68 DaN ET AL

Business-to-business
integration with
tpaML and a
business-to-business
protocol framework

In business-to-business interactions spanning
electronic commerce, supply chain management,
and other applications, the terms and conditions
describing the electronic interactions between
businesses can be expressed as an electronic
contract or trading partner agreement (TPA).
From the TPA, configuration information and
code that embody the terms and conditions can
be generated automatically at each trading
partner’s site. The TPA expresses the rules of
interaction between the parties to the TPA while
maintaining complete independence of the
internal processes at each party from the other
parties. It represents a long-running conversation
that comprises a single unit of business. This
paper summarizes the needs of interbusiness
electronic interactions. Then it describes the
basic principles of electronic TPAs, followed by
an overview of the proposed TPA language. The
business-to-business protocol framework (BPF)
provides various tools and run-time services for
supporting TPA-based interaction and integration
with business applications. Finally, we describe
examples of solutions constructed using TPAs
and BPF.

As we enter the new millennium, fundamental
changes are happening to trade and the way it
is organized. There is a growing shift toward an elec-
tronically connected world in which ideas, informa-
tion, and services are replacing the traditional re-
liance on physical goods production as the primary
generator of wealth and employment. In this new
economy, market dynamics will dictate a business
model that provides for the integration of different
partners in a value chain. Using a variety of tech-
nologies from information technology (IT), this
model can enable highly coordinated trading com-

0018-8670/01/$5.00 © 2001 I1BM

by A.Dan T. N. Nguyen
D. M. Dias F. N. Parr
R. Kearney M. W. Sachs
T. C. Lau H. H. Shaikh

munities, each with the ability to operate like a “vir-
tual enterprise.”

The emerging e-business Web economy requires an
agile enterprise that can work more directly with sup-
pliers and customers and respond more rapidly and
intelligently to change. Technologies such as the In-
ternet are beginning to transform traditional busi-
ness models. Business pressures—margin erosion,
channel proliferation, rising customer expectations,
time-based competition, and faster product com-
moditization—are placing increased emphasis on
how organizations operate and interoperate with
other enterprises.

To enable customers to adapt to these dramatic
changes in the business environment, middleware
will increasingly be required to provide dynamic and
flexible integration between partners in the value
chain. Although new technologies will be needed to
enable such integration, they will have to work seam-
lessly with existing interenterprise business processes
(e.g., EDI—Electronic Data Interchange) and lever-
age investments in existing enterprise application in-
tegration (EAI).

This paper describes new middleware technology for
business-to-business integration developed and pro-
totyped by IBM Research. The central innovation
is trading-partner agreement Markup Language

©Copyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

(tpaML)—an Extensible Markup Language (XML) '
grammar for expressing electronic trading-partner
agreements and a candidate for standardization. IBM
Research has also designed and prototyped the busi-
ness-to-business protocol framework (BPF). This run-
time framework enables business protocols expressed
in tpaML to be automatically deployed. We describe
BPF and its use in some example scenarios to make
the case that tpaML-based integration is both fea-
sible and effective.

In the next section of the paper, we detail the issues
that need to be addressed in business-to-business in-
teractions. Subsequently, we discuss the principles
of business-to-business electronic trading-partner
agreements (TPAs). Then we describe our TPA lan-
guage. The fifth section describes the architecture
and initial implementation of BPF. Afterward, we de-
scribe the tools for creating TPAs and generating code
from them. Finally, we describe application exam-
ples that illustrate the use of the TPA and BPF.

Interbusiness electronic interactions

In this section, what is required for electronic inter-
actions between businesses and the technical pro-
cedures to implement the interactions are described.

Business requirements. Facilities such as EDI have
successfully provided electronic document inter-
change between companies and their suppliers for
a number of years. However, the high cost of EDI
and its dependency on specialized deployment skills
have always proved a barrier to adoption by all but
the largest enterprises. Although EDI will continue
to evolve, utilizing pervasive networks such as the
Internet to reduce costs, complementary technolo-
gies are emerging that are able to provide some of
the key capabilities necessary to enable dynamic bus-
iness process integration. The basis of these tech-
nologies is the formulation of:

* A “common language” that can be employed by
existing or potential trading partners to specify how
they will interact

* An “electronic contract” that employs this com-
mon language in order to define and enforce the
interaction protocols with which they will do bus-
iness

Business-to-business protocols such as Open Buy-
ing on the Internet** (OBI**)* and RosettaNet***
are beginning to set a standard for business inter-
actions (albeit currently fragmented). Our research

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

work has demonstrated that tpaML and BPF provide
a comprehensive tool set for the specification, con-
figuration, customization, and execution of electronic
TPAs.

Business-to-business interchanges based on EDI have
long been defined by informal textual documents
called TPAs. These TPAs are contracts that define both
the legal terms and conditions and the technical spec-
ifications that both partners must implement to put
the electronic trading relationship into effect. They
are given to each partner’s programmers to imple-
ment the technical specifications and are therefore
subject to misinterpretation, resulting in implemen-
tation errors that must be corrected before electronic
exchanges can begin. In contrast, an electronic TPA
can be used to automatically generate (using suit-
able tools) the necessary customization information
in each partner’s system, thus assuring that the sys-
tems are compatibly and correctly set up for elec-
tronic business.

IBM has submitted a draft of tpaML to the Electronic
Business XML (ebXML) initiative® for standardiza-
tion. Standardization of the TPA language is a key
element of interoperability between the business-to-
business servers of different vendors.

Technologies such as XML and TPAs, coupled with
advances in middleware and workflow software, pro-
vide the key building blocks needed to underpin an
electronic business-to-business integration infra-
structure. Supporting the extensible and easy-to-use
TPA format with the BPF framework and middleware
from IBM’s MQSeries* and WebSphere* families en-
ables dynamic business process integration by pro-
viding:

Integration of internal processes, using modifiable
“business rules” to route information between the
various internal business information systems
Secure, reliable, and auditable e-document inter-
change between organizations

Externalization of appropriate business functions
and processes to suppliers, customers, and part-
ners

In addition, this infrastructure can provide support
for:

The use of a broad range of standard message for-
mats, transport and business protocols, and net-
work connections with the capability to dynamically
connect new trading partners

DAN ET AL. 69

Figure 1 BPF—business-to-business protocol framework

TRADING PARTNER

BACK-END PROCESSES

NO SHARED MIDDLEWARE

TRADING PARTNER

BACK-END PROCESSES

BEP BEP
BEP LONG-RUNNING BEP
BACK-END CONVERSATIONS BACK-END
INTEGRATION | INTEGRATION
UNTRUSTED
WORKFLOW ACCESS WORKFLOW
\ APPLICATION APPLICATION | /
BUSINESS BPF BUSINESS
PROCESS PROCESS APPLICATION
APPLICATION
CATO APPLICATION APPLICATION

* Easy-to-use, business-oriented “single point of con-
trol” for interactions across an extended or virtual
enterprise

 Extensible open interfaces with flexible connectors
to link to existing applications

The BPF addresses these requirements. Figure 1 il-
lustrates the use of BPF for communication between
two trading partners. The trading partners are on
the left and right sides of the figure, connected by
BPF, shown as a lightning bolt. Each partner has a
business-to-business server that hosts the application
and includes either BPF or equivalent compatible
middleware. At each partner the business process
can be seen, consisting of one or more applications
and some back-end processes such as workflow.
Listed in the center are three requirements for suc-
cessful business-to-business middleware: no shared
middleware, long-running conversations, and sup-
port for untrusted access. These requirements are
discussed later.

Technical basis for interbusiness electronic inter-

actions. Contracts describe legally enforceable terms
and conditions in all kinds of interactions between

70 DAN ET AL

XML

TPAS

people and organizations. Examples of interactions
are marriage, employment, real estate purchases, and
industrial supply arrangements. In business-to-busi-
ness electronic commerce, there is a need to agree
not only on the traditional terms and conditions but
also on IT procedures ranging from communication
protocols to business protocols.® Today such con-
tracts, the trading-partner agreements, or TPAs, are
generally written in human languages and then
turned into code by programmers.

Adoption of business-to-business electronic com-
merce will be considerably accelerated by express-
ing the IT terms and conditions as electronic TPAs
from which the code to perform the terms and con-
ditions can be automatically generated at each par-
ty’s business-to-business server. Use of electronic
TPAs will speed up the reduction of the terms and
conditions to code and ensure that the code at each
business partner’s site will accurately embody the de-
sired terms and conditions. In the longer term, elec-
tronic TPAs will also facilitate electronic negotiation
of terms and conditions, at least for the simpler sit-
uations that need not involve extensive legal nego-
tiation. Electronic negotiation in turn opens the pos-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

sibility for spontaneous electronic commerce, i.e.,
quick and easy setup of business-to-business deals
on the Internet.’

