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We present the design of a construction kit,
for building computational devices, called
MetaCricket. MetaCricket consists of a set of
hardware modules and the integrated software,
which runs both on a development computer and
within the MetaCricket hardware. MetaCricket
provides a flexible interactive development
environment for trying out new hardware and
behaviors. The underlying architecture makes it
easy for designers to expand the basic
construction kit themselves with minimal
engineering effort. Through a few examples, we
show how designers, enabled by MetaCricket to
be engineers of their own tools, are rethinking
and transforming the very character of design
principles in the digital age. MetaCricket was
originally designed for use by children, but has
been adopted by professional designers who are
not professional engineers. These designers have
found it incredibly liberating to directly
implement their ideas without depending on
engineers for assistance.

We are witnessing a revolution that will change
the way we think, live, and play. By the end

of this decade, computers will be imbedded in ev-
eryday objects all around us: our home appliances
and furniture, our communication and transporta-
tion devices, and even our books and our clothing.
The inevitability of ubiquitous computational re-
sources has presented today’s designers with both
an opportunity and a challenge.

Many designers have seized this opportunity to pro-
duce more and more responsive and interactive ar-
tifacts and spaces. In their new designs, they pay close
attention to the quality of the behaviors and modes
of interaction as well as to the aesthetics of the static

structures they create. Computation, while enrich-
ing the range of functions offered, makes it more
challenging to achieve harmony between form and
function. A new generation of technically savvy de-
signers has embraced this challenge and is actively
expanding and fundamentally rethinking traditional
guidelines for good design.

This clearly is an exciting time to be a designer, but
unfortunately, many talented designers, who are not
accustomed to formulating their design concepts to
engineers before iterating on them, are excluded
from the excitement. Today, there are many software
tools for graphic designers, animation artists, and dig-
ital-effect designers in general, but there have been
few hardware systems that allowed designers to eas-
ily incorporate sensing, actuation, and programma-
ble logic into their prototypes and designs.

Beyond the benefits of giving expressive power to
individuals, companies and organizations need to
support rapid prototyping practices. Schrage and Pe-
ters provide evidence for this in Serious Play: How
the World’s Best Companies Simulate to Innovate. 1

As noted on the book cover:

Contrary to the popular assumption that innova-
tive teams generate innovative prototypes, in fact
innovative prototypes generate innovative teams.
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How innovators play with their models and sim-
ulations invariably matters far more than what they
actually plan. In fact, [Schrage and Peters show]
why innovative firms cannot seriously plan unless
they seriously play.

Indeed, the MIT Media Laboratory where we work
is an ideal representation of the sort of culture in
which rapid, functional prototypes are taken seri-
ously. These prototypes, which serve as objects of
reflection, are critical in the evolution of most
projects. The prototypes anchor discussions between
lab sponsors and researchers, allowing projects to
move from an academic level to their practical im-
plementation. In other words, the prototype dem-
onstrations make ideas concrete and push them for-
ward.

In this paper, we introduce MetaCricket, a hardware
and software construction kit for building compu-
tational devices. MetaCricket has two crucial prop-
erties. First, it allows designers of all backgrounds,
not just engineers, to create working prototypes of
their ideas, ready for honest critique, analysis, and
feedback. Second, the MetaCricket system is itself

easily extensible. It is growing continuously, and is
customizable by designers who have modest hard-
ware and software backgrounds.

This paper describes MetaCricket through a series
of examples of increasing complexity. The next sec-
tion presents the Cricket processor at the heart of
the MetaCricket system, along with a sample proj-
ect. The third section presents the software archi-
tecture of MetaCricket. In the fourth section, the bus
architecture—the basis of MetaCricket’s expandabil-
ity—is described in detail along with numerous ex-
amples of its use. In the fifth section, we use the
MetaCricket architecture as a philosophical and
practical foundation for the design of new devices.
The discussion in the remainder of the paper includes
our plans for future work and our concluding
thoughts.

The MetaCricket core

In this section, we introduce the Cricket, the cen-
terpiece of the MetaCricket system, and describe an
introductory project that uses it.

Figure 1 Cricket block diagram and photograph. The Cricket is based on the PIC16C715 microprocessor with 4096 bytes
of EEPROM for users’ programs. It is powered by a 9-volt battery and includes output drivers for two motors,
input drivers for two sensors, a piezo beeper, bidirectional infrared communications, a push button, and a
peripheral expansion port.
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The Cricket. The heart of MetaCricket is the Cricket,
a tiny, programmable computer (about the size of
a 9-volt battery) that can directly control motors and
receive information from sensors (see Figure 1). The
Cricket evolved from earlier MIT “Programmable
Brick” designs, which have led to the recently intro-
duced LEGO** Mindstorms** Robotics Invention
System** with its RCX** Brick.2,3

The Cricket is based on a Microchip PIC** micro-
processor.4 Basic actuators like DC (direct-current)
motors and lightbulbs plug into one of the Cricket’s
two motor outputs, and simple resistive sensors such
as switches, photocells, and thermistors plug into the
Cricket’s two analog voltage-sensing inputs.

All Cricket devices have a built-in bidirectional in-
frared communications channel, which is used for
Cricket-to-desktop communication (when down-
loading programs to a Cricket, or viewing sensor
data) and Cricket-to-Cricket communication. The
Cricket also includes a peripheral expansion port,
or “bus port.” The use of this port greatly expands
the capability of the Cricket and is discussed in depth
later in this paper.

Crickets come with a custom software environment,
known as Cricket Logo. Cricket Logo is a procedural

language that includes global and local variables, pro-
cedure arguments and return values, control struc-
tures like repeat and loop, if and ifelse, and special-
ized primitive functions for interacting with motor
and sensor hardware.

In addition, Cricket Logo is based on an iterative,
interactive model of project development. It includes
a “command center” window; instructions typed into
this window are instantaneously compiled, down-
loaded to a Cricket, and executed, giving the system
the flavor of an interpreted software environment
such as LISP, BASIC, or FORTH. For the beginner, this
interactive capability makes learning the system
much easier, since trying out a new idea is as simple
as keying it into the command center. For the ex-
pert, the command center encourages an incremen-
tal approach to project building, allowing easy in-
teraction with the program under development.

