
Technical note
IBS Consist two years later:
The LEGO brick dream

by R. van der Salm

IBS Consist is a company that chose
SanFranciscoTM as its strategical development
environment, because this environment promised
to deliver applications that could be assembled
just like LEGOTM bricks. If the promise were true,
the environment would enable actual
component-based development. According to
this principle, customers can buy open
applications and assemble them to fit their
individual needs. In a previously published paper,
the author described the reasons why IBS
Consist chose SanFrancisco and how this new
technology was introduced in an AS/400®

-oriented organization. As a result, many
organizations around the world contacted IBS
Consist to obtain more detailed information
about their experiences. This technical note
describes some further experiences of IBS
Consist gained after the previous paper was
written. From a management perspective, it can
be seen whether SanFrancisco makes the LEGO
brick dream come true and, if so, how that is
done. Since it is important to know how to work
in a LEGO brick environment, this note also
describes how IBS Consist works in the
SanFrancisco environment.

Cherish your visions and your dreams as they are the chil-
dren of your soul; the blueprints of your ultimate achieve-
ments.

—Napoleon Hill

In 1998, an issue of the IBM Systems Journal fea-
tured the SanFrancisco* technology. One paper

in the issue told why a typical AS/400* independent
software vendor (ISV) such as the Dutch company
IBS Consist B.V. invested in a technology like share-
able frameworks.1 Object orientation and the Java**
programming language were at that time not often
chosen by companies using the AS/400. Investing in

such a technology meant investing a large amount
of money in people, in training, and in building new
applications.

The paper described how Consist B.V. began using
SanFrancisco, including a training program and other
facets. Throughout the world, other companies that
were also accustomed to working with an AS/400 envi-
ronment were very much interested in the SanFran-
cisco technology and how to become familiar with
it. Many of them visited Consist B.V. to discuss the
topic in more detail. This technical note stems from
that interest and continues from where the previous
paper stopped. It provides answers to the following
questions:

● What has Consist B.V. done with the SanFrancisco
technology so far?

● Where did SanFrancisco take Consist B.V.?
● Has the dream of component-based development

come true, or is the story of “building software like
using LEGO** bricks” a fairy tale after all?

● What is a good way of working in the SanFran-
cisco environment?

In the next section IBS Consist B.V. is introduced.
Readers of the previously published paper will learn
where SanFrancisco has brought Consist B.V. as a
company, and new readers are given some back-

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 0018-8670/00/$5.00 © 2000 IBM VAN DER SALM 301

ground about the environment that is described in
this note. The third section describes the business
reasons for choosing SanFrancisco, based upon the
component-based development paradigm. The sub-
sequent section describes in what sense SanFrancisco
meets the needs for “LEGO brick software engineer-
ing.” The fifth section describes what Consist B.V.
is now doing in this environment and how it is done.
The sixth section talks about the benefits IBS Con-
sist B.V. experiences from using this environment.
The seventh section is a discussion of what IBS Con-
sist thinks has to happen in the industry for com-
ponents to be successful and grow in acceptance. The
note ends with a summary and conclusions.

IBS Consist B.V.

Consist B.V. has sold financial and human resource
management applications in the Dutch and Belgium
market for over 20 years. Though it has delivered
several generations of its applications, they have al-
ways been for an environment using IBM midrange
computers. Their applications grew or were rebuilt
on platforms such as the IBM System 3X and, since
the late 1980s, on the AS/400. Although these plat-
forms are, of course, quite different from one an-
other, growing from one platform technology to the
next was always relatively easy and natural. All en-
vironments had RPG (Report Program Generator)
as the main programming language, so Consist de-
velopers could easily progress to the next genera-
tion of technology. For an application vendor, this
capability is extremely important. Not only were the
developers able to grow easily from one kind of tech-
nology to the next, customers could as well.