In recentyears, there has been much activity in mod-
eling and analyzing various electronic commerce
methods using contract or agreement approaches.
Dan and Parr® and Weigand and Ngu® discuss how
interoperable transactions in electronic commerce
differ from traditional ACID (atomic, consistent, iso-
lated, durable) transactions '’ and the importance of
distinguishing between the contract (communication
behavior) and the task (the meaningful unit of work).
They propose a scheme for specifying the contract
that is suitable for analyzing the process.

Ajisaka'! discusses software as an object of electronic
commerce and proposes an architecture for manag-
ing custom software development by contract. Sand-
holm ' describes algorithms for modeling electronic
commerce transactions that do not require enforce-
ment. Sandholm and Lesser™ discuss issues in au-
tomated negotiation among agents whose rational-
ity is bounded by computational complexity. Konana
et al.' describe an approach to improve quality of
service in multimedia information delivery based on
conceptual contracts between end users and surro-
gate servers and among the surrogate servers.

Many of the publications cited above discuss con-
ceptual contracts as part of their models, but they
do not suggest a specific business-to-business con-
tract language or discuss embodiment of a system
based on such a contract. Dan and Parr® discuss the
general principles in business-to-business electronic
commerce and mention the use of a business-to-busi-
ness electronic contract but provide no details. Dan
et al.” discuss the specific functions needed in a busi-
ness-to-business electronic contract and describe the
architecture of the prototype of a business-to-busi-
ness server built at IBM Research but do not describe
a specific contract language. In this paper, we dis-
cuss the language for an electronic TPA and the tools
to assist in composing the TPA and generating code
from it.

Increased automation of business processes within
a business organization leads naturally to automa-
tion of business-to-business interactions.” The is-
sues of privacy, autonomy, heterogeneity in software
and platforms and, more importantly, managing
complexity of interactions, however, make this a chal-
lenging task. Some of these issues, e.g., heterogene-
ity of programming languages and platforms in which

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

the application components are developed, and
stateful interactions across program components, are
also addressed in the automation of business inter-
nal processes and integrating application compo-

The invocation of
application components
across organizational
boundaries needs to be
controlled and monitored.

nents. Total knowledge and control in the design of
the business process within an organization make this
a manageable task.

Component architectures such as Common Object
Request Broker Architecture** (CORBA**)'® and
Enterprise JavaBeans**!” provide middleware for
integrating application components written in dif-
ferent languages. For the purpose of interaction, an
application component needs to know only the in-
terfaces to other components written in a suitable
middleware integration language (e.g., interface def-
inition language, or IDL, in CORBA). In such envi-
ronments, typically, the applications are executed as
short ACID transactions. The underlying middleware
provides necessary run-time services, €.g., haming,
transaction, and resource allocation. A long-dura-
tion application is modeled as a sequence of short
independent steps invoked either manually or in an
automated manner.'>'%"

Most methodologies reported in the academic lit-
erature propose a specific request protocol or “soft-
ware bus” for automating the internal processes of
individual businesses. These methodologies are not
directly applicable to the automation of business-to-
business interactions. First and foremost, no com-
mon shared underlying middleware can be assumed
for distributed applications spanning organizational
boundaries. Setting up such a common software bus
requires tight coupling of the business partners’ soft-
ware platforms (e.g., consider the issues on security,
naming, and component registration).

Second, even if such a software bus can be estab-
lished, ACID or complex extended transaction mod-
els of stateful interactions, or both, are not appro-
priate for such business-to-business interactions.
Implementation of such protocols necessitates tight

DAN ET AL. 71

coupling of operational states across business appli-
cations, which is highly undesirable. The application
components in one organization may hold locks and
resources in other organizations for an extended pe-
riod of time, resulting in loss of autonomy. Rollback
or compensation of application steps, or both, is no
longer under the control of a single organization. In
real-world business operations the states always
move forward, and explicit recourse actions are taken
by business partners to move to a more desirable op-
erational state. An example is cancellation of a prior
purchase or reservation.

As discussed in Dan and Parr,® the middleware and
TPA provide a conversational model of interactions
wherein, based on the conversation history, each
partner explicitly specifies the permissible opera-
tions. We refer to such a model as a long-running
conversation. The long-running conversation is the
model by BPF of a single unit of business. The long-
running conversation is not an ACID transaction; it
is simply a grouping of the related operations that
comprise the unit of business. Each partner’s system
tracks the state of the conversation and maintains
alog that can be used for purposes such as audit trail
and recovery.

For management purposes, the internal business pro-
cess is separated from external interactions. Each
trading partner manages and is responsible for its
own internal activities in the business-to-business ap-
plication and may use ACID transactions within its
own domain. The model furthermore structures the
external interactions as actions consisting of requests,
responses, modifications, or cancellations, groups of
actions that together satisfy certain interaction rules,
and conversations demarcating interaction contexts.
Interactions in one conversation may trigger actions
in other conversations via execution of internal bus-
iness logic. In this way, BPF can manage a supply-
chain situation in which a business partner, during
a long-running conversation, may call upon subcon-
tractors.

The invocation of application components across or-
ganizational boundaries needs to be controlled and
monitored.®” First, without rigorous testing and
cooperation in software development across orga-
nizations, the correct execution of such complex dis-
tributed applications cannot be assumed. Second, in
such automated interactions, trust becomes an over-
arching concern. During run time, explicit checks are
necessary to ensure that business partners are not
violating any policy constraints (e.g., cancellation of

72 DAN ET AL

areservation must be within the allowable time win-
dow).

Principles of business-to-business
electronic TPAs

The purpose of the electronic TPA is to express the
IT terms and conditions to which the parties to the
TPA must agree in a form in which configuration in-
formation and the executable interaction rules can
be automatically generated from the TPA in each par-
ty’s system. It should be understood that the infor-
mation in the TPA is not a complete description of
the application but only a description of the inter-
actions between the parties. The application encod-
ing the endpoint business logic must be designed and
programmed in the usual manner. As a simple ex-
ample, the TPA may define requests such as “reserve
hotel.” The “reserve hotel” function must be de-
signed, coded, and installed on the hotel server. That
function may, in turn, invoke various site-specific
functions and back-end processes whose details are
completely invisible to the other party to the TPA.

We emphasize that the TPA is formulated to ensure
that each party maintains complete independence
from the other party both as to the details of the im-
plementations and as to the nature of the business
processes and back-end functions (database, trans-
action monitors, enterprise resource planning func-
tions, etc.) used. For example, as previously men-
tioned, the TPA neither requires, nor provides the
means for, ACID transactions involving both parties.

In describing the TPA language, we use the terms “cli-
ent” and “server” in the usual way. A client requests
services of a server. However, we envision applica-
tions in which a given party may play both server and
client roles at different times. In other words, a party
may both request services of the other party and re-
ceive service requests from the other party. In the
simplest applications, there are two parties, one of
which is always a server and the other always a cli-
ent. An example is a travel application involving a
travel agency (client) and an airline company (serv-
er). Even in such a simple case, however, the parties
may exchange roles. For example, the airline com-
pany may issue requests to the travel agency for more
information about the traveler or itinerary.

In our implementation, the TPA is represented in the
run-time system at each party that acts as a server
by an object, called a TPA object. The TPA object per-
forms rule checking and translation of the request

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

messages from the form defined in the TPA to the
actual method calls at the parties that act as servers.
A similar TPA object, generated at each party, that
can act as a client to the other party, performs the
inverse translation, from local method calls to the
request messages, as defined in the TPA, which are
sent to the other party. A party that can act as both
aclient and as a server has both kinds of TPA object.
Use of the TPA objects is illustrated in the examples
given later in the paper.

The TPA execution instance represents a single long-
running conversation, which is a set of related in-
teractions, dispersed in time, comprising a single unit
of business. For example, in a travel application, the
TPA might define the interactions between the travel
agent and a hotel company starting from the point
where the different reservations needed by the trav-
eler are made, to the check-in processes during the
trip, and ending when the traveler checks out at the
last stop. This sequence of steps is a single long-run-
ning conversation. A unit of business is performed
under the TPA by instantiating the TPA as a long-run-
ning conversation. To perform many units of bus-
iness, the TPA may be instantiated as many long-run-
ning conversations (serially or concurrently) as is
appropriate to the application and the processing ca-
pabilities of the parties’ systems.

Figure 2 shows the main information content and
function provided by the TPA. We now give a brief
overview of these functions. The next section de-
scribes the actual TPA language.

Overall properties of the TPA include its name, part-
ner names, starting and ending dates, and similar
global parameters. Definitions of roles are also pro-
vided. Communication and security properties in-
clude communication protocol (e.g., HyperText
Transfer Protocol, or HTTP, and Simple Mail Trans-
fer Protocol, or SMTP), communication addresses, au-
thentication and nonrepudiation protocols, and cer-
tificate parameters.