Dr. Martin: An electronic dog. With just the core
Cricket device, common DC motors, and simple sen-
sors, a wide collection of computational devices can
be easily prototyped. Consider “Dr. Martin,” an elec-
tronic dog shown in Figure 2, created as a learning
exercise by a nontechnical professional toy designer
over a one-week period. Its body is constructed
largely of parts from the ZoLO** toy construction

Figure 2 Electronic dog block diagram and photograph. “Dr. Martin” is built using a Cricket that directly controls two
motors and receives input from a light sensor.
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kit, but its control electronics are built from the
Cricket kit. The dog has two LEGO motors for move-
ment, a Cricket in its belly, and a light sensor in its
nose. Next to the photograph of the model, the fig-
ure shows the functional block diagram of the dog.

Dr. Martin was designed with a simple “follow the
owner” behavior, implemented in Cricket Logo. The
software checks the light sensor and moves the dog
forward if the light level is high enough. Waving a
hand in front of the dog will cause room lighting to
be reflected into the sensor, and the dog then moves
forward. So by keeping your hand in front of the dog,
you can get him to chase you.

This program just takes a few lines of code:

to follow
loop [ ; begin infinite loop

if sensora . 50 ; check light level, if high then
[ab, onfor 20] ; motors A and B on for 2 sec

wait 5 ; wait 1/2 sec try again
] ; end loop

end

The program, named follow, sets up an infinite loop.
Inside the loop, the light level is checked. If it is
greater than 50, then the motors are turned on for
two seconds. After a half-second delay, the loop re-
cycles.

The threshold value of 50 would not work for all
room lighting conditions. With a more sophisticated
approach, the model could behave properly in the
more general case. Nevertheless, the example makes
the point of how simple it is to prototype novel com-
putational devices using the Cricket.

This section has introduced the core Cricket, includ-
ing an overview of its hardware, software, and an ap-
plication example. The next section examines the
software design of the Cricket system, then discusses
the Cricket peripheral expansion bus and ways in
which the whole Cricket architecture can be recon-
figured for custom applications.

Cricket software

The MetaCricket software system is based on a vir-
tual machine, written in PIC assembly language and
running on the Cricket, and a compiler for the vir-
tual machine running on a desktop development
computer, with two implementations (one in Logo

and one in Java** code). This approach yields sev-
eral important benefits:

● The object code resulting from compiling the us-
er’s program is quite small, and easily fits on an
inexpensive serial memory chip (included in the
core Cricket design).

● The virtual machine has a simple, stack-based ar-
chitecture, allowing both its implementation (in PIC
assembler language) and its compilers to be writ-
ten with a minimal amount of code.

● It is straightforward to implement an interpreter-
like interface, where user commands are transpar-
ently compiled, downloaded, and executed.

This section describes the implementation in detail.
We will begin with the virtual machine implemented
on the Cricket, and then discuss the desktop com-
piler and communications protocols.

The Cricket virtual machine. The Cricket virtual ma-
chine is burned into the PIC microprocessor’s inter-
nal ROM (read-only memory) and is implemented
in assembler language. The virtual machine uses the
microprocessor’s internal RAM (random-access
memory) for a program stack. The user’s code re-
sides in a serial EEPROM (electrically erasable pro-
grammable read-only memory) that is permanently
connected to the microprocessor. Built-in infrared
communications routines include a protocol for read-
ing and writing to this external EEPROM, and for ask-
ing the virtual machine to begin execution of byte
codes already loaded into the EEPROM.

Early versions ran first on the PIC16C84 model, then
on the PIC16F84. Our present version runs on the
PIC16C715 and similar processors. This is a proces-
sor running with a 1 megahertz (MHz) instruction
clock with just 128 bytes of internal RAM and 2048
words of internal ROM.5 Table 1 illustrates features
of the virtual machine across PIC versions. There have
been three major revisions of the Cricket virtual ma-
chine since the project began in early 1996. The ver-
sions are known by their “dot color” since we ap-
plied colored dots to mark the programmed
microprocessors. Access to EEPROM containing the
user code provides the main bottleneck with regard
to the speed of the virtual machine interpreter. Be-
cause the memory access is slow, the interpreter is
limited to a speed of about 300 virtual machine in-
structions per second. This would seem to be very
slow, but in practice, this limitation is all but incon-
sequential. If a peripheral device has high-speed re-
quirements, it is handled with an additional dedicated
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PIC chip (as described later). This leaves the Cricket
responsible for only the basic control flow or state
machine aspect of a design, for which an update rate
of about 100 hertz (Hz) is adequate.

User-level primitive functions compile to one, two,
or three bytes of object code for the Cricket virtual
machine. A stack holds expression computation re-
sults and arguments for procedures. In our byte code
language, the expression “1 1 1” would compile to
number 1, number 1, plus. During execution, the first
number 1 would cause the value 1 to be pushed onto
the stack. After the second number 1, another 1 would
be pushed onto the stack. The plus operator would
then pull the two 1s off the stack and push 2, the re-
sult of the operation.

User-defined procedures supplement the primitives
provided by the language; the procedures can accept
an arbitrary number of inputs and optionally pro-
duce an output. The same stack used for calculation
of numeric results is used to hold return addresses
of procedure calls. Because of the small amount of
RAM provided in the PICs we use, nested and recur-
sive procedure calls are limited to about 16 levels
deep.

A 16-bit number system provides signed integer
arithmetic. Standard arithmetic operators, compar-
ison operators, and Boolean operators are provided.
There is also a pseudorandom number generation
function.

There are global variables for holding program state.
Procedure inputs act as local variables. Additionally,

2048 bytes of the 4096-byte physical memory is set
aside for extended data storage; an arbitrary num-
ber of linear arrays may be declared in this area. This
array memory, along with the program memory, is
persistent through power cycles.

Several control structures are provided. If-then and
if-then-else tests, loops (repeat for a specified num-
ber of times, or loop indefinitely), and a wait-until-
Boolean-expression-becomes-true structure are
available. Additionally, there is a timed wait instruc-
tion (e.g., wait for one second).

The Cricket virtual machine has two process threads:
a foreground process and a background daemon. In
most Cricket programs, the foreground thread han-
dles all the work, but for some tasks, the background
daemon is valuable. For example, the background
daemon can be used to instigate a periodic activity,
or take action when some event occurs.