An application vendor like Consist has two impor-
tant assets. First, the customer base is stable and large
enough to make it possible to invest in product lines
to keep up with the changing environments. Second,
its employees have the necessary knowledge. Devel-
opers who have both the functional knowledge of
what the basic needs and wants of the customer base
will be in the future and who are able to translate
those needs and wants into technical implications are
of great value to the company. It must be clear that
both the customer base and the developers are highly
valued and, whenever possible, must be led to the
next generation of technologies in incremental steps.
So far, Consist has done a good job. It is the market
leader for financial and human resource manage-
ment applications aimed at middle-sized and large
companies. Consist has 1400 of these companies as
customers, mainly based in the Netherlands and Bel-

gium, and about 150 implementations elsewhere in
Europe.

In 1996 Consist B.V. decided to invest in SanFran-
cisco technology to develop future product lines. One
reason was to be able to sell Consist B.V. products
overseas. For a small company, selling overseas was
then very difficult. The strategy was to find partners
whose products Consist B.V. could sell in the “home”
Benelux market and have the partners sell Consist
B.V. products in their home markets. The only way
to achieve this goal was, of course, by using a tech-
nology that enabled the integration of components
that are built by the different partners. This meant
choosing object technology. A thorough investiga-
tion pointed to SanFrancisco as the only promising
environment to fulfill this strategy. It was the only
architecture at that time to offer a platform-inde-
pendent solution for open applications. Thus, since
1996 Consist B.V. has been heavily involved in ev-
erything related to SanFrancisco.

At the same time, the Swedish ERP (enterprise re-
source planning) vendor IBS had a similar strategy.
IBS specialized in distribution and supply chain so-
lutions, with worldwide offices serving about 3800
customers. Their major platform was the AS/400. IBS
realized that its customers did not want the “con-
fection” kind of ready-made applications that all
large ERP vendors had been offering. IBS knew that
“tailor-made standard solutions” based on compo-
nents that can be bought from any vendor in the
world are the next step in application development.
In other words, the vision of IBS is that open appli-
cations have to be offered to the market. Although
IBS had the intellectual resources and the financial
power to develop its own closed technology like other
large ERP vendors, it did want an open application
standard. Therefore, the company has cooperated
with IBM since the very beginning in the SanFran-
cisco development and together with IBM can be con-
sidered a founder of the SanFrancisco ideas.

IBS and Consist B.V. met each other because of their
involvement with SanFrancisco. IBS was developing
a next-generation open ERP solution, and Consist
B.V. was developing next-generation open financial
and human resource management components. IBS
was looking for a strong partner in the Netherlands
that could sell the current IBS ASW product in the
Dutch market and that would be able to adapt the
new technology in the future. Consist B.V. needed
a product like ASW to complete their product offer-
ing. Thus, IBS and Consist B.V. were a perfect match.

VAN DER SALM IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000302

IBS obtained a Dutch office with a strong position in
the local market and, as a premium, a large group
of skilled SanFrancisco developers. Consist B.V. ful-
filled its goal of having a large worldwide network
selling SanFrancisco components and obtained, as
a premium, the ASW offering and access to a large
amount of SanFrancisco knowledge from the IBS
labs. IBS took over Consist B.V. from the former own-
ers, IBM and Roccade, in 1998, forming IBS Consist
B.V. as a first result of the mutual SanFrancisco in-
vestments of both companies.

Business reasons for choosing
SanFrancisco: Component-based
development

If you have built castles in the air, your work need not be
lost; there is where they should be. Now put foundations
under them.

—Henry David Thoreau

Component-based development (CBD) is currently
a major issue in the information technology (IT)
world. Everyone involved is at least talking about it.
Every self-respecting application software vendor is
telling its customers that it adapts to this paradigm.
However, most vendors are just telling their custom-
ers a story because other vendors are saying the same
thing in the market. To fully adapt to the CBD par-
adigm, a set of prerequisites has to be met, as de-
scribed in the following subsections. In the next sec-
tion these prerequisites will be matched with the
SanFrancisco environment to see to what extent it
is component-based.