For each party that can act as a server, there is an
action menu listing the actions that the other party
can request and defining various characteristics of
those actions. Sequencing rules specify the order in
which actions can be requested on each server. Er-
ror handling rules are various conditions related to
error conditions, such as the maximum waiting time
for the response to a request.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 2 Key elements of TPA

OVERALL PROPERTIES

ROLE

IDENTIFICATION
COMMUNICATION PROPERTIES
SECURITY PROPERTIES
ACTIONS

SEQUENCING RULES

ERROR HANDLING

Today’s informal trading-partner agreements often
include terms and conditions related to the appli-
cation protocol. For example, a procurement TPA
might include price lists and requirements on deliv-
ery time. In contrast, at this time, tpaML is concerned
only with the protocols for the message exchanges
between the partners in performing the application
protocol. Higher-level issues (i.e., matters relating
to the content of the message payloads) are the re-
sponsibility of the application program or higher-
level application framework, or both.

Business-to-business TPA language

The TPA is an XML document from which code is gen-
erated or customized at each of the trading partners’
computer systems. Authoring and code generation
or customization tools are provided, as will be de-
scribed later. The TPA document is described by an
XML document type definition (DTD) or XML-Schema
document, which defines the tree structure of the
TPA tags and XML syntactic rules. Some rules defin-
ing specific values of the tags or the semantic inter-
relations among the tags can be defined in the DTD,
and more can be defined using XML Schema. How-
ever, some TPA semantics defined in the tpaML spec-
ification cannot be defined in the DTD or XML Sche-
ma; these semantics are understood by the authoring
tool, which uses them to aid in the creation of a valid

DAN ET AL.

13

TPA. In this section, the term “framework” is used
to represent the generic run-time code (such as BPF)
that supports the TPA and the interactions between
business partners.

Overall structure. The overall XML structure of the
TPA is as follows. Each of these tags is the top level
of a subtree of tags (subelements). We illustrate the
following discussion with snippets of XML.

<TPA>
<TPAInfo> <!-- TPA preamble -->
. <!--TPAname, role definitions,
participants, etc.-->
</TPAInfo>
<Transport>
. <!--communication and transport
security information-->
</Transport>
<DocExchange>
. <!--document-exchange and
message security information-->
</DocExchange>
<BusinessProtocol>
<Servicelnterface> <!-- for each
provider-->
. <!--Action definitions
etc.-->
</Servicelnterface>
</Business Protocol>
</TPA>

Layer structure of TPA. The <BusinessProtocol>,
<DocExchange>,and <Transport> sections above de-
scribe the processing of a unit of business (conversa-
tion). These sections form a layered structure some-
what analogous to a layered communication model.

Business protocol layer. The business protocol layer
defines the heart of the business agreement between
the trading partners: the services (actions) that par-
ties to the TPA can request of each other and sequenc-
ing rules that determine the order of requests. The
business protocol layer of BPF is the interface be-
tween the TPA-defined actions and the business ap-
plication functions that actually perform the actions.

Document exchange layer. The document exchange
layer defines various general properties of the doc-
uments exchanged by the parties. The document ex-
change layer of BPF accepts a business document
from the business protocol layer, optionally encrypts
it, optionally adds a digital signature for nonrepu-
diation, and passes it to the transport layer for trans-

74 DAN ET AL

mission to the other party. The reverse process takes
place for received messages.

Transport layer. The transport layer defines the com-
munication protocol. Transport security (encryption
and authentication) definitions are also included.
The transport layer of BPF is responsible for mes-
sage delivery using the selected communication and
security protocols.

TPA information. Overall properties of the TPA in-
clude its name, partner names, starting and ending
dates, and similar global parameters. The role sec-
tion provides the means to define a TPA in terms of
generic roles such as airline and hotel and to produce
a specific instance of the TPA by substituting specific
parties for the role parameters. The identification
section specifies the organization names of the par-
ties and contact information such as e-mail and postal
service addresses. It also optionally specifies an out-
side arbitrator to be used for settling disputes.

When a given TPA can be repeatedly reused for dif-
ferent pairs of parties, a prototype TPA or template
can be written in terms of role parameters rather than
specific party names. The authoring tool can then
generate a specific TPA by substituting party names
for the role parameters and filling in specifics of those
parties such as their electronic addresses. The role
definitions are included under the <TPAInfo> tag.
Each <RoleDefn> tag supplies a pair of role param-
eters and the actual name. The <RoleName> tag de-
fines the name of each role. The <RolePlayer> tag
has a blank value in a TPA template and the name
of an actual party in a specific TPA. Following is the
XML for the role definitions for a TPA between an
arbitrary airline (air1ine) and an arbitrary hotel (ho-
tel). In this example, the tags under <Role> par-
ticularize the TPA to an agreement specifically be-
tween entities named Hotelco and Airlineco.

<Role>
<RoleDefn> <!--one or more-->
<RoleName>hotel</RoleName>
<RolePlayer>Hotelco</RolePlayer>
</RoleDefn>
<RoleDefn>
<RoleName>airline</RoleName>
<RolePlayer>Airlineco</RolePlayer>
</RoleDefn>
</Role>

When the authoring tool replaces the role param-
eters by actual party names, it either asks the author

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

for party-specific information or finds this informa-
tion in a previously built database.

Transport layer. In the transport layer, the commu-
nication properties section (<Communication> tag)
defines the details of the system-to-system commu-
nication used in the application. These details include
the protocol to be used by both parties (e.g., HTTP
and SMTP), each party’s address parameters, max-
imum allowed network delay, and other parameters.
Following is an example of the communication def-
inition for HTTP:

<Communication>
<HTTP>
<Version>version</Version>
<HTTPNode> <!--One for each party-->
<0rgName Partyname=name/>
<HTTPAddress>
<LogOnURL>url</LogOnURL>
<RequestURL>url</RequestURL>
<ResponseURL>url</ResponseURL>
</HTTPAddress>
</HTTPNode>
<NetworkDelay>time</NetworkDelay>
<!--Optional-->
</HTTP>
</Communication>

The transport-security properties tags (not shown)
define the security protocols to be used in transport-
ing messages. Protocols are defined for encryption
and authentication. Encryption information includes
the name of the encryption protocol and various pa-
rameters defining the certificates. Information sup-
plied for authentication includes the type of authen-
tication (e.g., password or certificate), the specific
protocol (e.g., Secure Sockets Layer, or SSL), and the
certificate parameters.

Document exchange layer. Information included in
the document exchange layer includes the message-
encoding choice (example: BASE64), whether or not
duplicate messages should be detected, and the mes-
sage-security definition. Message security may be ei-
ther or both of digital-envelope (symmetric encryp-
tion using certificate-based encryption to exchange
the shared secret key) and certificate-based nonre-
pudiation. Any document formats agreed to by the
two parties may be used. We discuss the action def-
inition in a later subsection.

Delivery channels. A delivery channel consists of one

transport definition and one document exchange def-
inition. It corresponds to a single communication and

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

document-processing path. The TPA may include
more than one transport definition and more than
one document exchange definition. These definitions
can be grouped into delivery channels with different
characteristics. Each action definition may specify a
particular delivery channel, thus allowing the bus-
iness partners to specify a different path for each mes-
sage if necessary. The definition of delivery chan-
nels also permits the TPA to specify that the
framework may dynamically choose a delivery chan-
nel for each message based on conditions such as
path congestion and failures.

Business protocol layer. The <BusinessProtocol>
tag defines the section of the TPA that contains all
the business protocol definitions that support the
business application. Under <BusinessProtocol>is
the service interface definition for each party. Each
service interface contains some overall parameters
and the action menu, which contains the set of def-
initions of the actions that this party will accept as
service requests. The syntax is:

<BusinessProtocol>
<Servicelnterface> <!--one or two-->
. <!-- action menu and other
definitions-->
</Servicelnterface>
</BusinessProtocol>

Action definition. For each party to the TPA, an ac-
tion menu identifies the permissible action requests
and their characteristics. We discuss the main ele-
ments of an action definition using the following OBI
buyer action definition (see section on application
examples).

<Action>
<Request>
<RequestName>processOBIPOR</RequestName>
<RequestMessage>0BIPOR</RequestMessage>
<!--0BIPOR is a keyword which
specifies the format of the message,
in this case a purchase order request
from seller to buyer-->
</Request>
<Response>
<ResponseName>hand1e0BIPO
</ResponseName>
</Response>
<ResponseServiceTime>
<ServiceTime>3600</ServiceTime>
<!-- 1-hour maximum time -->
</ResponseServiceTime>
</Action>

DAN ET AL. 7§

The request name is process0BIPOR, i.e., the action
transmits a purchase-order request to the OBI buyer.
The <Response> tag indicates that the response is
by means of a message from the OBI seller server to
the OBI buyer server and that the response causes
the hand1e0BIPO action to be invoked at the issuer
of the request (here, the OBI seller server). The re-
sponse transmits a completed purchase order
(0B1P0). The <ResponseName> tag identifies an ac-
tion at the other party that will process the response
message. The <ResponseServiceTime> tag specifies
the worst case service time for the server (in this one
case, the OBI seller server) until the response is re-
turned. Here, it is 3600 seconds, i.e., one hour. If
the specified time is exceeded, it is up to the request-
er’s application logic to decide what to do next. Not
shown here is the definition of the hand1e0B1P0 ac-
tion in the seller’s service interface.

