
Business Component
Prototyper for
SanFrancisco:
An experiment
in architecture
for application
development tools

by H. van Emde Boas-Lubsen

The technology behind distributed processing,
frameworks, and the Java language environment
is relatively new and changing fast. This requires
that current application development tools adapt
more quickly to requirements of their users. This
paper describes how these tools can be made
more flexible and customizable. As an example,
the architecture of Business Component
Prototyper for IBM SanFranciscoTM is presented.
In its current form, Business Component
Prototyper is a tool to develop prototype
applications provided with IBM SanFrancisco
v 1.4. Its objective is to help new SanFrancisco
developers create small prototypes using the
SanFrancisco foundation layer programming
model, without requiring the heavy tool set used
for production application development. IBM
SanFrancisco is a JavaTM-based set of
components that allows developers to assemble
server-side business applications from existing
parts, rather than build “from scratch.”

The use of object technology for application de-
velopment is slowly becoming mainstream. De-

spite this, the promise the technology seemed to
hold—an increase in productivity by an order of mag-
nitude—has not yet been fulfilled, as we demonstrate
later.

We start to recognize that more is needed than just
object-oriented languages and object-oriented anal-
ysis methods. Standardization, ready-to-use compo-
nents, and development environments where major
parts of the code are generated for the developer
should solve the problems. Standardization is eas-
ier if all developers use the same programming lan-
guage. A large segment of the information technol-
ogy community has decided that the Java**
programming language and specifications for Java-
Beans** and Enterprise JavaBeans** will bring this
much needed unity. As a communication protocol
for documents and structured data, XML (Extensi-
ble Markup Language) is emerging. Based on these
standards, serious component frameworks are start-
ing to appear, such as IBM’s SanFrancisco*.

Are components the solution?

As a pioneer of component technology, Brad Cox1

should be mentioned as the inventor of the Software-

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

VAN EMDE BOAS-LUBSEN 0018-8670/00/$5.00 © 2000 IBM IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000248

IC**. It seems that more than ten years after he pub-
lished his seminal book, his ideas finally have become
a reality.

David Taylor2 has an interesting argument why CASE
(computer-assisted software engineering) tools are
not the solution. Assume a traditional development
effort where equal development time is spent on
analysis, design, code, test, and maintenance. Con-
sider then the perfect object-oriented CASE tool,
which would make analysis and design 30 percent
more effective, reduce implementation to zero, and
make testing and maintenance 30 percent faster. All
together, our total development effort would be im-
proved by less than 50 percent, which is far from the
order of magnitude improvement we require.

Another well-publicized approach is reuse. Edward
Yourdon3 has a good argument for why reuse has
not been very successful in the past. One of the rea-
sons is that most reuse was code reuse. Design or
analysis reuse would be more effective, because it
would automatically include code reuse, and it would
improve our previous calculation for productivity
considerably.

We can achieve design reuse by employing one of the
component architectures that are currently defined,
such as the following:

● Sun’s JavaBeans and Enterprise JavaBeans spec-
ifications

● ActiveX**, VBX (Visual Basic** extensions), and
OCX (OLE [object linking and embedding] Custom
Controls) specifications from Microsoft

● IBM’s SanFrancisco application business compo-
nents (in Java code)

Component frameworks have characteristics of both
code and design reuse. They promise to make reuse
easier by providing not only well-structured and well-
bounded pieces of functionality as building blocks,
but also the means to glue these building blocks to-
gether quickly and easily.

We conclude that component frameworks will help
to improve productivity considerably. If accompa-
nied by the proper development tools, productivity
could be even higher.

SanFrancisco

A very large component building effort is the IBM
SanFrancisco project. It is unique because it includes

not only middleware, but also a large base of bus-
iness components. It is outside the scope of this paper
to give an in-depth overview of SanFrancisco—please
see http://www.software.ibm.com/ad/sanfrancisco for
more information. For readers unfamiliar with the
framework, this section contains a very short descrip-
tion of its layered structure.

As shown in Figure 1, SanFrancisco delivers three
layers of code reusable by application developers:

● The foundation layer provides the infrastructure
and services that are required to build applications
in a distributed, multiplatform environment.

● The common business objects layer provides im-
plementations of frequently used business objects
that are common to more than one domain. The
common business objects can also be used as a base
for interoperability between applications.

● The core business process layer provides business
objects and default business logic for selected “ver-
tical domains.” SanFrancisco currently delivers
business components in the domains of accounts
receivable (AR), accounts payable (AP), general
ledger (GL), order management (sales and pur-
chase), and warehouse management.

Why do we need additional tools?

Most major modeling tool and IDE (integrated de-
velopment environment) vendors introduced new
versions of their tools to accommodate the Java pro-
gramming language and UML, the Unified Model-
ing Language.4

Many tool vendors find it difficult to adapt their tools
to large frameworks, for various reasons:

● Some modeling and development tools do not scale
very well when more than 2000 components (the
number of components that SanFrancisco pro-
vides) have to be imported.

● Code generation technology does not scale well
for such a large programming model as SanFran-
cisco defines.

● The gap between modeling and programming tools
is still wide.

● Most of the tools are not yet written in the Java
language. Therefore they often run on only a sin-
gle platform and have fixed functionality.