Prerequisite one: Components. To develop software
based on the LEGO brick principle means, of course,
that there are “LEGO bricks,” or components, avail-
able. A component can be defined as “a piece of soft-
ware that is only accessible via its interfaces.” A com-
ponent provides one or more business services. These
services can be relied upon, or certified, and the com-
ponent can then be used in conjunction with other
components to rapidly assemble a complex business
support infrastructure, which is inherently adaptable
and of high quality.2

Prerequisite two: Legacy integration. CBD can only
succeed if it offers the possibility of legacy integra-
tion. Companies such as IBS Consist have large cus-
tomer bases. These customers are the main assets
of the company. Not being able to help these cus-
tomers to move up to the next generation of tech-
nology means losing your main asset. Legacy inte-

gration is thus extremely important to grow, step by
step, into new technologies. It enables growth by evo-
lution instead of replacement. Legacy integration is
a two-way process from the newly built component-
based environment to the legacy environment and
vice versa.

Prerequisite three: Technology independence. Cus-
tomers will be demanding open applications, mean-
ing that an organization does not want to depend on
one application package vendor but wants to adopt
a general architecture to be able to buy components
or larger parts of an application from anywhere in
the world. This general architecture needs to be
based both on a generally available technology stan-
dard, such as Enterprise JavaBeans** (EJBs), Mi-
crosoft DCOM** (Distributed Component Object
Model), and CORBA** (Common Object Request
Broker Architecture), and on a general functional
architecture such as a framework architecture. Al-
though the IT world has been talking about open stan-
dards for a long time, it is still an illusion to expect
one architecture to arise that supports all available
standards. Therefore, it is important to choose a gen-
eral architecture with broad support from the IT ven-
dors rather than dreaming of an environment that
supports everything.

Prerequisite four: Distributed object model. In the
global Internet and e-business-based world we will
soon live in, a distributed object model is extremely
important as a base for a CBD environment. In the
architecture for this environment, it is not impor-
tant where objects are located or where processes
are executed, as long as all components are related
and synchronized throughout the network.

Prerequisite five: Easily adaptable business rules.
Components will provide business rules. Sometimes
these business rules will be just what an organiza-
tion needs; often an organization has to fine-tune
the business rules. It is important that this fine-tun-
ing can be done easily and independently of the com-
ponent itself, so the component can be looked at as
a “black box,” not needing to be maintained by soft-
ware engineers who do not know all the details about
it. Therefore, specialization of components must be
possible through designated “plug points” rather
than by copying a component and changing it.

Prerequisite six: Easily added attributes. Compo-
nents offer a certain set of data elements that can
be maintained by the component. Of course, it has
to be possible to add data elements in a flexible way.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN DER SALM 303

In an environment where components are bought
from several vendors, it is very important that these
vendor-specific components do not conflict with one
another.

Of course, more prerequisites for a component-
based development environment can be defined. The
items mentioned above are the most important in
the IBS Consist vision.

Do SanFrancisco frameworks enable LEGO
brick software development?

The future belongs to those who believe in the beauty of
their dreams.

—Eleanor Roosevelt

To check whether the SanFrancisco environment is
truly a CBD environment, the experiences of IBS Con-
sist B.V. will now be matched with the prerequisites
listed in the previous section. This will be done both
at an object-oriented class diagram level and in a way
that is accessible for readers who are not trained in
the use of the art of object orientation, but who are

nevertheless interested in the promises of compo-
nent-based development.

Prerequisite 1: Components. Components can be
available in different ways. The Butler group has de-
fined four main types of components.3 They are dis-
played in Figure 1.

Components can be (1) small implementation-spe-
cific building bricks (individual classes), (2) encap-
sulated with several other components to form a
larger building brick, (3) a framework consisting of
a prebuilt assembly of components specifically de-
signed to be extended, or (4) a prebuilt application.