The value of the <RequestMessage> tag defines the
format of the business document sent in the mes-
sage. For XML documents, the value may be the uni-
form resource locator (URL) of the document type
definition document or XML-Schema document that
defines the document format. Alternatively, the value
might be a keyword that could represent an entry in
alocal (at each business partner) dictionary that de-
fines the agreed-to format. Both tpaML and BPF can,
by means of plug-in parsers and document gener-
ators, support any document format, standardized
or not, agreed upon by the partners. With the ap-
propriate plug-ins, even traditional EDI messages can
be supported. In future applications, it is expected
that XML will be the language of choice for struc-
turing documents. However, other formats, such as
the current EDI formats, must also be supported to-
day.

Sequencing rules are used to specify the permissible
order of action invocations on a given server. The
permissible initial action or actions is specified as fol-
lows, specified under the <Servicelnterface> tag.

<StartEnabled>
<RequestName>action_name</RequestName>
<!--one for each action permitted
as the initial action-->

</StartEnabled>

Thereis one <StartEnabled> tag for each party that
can act as a server. Only one of the actions whose
names are specified under <StartEnabled> may be
invoked as the first action in a given conversation
on that server.

76 DAN ET AL

Within each action definition, a sequencing rule spec-
ifies which actions can no longer be invoked follow-
ing the completion of the particular action, and which
actions become permissible following the particular
action. The specification is as follows:

<Sequencing>
<Enable> <!--actions permitted after
this one-->
<RequestName>name_of_action
</RequestName>

</Enable>
<Disable> <!--actions not permitted
after this one-->
<RequestName>name_of_action
</RequestName>

</Disable>
</Sequencing>

The <Enable> tag specifies which actions are per-
missible following the action whose definition con-
tains the <Sequencing>tag. The <Disable>tagspec-
ifies which actions are no longer permitted after this
action.

Many error conditions are handled in standard ways
by the framework, and their handling is not spec-
ified in the TPA. For example, the framework auto-
matically retries for failures to receive transport-level
acknowledgments. Some errors, such as sequencing
errors, may be severe enough for the parties to con-
tact an arbitrator to determine whether a TPA vio-
lation occurred. A tag in the <TPAInfo> section iden-
tifies the arbitrator. Duplicate messages are most
likely to arise during recovery, when incomplete ac-
tions are retried. The TPA can specify that the du-
plicate can be ignored if the recipient recognizes a
duplicate message. If the duplicate is a request mes-
sage, the server can then resend the response mes-
sage.

Business-to-business protocol framework

BPF is a general mechanism to support various bus-
iness protocols and business-to-business processes,
both custom-designed and existing protocols such as
OBL Dan et al.” describe a prototype of such a mech-
anism that was developed in a research project at
IBM Research. In the BPF architecture, each business
protocol is supported by creating a personality for
it, based on the specification in a TPA. We describe
the use of the TPA with OBI later in this paper. Many
business-to-business processes, such as request for

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

quote (RFQ), request for information (RFI), and other
processes, are similar to the OBI flow and can be im-
plemented by the same framework. These other pro-
cesses will be implemented largely by changing the
TPA. Tie-in to back-end systems is provided by in-
voking an extensibility framework from the “busi-
ness logic interface” that is triggered by incoming
requests, such as partial or completed purchase or-
ders in the case of OBI.

BPF provides the following functions, among others:
TPA installation, routing of messages to the speci-
fied action at the destination, sequencing rules, bus-
iness document generation and parsing, security, cor-
relation of conversations, logging, and recovery.

It should be understood that if two partners have
agreed on a TPA specifying how they will interact,
they are still free to choose how to provide the im-
plementation of the business protocol. A BPF can be
used to generate the implementation. The partners
could have different BPF frameworks supporting the
TPA standard or could deploy any business protocol
implementation consistent with the TPA specifica-
tion. This independence is essential for doing bus-
iness over an open medium such as the Internet. One
should not dictate to others which technology to use
to send and receive messages. BPF is an open and
extensible framework in which various functions de-
fined in the TPA can be supported by plug-ins. Ex-
amples of functions conveniently provided by plug-
ins are document parsers and generators and security
functions. Therefore, BPF is ideal for setting up
loosely coupled trading agreements in which, for ex-
ample, a business is free to replace suppliers by oth-
ers without having to make a large IT investment to
support the new supplier. As long as the business
protocol, and hence the TPA, does not fundamen-
tally change, replacing business partners by others
is practical.

BPF architecture. Figure 3 illustrates the role of BPF
as the gateway, coordinator, and control point of
choice between intrabusiness and interbusiness pro-
cesses. [t is positioned between the buy and sell com-
ponent of a local business, the remote businesses,
and the back-end systems. The applications spanning
multiple businesses (e.g., procurement and supply
chain management) are numerous and can be built
using this framework.

Figure 4 depicts the generality of BPF for different

kinds of business protocols. With OBI as an exam-
ple, the middle node in the figure could be a bus-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

iness sell-side OBI server, with requests coming from
the requisitioner (top left). The server on the left of
the figure would then be the OBI buy-side server, and
the server on the top right would be the payment
gateway. The local business process at the sell-side
node (middle) could be the fulfillment process, which
is invoked using the BPF framework. As another ex-
ample, the figure could be the case of an RFQ pro-
cess in which the buyer (node at the lower left) could
submit an RFQ request to the seller or supplier (mid-
dle node). The seller would invoke its local business
process to determine whether to respond to the RFQ;
this may, in turn, involve requests to remote suppli-
ers (on the right), which would be done using BPF.
The seller could then send a response to the RFQ to
the buyer. The buyer, in turn, could select from the
responses received and send a purchase order to the
selected seller.

Aversion of BPF is built on top of an Enterprise Java-
Beans (EJB) server and employs a diverse set of tech-
nologies for providing various functions and services.
Although 1BM WebSphere* can be used as the EIB
server, there is no specific dependency on Web-
Sphere. A business may communicate with its part-
ners using one of the several protocols such as HTTP,
SMTP, and IBM MQSeries*. It may even use differ-
ent protocols for different sets of actions on a per-TPA
basis. Security technologies include transport secur-
ity (SSL), authentication using digital certificates, as
well as digital signatures for nonrepudiation (using
MD5, SHA-1). Various data formats include EDI,
XML-EDI, or other XML formats. Appropriate mes-
sage parsers or message generators are provided for
converting these documents into an internal format.
Independent software components providing many
of these technologies can be plugged in to the BPF
framework via a vendor-neutral open application
programming interface (API), thus allowing imple-
menters to customize solutions of their choice.

BPF provides many different services to the business
applications running on this platform. In addition
to the basic TPA service, BPF provides services such
as time-stamped logging, recovery services, public-
private key cryptography, reliable document ex-
change, and document repository.

Layering. The functionality provided by BPF is lay-
ered, as shown in Figure 5, in order to provide dif-
ferent levels of abstraction for the business data flow.
Furthermore, the layering, along with well-defined
interlayer APIs, minimizes the spread of specialized
code across the framework. The business data flow

DAN ET AL. 77

Figure 3 BPF as business-to-business coordinator

BUSINESS

BUSINESS
2

T~

3

BUSINESS
4

\

COMMUNICATIONS

BUSINESS 1

BACK-END
SYSTEMS

through the layers is driven by the TPA that governs
that particular protocol.

The lowest level of the BPF stack is the transport layer,
which contains protocol-specific modules that allow
the business processes to communicate with the ex-
ternal world using any of the supported communi-
cation protocols, including communication-related
security such as authentication and encryption. The
transport layer interfaces with the document ex-
change layer, which supports the abstraction of a bus-
iness document (e.g., EDI document). The document
exchange layer provides common document-related
functionality such as message data mapping, non-
repudiation, time-stamping, logging, and audit trail.
The document exchange layer interfaces with the

78 DAN ET AL

SUITE

A

<

BPF

EC

BACK-END
SYSTEMS

business protocol layer that provides document-type
and trading-partner-specific data-handling function-
ality based on the business protocol section of the
TPA. The business protocol layer in turn provides the
business logic interface that connects to the specific
business application that may implement the highest-
level business logic or serve as a bridge to back-end
business processes such as enterprise resource plan-
ning, or both. It is the business logic that processes
the payloads of the messages exchanged under the
TPA. This processing is not governed by the speci-
fications in the TPA but is the responsibility of the
application design.