● Support for components as “black-box” building
blocks is lacking.

● It is often impossible or very difficult to adapt code

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN EMDE BOAS-LUBSEN 249

generators to specific framework or user require-
ments.

Because of these problems, good tools targeted at
the SanFrancisco framework were slow to appear
and some that are there now still lack functionality.

It seems that there is room for a new tool architec-
ture. This architecture should utilize components in
the same way that it tries to support them. It should
exploit new document facilities and use them to store
model information, program source code, and de-
sign documentation.

Business Component Prototyper

Business Component (BC) Prototyper is a prototyp-
ing tool provided with SanFrancisco v 1.4.5 Its ob-
jective is to help developers new to SanFrancisco to
understand the foundation layer programming
model more easily. It allows them to experiment by
creating prototypes that can actually run. It is po-
sitioned within the SanFrancisco product as an eval-
uation tool, because it allows developers to use the
evaluation version of SanFrancisco. In this version
the Rational Rose** models of SanFrancisco classes

and the SanFrancisco code generator are not avail-
able.

The version of BC Prototyper described in this pa-
per has more functionality than the released tool,
most notably the facility to make use of SanFran-
cisco components. This version is not available for
general use.

At first sight, BC Prototyper is a simple integrated
development environment encompassing a range of
activities that span from object modeling to appli-
cation deployment. It includes a modeling tool, a pro-
gramming environment, a code generator, a GUI
(graphical user interface) builder, and SanFrancisco
utilities. A closer look reveals a building-block ar-
chitecture, which enables fast adaptation to chang-
ing requirements. The architecture utilizes the ideas
behind new developments such as Java beans, Java
introspection and XML. BC Prototyper was used ex-
tensively to develop itself.

The Business Component Prototyper is a pure Java
tool that can run on any client platform supported
by SanFrancisco. It is a simple CASE tool, and it also
has some integrated development environment ca-

Figure 1 Overview of SanFrancisco

. USER INTERFACE

. BUSINESS RULES

. INDUSTRY UNIQUENESS

. COUNTRY UNIQUENESS

. COMPETITIVE DIFFERENTIATORS

COMMERCIAL

APPLICATIONS

BUSINESS

PROCESS

COMPONENTS

BASE

SERVERS

CLIENTS

A
P

P
LI

C
AT

IO
N

S

A
P

P
LI

C
AT

IO
N

S

COMMON BUSINESS OBJECTS

CORE BUSINESS PROCESS

FOUNDATION

JAVA VIRTUAL MACHINE

MULTIPLE PLATFORMS, BOTH IBM AND NON-IBM

AR/AP GL
WAREHOUSE

MANAGEMENT

ORDER

MANAGEMENT

VAN EMDE BOAS-LUBSEN IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000250

pabilities, code generation facilities, and interfaces
to many SanFrancisco utility functions.

Overview. We first give an overview of the function-
ality of BC Prototyper in its SanFrancisco configura-
tion. Next, we describe BC Prototyper’s flexibility fea-
tures and how the tool can be used in other
environments.

The core part of the tool, the code and user inter-
face, are generated from a model of the tool itself.
By changing this metamodel (using BC Prototyper),
this part of the tool can be changed.

The functionality of BC Prototyper can be expanded
by writing plug-in adapters, which adhere to a sim-
ple bean-like interface.

The code generator accesses user model informa-
tion through Java introspection into the metamodel
objects. The code generation templates are coded
in XML, and therefore are easily customizable by the
user. New coding templates can be added by the user.

BC Prototyper has a process to create components
from any Java .class file. As an example, BC Pro-
totyper components have been made for most IBM
SanFrancisco common business objects. They can
now be used in BC Prototyper in a black-box fash-
ion. Loading large models into the tool can be
avoided in this way.

Often-used SanFrancisco utility functions are avail-
able via tool-bar button plug-ins. This enables fast
and easy iteration through the SanFrancisco devel-
opment cycle.

Tool functionality. Before we describe the architec-
ture of BC Prototyper, it will be helpful to describe
its functionality. We do this by showing a simple San-
Francisco application, developed with BC Prototyper.

In this application a company owns many address
books, one for each employee. Each address book
can contain a number of addresses. AddressBook is
a class we must create in our model; Address is a
component taken from the SanFrancisco common
business objects. Other classes in the model are Ad-
dressBookController and DescribableDynamicEn-
tity. The Controller class provides a mechanism for
the company to own the address books in a tightly
coupled collection. Maybe one would expect a Com-
pany class in the model; it is not visible, because it
is handled implicitly by BC Prototyper. In general,

Company objects play a central role in any SanFran-
cisco application; they can be arranged in a complex,
hierarchical structure and serve as anchor points for
all application data. The DescribableDynamicEntity
class is a subclass of the Entity class, and therefore
objects of its subclasses (AddressBook and Address-
BookController) are automatically persistent, trans-
actable, and distributable. In addition, objects of the
DescribableDynamicEntity class and its subclasses
can be described in a language-independent way, and
attributes can be added to them dynamically. Finally,
the Distinguishable interface allows AddressBook
instances to have identifiers (IDs), which can be used
to look them up in the AddressBookController in-
stance.