There are hardware-specific primitives for interact-
ing with on-board Cricket hardware. Motor com-
mands set state (on or off), direction, and power lev-
els for each of the two integrated motor drivers.
Analog sensor primitives (sensora and sensorb) re-
turn a value (0 to 255) for each of the two voltage
inputs. These inputs also may be interpreted as dig-
ital values using the switcha and switchb primitives.
There is a pair of primitive functions for generating
tones on the piezo beeper: beep and note, the latter
taking pitch and duration arguments.

Several features allow programs to keep track of real
time during their execution. Simple timed commands

Table 1 Versions of the Cricket virtual machine

Virtual
Machine
Version

Processor
Model

Capabilities

“Green dot” PIC16C84 8-bit number system
8-bit program addressing with 2 kilobyte EEPROM

(256 bytes program, 1792 bytes data)
40 kilohertz-based IR communications

“Red dot” PIC16F84 8-bit number system
16-bit program addressing with 2 kilobyte EEPROM

(1024 bytes program, 1024 bytes data)
40 kilohertz-based IR communications

“Blue dot” PIC16C715 16-bit number system
16-bit program addressing with 4 kilobyte EEPROM

(2048 bytes program, 2048 bytes data)
IrDA-based IR communications
Bus communications capability
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provide a fixed delay with a resolution of 100 mil-
liseconds (e.g., onfor 35 turns motors on for 3.5 sec-
onds). Additionally, there is a background millisec-
ond timer that is updated every four milliseconds;
this timer counts from 0 to 32.768 seconds before
“wrapping around” back to 0.

Table 2 summarizes the language features of the
Cricket virtual machine. On a historical note, the
Cricket’s software system grew from the approach
taken by Sargent and Martin in developing Interac-
tive C for the 6.270 LEGO Robot Design Competi-
tion,6 which itself grew from earlier work done by
Martin and Silverman in developing the first MIT Pro-
grammable Brick.2

The Cricket Logo compiler. Users write programs
for the Cricket in Cricket Logo, a dialect of Logo spe-
cialized for the Cricket virtual machine. Essentially,
there is a one-to-one mapping between statements

in Cricket Logo and primitive functions built into
the virtual machine. This makes the implementation
of the compiler far simpler than typical compilers.

Indeed, the reference compiler has only four pages
of code. It is itself implemented in a version of Logo.
We have also created a version of the compiler writ-
ten in the Java language; it has a similar structure
to the Logo implementation.

The compiler includes an interactive mode—a text
window where user expressions are compiled, down-
loaded, and executed in one step when the user
presses the return key. A portion of the Cricket’s
memory is set aside for these dynamic programs. To
the user, this gives the impression of directly “talk-
ing to” the Cricket. After downloading programs,
users can call their own procedures, providing var-
ious arguments, etc., all from the interaction win-
dow.

Table 2 Cricket Logo feature overview

Feature Description

Program size 2048 bytes of compiled code
Each user-level primitive function compiles to 1, 2, or 3 bytes

Procedures Arbitrary number of numeric inputs allowed
May provide numeric return value

Number system 16-bit integers
Add, subtract, multiply, divide, remainder, and modulus operators
Greater than, less than, equality operators
And, or, not, and exclusive-or operators
Random number generator

Data and variables 16 available global variables
Local variables (limited by stack depth)
One-dimensional arrays (2048 bytes total array data,

persistent through power cycling)

Control structures If-then; if-then-else
Loops (repeat n times or infinite)
Waituntil (Boolean expression)

Multitasking One foreground thread plus one background daemon
Daemon fires when provided Boolean expression makes

false-to-true transition
15-bit background millisecond timer (4-millisecond ticks)

Communications Integrated infrared (IR) program download protocol
Low-level primitives for IR communication between Crickets
Low-level primitives for peripheral bus communication

Hardware-specific Motor power, direction
Analog input
Boolean input
Piezo tones
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Figure 3 illustrates the user interface for the Cricket
Logo compiler. The software is designed for use by
novices and the interface is deliberately kept min-
imal. On the right is the user procedures window.
In the lower left is the interaction window, known
as the “command center.” In the upper left are text
fields (numbered 1 and 2) for single Logo statements.
When the user’s code is downloaded, the first of these
two statements may be triggered by pressing a push
button located on the Cricket itself. This allows
downloaded programs to be started independently
of the development computer. An infrared (IR) in-
struction may be also issued, causing the Cricket to
execute either of the two numbered Logo statements.

The Cricket Logo environment does not include a
specific debugger. In practice, we have found that
a debugger is not necessary because of the interac-
tive and incremental style of project development
that occurs when using the Cricket. To make a
change in the code, then download, and run is so
rapid that work becomes more like a conversation
with the artifact than an experimental process. Ad-
ditionally, one can transmit numeric values back to
the desktop computer for display, or add a display
device to a project to show internal state variables.

Infrared communications. The Cricket includes a
protocol for interaction via its bidirectional infrared
capability. The Cricket implements a custom byte-
oriented communications scheme based on IrDA (In-
frared Data Association) hardware. The byte-level
transport operates at an effective data rate of 50 thou-
sand baud; this is actually faster than the Cricket can
access its EEPROM.

The infrared protocol includes the following capa-
bilities:

● Check that a Cricket is present and ready for other
commands.

● Write a byte to the Cricket’s EEPROM.
● Read a byte from the Cricket’s memory.
● Begin program execution from a particular mem-

ory address.

In sum, the core Cricket design is simple yet pow-
erful; its software is basic yet expressive. In the next
section, we show how the Cricket can be the heart
of a larger system.

The bus architecture

Thanks to its ease of use and small size, the original
Cricket processor became very popular. Designers

soon envisioned more and more elaborate applica-
tions that required new functionalities for the crick-
ets. To address the limitations of the first Cricket
design (two motors and two sensors), we extended
the design along two parallel directions.

On the one hand, since crickets were simple and easy
to revise, we created a plurality of Cricket designs.
We designed customized crickets for each new class
of projects; for example:

● The “display Cricket,” designed for applications
that needed a richer display and more sensor in-
puts, had a bank of eight bicolor (red/green) LEDs
(light-emitting diodes) that could be lit under user
program control, three sensor inputs, but no mo-
tor outputs.

● The “MIDI (Musical Instrument Digital Interface)
Cricket,” designed for musical applications, had a
versatile waveform synthesizer chip, more sensor
inputs, but no motor outputs.

