes a ReceiverBean.

● The ReceiverBean is a stateless SessionBean that

processes the message. It can apply some data for-
mat conversion if required and forward the mes-
sage to another EJB. A ReceiverBean can be gen-
erated by tools, or it can be developed by a user
of CMM. In the latter case it can contain business
logic.

● The SenderBean is a custom JavaBean that allows
transparent message sending, i.e., the message is
sent by simply invoking a method. The SenderBean
is typically instantiated and used inside an EJB.
Again, SenderBeans can be generated by tools or
developed manually by a user of CCM.

Transaction and security management are handled
declaratively in CMM, allowing some degree of flex-
ibility when tying message sending and receiving into
the existing transaction and security layer in the EJB
container.

In addition to object integration, another essential
property of messaging is message transformation and
routing. IBM addresses this area with the MQSeries
Integrator.32 The product supports rule-based rout-
ing and formatting of messages in a network of mes-
sage brokers. The message flow through the network
can be defined through a graphical tool that allows

Figure 5 Container-managed messaging

MESSAGE REPOSITORY

EJB CONTAINER

JMS DESTINATION

SERVER RUN TIME

RECEIVERBEANMESSAGE
LISTENER

SENDERBEAN

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 41

wiring of related messages. Version 2.0 supports the
following:

● Message enrichment by merging relational data-
base content into an in-flight message

● Routing decisions based on message headers or
content

● Transformation of message content (using a
built-in SQL engine)

● Message transmission via MQSeries queues
● Data capture or warehousing from in-flight mes-

sage to relational database
● Dynamic routing of message using matching table

evaluation of registered subscriptions (topic-based
and content-based publish or subscribe)

XML support. Many data exchanges across the In-
ternet use XML as a data format. Its flexibility and
internal structure position it as an ideal instrument
for that purpose. IBM has already enabled most of
its products for XML; the next step is to define higher-
level business services in XML.

When exchanging XML messages over the Internet,
two business partners need to agree on a common
data format and a high-level protocol for success-
fully completing the transaction. For this reason, ne-
gotiated trading partner agreements play an impor-
tant role in the communication flow. These protocols
may change from time to time as the business re-
lationship evolves. Thus, it is important to encap-
sulate the details of the protocol to enable a cen-
tralized administration.

IBM has developed a framework that defines the tech-
nical infrastructure for this area, the Business-to-Bus-
iness Protocol Framework (BPF).33 It provides a ge-
neric execution framework for sending and receiving
XML messages across the Internet. Another paper
in this issue describes in more detail the concepts of
BPF and includes information on the status of the
current implementations of BPF in IBM products.34

BPF uses trading partner agreements (TPAs)33,35 to
capture the details of a contract that connects two
business partners on line (Figure 6). TPAs are XML
documents that define a wide range of parameters
for an exchange over the Internet. These parame-
ters include:

● Invocation independent properties specify a name,
a period of validity of the TPA, etc.

● Identification defines contact information for the
participants. Optionally, this section includes infor-
mation on a third-party arbitrator to settle disputes.

● Communication describes the type of communi-
cation to be used for that TPA together with ap-
propriate attributes. Examples are HTTP and SMTP,
with a uniform resource locator (URL) and an e-
mail address attribute, respectively.

● Security captures authentication or nonrepudiation
protocols as well as required attributes, e.g., cer-
tificates or public keys.

● Data definition describes the format of the data to
be exchanged.

● Role definition describes one or several groups of
potential participants in this TPA. Roles can be used

Figure 6 Trading partner agreements in a dynamic exchange (OBI messages for purchase order request and purchase order)

EIS
SYSTEM
(SENDER)

EIS
SYSTEM
(RECEIVER)

BPF
TPA

SSL HANDSHAKE

IDENTITY EXCHANGE

OBI PURCHASE ORDER REQUEST

OBI PURCHASE ORDER

TPA
BPF

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200142

to define reusable TPAs, i.e., TPAs that can be ap-
plied to any organization that assumes the respon-
sibilities of that role.