When the tool is started, a window will appear with
three parts (see Figure 2). The first part contains a
menu bar and tool bar. The tool-bar buttons show
the main actions a user can perform in the SanFran-
cisco configuration of the tool:

● Create new project
● Load and save project
● Edit project properties
● Create new class
● Import component
● Create relationship
● Edit selected model items (classes or relationships)
● Perform build for selected components (generate

server, client, and GUI code, compile, generate
proxies)

● Append names to SanFrancisco name space
● Run the application
● Stop the application
● Start SanFrancisco
● Stop SanFrancisco
● Show help information

The second part is a work area, with one or more
tab panels.

The first panel contains two subpanels. The left sub-
panel lets the user view the model in tree form.
Model elements can be updated by double clicking
the mouse button, after which a property editor ap-
pears. The right subpanel displays the currently
loaded model in graphical form.

The left side of the second panel shows a list of
.java files found in the package directory of the
current project. With the buttons provided, the files
can be shown in a simple text editor, or compiled
with the javac compiler. For any of the .java files

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN EMDE BOAS-LUBSEN 251

listed on the right side of the second panel, a proxy
can be generated. The generated naming informa-
tion, needed by the SanFrancisco distributed object
infrastructure, can also be viewed and updated in this
panel.

The third part is a message area, where the actions
the tool performs are logged and errors are displayed.

This paper is not a BC Prototyper users’ guide, there-
fore we do not describe in detail how to create the
application. We mention a few points that are dif-
ferent from other tools. The graphics of the model
are a simplified form of UML. Anyone capable of writ-
ing a Java drawing routine could replace the graph-
ics module with one that does a better UML job.

The imported components are shown as green class
shapes. In Figure 2 these are DescribableDynamic-
Entity and Address. A tool-bar button can be pressed
to start the import. The components are kept in a
simple file structure. A file dialog lets the user choose
the desired component. How components are con-
verted to BC Prototyper format from SanFrancisco
classes is described later.

The white class shape shows the Distinguishable in-
terface. Interfaces are imported in the same way as
components. Additionally, interfaces can contain
code generation fragments. This allows default im-
plementations to be provided for a Java interface.
The developer usually does not have to write any
code to implement the interface.

Figure 2 The BC Prototyper window

VAN EMDE BOAS-LUBSEN IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000252

The tree view shows details of the model. Updates
can be made by double-clicking on one of the items
in the tree, which causes a property editor to appear.

Noteworthy also is the opportunity to customize the
GUI code that is generated by BC Prototyper. As an
example, we show the property editor for the
bookName attribute in the AddressBook class (in
Figure 3). In the example it is specified that
bookName will be represented as a text field, and
the label will be “bookName.” It is possible to change
the view type and to set the label shown to the left
of the text field to something else as the attribute
name, for example “Book Name.” The code gener-
ator would then generate the appropriate code.

Note that the property editor shown is itself an ex-
ample of view customization. It consists entirely of
code generated from the tool metamodel, described
later.

When the model is completed, pressing the “Re-
build” button on the tool bar generates and com-

piles the code and generates auxiliary Java classes
needed by the distributed object architecture of San-
Francisco. The next step is to add the name infor-
mation tokens for the newly defined classes to the
SanFrancisco naming configuration, using a utility.
The SanFrancisco servers will automatically be
started if necessary.

Next, the application can be started. Figure 4 shows
a screen image. Note that the fields in the “Address-
es” panel are all generated from the information in
the imported component.

The architecture of BC Prototyper

The basic structure of BC Prototyper is very simple:
the toolbase is the spine of the tool (see Figure 5).
It keeps a reference to the metamodel structure and
a list of references to plug-ins. The only processing
the toolbase performs is to notify all plug-ins of
events. Each plug-in can choose to ignore or to re-
act to the event, possibly generating further events.

Figure 3 Property editor for attributes

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN EMDE BOAS-LUBSEN 253

Action plug-ins are made visible as tool-bar buttons
or menu items. Tab panel plug-ins encapsulate, as
the name suggests, tab panels. Available for use by
the plug-ins is a set of tools, for example, drawing
routines and the code generator. Plug-ins are acti-
vated by clicking on the toolbar and choosing a menu
item, or by notification from the toolbase.

An .ini file lists the plug-ins that should be loaded
at tool startup. By varying this list, the functionality
and appearance of the tool can be modified. For ex-
ample, leaving out the SanFrancisco-related plug-
ins would provide a stand-alone prototyping tool.

The metamodel. A metamodel is a model of a model.
To clarify: when a model is defined in a modeling
tool such as BC Prototyper (or Rational Rose), the
user defines what the classes are in the model, then,
for each class the user defines several characteris-
tics, such as class name, etc. For each class, the user
also defines its attributes, its methods, and its rela-
tionships to other classes.

In the same way that one can build a model for the
address book application, where the classes are Ad-

dressBook and Address, one can also build a model
from the information BC Prototyper uses to keep in-
formation about models. In the BC Prototyper model
the classes are: ClassHeader, ClassBody, Attribute,
Method, etc. as shown in Figure 6. We call this model
the metamodel of BC Prototyper.