It is clear that SanFrancisco components can be seen
as component frameworks. An especially strong fea-
ture of the SanFrancisco frameworks is their ability
to be extended through very well-designed add-on
mechanisms. Thus, SanFrancisco easily meets this
first prerequisite. Experience gained by IBS Consist
B.V. indicates that the component contents are very
rich. Compared to what has to be done to develop

Figure 1 Component types

IMPLEMENTATION-
SPECIFIC
COMPONENTS

MODELS

CLASS
LIBRARIES

USED TO SPECIFY OR
BUILD COMPONENTS

• SERVICE-BASED
• REPLACEABLE
• INDEPENDENT
• IDENTIFIABLE
• ACCESSED VIA INTERFACES

ENCAPSULATED
COMPONENT

COMPONENT FRAMEWORK APPLICATIONS MADE OF COMPONENTS

COLLECTIONS OF COMPONENTS
DESIGNED TO BE EXTENDED

VAN DER SALM IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000304

applications from scratch in a pure Java environment,
the amount of system behavior that is offered exceeds
the 40 percent IBM is claiming.

Prerequisite two: Legacy integration. Legacy inte-
gration is extremely important. Looking at the IBS
Consist situation where sophisticated and broad fi-
nancial and human resource management applica-
tions are currently offered in the traditional RPG envi-
ronment, we can see that it would be impossible to
replace all these applications at once by a new San-
Francisco-based application suite. Therefore, a care-
ful integration and migration path has to be devel-
oped. Of course, integration is possible both at a
database level and on a program call level as stan-
dard SanFrancisco functionality.

The solution IBS Consist offers is slightly different.
The current applications that the company delivers

have large and extended sets of application program-
ming interfaces (APIs). On the SanFrancisco appli-
cation development side APIs are also developed. By
using these API layers, both the legacy applications
and the new-generation SanFrancisco applications
can be developed independently of one another and
still use the services of one another. This indepen-
dent development might look like extra work but will
in the long run give the better return on investment.
The traditional relational databases in the legacy
environment and the databases that are storing the
objects of the SanFrancisco environment are inde-
pendent of one another. Integration is possible in a
two-way direction. This integration can be pictured
as shown in Figure 2.

From this prerequisite it can be concluded that leg-
acy integration can be done in several ways. What
is the best way has to be determined for each sit-

Figure 2 Legacy integration through APIs

SANFRANCISCO ENVIRONMENT API API LEGACY AS/400 ENVIRONMENT

read

read

read

get

get

set

get

set

get

get

get

write

write

write

call

call

call

call

call

call

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN DER SALM 305

uation. The example above implies that there may
be duplicate data in both the legacy and object store.
Although this duplication may provide an option to
choose, it is not necessary. SanFrancisco offers com-
ponents the ability to share common persistent data
or objects. These components can be SanFrancisco-
based components as well as legacy components.

The legacy integration options give IBS Consist B.V.
the possibility of offering small SanFrancisco-based
applications to their customers with extra function-
ality as compared to the current offerings. Custom-
ers can grow into the SanFrancisco architecture step-
by-step without having to replace their current
applications all at once.

Prerequisite three: Technology independence. San-
Francisco previously has been defined as a complete
Java architecture. Java in its first, rather primitive
form mainly supported the client side of develop-
ment. There was a lack of support for the technical
infrastructure every application needs to be stable
and robust. This technical infrastructure should sup-
port services such as authorization, transaction man-

agement, and persistency. A typical Java environment
did not have these kinds of services. SanFrancisco was
the first environment to provide them by means of
the foundation layers. Two years ago these founda-
tion layers were probably the most important part
of SanFrancisco because of the enormous added
value it gave to Java developers. However, Java-only
adepts were not happy because they saw SanFran-
cisco as strictly an IBM product and not as a part of
the new open Java world.