● The “science Cricket,” designed to help children
build their own scientific instruments, provided
true analog-to-digital converters on the sensor in-
puts (allowing the use of a greater variety of sen-
sor devices), along with support for 16-bit num-
bers in the Cricket software. (The science Cricket
employed a more powerful version of the Micro-
chip PIC controller.)

On the other hand, we developed a different way to
support multiple devices—the Cricket bus system.
As we were designing devices to interface with the
Crickets, we realized that often a custom circuit would
be required to connect a particular device to a
Cricket. Up to this point, we had been designing en-
tirely new Crickets with different capabilities. For ex-

Figure 3 Cricket Logo interface
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ample, to get an LED display, we created the display
Cricket; to get music, we created the MIDI Cricket.

We came to realize that instead we could bundle the
specific circuitry required to make a new device work
with that device itself, in a sort of object-oriented
hardware strategy. Then, a simple communications
protocol could let the new devices talk to an existing
Cricket. Thus was born the idea for the Cricket bus.

The Cricket bus allows an arbitrary number of de-
vices to be daisy-chained off of the bus port. Each
bus device includes two bus port connectors to al-
low a series of bus devices to be connected in a string.
For flexibility in wiring configurations, two bus ports
are provided on the Cricket (though electrically they
are the same signal).

Our first Cricket bus device was an optical distance
sensor that employed a special part manufactured
by the Sharp Microelectronics Group. This compo-
nent used a specific, unusual communication method
to interface with an external circuit. By conceiving
the Sharp distance sensor as a bus device, we were
able to bundle the special hardware and software re-
quired to talk to the device with the device itself,

yielding a common protocol to talk between the
Cricket and the bus device. Over time, we have come
to develop a large collection of bus devices, all of
which can communicate with a standard Cricket. Fig-
ure 4 shows a sampling of these bus devices, includ-
ing a music synthesizer called the MidiBoat, an ul-
trasonic distance sensor, a three-digit LED numeric
display, and a sound sensor.

The bus system also allowed us to converge on a sin-
gle Cricket design. Our “classic Cricket” (with two
built-in motor drivers and two resistive sensor ports)
merged with the “science Cricket” (true analog sen-
sor inputs and 16-bit number support) to become,
with the addition of the bus port, our standard de-
sign. The need for different Cricket versions was dras-
tically reduced, since nearly any device can be in-
terfaced to this standard Cricket using the bus system.

We next describe a variety of projects, built by our-
selves and our colleagues, that demonstrate the range
and expressive power of the MetaCricket system.

Beach ball remote car. Much of the material we have
developed for MetaCricket has been used by teach-
ers and students in classroom settings. In one par-
ticular case, a high school student who had an ex-
tended relationship with our work designed a
remote-control toy: a motorized LEGO vehicle with
(1) a Cricket for controlling the motors and the bus
devices, and (2) a radio frequency (RF) receiver bus
device. The car ran a simple program that guided its
movements based on received RF commands:

to car
loop [ ; begin infinite loop

waituntil [newrf?] ; wait until new RF
command received

if (rf 5 1) [fd onfor 2] ; if 1, drive forward for
0.2 sec

if (rf 5 2) [bk onfor 2] ; if 2, drive backward
if (rf 5 3) [rt onfor 2] ; if 3, drive right
if (rf 5 4) [lt onfor 2] ; if 4, drive left

] ; end loop
end

Instead of the traditional steering wheel controller,
this project used a Nerf** ball with MetaCricket
components embedded inside. The ball contained
(1) a Cricket, (2) an RF transmitter bus device, and
(3) a two-axis accelerometer bus device used as a tilt
sensor.

Figure 4 Cricket with bus devices. At center is the
“blue dot” version of the MIT Cricket with
a simple light sensor to its immediate right.
Arranged around, from top going clockwise,
bus devices: MidiBoat music synthesizer,
Polaroid ultrasonic distance sensor, 3-digit
numeric LED display, and sound sensor.
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The Nerf ball controller ran a program to generate
the RF command bytes (1 through 4) depending on
the data from the acceleration sensor, which indi-
cated how the ball was tilted. When the student held
the ball in two hands and rotated it in a “rolling for-
ward” motion the vehicle moved forward, and when
the student rotated it in a “rolling sideways” motion,
the vehicle turned correspondingly.

Figure 5 shows the block diagram of the resultant
system. This simple example illustrates how a novel
physical interface to a conventional toy is easily pro-
totyped.

Communicating musical toys. Over the past couple
of years, communicating musical toys have been pro-
totyped by various designers around the Media Lab.
All of these toys have the following components:

● Crickets
● The MidiBoat bus device, a full MIDI synthesizer

on a small board7 that accepts MIDI music com-
mands over the Cricket bus

● Push buttons, pressure sensors, and other unusual
sensor inputs

Because Crickets have built-in infrared communi-
cation capability, they are especially suited for

projects in which multiple computational devices
must interact with one another. Most of the musical
toy projects have this quality.

The MidiBoat bus device is another important com-
ponent. This board was originally designed for a spe-
cific Media Lab project that was not Cricket-based.
Later the firmware on the MidiBoat device was re-
programmed to accept Cricket bus commands, and
the board has seen many new, unintended applica-
tions. Several projects illustrate the virtuosity of
MetaCricket for these musical applications.

Play-Doh synthesizer. This project is inspired by the
“music shapers” approach described by Machover
et al.8 In this project, a glob of Play-Doh** is con-
nected to a personal computer (using a resistive sen-
sor interface), and algorithms on the computer gen-
erate music based on the changing resistance of the
Play-Doh as it is manipulated.

In our implementation, the Play-Doh is connected
directly to a Cricket, which drives a MidiBoat syn-
thesizer (Figure 6). The sensor is made up of two
pairs of electrodes, each plugged into one of the two
Cricket sensor ports, and some Play-Doh (or cookie
or bread dough) for establishing electrical contact
between the electrodes. As the Play-Doh is worked

Figure 5 Beach ball remote car block diagram
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over and reshaped, the sensor readings change.
These readings are mapped to high-level musical
concepts like melody contour and tempo.

Figure 7 shows the working Play-Doh instrument.
One can reprogram the Cricket to change not only
the mappings but also the instruments’ voicing, vol-
ume, and any other qualities. Other sensor bus de-
vices can be used to design any number of interfaces
for controlling these parameters.