As Figure 6 demonstrates, the BC Prototyper meta-
model is a model. Like other models, code can be
generated from it. We have done that, and this code
now plays a central role in the tool itself. It is used
to keep the information about the models users de-
fine, and the generated GUI code provides the user
interface to the tool. See, for example, the property
sheets in Figure 3.

Again, because the metamodel is like any other
model, it can be changed like any other model, al-
though it is not advisable to change the structure or
the class names. Code can be regenerated and com-
piled from the model. When BC Prototyper is re-
started, any changes will be reflected in the GUI, and
values in any new attributes will guide the code gen-
eration of new applications.

Figure 4 The generated main window for the address book

VAN EMDE BOAS-LUBSEN IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000254

Looking closely at the metamodel information in Fig-
ure 6, and at Table 1, we find that many items are
apparently there to support the SanFrancisco frame-
work. By using another metamodel, other environ-
ments could be supported such as an Enterprise
JavaBeans environment or simple stand-alone ap-
plications.

As an example of the details to be found in the meta-
model, Table 1 shows the (generated) documenta-
tion for the attributes in the Attribute class.

Mapping from model to view. BC Prototyper gener-
ates, if requested by the user, not only model code
that implements the structure of the model as de-
fined by the user, but also a GUI that is useful for
prototyping and that can be used for later customi-
zation into a production version of the application.

In Figure 7 we show a transport order management
example. In Figure 8, we show part of the generated

user interface. This example shows that even for a
more complex model it is possible to generate a us-
able interface. When we found problems in one of
the many examples we tried, the cause for strange-
looking interfaces was always a mistake in the model.

The mapping rules for creating the user interface are
listed here:

● A class maps to a Frame instance with a set of tab
panels.

● A class attribute maps to a TextField, TextArea,
Checkbox, Choice, or Button instance, with a Label
instance if appropriate.

● A one-to-many contained relationship in a class
will map to a List instance in the containing class.
The list item shows the result of the toString¼
method applied to the contained object.

● For a class with a contained one-to-one relation-
ship, the attributes will map to tab panels within

Figure 5 The structure of BC Prototyper

PLUG-IN
1

PLUG-IN
2

TOOL
1

TOOL
2

TOOL
n

PLUG-IN
n TAB PANEL

TOOLBASE

CONFIGURABLE
WITH .ini FILE

METAMODEL STRUCTURE AND GUI

ADAPTABLE
GENERATED CODE

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN EMDE BOAS-LUBSEN 255

the frame of the containing class. Superclasses are
mapped in the same way.

● For other than containing relationships, a refer-
ence button (labeled “Details”) will be added to
the parent class.

● Attributes and lists can be grouped across the tab
panels by specifying a TabGroup value in the view
tab of the attribute or relation property editor.

We claim that mapping by these rules will always re-
sult in a usable GUI. The reason for this is that a class
should define a coherent set of concepts, and on a win-
dow on a screen, we want to find values of a co-
herent set of concepts displayed. Therefore, either
a one-to-one mapping can be automatically gener-

ated, or something is not correctly defined in the
model.

For attributes, a reasonable mapping is applied by
default. For example, a String attribute will map to
a TextField instance, and a Boolean attribute will
map to a CheckBox instance. This mapping can be
changed through the property sheet for an attribute
by defining a different view type value. See Figure
3 for an example.

Applying these rules to our transportation model,
we obtain a generated frame for the TransportOrder
class as shown in Figure 8.6 The way the class at-
tributes are assigned to groups, where a group maps

Figure 6 The BC Prototyper metamodel (redrawn from BC Prototyper screen image)

ClassMap

Relation

HotSpot

ClassHeader

name
description
longName
position
prevName
helpText
boundingBox
drawPosition
doubleSlashBlock
prevPosition
line1Pos
line2Pos

Attribute

comment
name
scope
type
labelName
viewType
viewInfo
constraint
constraintMessage
isKey
initialValue
tabGroup
keySeqNo
readOnly
referenceBy
cgDirectives
frameworkType

ClassBody

extendsClass
importClass
implementsIntF
generateCode
frameworkType
scope
version
selected
persistenceRoot
notification
packageName

0..*
Method

code
description
name
returnType
scope
throwsException
target
cgDirectives
isAbstract

0..*

0..*

0..*
0..*

0..*

parent

child

VAN EMDE BOAS-LUBSEN IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000256

to a tab panel, cannot be seen from the model as
displayed in Figure 7. For example, if one were to
open the relationship between “TransportOrder”
and “LogisticsUnit,” one would find at the view spec-
ification that the relationship should be put in the
tab group “Goods.”

For a production application, the default code gen-
eration may not be satisfactory. The tool provides
two ways to adapt the generated code to specific re-
quirements:

1. Use one of the generated hooks, or override one
of the layout methods.

2. Change the code generation templates.

If neither of these is practical for some reason, the
generated panels can be imported into a tool with
visual editing facilities, such as IBM’s VisualAge* for
Java, to further extend the code.

Plug-in adapters. The functionality of BC Prototyper
can be expanded by writing plug-in adapters that ad-
here to a simple bean-like interface.