● Action list contains allowed verbs of an interaction
according to the TPA, defining the high-level pro-
tocol flow.

● Sequencing rules define constraints on the order
of the actions.

● Error-handling specifies details of conditions that
should be treated as an error, e.g., time-outs.

A TPA is defined using the TPA Markup Language
(tpaML). The resulting XML file is used to configure
the BPF at run time. IBM currently provides an im-
plementation of the Open Buying on the Internet
Protocol36 as a TPA. Other protocols will be made
available as well. The tpaML proposal has been sub-
mitted to the Organization for the Advancement of
Structured Information Standards37 for standardi-
zation.

Together with others in the industry, IBM is currently
working on a specification of an XML-based Web ser-
vices architecture that allows e-businesses to pub-
lish and dynamically discover services on the Inter-
net. Central elements of this architecture are the
Simple Object Access Protocol (SOAP),38 the Uni-
versal Description, Discovery, and Integration Pro-
tocol39,40 as well as the Universal Definition Lan-
guage.41 Recent development work has integrated
support for SOAP and other enabling technologies
into WebSphere.42

As this area is evolving very rapidly, a more detailed
description of the technology is likely to be either
obvious or obsolete by the time this paper is pub-
lished. Therefore, we have to refer the reader to one
of the references above or to Reference 43 for up-
to-date information on IBM’s activities in this area.

Conclusion

Today, the WebSphere product family satisfies many
of the requirements of a typical e-business Web site.
It has grown to become a solid foundation of many
development initiatives inside and outside IBM, and
its functionality will continue to evolve to satisfy new
requirements as they arise.

The WebSphere Application Servers come with a
fairly complete portfolio of complementing products
that address many aspects of application develop-
ment and run-time operations. Some of these fea-
tures are described in this paper. Others, such as a

complete set of predefined business components,
performance tuning tools, system management, high-
performance Java virtual machines, and machine
translation were omitted in order not to make the
paper unreasonably long. This broad portfolio allows
customers to use IBM as a “one-stop-shopping” sup-
plier for the entire software stack that is required to
run an e-business.

Together with MQSeries and DB2, WebSphere is one
of the strategic server products of IBM. IBM expects
the WebSphere Application Servers to become the
platform of choice for many e-business initiatives in
the industry and positions and funds the product ac-
cordingly. Future development efforts in the Web-
Sphere product family will focus on the following two
aspects: (1) the evolution of the platform to support
new standards as they become available and (2) a
tighter integration of WebSphere with IBM and
non-IBM products.

Acknowledgments

The authors would like to thank the referees as well
as Kumar Bhaskaran, Jim Frank, Vernon Green, Su-
san Hanis, Brian Martin, Nataraj Nagaratnam, Tony
Storey, Robert Will, and Douglas Wilson for their
valuable comments.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Object Management Group, or Lotus Development Corporation.

Cited references

1. The Application Framework for e-Business (AFeb), IBM Cor-
poration, http://www.ibm.com/software/ebusiness/. Also see:
G. Flurry and W. Vicknair, “The IBM Application Frame-
work for e-Business,” IBM Systems Journal 40, No. 1, 8–24
(this issue, 2001).

2. WebSphere Advanced Documentation Center, IBM Cor-
poration, http://www.ibm.com/software/webservers/appserv/
library.html.

3. WebSphere Enterprise Programming Guides, IBM Cor-
poration, http://www.ibm.com/software/webservers/appserv/
doc/v30ee/cbpdf/.

4. E. Gamma, J. Vlissides, R. Johnson, and R. Helm, Design
Patterns: Elements of Reusable Object-Oriented Software, Ad-
dison Wesley Longman, Inc., Reading, MA (1994).