Musical sensory puzzle. The musical sensory puzzle
consists of a number of blocks, each containing a sec-
tion of a musical piece (Mozart’s A Little Night Mu-
sic). The user can listen to each section separately,
by pressing a button on one of the blocks, or arrange
the blocks in a linear chain and listen to that arrange-
ment played sequentially. The user can rearrange the
blocks to discover how new arrangements sound and
maybe rediscover the entire piece as arranged by the
composer.9

To accomplish this, each block must communicate
with its adjacent neighbors by IR. Each Cricket in-
cludes infrared communications facing out one end;
in order to “talk” out the other end, an infrared com-
munications bus device is used. Thus, the musical
sensory puzzle is built from a Cricket, an additional
communications device, and the MidiBoat synthe-
sizer (Figure 8).

SqueezeMan. The “SqueezeMan” is a hand-held mu-
sical device that maps squeezing gestures to high-
level musical concepts like melody contour and
tempo. Together, these devices offer a range of novel
musical experiences that take advantage of their abil-
ity to interact and interdependently manipulate each
other’s musical outputs. The SqueezeMan devices
extend and transform the ways in which we interact
not only with our traditional musical instruments but
also with people around us. They were designed to
draw users to a deeper, more meaningful active mu-
sical participation.10

Each SqueezeMan device consists of a semi-trans-
parent plastic container (a child’s drinking cup) as
a casing (Figure 9). The electronics and batteries are
embedded in the cup while the input and output de-
vices are mounted on its top. Two plastic “eyes” are
glued on the body of the cup to indicate the location
of the infrared components of the Cricket embed-
ded in the device. This device transmits and receives
infrared signals through the semi-transparent plas-
tic.

Two force-resistive pressure sensors are embedded
inside a cluster of four squeezable rubberized star-
shaped balls. The sensors generate continuous volt-

Figure 7 Play-Doh instrument in action

Figure 6 Play-Doh instrument block diagram. The Play-
Doh sensor is literally just two wires stuck into
a glob of Play-Doh. Salts in the Play-Doh form
a current path with a varying resistance as the
dough is reshaped. This resistive input is
measured by the Cricket, and a simple control
program generates music based on it.
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ages in response to the pressure levels exerted on
each of the two independent pressure axes in the
cluster. Squeezing was chosen as an intuitive and ex-
pressive gesture for high-level, continuous control.
The ergonomic design allows for two-handed ma-

nipulation, using each palm to press against one pair
of rubber stars. More experienced users can oper-
ate the device with one (playing) hand (a thumb-fore-
finger axis and a thumb-middle finger axis). This al-
lows a performer to hold the device in the other

Figure 8 Musical sensory puzzle block diagram
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Figure 9 SqueezeMan block diagram and photograph
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(nonplaying) hand and point it toward other per-
formers’ devices in multiplayer mode.

The pressure sensors are wired to the Cricket’s
built-in analog input ports. The Cricket runs a pro-
gram that interprets the pressure data and maps it
to musical messages sent to the MidiBoat device.

The MidiBoat device’s audio-out jack is connected
to a headphone jack, which is mounted on the de-
vice’s top. The use of headphones (instead of speak-
ers) imitates the Sony Walkman** solution to the
challenge of providing personal local high-quality
sound. Like the Walkman, this solution avoids the
problem of speaker quality, weight, and power con-
sumption common to hand-held speaker-based de-
vices.

Musical fireflies. Musical fireflies (see Figure 10) are
digital toys that introduce mathematical concepts in
music, such as beat and rhythm, without requiring
users to have any prior knowledge of music theory
or instruction.11 Each firefly has a Cricket, a Midi-
Boat, and two buttons—one for entering accented
notes, the other for entering nonaccented notes.
When the firefly is first turned on, it waits for the
user to enter a rhythm pattern. The left button re-
cords an accented beat; the right button records a non-

accented beat. After two seconds of inactivity, the
firefly plays this pattern. During playback, players
can input a second layer of accented and nonac-
cented notes in real time. Each tap on a button plays
a beat aloud and records its quantified position so
that the beat becomes part of the rhythm loop. Press-
ing both buttons simultaneously at any point stops
the playback and allows the player to enter a differ-
ent pattern.

Musical fireflies interact through their Crickets’ in-
frared communication capabilities. When two fire-
flies “see” each other, they automatically synchro-
nize their rhythm patterns. While two fireflies are
synchronized, users can initiate a “timbre deal” in
which instrument sounds are traded between the
toys. Pressing either the left or right button trades
the instruments used to play the accented or non-
accented beats, respectively. Each firefly now plays
its original pattern but with new timbres that bring
a new perspective to the rhythmical interaction. The
interaction between two musical fireflies makes them
both richer; they both contain four sounds after the
interaction.

In the current design of the musical fireflies, direc-
tionality of the IR communication limits simultaneous
interaction to three devices. Using the RF bus de-

Figure 10 Musical fireflies block diagram and photograph
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vices one can remove this limitation and make new
musical performances and games possible by allow-
ing a room full of musical fireflies to interact with
each other.

Dance craze buggies. The dance craze buggies are
a demonstration prototype of an Internet-genera-
tion children’s toy, based on the idea of “tradable
bits.”12 Tradable-bits toys let children trade bits (in-
cluding pieces of music, animations, and digital crea-
tures) instead of atoms (such as the traditional base-
ball cards, POG disks,13 and Beanie Babies**).
Trading digital (rather than physical) objects has dis-
tinct advantages: children can more easily author,
copy, modify, and trace them.

The dance craze buggies themselves (Figure 11) are
a set of modified radio-controlled cars, which can
perform dances when they “see” each other. Fur-
ther, the buggies can trade dances with each other
and also upload information about how the dances
are spreading to the Internet. Each buggy has its own
two-way pager (using Motorola CreataLink** tech-
nology) that allows it to communicate wirelessly to
a server on the Internet.

In the prototype implementation, children can play
with their buggies, get them to teach each other
dances, and view on-screen visualizations of how the
dances have spread from buggy to buggy. The goal
of the project is to allow children to become reflec-
tive about the spread of ideas through a culture; in
direct play with the buggies, they can experience first
hand the exchange of dances, and then later, with
visualizations, explore the results.