Plug-in adapters perform specific functions, such as
opening or saving a model, appending naming in-

Table 1 Generated documentation for the Attribute class in the metamodel

GUI Label Description Attribute

Description Purpose of this instance attribute comment

Attribute name Name of the attribute name

Scope Scope of the attribute scope

Data type Attribute type—default is String. Also viewable are “String,” “char,”
“Boolean,” “int,” “byte,” “short,” “long,” “float,” and “double.”

type

Attribute label Name used as label for a text field, etc. labelName

View type How the attribute will be shown in the GUI—default is TextField. Also
supported are TextArea, Choice, and Checkbox. If Choice is specified,
the strings shown as choices must be available in viewInfo.

viewType

View information Contains more information about how the view should appear. Choice
option strings can be specified here.

viewInfo

Constraint A constraint on this attribute. It should be a valid Java expression,
evaluating to true or false.

constraint

Constraint exception
message

An exception thrown when the constraint evaluates to false. constraintMessage

This is the key attribute
of this object

Indicates whether the attribute is a key attribute for the object isKey

Initial value Value given to this attribute when the object is created. It should be a
valid Java expression.

initialValue

Tab group A group name for this attribute. Text fields with the same group name
are displayed on a tabbed panel, and the group name is the tab text.

tabGroup

Key sequence number If this attribute is a key attribute, the sequence number indicates the
ordering of the key values. All key attributes together should indicate
a unique value in the collection of objects of this class.

keySeqNo

Is read-only Indicates whether this attribute is read-only readOnly

Multiplicity Allows the attribute to be a collection or an array of attributes of a
primitive type

referenceBy

CG directives Code generation directives cgDirectives

Framework type Support for attributes with type subclassing Entity, Dependent, or
Command; for example, DCurrencyValue (a subclass of Dependent).
This avoids the need to have these as actual classes on the canvas.

frameworkType

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN EMDE BOAS-LUBSEN 257

formation to the SanFrancisco name space, draw-
ing the model in simplified UML on a canvas, etc.

At startup, the BC Prototyper startup module reads
the configuration file and tries to instantiate the plug-
ins listed. A plug-in can specify how it is made to be
visible during its initialization through simple state-
ments such as:

setUsedAsToolbarButton(true);
setUsedAsMenuItem(true);

These statements mean that the plug-in will be used
both as a tool-bar button and as a menu item. Each
plug-in also implements a run(String s)method,
which will be triggered when the user presses the
tool-bar button or clicks on a tab panel, etc.

All plug-ins have a reference to the toolbase. This
allows a plug-in to notify the toolbase of events to
which other plug-ins can react, if appropriate. For
example, a plug-in could ask the toolbase to broad-
cast a changed event. All plug-ins will receive the no-
tification and either perform an appropriate action
or ignore the event.

Plug-ins are triggered by events to perform a single
action and are usually not aware of each other’s ex-
istence. This means that plug-ins are small and mod-
ular. Examples of plug-in functionality were dis-
cussed earlier.

The toolbase reference can also be used to access
the metamodel structure, described earlier. This

Figure 7 A simple transport order management mode (redrawn from BC Prototyper screen image)

OrganizationUnit

name

TransportRoute

endLocation
startLocation

Trip

endLocation
startLocation

MeansOfTransport

id
name

Warehouse

name

WarehouseLocation

identifier
name

TransportOrder

agreement
consignee
consigner
contract
modeOfTransport
orderNumber
termAndCondition

LogisticsUnit

condition
countryOfOrigin
customsRegime
description
dimensions
dimensionsCode
grossWeight
netWeight
volume
weightCode

Invoice

acceptanceDate
createDate
currencyCode
invoiceItems
number
referenceNumber
shipmentCode
specialDeclarations
totalCost
totalFreightDuty
totalPackingCharge
year

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

VAN EMDE BOAS-LUBSEN IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000258

structure contains information about the UML model
currently loaded in memory.

The modularity of the plug-ins makes it easy to at-
tach diverse functionality to the tool. For example,
the plug-ins to start and stop SanFrancisco, which
appear as tool-bar buttons in the tool, are totally un-
related to the BC Prototyper functionality. They are
just 20-line Java programs that call the appropriate
SanFrancisco start or stop program. They become
available to the BC Prototyper user when their names
are listed in the .ini file.

The code generator. Generating code for a frame-
work such as IBM SanFrancisco turned out to be a
challenge. The first attempt at writing a code gen-
erator proved to be totally inadequate. It was a Java
program that examined the model and wrote con-
catenated strings, interspersed with values from
metamodel attributes, to a file. Many code gener-
ators use a similar approach, generally using a form
of BASIC as a scripting language.

The server-side programming model of SanFrancisco
is not very complex, but it is large in size. Client code
for transaction management and the GUI adds con-

siderably to the complexity of the code. For our ex-
periment in architecture, a significantly more effi-
cient approach was needed in order to develop a
suitable code generator for SanFrancisco.

Objectives for code generation. The introspection-tem-
plate method for code generation that is used now
in Business Component Prototyper fulfills all the re-
quirements on our wish list:

● A template-based approach that allows change
without recompiling a (Java) program

● Easy-to-read templates, to allow the developer to
easily see what the resulting code will be, and to
allow users to adapt the code to special require-
ments

● Metamodel changes available immediately in the
templates

● Java code generation as well as generation of text
for multiple purposes, such as HTML documenta-
tion, SanFrancisco configuration information, etc.