BPF components and flow. The components of BPF
are shown schematically in Figure 6. The BPF func-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 4 General process flow for BPF

LOCAL BUSINESS

PROCESS

P

WL

L

@EIBUNER ————————————= OBI SELLER —=== PAYMENT GATEWAY
SELLER-SUPPLIER —--== REMOTE SUPPLIER
SERVICE PROVIDER ——=~ SUBCONTRACTOR
AGENCY —--~ SERVICE PROVIDER
MERCHANT ===~ PAYMENT
CONSOLIDATOR ... ===~ ..,

tions can be broadly categorized as those related to
setting up the BPF environment and those related to
run-time operations for business-to-business inter-
actions. Above the horizontal line in the figure are
the various helpers and tools; these will be discussed
below. The tools cause information to be placed in
the registration database for use during run time by
the BPF manager. Below the line are the run-time
functions, managed by the BPF manager, which also
encompasses recovery management. In the middle
of the section below the line are the major compo-
nents of message flow. From left to right, messages
arrive from the network into the transport function.
From there, each document is passed through the
functions that implement the rest of the functional
layers, described previously. The business logic in-
terface provides the interface to the business appli-
cation that implements the business logic and to
back-end processes such as enterprise resource plan-
ning. Finally, the run-time services are indicated at
the bottom.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 5 BPF functional layers

BUSINESS LOGIC

BUSINESS PROTOCOL
LAYER

TPA

DOCUMENT EXCHANGE
LAYER

TRANSPORT LAYER

To support recovery and audit, all requests and re-
plies (i.e., inbound and outbound messages) are time-
stamped and logged. The information to be logged

DAN ET AL.

79

Figure 6 Business setup and operations components

HELPERS REGISTRATION TOOLS

o PARSERS o TPA REGISTRATION TPA AUTHORING

¢ DOCUMENT GENERATORS o MAPPING INFORMATION ﬁ TPA TOOL

e SECURITY HANDLERS o CODE GENERATION

* ENCODERS o RUN-TIME INFORMATION

* BUSINESS LOGIC REGISTRATION | oy BUSINESS
o HELPER REGISTRATION LOGIC
4
BUSINESS * REGISTRATION g
SETUP
BUSINESS
OFERATIONS BPF MANAGER
; :
RECOVERY MANAGEMENT * DOCUMENT
REPOSITORY
o LOGGING
o QUERY SERVICES
TRANSPORT DOCUMENT BUSINESS BUSINESS
EXCHANGE PROTOCOL LOGIC BUSINESS

NETWORK () INTERFACE === APPLICATIONS

I

RUN-TIME SERVICES

includes the document received, request time, doc-
ument sent, reply time, owner of the document, in-
ternal service to be invoked, etc. The information
could be used later for audit trail purposes and for
recovering the state of a BPF server. The state of the
TPA instance is recorded in an underlying persistence
medium. On startup and after restart following a fail-
ure, recovery services are invoked to recreate the
state of the TPA instance and associated BPF conver-
sations. All incoming messages are analyzed, check-
ing for duplicate copies as well as for allowable se-
quences specified in the TPA. If the message is
acceptable, it is enqueued for handling asynchro-
nously.

When BPF is deployed with IBM WebSphere Com-
merce Suite (WCS), the components of BPF work with
WCS in order to provide functions such as commu-
nications (e.g., HTTP), user directory and access con-
trol, logging and error reporting, various application

80 pan ET AL

commands, and back-end system functions such as
the connection to SAP**.

TPA authoring and code generation

In order to utilize an electronic TPA, the TPA must
first be composed and agreed to by the participating
parties. Because the TPA is a complex document, and
a new TPA is needed to do business with each new
trading partner, an authoring tool that understands
TPA semantics and assists the author in providing the
correct information is essential in preparing a TPA.

Once the TPA is verified as valid and agreed to by
both parties, it is passed to the TPA registration tool
at each party’s site. This tool extracts some of the
content and stores the content in the registration da-
tabase. The business-logic registration tool is used
to associate actions that were specified in the TPA
with business functions of each business partner, so

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

that when an action is requested of a partner, the
correct sequence of business functions is called.

There are many possible designs for the tools. The
design choices for the code generator and registra-
tion tool, in particular, depend on the specifics of
the system in which they work. There can be no re-
quirement that both parties to the TPA use the same
code generator and registration tool. We here de-
scribe the tools we developed as part of a project in
1BM Research.” In our project, these tools are im-
plemented in the Java*®* programming language.

The code-generation tool uses specification infor-
mation from the TPA and the registration database
to generate the TPA objects that are needed for each
TPA to interface with the application. The tool may
produce specific code for each TPA, or it may pro-
duce the information needed to customize a generic
TPA object.

Authoring tool. TPA authoring tools play an impor-
tant role in preparing TPAs. A TPA authoring tool un-
derstands TPA semantics. It guides the author in the
process of creating a TPA. It validates the informa-
tion that the author enters to create each tag in the
TPA.

A TPA contains information about the agreed-upon
interaction protocol (e.g., messages and allowable
sequences) as well as the details of the interacting
partners (e.g., contact information, URLs, and cer-
tificate parameters). In order to guide the creation
of a TPA, the authoring tool captures the tpaML rules
for creating TPAs in the form of models of individual
tags and of the TPA as a whole.

The models contain this semantic information in a
form that can later be used to construct a TPA. A
model contains information that describes the de-
tails that the author must provide at each point in
the TPA. For example, a model for HTTP indicates
that URLs must be supplied as communication ad-
dresses. A model may also contain information from
a specific TPA (e.g., specific URLs). A model based
on information from a specific TPA can be used to
create a similar new TPA such as a TPA between a
different pair of partners. The authoring tool uses
the information in the model to guide a user in cre-
ating a correct TPA. Thus, the authoring tool pro-
vides a way for an expert to prepare a model from
which someone can construct a TPA with far less
knowledge of the required semantics.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

A model of a TPA consists of a collection of models
of the tags to be used in the TPA. The models are
in a tree structure that corresponds to the tree struc-
ture of the tags in the TPA. Each model of a tag is
an example of the subtree under the tag. For exam-
ple, a tag representing a communications protocol
section has, as its subtree, information specific to a
particular protocol. A model of a tag can be simple,
or it can contain multiple submodels for a particular
tag. For example, a general model for the <Commu-
nication> tag contains a submodel for each of the
supported communications protocols.

In many instances, a business partner (e.g., a seller
organization) may use a standard application pro-
tocol (e.g., procurement protocols such as OBI,
Ariba*™* ¢cXML, and Metiom™**) for interacting with
many different partners. Authoring a new TPA based
on a standard protocol requires only that the partner-
specific information and certain choices (e.g., server-
to-server versus server-browser-server in OBI) be up-
dated. The TPA authoring tool can create a model
from a sample TPA or a TPA template and can use
this model to guide a user to create a TPA based on
the sample.

The authoring tool starts with a document type def-
inition or XML-Schema document, which provides
the syntactic structure of the TPA. Then it constructs
amodel of a general TPA by asking the model maker
to provide examples (semantics) of all parts of the
TPA. Once a model is complete, it is available to any
author who, by answering a few specific questions,
can create a very complex TPA with a high proba-
bility of success. Figure 7 illustrates the process of
creating a model and a TPA.

The TPA author starts the authoring procedure af-
ter amodel has been loaded. The authoring tool now
uses the model to drive the authoring procedure and
guide the author in making choices and entering in-
formation. Starting with the root of the model, the
authoring tool examines the choices for models be-
neath the root. If there is no choice to be made, the
authoring tool accepts the model, proceeds to the
next level, and repeats the above procedure for each
child. If choices are to be made, a panel is displayed
asking the user to select the correct model or fill in
the needed information. The authoring tool then
continues with that choice.

Code generation or customization. The code gen-
erator or customizer transforms the TPA into reg-
istration information and code that enforces the rules

DAN ET AL. 81

Figure 7 Creating a model

CREATING A MODEL

EXISTING IMPORTED
MODEL MODEL
\ \ | /
M X
TPA ' AUTHORING
DTD > TOOL -7
o \
/ A
TPA EXPORTED
DOCUMENT MODEL
Figure 8 Code generation
INFORMATION
FILE
OUTPUT
TEMPLATE MAGRO N
PROCESSOR
A
TPA REGISTRATION OTHER
DOCUMENT INFORMATION SOURCES

of interaction. A TPA object is created at the site of
each party to the TPA. Generation of specific code
from a TPA is illustrated in Figure 8. Generation of
specific code starts from a set of templates that con-
sist of a combination of native (Java or any other)
language and macro-style directives. These directives
are written in a macro language consisting of infor-
mation such as a basic set of data types, a basic set

82 DpaN ET AL

MODEL

CREATING A TPA
. AUTHORING > NEW TPA
L TOOL DOCUMENT

of functions used to obtain information from the TPA
and other external sources, declaration statements,
assignment statements, and conditional statements
that change the execution flow, depending upon val-
ues of variables and functions.

A macro processor scans the template looking for
directives. It executes any directives it encounters and
handles any native language statements as charac-
ter strings, performing any needed processing, and
writing the processed statements to a file.