With Enterprise JavaBeans (EJBs) as the definition
of the component model for building robust business-
critical Java applications, an alternative became
available for the SanFrancisco foundation layers. IBM
realized what had occurred and announced that the
foundation layer would be replaced by EJBs. With
that move, the SanFrancisco environment truly
opened up for everyone who sees EJBs as the archi-
tecture for future application development and de-
ployment.

Thus, SanFrancisco will meet this prerequisite as
soon as the migration to EJBs is completed.

Prerequisite four: Distributed object model. The
growing Internet world will demand applications that
can be distributed in a large network. Running an
application in New York on a UNIX** machine, in
Amsterdam on an AS/400, or in Stockholm on a
PalmPilot** must be transparent to the user. There-
fore, a component-based architecture must have the
ability to know how to behave in such a heteroge-
neous network environment. The way this works is
shown in Figure 3.

SanFrancisco classes all inherit from a SanFrancisco
base class that knows how to behave in a distributed
environment. Therefore, all SanFrancisco objects
know this behavior and can act in any network envi-
ronment. Thus this prerequisite is also matched.

Prerequisite five: Easily adaptable business rules.
An environment that enables components from sev-
eral vendors to be assembled together has as a very
important requirement: the possibility of changing
the business rules that are delivered in the compo-
nents.4 Examples of business rules that have to be
changed are policies for sending chase, or follow-
up, letters or country-specific legislation. For the
long-term continuation and stability of components
and for the possibility of replacing components, it
is important that the components themselves not
change. Suppose that in the SanFrancisco environ-

Figure 3 Proxy pattern

Receipt

ReceiptImplementation

Methods

SanFrancisco Base Class Receipt

VAN DER SALM IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000306

ment an individual user changed the framework con-
taining the chase letter generation and the standard
chase policy. After that it would not be possible to
replace a current version of SanFrancisco with a new
version without again doing all the change work to
whatever changed the policies.

Suppose there is a standard business rule in a frame-
work for determining whether, upon receipt of goods,
a quality check of the goods is needed or not. Sup-
pose the standard business rule is to check a status
code on article level, and if this code is yes, then a
check has to be done. This rule may not be sufficient
for a certain company, and instead the business rule
states that a check must always be done if the value
of the goods is larger than $10000. This business rule
must be replaced in a component-based manner.
This replacement can be compared, for instance, to
the way in which PCs are built out of components.
A PC with a VGA card (a business rule requiring VGA)
can be easily changed to a PC with an XGA card. All
that must be done is to plug the XGA card into the
proper place. SanFrancisco uses the same principle
where important business rules are part of the frame-

works. This solution is known as the “policy pattern.”
The policy pattern makes it possible to easily change
business rules in a release-independent and vendor-
independent way. It can be visualized as the class
diagram shown on the bottom right of Figure 4.

Another way of changing business rules is by class
replacement. Suppose a framework architecture de-
livers a class “Business Partner” with some business
rules in it. If this class is not suitable for use in a dis-
tribution application and is replaced with another
class, problems could arise. Suppose the Business
Partner class is used in the financial component but
not in the distribution component. If these compo-
nents come from different ISVs, it is not clear whether
the Business Partner class has been replaced in the
financial application. To solve this problem, the fac-
tory pattern is implemented on every class within
SanFrancisco. In short, this pattern implements a fac-
tory for each class. The class-specific factory han-
dles the creation or instantiation of that class. It is
the BaseFactory class (retrieved by a Global.fac-
tory¼ method call) that handles the deletion of ob-
jects. Changes to objects are accomplished by the

Figure 4 Policy pattern

DefaultInspectionPolicy

Methods
 If status = “Y” inspect receipt

MyInspectionPolicy

Methods
 If value > $10 000 inspect

COMPARE

CHANGE CARD IN PC

TO

SANFRANCISCO POLICY PATTERN

Receipt

Attributes
 Status
 Quantity accepted
 Quantity rejected

Methods
 Determine if inspection
 is required

VGA CARD

XGA CARD

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN DER SALM 307

objects themselves. This implementation can be pic-
tured as in Figure 5.