● Insertion of new templates, for example, to gen-
erate code for other frameworks. The new Enter-
prise JavaBeans standard is an area of interest
here.

Figure 8 Mapping of the TransportOrder class to a frame with tab panels

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN EMDE BOAS-LUBSEN 259

Introspection templates. BC Prototyper uses introspec-
tion templates for code generation. Introspection
templates are XML documents. Each template cor-
responds to a file to be generated. For example, the
SanFrancisco programming model prescribes that,
for the AddressBook class in the model in Figure 2,

three Java classes (in three .java files) must be gener-
ated: AddressBook.java, AddressBookImpl.java,
and AddressBookFactory.java. For each of these
files there is a separate template. Additional tem-
plates specify the code for the client implementa-
tion.

Figure 9 A simplified SanFrancisco code generation rule

Description

Target

BusinessObject attribute

Prototype

Read operation

Example

Read operation

Condition

Type of attribute IS [Java primitive (int, long, etc.) OR String

OR subclass(Dependent)]

BusinessObject interface class declares get access operations for all primitive, String, and

Dependent attributes

Description

Target

BusinessObject attribute

Implementation

Java primitive and String:

Dependent:

Condition

Type of attribute IS [Java primitive (int, long, etc.) OR String

OR subclass(Dependent)]

Implement attribute read (get) access operation for class attributes of type primitive, String, and

for 1..1 contained Dependent instances

VAN EMDE BOAS-LUBSEN IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000260

Another way of looking at templates is to consider
them as source code, where XML tags or XML en-
tities (not to be confused with SanFrancisco entities)
indicate how this source code should be modified to
become the generated code.

The unit for generating code is defined by
,Rule. . . . ,/Rule..

A rule can have a ,Target. . . . ,/Target. spec-
ification, which defines the set of things on which this
rule operates. This can be all classes in a model, all
attributes for a class, all methods in a class, or all
relations of a class.

A target can be restricted by a ,Condi-
tion. . . . ,/Condition. element. For example, in
the rule in Figure 10, only attributes of types String,
int, float, or long are considered.

Finally, a rule can contain prototypical source code
and XML entities in the source code. XML entities
are delimited by “&” and “;”. For example “&type;”
in a rule will be replaced by the actual type of the
attribute. During code generation, these XML enti-

ties are replaced by values that are found by intro-
spection into the model.

This sounds very abstract, and we need a concrete
example. Let us look at a set of rules in the SanFran-
cisco programming model that define how to imple-
ment a “get access” operation for primitive or String
attributes and one-to-one related Dependent classes.
Figure 9 shows a simplified form of the rules.

The translation of the rules is not completely straight-
forward, because the way SanFrancisco defines the
generation rules in the programming model does not
easily map onto the BC Prototyper metamodel. The
BC Prototyper template is shown in Figure 10.

The generated code for the AddressBook class,
which has one attribute, bookName, of type String
(causing the first rule to be evaluated once), and no
relationships to single Dependent instances (caus-
ing the second rule to be skipped), would be:

public String getBookName¼ {
return ivBookName;

}

Figure 10 A snippet of an introspection template

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN EMDE BOAS-LUBSEN 261

XML entities require special processing, and we are
not sure yet whether this can be made to comply with
the XML standard.7 The reason is that, if we use
parsed XML entities, the DTD (data type definition)
must change during processing and be adapted to
current values in the model.

An introspection template has a tight relationship
with the metamodel structure. The XML entity names
correspond with the attribute names of the classes
in the metamodel. During processing of the template,
the XML entities are replaced by the corresponding
attribute values.

Using introspection templates, the speed of devel-
oping a code generator is completely determined by
the availability of suitable example code. It was pos-
sible to develop a code generator that generates code
with functionality almost comparable to the standard
SanFrancisco code generator in a short time. In ad-
dition, BC Prototyper completely generates client
code and the GUI. This client code performs trans-
action management and services, suitable for main-

tenance tasks on the business objects, and includes
a GUI. Also, some useful .bat files, and files con-
taining the SanFrancisco naming information, etc.,
are generated.

The quality and performance of the generated ap-
plication is, of course, completely determined by the
content of the templates. Because templates are so
easy to change, we found that we also could gener-
ate better quality code.

Use of components in BC Prototyper

Any development tool that supports a framework,
like IBM SanFrancisco, should have a strategy to sup-
port components. When modeling in Rational Rose,
the developer simply needs the full SanFrancisco
model available and models the new application on
top of it. For BC Prototyper, that did not seem like
a very good idea. It would mean that only compo-
nents for which a UML model is available could be
used. For the SanFrancisco framework this is true,
but using this approach would make BC Prototyper
top-heavy and not scalable.

Another option is to use the source code importer
of BC Prototyper. We considered using it to re-en-
gineer components from source files. The main dis-
advantage of this approach is that source is not al-
ways available.

The solution chosen for BC Prototyper was to im-
port information from .class files. This is a very
general solution and can be applied to any compiled
Java file. For SanFrancisco, some of the program-
ming model patterns have been applied in the re-
engineering process. It was found that some infor-
mation cannot be extracted fully. The usability of
many SanFrancisco tools could improve significantly
if create and initialize information was available in,
for example, a static variable, for each component.