The dance craze buggies’ hardware was prototyped
within a week by the one of the authors. Figure 12
illustrates the block diagram of the buggy. Each car
was a radio-controlled car modified to have:

● A Cricket that controlled the motors and took care
of the communication with the other buggies
through Cricket IR

● Two three-digit LED display bus devices pro-
grammed to display the abbreviated names of the
dances the buggy knows

● A knob (a potentiometer plugged into one Cricket
sensor port) that allows scrolling through the
dances, and a button plugged into the other Cricket
sensor port that allows a dance to be selected

● A two-way pager (Motorola CreataLink), modi-
fied to act as a bus device

● The MidiBoat music synthesizer

Anatomy of a bus device. The two motivations for
the bus device system were to expand the Cricket
beyond its built-in two-motor/two-sensor limit, and
to bundle hardware specific to a given sensor or ac-
tuator with that device itself. Beyond serving that
goal, the bus system has had additional benefits. A
wide variety of hardware devices has been interfaced
to the Cricket, including devices that were originally
designed for other purposes (such as the MidiBoat
synthesizer).

As this collection of devices has proliferated, pro-
pitious combinations have given creative freedom to
designers using MetaCricket and made complex
groups of devices easy to interface together (as in
the dance craze buggy).

We want to encourage this process by demonstrat-
ing the ease with which a new bus device can be con-
structed. For tutorial purposes, we will present the
design of a specific bus device for measuring resis-
tance. Despite the fact that the Cricket device in-
cludes two built-in ports for measuring voltage, the
resistance sensor is useful as a bus device for appli-
cations where more than two sensors are required.

Circuit details. Figure 13 shows the schematic for the
resistance sensor bus device. It uses the PIC16F84
processor, with electrically erasable program mem-
ory that can be reprogrammed in-circuit, making it
ideal for experimental purposes. This processor does
not include an analog-to-digital converter, so the cir-
cuit employs the old trick of charging a capacitor

Figure 11 Dance craze buggies photograph
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through the unknown resistance and timing the
charge cycle.

Aside from this circuit, and the connections required
to support the processor, only one pin must be ded-
icated for the circuit to become a bus device. In the
schematic, the bus communications line is Pin 6.

Low-level bus communications. The Cricket bus uses
byte-oriented data transfer, with an additional bit in-
cluded to distinguish between commands and data.
The communications protocol follows a strict master-
slave method: the Cricket device is the single mas-
ter, and all of the bus devices are slaves. When the
Cricket talks to the bus, it issues a command for a
single bus device. That bus device may either silently
take action, or it may respond by sending its “an-
swer” back on the bus.

Figure 14 illustrates the low-level signal format. Each
transmission consists of a 100 microsecond “prestart”
synchronization pulse, which is followed by a start
bit, 8 data bits (least significant bit first), a 9th bit
to indicate command or data, and a stop bit.

The (relatively) long synchronization pulse allows all
receiving devices to get ready to receive the bus data.

This may mean either processing an interrupt (if the
bus signal is connected to an interrupt pin) or fin-
ishing another task before resuming polling of the
bus pin. In any event, all receiving devices are ex-
pected to dedicate their full attention to the bus sig-
nal before the synchronization period ends.

At the rising edge of the start bit, receivers synchro-
nize their internal timing to allow the remainder of
the communication to be performed at the high
speed of 10 microseconds per bit. Then the eight data
bits are transmitted, followed by the command/data
bit and the stop bit.

Device communications protocol. The command/data
bit of the low-level bus word is used to indicate
whether the byte being sent is a command byte or
a data byte. Command bytes may be sent only from
the Cricket to bus peripherals, whereas data bytes
can be the reply of a bus peripheral to the Cricket,
or the additional parameters of a full bus command.
Each bus peripheral has a unique 8-bit identifier, so
any given command must address not more than one
device on the bus. By tagging replies and additional
arguments as data, other peripherals do not inad-
vertently interpret this additional bus traffic as com-
mand bytes.

USER
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BUTTON
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CRICKET BUS

MOTOROLA
CREATALINK
PAGER
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MUSIC
SYNTHESIZER

LED
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Figure 12 Dance craze buggy block diagram. In the dance craze buggy design, a Cricket talks to an adapted Motorola
CreataLink two-way pager, a MidiBoat music synthesizer, LED alphanumeric displays, and a pulse-width
modulated (PWM) motor controller.
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For instance, consider the following method by which
the Cricket addresses the acceleration sensor (as
used in the beach ball remote car project):

● Cricket sends “190” hexadecimal. The high-order
bit marks the word as a command byte; the value
“90” is the unique identifier for the acceleration
sensor.

● Cricket sends “1.” This number is retrieved by the
acceleration sensor and interpreted as a request
for the value of the first of its two axes.

● The acceleration sensor sends its reply (marked
as a data byte), which is retrieved by the Cricket.

Communications subroutines. We have written short
assembly language routines to transmit and receive
in the Cricket bus protocol on three different pro-
cessors: the Microchip PIC, the Motorola 68HC11,
and the Hitachi H8**. The protocol is successful be-
cause it was designed to be easily implementable on
any small processor without the need for specialized
hardware.

Integration with Cricket Logo. We have implemented
a simple protocol whereby many bus devices can be
interrogated with a single byte command. More com-
plex devices use the first byte of the bus command

Figure 13 Schematic of resistive bus device
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as an escape into an idiosyncratic protocol specific
to the device itself.

For each kind of device (e.g., reflectance sensor, LED
display), four unique identifiers are available—
tagged by color (red, blue, yellow, or white). Cricket
users refer to the device by color when creating
Cricket programs (e.g., “get the value of the red re-
flectance sensor”; “display the value of the red re-
flectance sensor on the blue LED display”). This color
identification system supplements the port-based
identification method (e.g., Motor A, Sensor B) used
by the Cricket’s on-board peripherals.

More complex bus peripherals share the color nam-
ing system, but may have multibyte sequences for
being addressed. For instance, the shaft encoder bus
device uses a two-byte command sequence, where
the first byte indicates which of the four color-named
shaft encoders is to be addressed and the second byte
indicates the operation to be performed: return po-
sition count, return current velocity, or clear posi-
tion count.