The code customization approach starts with a ge-
neric TPA object. The registration tool then gener-
ates a TPA instance object that contains all the char-
acteristics of each action along with all other run-
time information from the TPA. At run time, the
generic TPA object is used in conjunction with the
TPA instance object, resulting in the behavior that
supports the specific TPA.

Application examples

IBM WebSphere Commerce Suite, or WCS (former-
ly known as 1BM Net.Commerce*), is a business ap-
plication product for merchants to build on-line
stores on the Internet. Many such stores are for con-
sumer shopping. However, a growing market seg-
ment is the support of business buyers, as well as the
support of business-to-business electronic transac-
tions between the merchants and their business part-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 9 WebSphere Commerce Suite and Commerce Integrator, Seller Edition

BUSINESS BUYERS MERCHANT SUPPLIERS
A WCS
IMI
INTERNET I
¥
INTERNET/
VAN EDI...
C
IMI
BUSINESS BUYERS SERVERS -
M INTERNET i -
,:::::if ‘ I
INTERNET/
LEGACY VAN EDI...
BACK END

ners. Figure 9 illustrates some basic scenarios of a
merchant WCS system dealing with its business part-
ners. These scenarios are:

A. wcs merchants supporting business buyers, e.g.,
creating purchase order requests

wcs merchants dealing with their suppliers, e.g.,
checking for inventory

WCs dealing with their business buyer systems,
e.g., requesting approval of purchase order re-
quests

B.

C.

WCS in conjunction with IBM Commerce Integrator,
Seller Edition (CISE) facilitates the support of these
business scenarios when possible through the adop-
tion of both open (e.g., OBI) and de facto (e.g., Ariba)
business-to-business “standards.” For example,
WCS/CISE supports the OBI standard (Open Buying
on the Internet), thus allowing any OBI-compliant
business buyers to place purchase order requests with
an OBI-enabled merchant and interacting to respond
correctly to the approval process of the buying or-
ganization (i.e., scenarios A and C). Other examples
of business protocols are cXML (supported by Ariba),
Metiom (formerly known as Intelisys), and MySAP**
(supported by SAP). A merchant chooses the bus-
iness protocol to be used with a business buyer part-
ner and then installs the specific CISE connector tech-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

nology required by the customer. Electronic TPA and
BPF technologies were used as a base to develop the
tooling and run time for the CISE OBI support an-
nounced in September 2000.

The following subsections describe in more detail
the OBI business protocol, which is supported in
WCS/CISE, and an OBI-like on-line procurement ap-
plication of WcS.

Open Buying on the Internet. We now describe an
example of the TPA and server structure for an ex-
isting public protocol, OBI.

Open Buying on the Internet (OBI),” is a protocol
for business-to-business Internet commerce. It was
designed by the Internet Purchasing Roundtable and
is supported by the OBI Consortium. OBI defines the
procedures for the high-volume, low-dollar purchas-
ing transactions that make up most of the purchas-
ing activity of an organization. Here we present OBI,
how it can be described by a TPA, and a schematic
view of a possible implementation.

Figure 10 illustrates the participants in an OBI trans-
action and the basic information flows. The requi-
sitioner is a member of the buyer organization (e.g.,
an employee of a company) and is permitted to place

DAN ET AL. 83

Figure 10 Open buying on the Internet

BUYER ORGANIZATION SELLER ORGANIZATION
REQUISITONER [MERCHANT
, SHOP IN CATALOG SERVER
v
OBl
PARTIAL PURCHASE ORDER SERVER
VALIDATION = e
COMPLETE PURCHASE ORDER m FULFILLMENT
Ll
APPROVAL oA FiROCESE
PROCESS > <

orders directly with the merchant server of the seller
organization. The requisitioner can browse a cata-
log and place an order with the seller organization
by means of a browser. When the requisitioner has
placed an order, the server of the seller organiza-
tion sends a partial purchase order (purchase order
request) to the server of the buyer organization. The
buyer organization validates the purchase order re-
quest and transforms it into a complete purchase or-
der that it returns to the seller organization. The
seller organization then prepares an invoice or oth-
erwise arranges for payment and ships the ordered
merchandise. The payment process handles elec-
tronic payments. Using the browser, the requisitioner
can also view and update information at the buyer
organization server such as the requisitioner’s pro-
file, outstanding requests, etc. The requisitioner can
also check the status of an order at the seller orga-
nization.

An additional possibility is to have the buyer orga-
nization send an “unsolicited” purchase order to the

84 paAN ET AL

PAYMENT PROCESS (SET)

selling organization without a prior request and par-
tial purchase order initiated by a requisitioner. This
mode might be used, for example, when a purchas-
ing department buys large volumes to supply a stock
room.

As shown in Figure 10, there is a TPA between the
business-to-business servers of the buyer organiza-
tion and the seller organization. The payment pro-
cess is outside the scope of the two-party TPA be-
tween buyer organization and seller organization. It
is a back-end process of the seller organization.

Following are the main functions included in the
OBI TPA:

e Organization names of the parties to the TPA

e Communication protocol definition, which in this
case is HTTP and includes the specific URLs of the
buyer and seller

e Security information such as the protocol (SSL in
this case) and various certificate parameters

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 11 OBl implementation

REQUISITIONER SELLER
CATALOG
AND PURCHASING
(2) REDIRECTED TO PREFERRED FUNCTIONS
SUPPLIER CATALOG
(1) LOG IN
BUYER
BUSINES-TO-
BUSINESS-TO- BUSINESS
BUSINESS (3) PARTIAL MANAGER
MANAGER PURCHASE LOGAL
ORDER HEQUEST PROCESSES
PURCHASE ORDER
GATEWAY
PARTIAL PARTIAL
PURCHASE PURCHASE ORDER
ORDER
APPLICATION TPA
TPA COMPLETED
LOGIC (5) COMPLETED BJECT
OBJECT PURCHASE OBJEC PURCHASE ORDER
COMPLETED ORDER GATEWAY
PURCHASE
ORDER
(4A) CONFIRM (4) REQUEST
APPROVAL
GATEWAY LOCAL
PROCESSES

* Action menus for the buyer and the seller. The ac-
tion list for the buyer is illustrated in the earlier
subsection entitled “Action definition.” It consists
of one action, “Process OBI Purchase Order Re-
quest.” The completed purchase order is returned
to the seller by means of an action request to the
seller organization, “Handle OBI Purchase Order.”
The buyer organization may also use the “Handle
OBI Purchase Order” action to submit an unsolic-
ited purchase order to the seller organization.

Figure 11 depicts the basic system structure and flow
of an implementation of OBI based on BPF. Shown
in the figure are the TPA objects generated from the
TPA at the buyer and seller servers. These objects
provide the interfaces between various processes
controlled by the TPA (in particular, the action re-
quests) and the application logic at each server.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

The process starts when a requisitioner contacts (1)
the buyer server via a browser and is redirected (2)
to the URL for the seller’s catalog and purchasing
functions. The requisitioner is shown the supplier
catalog appropriate to the requisitioner’s organiza-
tion. When the requisitioner makes a selection, the
request is communicated to the TPA object. The TPA
object communicates the purchase request to the lo-
cal business processes via one of the gateways seen
at the far right in the figure. A partial purchase or-
der is returned to the TPA object via the gateway.
The TPA object then issues the process0BIPOR ac-
tion request (3) to the buyer server, sending a par-
tial purchase order to the buyer server.

This request arrives at the buyer’s TPA object, which
evaluates the rules defined in the TPA and then sends
the partial purchase order to the buyer application

DAN ET AL. 85

logic. In processing the partial purchase order, the
application logic communicates with local business
processes, via the gateway shown at the lower left
in the figure, to request approval (4) of the purchase
order. If the purchase is approved (4A), the approval
arrives at the application logic, which completes the
purchase order and passes the completed purchase
order to the buyer’s TPA object. The TPA object then
issues the hand1e0BIPO action request (5), sending
the completed purchase order back to the seller.

The completed purchase order arrives at the sell-
er’s TPA object, which passes it to the local processes
via the gateway at the lower right. The local processes
handle fulfillment (e.g., shipping) and invoicing and
payment. They also initiate a confirmation message
to be returned to the requisitioner via the browser
(not shown in the figure).

IBM-customer pilot on on-line procurement. IBM
and a large bank collaborated on a pilot of on-line
procurement. The bank wanted to reduce its pro-
curement costs by automating direct purchases of
IBM computers by its employees. Bank employees
can use this system to purchase IBM personal com-
puters and accessories directly from the IBM Personal
Systems Group (PSG).

The selling organization (IBM PSG) system was based
on BPF alpha code and WebSphere Commerce Suite.
It maintained the catalog of products and prices for
use by the purchasing organization (the bank). The
IBM platform consisted of an IBM Netfinity* server
running the Microsoft Windows NT** Server oper-
ating system, IBM WebSphere Application Server
Advanced Edition Version 3, the IBM HTTP Server
Web server, and 1BM Universal Data Base.