5. G. Booch, Object Oriented Analysis and Design with Applica-
tions, Second Edition, Benjamin/Cummings Publishing Co.,
Redwood City, CA (1994).

6. I. Jacobsen, Object-Oriented Software Engineering—A Use Case
Driven Approach, Addison Wesley Longman, Inc., Woking-
ham, England (1992).

7. WebSphere Studio, IBM Corporation, http://www.ibm.com/
software/webservers/studio/library.html.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 43

8. VisualAge for Java, IBM Corporation, http://www.ibm.com/
software/ad/vajava/.

9. Pervasive Computing, IBM Corporation, http://www.ibm.com/
pvc/tech/whitepapers.shtml.

10. Transcoding,IBMCorporation,http://www.ibm.com/software/
webservers/transcoding/.

11. K. Britton, R. Case, A. Citron, R. Floyd, Y. Li, C. Seekamp,
B. Topol, and K. Tracey, “Transcoding: Extending e-business
to New Environments,” IBM Systems Journal 40, No. 1, 153–
178 (2001, this issue).

12. K. Ueno, T. Alcott, J. Blight, J. Dekelver, D. Julin, C. Pfann-
kach, and T. Shieh, “WebSphere Scalability—WLM and Clus-
teringUsingWebSphereApplicationServerAdvancedEdition,”
WebSphere Workload Management, Redbook SG24-6153-00,
IBM Corporation, http://www.redbooks.ibm.com.

13. WebSphere Performance Pack, IBM Corporation, http://
www.ibm.com/software/webservers/perfpack/.

14. Page Fragment Cache, to be announced, refer to the main
WebSphere site for further information, IBM Corporation,
http://www.ibm.com/software/webservers/.

15. WebSphere Standard/Advanced 3.02 Security Overview,
IBM Corporation, http://www.ibm.com/software/webservers/
appserv/library.html.

16. WebSphere Enterprise Security, in the Advanced Program-
ming Guide, IBM Corporation, http://www.ibm.com/software/
webservers/appserv/doc/v30ee/cbpdf/.

17. G. Bist and J. Green, “Using Connectors with VisualAge for
Java,” CCF Connectors, available from the VisualAge De-
veloper Domain at http://www.ibm.com/software/vadd, un-
der Library—Technical Articles—Components.

18. WebSphere Personalization, IBM Corporation, http://
www.ibm.com/software/webservers/personalization/.

19. WebSphere Site Analyzer Guide, IBM Corporation, http://
www.ibm.com/software/webservers/appserv/library.html.

20. WebSphere Commerce Suite, IBM Corporation, http://
www.ibm.com/software/webservers/commerce/servers/.

21. WebSphere Commerce Suite, Marketplace Edition, IBM Corpo-
ration, http://www.ibm.com/software/webservers/commerce/
wcs_me/.

22. Enterprise Information Portals, IBM Corporation, http://
www.ibm.com/software/data/eip/.

23. WebSphere Portal Server, IBM Corporation, http://www.
ibm.com/software/webservers/portal/.

24. Knowledge Management, Lotus Development Corporation,
http://www.lotus.com/lotus/km.nsf.

25. Data and Data Management, IBM Corporation, http://www.
ibm.com/software/data.

26. WebSphere Catalog Architect, IBM Corporation, http://
www.ibm.com/software/webservers/commerce/servers/
catalogarchitect.html.

27. WebSphere BtoB Integrator, IBM Corporation, http://www.
ibm.com/software/webservers/btobintegrator/.

28. J. Frank, “Business-to-Business Electronic Commerce—A
Technical White Paper,” BtoB Integrator, to be published at
http://www.ibm.com/software/webservers/btobintegrator/.

29. Open Application Group, http://www.openapplications.
org/.

30. Workflow Management Facility Specification, Version 1.2,
Organization Management Group, ftp://ftp.omg.org/pub/
docs/formal/00-05-02.pdf.