The last step is to add a library to the Cricket Logo
software in order to define higher-level primitive
functions for accessing the bus device. This library
routine may be written in Logo and can be preloaded
onto a Cricket before repeated use. For example,

the following subroutine displays a number on the
red four-digit LED display:

to display :n
bsend $170 ; $100 sets command bit,

; $70 is device ID
bsend high-byte :n
bsend low-byte :n

end

MetaCricket architecture as a building block

MetaCricket is more than the collection of bus de-
vices along with the core Cricket device. It is an ap-
proach to building computational devices. Rather
than attempt to integrate a master control program
and drivers for various hardware devices into a sin-
gle chip, MetaCricket proposes the use of a PIC pro-
cessor, with the Cricket firmware, talking to assorted
bus devices integrated into a single circuit design.

In other words, one can take an application built
from the Cricket and several bus devices, and create
a new design with this set of components laid out on
a single board.

This section presents two projects that have been de-
veloped using this approach. In the first, the Cricket

Figure 14 Bus communications signal drawing
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and several particular bus devices are integrated into
the “participatory simulation thinking tag.” In the
second, the Cricket is embedded inside a 6 3 2 LEGO
brick stack, with bus connections running up and
down allowing these bricks to communicate, creat-
ing the “Tangible Program Brick.” In describing
these projects, we illustrate the effectiveness of us-
ing the components of MetaCricket as building
blocks in integrated designs.

Thinking tags. In our early work with “thinking tags,”
we created electronic name tags that allowed users
to learn about each other’s preferences in social set-
tings.14 In an extension of this work, Vanessa Colella
is developing participatory simulations. Students wear
small communicating computers and become actors
in life-sized, computationally supported simulations.
For instance, students can participate in a simula-
tion of a virus spreading through a community. Par-
ticipants then draw on their own experiences as they
work together to describe the behavior of the whole
system.15

The first participatory simulation thinking tag was
built using conventional design techniques. The

Cricket operating system was extended to include
drivers for a two-digit numeric LED and five bicolor
LEDs. When we began to revise the design, we used
MetaCricket techniques. Our second tag includes
features similar to the first (a two-digit numeric dis-
play, the bicolor LEDs, a knob, and two push buttons),
but it is based on the standard “blue dot” Cricket
firmware, unmodified from its form in a conventional
Cricket device. All of the specialized hardware is han-
dled by a separate PIC processor, which communi-
cates with the Cricket firmware as a bus device (Fig-
ure 15).

When Colella and fellow researchers design various
simulation games, the tags are preloaded with spe-
cial libraries for handling the communication be-
tween the tags, the events from any of the bus sen-
sors, and the commands for generating visual or
audible feedback.

Using MetaCricket, the design of this device was con-
ceptually easier; technically it was much easier. The
Cricket firmware did not change at all, and the firm-
ware for controlling the specialized hardware was
developed and debugged independently.

Figure 15 Participatory simulation thinking tag
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Tangible program bricks. Tangible program bricks
are 6 3 2 LEGO brick stacks with electronics embed-
ded so that the bricks can communicate with one an-
other and reveal their order and identity. The bricks
were developed by Tim McNerney to explore tan-
gible programming approaches and to make ideas
of programming accessible to everyone.16

In developing tangible program bricks, McNerney
took a PIC processor running the Cricket firmware
and optimized it around communication. McNerney
added a second bus communications pin, so that the
bricks have one bus line running up the stack and
one running down the stack. He added subroutines
into the firmware for communicating over this sec-
ond bus.

Figure 16 shows a stack of three program bricks. In-
side each brick, a three-layer board stack holds elec-
trical connectors facing up and down, the PIC micro-
processor, and the serial memory. The top layer is
a female “smart card” connector, consisting only of
metal pads on a printed circuit board. The middle
board has the PIC microcontroller and a male con-

nector on the bottom. This connector has eight gold-
plated springs that press against the printed circuit
on the female connector in the expansion cards that
can be inserted into the bricks. The bottom board
contains the serial EEPROM chip and a connector that
mates with the top of the brick below. The connec-
tor system passes power, bus communication (be-
tween neighbors), and a start/run signal to the en-
tire stack of bricks.

Electrically, the program bricks are like Crickets with
the standard peripherals (beeper, infrared commu-
nications, sensor inputs) removed. However, the pro-
gram bricks include an expansion connector that al-
lows various accessories to be plugged in. For
instance, when an IR transceiver card is plugged in,
the program brick can communicate as a Cricket and
accept program download. If a beeper card is plugged
in, a program brick can sound tones. Other acces-
sory cards already developed include a capacitive
touch sensor, a bus port for interfacing with stan-
dard bus devices, and an EEPROM card for storing
numeric constants.

With this infrastructure in place, new programming
paradigms can be explored and the system becomes
more than a collection of Crickets. The program
bricks are particularly useful for applications with a
small set of primitives. For example, as a part of the
“Counter Intelligence” project at the MIT Media Lab,
the bricks were used to program microwave ovens.
In another application, the bricks were used to con-
struct dances for the dance craze buggies project.

Discussion

Applications like the ones we describe could be ac-
complished with other development tools; however,
there are distinct advantages to MetaCricket. Gen-
erally, MetaCricket allows designers who are not en-
gineers to incorporate features, possible only with
digital technology, into their designs. To make this
point very explicit, consider the simplest project pre-
sented in this paper, the electronic dog (Figure 2).
“Dr. Martin” responds to varying light levels, turn-
ing its motors on and moving forward in response
to a bright light. Consider alternative methods of im-
plementing this idea:

1. Analog circuit design. An analog electronics en-
gineer could design a transistor circuit. When the
photocell level crossed a threshold voltage, a timer
could be triggered to engage motor drivers for a
hard-wired period of time.

Figure 16 Stack of three tangible program bricks
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2. Microprocessor circuit design. A computer engi-
neer could design a microprocessor circuit that
could run a program similar to the dog’s Cricket
Logo control program. Analog-to-digital convert-
ers would be used to provide the photocell sig-
nal. Motor driver circuits would be needed to
drive the motors.

3. Tethered interface. Various desktop computer-to-
sensor/actuator interfaces are available. Sensors
and motors plug into the interface; a control pro-
gram running on the desktop computer takes the
sensor readings and issues motor commands.
Some of these systems are as easy to use as the
Cricket, but all require cable harnesses running
between the interface and the project. For any
sort of mobile or embedded project, these wires
are both a practical and conceptual nuisance.