A utility process, which can be executed in batch
mode, creates components in BC Prototyper format,
from .class files, and puts them in a catalog. The
catalog is a simple file structure that matches the
package structure in the imported class files.

Once a component is in the BC Prototyper work area,
it can be used as any class defined by the user. The
contents of the server part should not be changed,
but the view specification in the component can be
changed.

Figure 11 The generated GUI for the Address common
business object

VAN EMDE BOAS-LUBSEN IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000262

Figure 11 shows the result of running the code gen-
erated from the default view specification in the Ad-
dress component, one of the SanFrancisco common
business objects.

BC Prototyper will generate appropriate client code
to access component objects from the server. It will
also handle aggregations or other relationships es-
tablished in the model.

Another example

As a last example, we would like to show an appli-
cation that does more than define a few data objects
and generate a maintenance interface. In his book
Object Lessons, 8 Tom Love describes a simple dice
game, called “Greed.” The rules for the game are
the following:

● Each player rolls five dice, in turn, until a player
has scored more than 5000 points and all players

have had an equal number of turns. (Each die has
six faces; each face has a unique value from one
to six.)

● The rules for scoring are:
Three of a kind—100 points times face value of

one of the three dice
Three ones—1000 points
Single one—100 points
Single five—50 points

● Dice that did not add to the score during a turn
can optionally be rerolled.

● If all dice scored during a roll, they can all be re-
rolled.

● If no die scores on a roll, the player is “bust” for
that turn (the turn ends with no points).

● A player must score at least 300 points in the first
turn to enter the game.

Love’s book describes a competition for implement-
ing the game, where solutions are programmed in

Figure 12 The Greed game model (redrawn from BC Prototyper screen image)

GreedGame

initButton
currentPlayerNo
highScore
currentPlayerName
me
idButton
id
rulesButton
meThePlayer

DicePanel

dice

DiceCanvas

Player

name
totalScore
rollableDice
turnScore
endTurnButton
message
firstTurn
rollButton
enrolled
rollScore

Cup

generator
name

rollDice()
createDice(int nr)
makeAllDiceRollable()
scoreDice()
getRollableCount()
toString()

Die

faceValue
rollable
name

0..*

0..*

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN EMDE BOAS-LUBSEN 263

C11, Object Pascal, Smalltalk, Eiffel, etc. In the so-
lutions presented in the book, players would share
a single workstation. In our case, we would like each
player to have his or her own workstation and play
the game across a network. SanFrancisco, with its
notification facilities, offers a good platform for this
game.

The model in Figure 12 shows that the Greed game
has a number of players, and exactly one cup. The

cup has a number of dice (five in our case), and a
player holds a cup during a turn. Table 2 shows a
brief description of the methods and responsibilities
for each class.

What is important to note with respect to the dis-
tributed version of the game we developed are
the methods identifyPlayer¼ and businessOb-
jectChanged¼. There is one persistent instance of
GreedGame, located on the server. When something

Table 2 Methods and responsibilities for Greed game classes

Class: GreedGame
public void Create the dice.
initialize¼ Ask all players to reset their scores.

Select first player and ask the player to start.

public void Find the next player to play.
selectNextPlayer¼ The player gets the cup, indicating that this is the current player.

If at the end of a round, see whether to end the game.

public boolean
endOfGame¼

From the list of players, select the first player holding the highest score,
and see if it is a winning score. (This version of the game does not
check to see if other players have the same high score.)

public void Provide the name of the current player.
identifyPlayer¼

public void
businessObjectChanged¼

If invoked from the current player, start the player’s turn.

Class: Player
public void playTurn¼ Roll the dice that are rollable and compute the score.

If continuation is possible, allow player to choose to continue.

public boolean Each player’s first roll in the game must be at least 300 points.
turnCanContinue¼ The new number of rollable dice must be smaller than the previous

number of rollable dice.

public void endTurn¼ The end-turn button was pressed. Add any score to the total.

public void Start a turn for this player.
startTurn(CupPart c)

public void initialize¼ Initialize the player values for a new game.

public void
endTurnClicked¼

Reset the message and end the turn.

Class: Cup
public void Roll the dice that are rollable, then make them not rollable.
rollDice¼

public void createDice Create the dice in the cup.
(int nr)

public void
makeAllDiceRollable¼

public int scoreDice¼ Score the dice, then make the appropriate dice rollable.

public int
getRollableCount¼

Class: Die
public boolean
isRollable¼

VAN EMDE BOAS-LUBSEN IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000264

changes the state of this object, all players are no-
tified through the SanFrancisco notification service.
The “businessObjectChanged” message is sent by a
player when the player does something to change
the state of this persistent object. To join the game,
a remote client creates a Player object and adds it
to the set of players in the GreedGame object. The
client holds a local part of the Player object. The
player uses “identifyPlayer” to obtain the name of
the current player from the GreedGame object. By
comparing that name to the player name in the cli-
ent, the player knows when to play.

Note also that the persistent GreedGame instance
makes it possible for players to stop the game tem-
porarily, then come back the next day and continue.