The procurement system of the bank was based on
the Metiom Enterprise Purchasing System**. The
Metiom system provided services for creating, ap-
proving, tracking, and modifying purchase orders.
It provided a single point of access, with a single sign-
on, to all supplier catalogs used by the bank. IBM pro-
vided a personal-computer catalog. Bank employ-
ees could browse this catalog and then place orders.

The message exchange protocol between the buyer
and seller systems is a private protocol designed by
Metiom, which is based on OBI, and is enhanced for
this application with the addition of order-acknowl-
edgment and invoice messages. A TPA was written
to describe the process and used to configure BPF at
the IBM PSG server.

86 DpaN ET AL

Figure 12 shows the main components and message
flows. The IBM PSG server consists of BPF and WCS.
Following are the blocks in the BPF part of the server.
Supplier Business Logic is the procurement appli-
cation. The OBI business-to-business protocol block
is the TPA object. The OBI messaging block is the doc-
ument-exchange layer of BPF. The HTTP/HTTPS block
is the BPF transport layer. The IEC-Link™** is Metiom’s
Enterprise Commerce Link**, which is a mailbox
communication system. A poll message is passed to
the IEC link, which polls the mailboxes for messages
and returns them to the procurement system. The
use of the IEC link in this application will be discussed
below.

The employee (requisitioner) who wants to purchase
a personal computer contacts the bank purchasing
system using a browser. The purchasing system pre-
sents the employee with a list of suppliers that are
approved by the bank. The employee selects IBM PSG.
The purchasing system then logs onto the 1BM PSG
system (1) via BPF. BPF in turn contacts the catalog
system in WCS (2), which returns the URL for the
IBM PSG catalog appropriate for this bank (3). The
URL is passed to the requisitioner’s browser (4).

The requisitioner is now enabled to shop (5, 6) and
fill a shopping cart. The WCS server creates an or-
der, based on the shopping cart, and passes it to the
seller server (7), which generates a purchase order
request as an OBI Purchase Order Request message
and returns it to the buyer server (8). An approval
process now occurs at the bank system, which may
involve a human approver at a browser (9). When
the approval process is completed, the bank server
issues a purchase order (10) to the IBM PSG server,
which responds with an HTTP acknowledgment (11).
The purchase order is passed to the order fulfillment
and payment subsystem (12), and the purchase is
shipped directly to the requisitioner. The bank sys-
tem then polls the IBM PSG system for messages (13)
and receives an EDI 855 order-confirmation message
(14).

We have demonstrated end-to-end operation of the
pilot. At the time this paper was written, the pilot
was ready to be put into service by the bank for ac-
tual purchases by employees.

This example shows that a practical e-commerce ap-
plication will often have localized but significant dif-
ferences from the documented standard. In this ex-
ample, the Metiom system requires the use of a user
identifier and password for authentication instead

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 12 On-line procurement study

BANK IBM PSG
BUYING ORGANIZATION SELLING ORGANIZATION

REQUISITIONER BROWSER

TPA
WEBSPHERE
BPF COMMERCE SUITE
(DICOGIIN @ CATALOG
SUPPLIER OF GOODS
(4) CATALOG URL BUSINESS (€] AND PRICES
LOGIC
PURCHASE
(5) SHOPPING OBIB2B ©) ORDER
PROTOCOL REQUEST
(8) OBI PURCHASE I GENERATION
METIOM ORDER REQUEST
PURCHASING
SYSTEM (10) OBI PURCHASE OB
ORDER MESSAGING
(11) HTTP 200 OK
HTTP/HTTPS IEC LINK (IBLTLDFIIES_MENT
(18) POLL TRANSPORT (12) | AND PAYMENT
MAILBOXES
(14) EDI 855 B
(9) APPROVE
PURCHASE ORDER
APPROVER BROWSER
FIREWALL FIREWALL

of certificate authentication, probably because it is
easier to administer than client certificates. It also
requires the use of a server-browser-server protocol
in which response messages from the selling orga-
nization are returned to the buying organization via
the requisitioner’s browser in order to support the
firewall of the bank. Further, the Metiom system re-
quires the use of the EDI 855 order-confirmation mes-
sage, which is not part of the OBI standard. The flex-
ibility in tpaML, combined with the TPA authoring
tool and its tag models, exactly meets the need for
easy local tailoring of the protocol and specific part-
ner addressing information defined by a standard
protocol.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Summary, conclusions, and future work

A large number of business-to-business interaction
protocols have emerged in recent years for automat-
ing various e-commerce processes, such as Open
Buying on the Internet (OBI), cXML supported by
Ariba, Commerce One RoundTrip** Service, and
RosettaNet Partner Interface Processes™* (PIPs**).
In keeping with this pace of automation, many more
business protocols in the form of new protocols, en-
hancements to existing protocols, and even private
protocols across a set of businesses will be used in
the future. The complexities of these protocols are
also expected to increase in order to capture many

DAN ET AL. 87

more aspects of the real-world interactions. Imple-
mentation of all such protocols from the start is time-
consuming and expensive. BPF provides a compre-
hensive set of tools and enablers for ease of
specification, configuration, plug-in, and customiza-
tion for setting up such business-to-business inter-
actions. To use BPF, electronic TPAs, which may spec-
ify either standard or custom application protocols,
are created according to the tpaML specification and
registered to BPF along with the internal business pro-
cesses to be invoked using these TPAs. BPF generates
code for linking and enforcing these TPAs and pro-
vides many other services (e.g., conversation corre-
lation, cancellation, and rule-based invocation of
multistep logic) for writing complex business appli-
cations. We have described two applications of TPA
and BPF that use OBI or a variant of OBI. As e-com-
merce becomes pervasive, many new applications
(marketplaces, agencies, distributors, etc.) will be
built on this foundation.

We are extending the TPA ideas and language to ar-
eas such as TPA hierarchy, linking of multiple TPAs,
TPA life-cycle management, and dynamic negotiation.
We are also investigating TPAs in which there are
more than two parties.

In addition, we are investigating how to incorporate
business constraints into the TPA. Business con-
straints are conditions placed on data items in re-
sponse messages. The results of these tests may mod-
ify further processing within the TPA. An example
is a test of whether a cancellation action (e.g., to can-
cel areservation) was issued during the allowed time
range after the original action.

Acknowledgments

The authors express their appreciation to the follow-
ing for contributions to the design of BPF and the
formulation of the TPA principles and language:
Satwinder Brar, Catherine Crawford, Christine
Draper, Christopher Gibson, Vibby Gottemukkala,
John Ibbotson, Richard King, George Kleon, Linh
Lam, Keith Mantell, Paul Norris, Stewart Palmer,
Chris Sharp, and Colin Thorne. The authors also
thank Nagui Halim and Anant Jhingran for their
management vision.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of OBI Consortium, Roset-
taNet Consortium, Object Management Group, Sun Microsystems,
Inc., SAP AG, Ariba, Inc., Intelisys Electronic Commerce, Inc. now
Metiom, Inc., Microsoft Corporation, or Commerce One, Inc.

88 DpaAN ET AL

Cited references and note

1. XML is a “meta-language” that can be used to define and
describe markup languages for various classes of documents.
It is based on Standard Generalized Markup Language
(SGML), an international standard used to define electronic
documents.

2. Extensible Markup Language (XML), 1.0, World Wide Web
Consortium (1998).

3. Open Buying on the Internet Technical Specifications, Release
V1.1, The Open Buying on the Internet (OBI) Consortium,
http://www.openbuy.org (1998).

4. RosettaNet Specifications, RosettaNet Consortium, http://
www.rosettanet.org (1999).

5. Electronic Business XML initiative established by the United
Nations body for Trade Facilitation and Electronic Business
and the Organization for the Advancement of Structured In-
formation Standards, http://www.ebxml.org (2000).

6. A.DanandF. Parr, “An Object Implementation of Network
Centric Business Service Applications (NCBAs),” OOPSLA
Business Object Workshop, Atlanta, GA (September 1997).

7. A. Dan, D. Dias, T. Nguyen, M. Sachs, H. Shaikh, R. King,
and S. Duri, “The Coyote Project: Framework for Multi-Party
e-commerce,” Proceedings of Research and Advanced Tech-
nology for Digital Libraries, Second European Conference,
ECDL98, Heraklion, Greece (September 1998), Springer-
Verlag, Berlin (1998), pp. 873—889.

8. A.DanandF. Parr, “The Coyote Approach for Network Cen-
tric Business Service Applications,” HPTS Workshop, Asilo-
mar, CA (1997).

9. H. Weigand and A. Ngu, “Flexible Specification of Interop-
erable Transactions,” Data and Knowledge Engineering 25,
327-345 (1998).

10. J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques, Morgan-Kaufmann, San Mateo, CA (1993).

11. T. Ajisaka, “Electronic Commerce for Software,” Proceed-
ings of Research and Advanced Technology for Digital Librar-
ies, Second European Conference, ECDL98, Heraklion,
Greece (September 1998), Springer-Verlag, Berlin (1998),
pp- 791-800.