None of these alternatives is as appealing as the
MetaCricket design. The first option requires sophis-
ticated analog electronic skills. The second has re-
cently improved with devices like the PIC micropro-
cessor, which makes it substantially easier to design
computational devices. But both options still require
complex circuit design, electrical assembly, and pro-
gramming skills. The third option (a tethered inter-
face), especially in its educational versions (e.g.,
LEGO Dacta ControlLab), does allow prototyping by
designers who are not experts, but the resultant prod-
uct often has too many shortcomings, the most crit-
ical of which is the cable tether.

Of commercially available systems, the closest to the
Cricket is the BASIC Stamp** programmable micro-
controller.17 The Stamp shares many similarities with
the Cricket. It has a similar virtual machine and a
development language designed to be easy to learn
and use. So indeed, the Stamp and the Cricket are
both designed with the idea of making prototyping
easier for designers.

There are some important differences, however, be-
tween the Cricket and the BASIC Stamp. First, the
BASIC Stamp’s compiler is of traditional design: the
user writes code, sends it through the compiler,
downloads it to the project, and then runs the code.
There is no possibility for interacting with the code
after it is downloaded.

Next, the Cricket includes some very useful features
as built-ins—namely, motor control and infrared
communications—that require circuit design to be
used with Stamp. Finally, the Cricket’s bus system
is simpler to use and is more flexible. Bus devices

may be easily plugged in and removed from the sys-
tem being developed, and the devices themselves are
packaged in a more modular fashion. In short, one
does not need to pick up a soldering iron to use the
Cricket.

Future directions

The MetaCricket kit is designed for designers and
helps them to implement a broad range of ideas. To
this end, we are improving the kit in many ways. Our
current research on MetaCricket focuses on expand-
ing the kit to include a variety of new display devices,
actuators, and sensors to allow designers to design
and implement interfaces with new interaction mo-
dalities. We are expanding the communication ca-
pabilities of the Cricket. We are introducing new pro-
gramming environments, particularly some on hand-
held-devices. This section briefly describes work in
each of these areas.

Sensing and actuation. In collaboration with other
research groups, we are working on new classes of
sensors, including inductive and capacitive sensors,
electric field sensors,18 tag readers,19,20 vision systems,
and inertial measurement units (shock, orientation,
spin, and position sensors).21 On the output side, we
are interfacing to new actuators and displays, includ-
ing electromagnetic linear drive motors, solenoid ac-
tuators, E Ink displays,22 and general-purpose LED,
LCD (liquid crystal display), and fluorescent displays.

The Cricket architecture and design ideology has
provided the foundation of other research projects.
Using Crickets, Michael Eisenberg’s Craft Technol-
ogy Group has built special-purpose devices that em-
bed computation into familiar form factors like the
thumbtack and the hinge. In essence, these projects
collapse several components of the MetaCricket sys-
tem (motor, mechanism, and programmability) into
a single object.23 These craft technologies further
lower the entry barrier for designers who wish to
build and program computationally augmented ob-
jects.

Communication. We are expanding the communi-
cation capabilities of the Cricket to address differ-
ing design criteria. For example, infrared bus devices
are ideal for applications requiring line-of-sight com-
munication. Ultrasonic communication may be em-
ployed for applications without line-of-site require-
ments with the advantage that it will remain confined
to a room, and RF and spread-spectrum communi-
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cation are suited for long-range and multidevice ap-
plications.

We are also developing communication libraries that
would simplify the design of interactive toys such as
the musical fireflies. In designing many of the com-
municating toys described in this paper, we worked
closely with the designers to implement the neces-
sary low-level communication, handshaking, and er-
ror-correction procedures. In future versions of our
software, we plan to provide a set of high-level prim-
itive functions for this purpose.

New programming environments. In order to allow
debugging and reprogramming devices built with the
MetaCricket kit, we are developing new graphical
and text-based (pen-based) programming environ-
ments for hand-held devices such as Microsoft Win-
dows** Pocket PC machines, Palm** computers, and
GameBoy** systems. We see these environments as
especially suited for use by children and in space-
limited classrooms, as in the typical elementary
school.

Along a complementary direction, in collaboration
with the Aesthetic and Computation Group at the
Lab, we are integrating the MetaCricket kit with John
Maeda’s Design by Numbers (DBN) environment,
which gives visual designers expressive control in a
computational medium.24 By joining DBN to
MetaCricket, designers can build novel interfaces
and allow real-world sensing to influence their vi-
sual displays. As Design by Numbers aims to pro-
vide visual designers with computational expression,
MetaCricket will give industrial designers the capa-
bility to prototype fully functioning objects. We ex-
pect these kinds of tools to become commonplace
in schools of design worldwide.

Conclusion

Perhaps the most unexpected outcome of
MetaCricket is how it allowed us to leverage others’
work. This was first demonstrated with the MidiBoat
music synthesizer. After we integrated this device
into MetaCricket, music became a central feature
of Cricket projects, and researchers around our lab-
oratory chose to use Crickets simply because it let
them use the MidiBoat device. Not only did the use
of the MidiBoat extend far beyond the intentions of
its designers, but it also fostered the growth of the
MetaCricket approach throughout our lab.

This particular story points to the ultimate power of
MetaCricket. As the collection of bus devices grows,

an exponentially increasing set of combinations be-
comes possible. This will in turn encourage more de-
signers to use MetaCricket, and stimulate further
growth of both application examples and develop-
ment of new hardware “primitives.” MetaCricket
suggests a world where all devices share a common
protocol, and can be reconfigured, repurposed, and
reprogrammed by end users of all backgrounds and
design styles.

As digital tools enter every aspect of our lives and
the many artifacts of our world, it becomes more and
more important that these objects are created from
the sensibilities of designers. For instance, it seems
inevitable that appliances in the kitchen of the fu-
ture will talk to each other. MetaCricket will ame-
liorate this in two crucial ways. First, it will allow cre-
ative designers to prototype fully functioning digital
behaviors, and thereby deeply influence the human
qualities of final products. Second, it points to a fu-
ture where end users will be able to redesign the func-
tionality of the devices in their lives. We are looking
forward to a day when the functionality of appliances
and other manufactured articles is transparent, and
consumers can reconfigure the technology around
them in novel ways.
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