The GUI for the game consists of generated code,
although it is clear that some coding has to be done
to show the dice graphically. Each player will be no-
tified of updates in the game and will be able to see
in real time what the values are of the thrown dice,
and who is the current player (see Figure 13).

The Greed game example serves several purposes:

● It demonstrates SanFrancisco’s distribution and
notification capabilities.

● It demonstrates the power of model-driven devel-
opment.

● It shows customizability of the user interface of
applications developed with BC Prototyper.

Unlike the address book example, the Greed game
does not demonstrate the use of SanFrancisco com-
mon business objects.

Conclusion

This paper has described Business Component Pro-
totyper, a tool that is itself a prototype demonstrat-
ing new possibilities for development tools for Java
environments. It supports both modeling and cod-
ing activities in an integrated way.

The core part of the tool is developed using the tool
itself. The use of code generation allows quick up-
date of the meta-information used in the tool and
its user interface.

All user actions, and model presentation functions,
are encapsulated in bean-like modules. The function-
ality of BC Prototyper can be adapted to the user by
configuration. Specific configurations for prototyp-
ing in SanFrancisco, stand-alone applications, tool
developers, or SanFrancisco utilities can be made.

Figure 13 Greed game as player “Ben Winner” sees it

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN EMDE BOAS-LUBSEN 265

BC Prototyper has a flexible, easy-to-maintain, and
customizable code generator that makes it possible
to develop more powerful code generation more
quickly.

BC Prototyper supports components, particularly
SanFrancisco components, in a black-box fashion.
This allows the tool to be kept small, with the ability
to handle very large models, such as the SanFran-
cisco model.

Acknowledgments

First thanks are for Peter van Emde Boas and
Maarten van Nouhuys, who helped and encouraged
me during earlier stages of this project. For the de-
velopment of Business Component Prototyper, I
want to thank David Weilers, a student, who made
the initial plug-in structure and the Java source code
importer; Jeff Ryan, who was the project leader and
contributed many of the SanFrancisco utility-related
features; Charu Puri, who worked on the user in-
terface and the code generation templates; Bob
Schmidt, who managed it all; Julius Peter, who sup-
ported the ideas; and last but not least, Eddy Blum,
who made it possible to spend more time on BC Pro-
totyper than just evening hours.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Stepstone Corporation, Microsoft Corporation, or Rational Soft-
ware Corporation.

Cited references and notes

1. B. J. Cox, Object-Oriented Programming: An Evolutionary Ap-
proach, Addison-Wesley Publishing Co., Reading, MA (1987).

2. D. A. Taylor, Object-Oriented Information Systems: Planning
and Implementation, John Wiley & Sons, Inc., New York
(1992).

3. E. Yourdon, Object-Oriented Systems Design: An Integrated Ap-
proach, Prentice Hall, Inc., Upper Saddle River, NJ (1994).

4. UML is the language that resulted from cooperation among
well-known object technology methodologists: Grady Booch,
James Rumbaugh, and Ivar Jacobson.

5. The publication of this paper does not imply that IBM will
develop tools based on the BC Prototyper architecture. It also
does not imply that BC Prototyper will be supported with new
versions of SanFrancisco. The version of BC Prototyper de-
scribed here contains experimental new functionality, such as
component support, which is not available in the version pro-
vided with SanFrancisco v 1.40. BC Prototyper is intended for
evaluation, education, and simple prototyping use. For the de-
velopment of production applications, other modeling tools
should be used.

6. The oldest (and very successful) multinational corporation in
history was the VOC (United Company for the East Indies),

a trading company that existed from 1602 to 1799. In 1618,
the VOC sent the ship “Nieuw-Hoorn,” with Willem IJsbrandz
(“IJ” is the Dutch way to write “Y”) Bontekoe as captain, on
a voyage to Batavia (now Jakarta) on the island of Java to trade
silver for spices, tea, and coffee. Near the end of the voyage
the ship exploded—the brandy caught fire and lit the gunpow-
der. Captain Bontekoe was saved and led about 70 men, in a
small boat with sails made of clothing and almost no food or
water, navigating by the stars, safely ashore. He wrote a book
about this trip, which is still, 350 years later, the most famous
travel adventure book in Holland.

7. W3C, Extensible Markup Language (XML) 1.0, http:
//www.w3.org/TR/REC-xml/.

8. T. Love, Object Lessons: Lessons Learned in Object-Oriented
Development Projects, SIGS Books, Inc., New York (1993).

Accepted for publication December 21, 1999.

Hendrica (Ghica) van Emde Boas-Lubsen (electronic mail:
emdeboas@cs.com). Ms. van Emde Boas-Lubsen is an indepen-
dent consultant, recently retired from IBM after 30 years with
the company. During the last two years, she was a member of
IBM’s Europe, Middle East, and Africa (EMEA) SanFrancisco
support team. She is the primary author of the Business Com-
ponent Prototyper tool for SanFrancisco. Ms. van Emde Boas-
Lubsen has an extensive background in object technology and
relational database technology. She holds a degree in mathemat-
ics from the University of Amsterdam in the Netherlands.

VAN EMDE BOAS-LUBSEN IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000266