12. T.Sandholm, “Unenforced e-commerce Transactions,” IEEE
Internet Computing 1, No. 6, 47-54 (November-December
1997).

13. T. Sandholm and V. Lesser, “Issues in Automated Negoti-
ation and Electronic Commerce: Extending the Contract Net
Framework,” Proceedings of First International Conference on
Multi Agent Systems, ICMAS 95, San Francisco, CA (June
1995), AAAI Press, Menlo Park, CA (1995), pp. 328-335.

14. P. Konana, A. Gupta, and A. Whinston, “Digital Contract
Approach for Consistent and Predictable Multimedia Infor-
mation Delivery in Electronic Commerce,” Multimedia Com-
puter and Networking 1997, San Jose, CA (February 1997),
Proceedings of SPIE—International Society for Optical Engi-
neering 3020 (1997), pp. 275-281.

15. A.DanandF. Parr, “Long Running Application Models and
Cooperating Monitors,” HPTS Workshop, Asilomar, CA
(1999).

16. The Common Object Request Broker Architecture and Spec-
ification, Rev. 2.2, Object Management Group, http:/
www.omg.org (1998).

17. Enterprise JavaBeans Specification, ver. 1.1, http://www.
javasoft.com/products/ejb (1999).

18. The Workflow Management Coalition Specification, http://
www.wfmc.org (1998).

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

19. H. Garcia-Molina and K. Salem, “SAGAS,” Proceedings of
ACM SIGMOD Conference, New York (1987), pp. 249-259.

Accepted for publication October 10, 2000.

Asit Dan IBM Research Division, Thomas J. Watson Research Cen-
ter, P.O. Box 704, Yorktown Heights, New York 10598 (electronic
mail: asit@us.ibm.com). Dr. Dan has been with IBM Research
since 1990 and currently manages the business-to-business inte-
gration department, working on the development of infrastruc-
ture for supporting business-to-business e-commerce applications.
He is at the forefront in the research and development of trans-
action processing architectures and video servers. He holds sev-
eral top-rated patents in these areas and has received two IBM
Outstanding Innovation Awards, seven Invention Achievement
Awards, and the honor of Master Inventor for his work in these
areas. Dr. Dan received a Ph.D. from the University of Massa-
chusetts, Amherst. His doctoral dissertation, Performance Anal-
ysis of Data Sharing Environments, received an Honorable Men-
tion in the 1991 ACM Doctoral Dissertation Competition and
was subsequently published by the MIT Press. He has published
extensively, including several book chapters, and a book on mul-
timedia servers.

Daniel M. Dias IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York (elec-
tronic mail: dias@us.ibm.com). Dr. Dias received the B. Tech.
degree from the Indian Institute of Technology, Bombay, India,
and the M.S. and Ph.D. degrees from Rice University, all in elec-
trical engineering. He has been with the IBM Research Center
in Yorktown Heights since 1983. He manages the Parallel Com-
mercial Systems department, which currently has projects focus-
ing on scalable and high-performance Internet servers, business-
to-business e-commerce, and performance management. His
recent work includes scalable and highly available Web servers,
frameworks for business-to-business e-commerce, high-perfor-
mance scalable Web caches, scalable video servers, highly avail-
able clustered systems, and performance analysis. Technologies
developed in these projects have been used for the 2000 Olym-
pics Web site and large customer sites. Some are now available
as IBM products such as Network Dispatcher, Web Cache Ac-
celerator, and HACMP ES. Dr. Dias has published more than
100 papers in refereed journals and conferences. He has won two
best paper awards, IBM Outstanding Innovation and Outstand-
ing Technical Achievement Awards, ten Invention Achievement
Awards, and Research Division Awards. He holds 18 U.S. pat-
ents, with 15 additional patents pending.

Robert Kearney IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York (elec-
tronic mail: firefly@us.ibm.com). Dr. Kearney has been employed
at IBM for 30 years, with the last 18 at the Research Center. He
is currently working in developing e-commerce frameworks. Prior
to this work, he helped develop frameworks for clinical informa-
tion systems, networked document retrieval and processing sys-
tems, and insurance industry systems, all as partnerships between
industry, government organizations, and IBM Research. His ed-
ucation is in mathematics, having attended the University of Mas-
sachusetts, University of Wyoming, and Pennsylvania State Uni-
versity.

Terry C.Lau IBM Canada Laboratory, 1150 Eglinton Avenue East,
North York, Ontario, Canada M3C 1H7 (electronic mail:
lautc@ca.ibm.com). Dr. Lau is a senior system architect in the

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Department of Electronic Commerce Development at the IBM
Canada Laboratory. His current activity is business-to-business
e-commerce. Previously, he has been in various technical and man-
agement positions in the areas of data communications, imaging,
and graphical user interface application development tools. Be-
fore joining IBM, he was a faculty staff member at the University
of Hong Kong and a development manager at Northern Tele-
com in data communications. Dr. Lau received a B.Sc. from the
University of Hong Kong and a Ph.D. in computer science from
the University of Waterloo.

Thao N. Nguyen IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: tnnguyen@us.ibm.com). Dr. Nguyen received a
B.S.E.E. degree from the University of New South Wales, Aus-
tralia, and M.S.E.E. and Ph.D.E.E. degrees in microelectronics
from Stanford University. Since joining the Research Center in
1983, he has worked on a broad range of research and develop-
ment projects and held various technical and management po-
sitions. During the first six years he performed and managed re-
search in VLSI processing technologies and material, and process
characterization. He spent the next two years in semiconductor
product development at the IBM East Fishkill semiconductor fa-
cilities, first as an executive technical assistant and later as senior
engineering manager of process integration. From 1991 to 1996
he participated in the development of an advanced RISC micro-
processor for RS/6000™ and then led the floorplanning and chip
integration work in a project to produce a highly successful single-
chip CMOS microprocessor for $/390™ systems. His recent ac-
tivities are focused on software and systems for business-to-busi-
ness e-commerce. He has worked on the development of a
framework for business-to-business applications and integration
as well as an OBI supplier solution package. He is currently en-
gaged in an effort to develop and deploy business-to-business com-
merce servers for IBM as a supplier to large enterprises and e-
marketplaces. Dr. Nguyen has authored or coauthored more than
40 technical papers and has been awarded several patents in sil-
icon and circuit technologies. He is a recipient of several Research
Division Awards, a Technical Group Award, and two IBM Out-
standing Technical Achievement Awards. He has served on the
Technical Program Committee of several IEEE conferences in-
cluding the Symposium on VLSI Technologies and Symposium
on VLSI Circuits.

Francis N. Parr IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: fnparr@us.ibm.com). Dr. Parr is a research staff
member in the Computer Sciences department at the Research
Center and also responsible for the Transaction and Messaging
Technology Institute—a joint program between IBM Research
and the IBM Hursley Development Laboratory. He is currently
engaged in research on business-to-business middleware with pre-
vious interests in messaging and message brokering, object middle-
ware, parallel database, and scalable transaction systems. Before
joining IBM, Dr. Parr was a lecturer in computing at Imperial
College of Science and Technology, London University. He re-
ceived a Ph.D. in applied math from Harvard University and a
B.A. in mathematics from Cambridge University.

Martin W. Sachs IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: mwsachs@us.ibm.com). Dr. Sachs is a research
staff member in the Department of Computer Sciences at the Re-
search Center. His current activity is business-to-business e-com-

DAN ET AL.

89

merce, focusing on electronic trading-partner agreements. He is
leading the ebXML team that is developing the specification for
the standardized version of the IBM tpaML electronic trading-
partner agreement language. Previously, he specialized in I/O in-
terconnect architecture including contributions to the IBM
System/390 fiber-optic ESCON™ 1/O Architecture and the ANSI
Fiber Channel standard. Before joining IBM, he worked in nu-
clear reactions and in computer-based nuclear data acquisition
at the Weizmann Institute of Science, Israel, and Yale Univer-
sity. Dr. Sachs received an A.B. degree in physics from Harvard
University and M.S. and Ph.D. degrees in nuclear physics from
Yale University. He is an IEEE Fellow and a member of Sigma
Xi, the ACM, and the American Physical Society.

Hidayatullah H. Shaikh IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (electronic mail: hshaikh@us.ibm.com). Mr. Shaikh is an
advisory software engineer in the Parallel Commercial Systems
department at the Research Center. His current activity is busi-
ness-to-business e-commerce, focusing on defining a flexible and
scalable framework for new and existing business-to-business pro-
tocols. His contributions include ebXML header specification and
IBM tpaML electronic trading-partner agreement language. Pre-
viously, he has been involved in the architecture and design of
the IBM Supplier Live solution for Ariba Buyer and implemen-
tation of Java Transaction Services. Mr. Shaikh received an M.S.
degree in computer engineering from Syracuse University.

gu DAN ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