31. MQSeries, IBM Corporation, http://www.ibm.com/software/
ts/mqseries.

32. MQSeries Integrator v2.0 Technical White Paper, available
from http://www.ibm.com/software/ts/mqseries/library/ (in the
white papers section).

33. L. Ennser, P. Leo, T. Meszaros, and E. Valade, The XML
Files: Using XML for Business-to-Business and Business-to-
Consumer Applications, Business-to-Business Protocol Frame-
work, Redbook SG24-6104-00, IBM Corporation, http://
www.redbooks.ibm.com.

34. A. Dan, D. Dias, R. Kearney, T. Lau, T. Nguyen, F. Parr,
M. Sachs, and H. Shaikh, “Business-to-Business Integration with
tpaML and a Business-to-Business Protocol Framework,” IBM
Systems Journal 40, No. 1, 68–90 (2001, this issue).

35. Trading Partner Agreements, IBM’s submission to OASIS,
http://www.xml.org/xmlorg_resources/index.shtml.

36. Open Buying on the Internet, OBI Consortium, http://
www.openbuy.org.

37. Organization for the Advancement of Structured Informa-
tion Standards (OASIS), http://www.xml.org.

38. Simple Object Access Protocol (SOAP) Specification, Ver-
sion 1.1., IBM Corporation, http://www.ibm.com/software/
developer/library/soap/soapv11.html.

39. Universal Description, Discovery, and Integration (UDDI),
http://www.uddi.org.

40. Universal Description, Discovery, and Integration (UDDI),
IBM site, http://www.ibm.com/services/uddi.

41. Universal Definition Language (UDL), IBM Corporation,
http://www.ibm.com/services/udl.

42. Web Services Toolkit, IBM Corporation, http://www.
alphaworks.ibm.com/tech/webservicestoolkit.

43. XMLZone,IBMCorporation,http://www.ibm.com/developer/
xml/.

Accepted for publication October 18, 2000.

Donald F. Ferguson IBM Software Group, Route 100, Somers,
New York 10589 (electronic mail: dff@us.ibm.com). Dr. Ferguson
received a Ph.D. degree in computer science from Columbia Uni-
versity in 1989. His Ph.D. thesis applied concepts and algorithms
from economics to resource management problems in distributed
systems and computer networks. This included work on system
load balancing, data replication and file placement, and network
flow control. He joined IBM in 1987 and has led research and
development efforts in the areas of operating system performance,
database tuning, scalable transaction processing, object transac-
tion monitors, and Web application servers. Since 1993, he has
been the chief technical lead for IBM’s WebSphere family of prod-
ucts that provides an infrastructure and programming model for
integrating new and pre-existing applications with the Internet,
providing business-to-person and business-to-business solutions.
Dr. Ferguson holds approximately a dozen granted or pending
U.S. patents and has authored more than 24 technical publica-
tions. In 1998, he was named a Distinguished Engineer. He is
also a member of the IBM Academy of Technology.

Rainer Kerth IBM Software Group, Route 100, Somers, New York
10589 (electronic mail: rkerth@us.ibm.com). Dr. Kerth joined the
WebSphere Architecture Team in Somers in July 1999. His ar-
eas of expertise are object-oriented application development,
based on CORBA or EJB/J2EE, and Web application develop-
ment. He is currently responsible for the documentation of and
extensions to the WebSphere programming model. In this role,
he has worked on extended transaction models and participates
in IBM’s review of different standards initiatives, mainly the EJB
and the J2EE specifications. Prior to joining the WebSphere team,
he worked for several years in IBM’s Object Technology Prac-
tice in Germany, specializing in application development in cus-
tomer engagements. Dr. Kerth earned a Ph.D. degree in math-

FERGUSON AND KERTH IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200144

ematics and foundations of computer science at the University
of Paris in 1995. His thesis addressed several fundamental ques-
tions relating to the denotational semantics of lambda calculus.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 FERGUSON AND KERTH 45