The SanFrancisco architecture has more standards
to change the business rules than the two described
above. The two described above are the best exam-
ples to explain the possibilities of the “LEGO brick.”

Prerequisite six: Easily added attributes. The first
question asked in a discussion of “LEGO brick” ap-
plications is: “Can I add my own attribute types to
whatever information is already available?” The an-
swer, “Of course, that can be done in any environ-
ment,” is a little too simple. The problem in adding
extra data elements, including the correct business
rules for the data integrity in a LEGO brick environ-
ment, can be explained as follows:

For this example, the Business Partner framework
is used again. Suppose one ISV decides to add the

data element “P.O. Box” to the Business Partner
class. Because this ISV delivers a financial applica-
tion, the business rule for this data element states
that it is mandatory to fill it in on a form. The reason
is that an invoice should always be sent to a post of-
fice box. Suppose another ISV implements the same
Business Partner class. This second ISV delivers a
warehousing application. Because goods always have
to be delivered to a physical warehousing address,
the business rule for this partner is that a P.O. box
should never be filled in on the form. As can be seen
in this oversimplified example, a conflict of business
rules between several applications can occur. In San-
Francisco this problem is solved by the use of so-
called property containers. Classes that extend Dy-
namicEntity or implement the PropertyContainer
interface have a property container. A property con-
tainer can be seen as a backpack where all kinds of
extra data for the class can be added with their own
business rules (Figure 6).

Figure 5 Factory pattern

COMPARE

CHANGE OF CAR RADIO

TO

SANFRANCISCO FACTORY PATTERN

SANFRANCISCO
OBJECT
FACTORY

Business Partner

Methods

Attributes
 Name
 Number rejected

My Business Partner

Methods

VAN DER SALM IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000308

In this way each class can have all the attributes that
each ISV needs, along with all the specific business
rules an ISV needs, but without changing the frame-
works themselves and without affecting other appli-
cations with the attributes.

How to work in a SanFrancisco environment

An expert is a man who has made all the mistakes which
can be made, in a narrow field.

—Niels Bohr

SanFrancisco enables the prerequisites if good ap-
plication design principles are followed. There is no
magic involved. Good methodology and design work
are still necessary. In this section the working meth-
odology used by IBS Consist is described.5

Working in a SanFrancisco environment requires a
different method compared to working in an
RPG-based AS/400 environment. Apart from the work

being iterative and based on time periods, the big-
gest difference, of course, is to define what one wants
to build and to map that to what the frameworks are
offering. For each process and every part of the ap-
plication that is to be developed, it is necessary to
find the balance between the following questions:

1. What do I need in my application?
2. What is available in the frameworks?
3. Can I obtain exactly what I want using the frame-

works?
4. If not, how much does it cost me to fulfill my re-

quirements by not using the frameworks?
5. How close can I come to my original goal by us-

ing the frameworks?
6. What are the differences in results, costs, and rev-

enues when I use the frameworks compared to
when I do not use them?

To obtain the correct answers to these questions and
to make the correct choices, the working method (or

Figure 6 Property container

COMPARE

BACKPACK

TO

SANFRANCISCO PROPERTY CONTAINER

Business Partner

Attributes
 Name

BP Property Container

Attributes
 P.O. box
 Tel number
 Private informationPROPERTY

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN DER SALM 309

the roadmap) to be followed has to be laid out care-
fully. Although the documentation for SanFrancisco
lays out a recommended roadmap for developing ap-
plications with SanFrancisco, IBS Consist B.V. has
developed its own roadmap. The development pro-
cess is differentiated in two main stages. In the first
stage the domain analysts are in the lead, and in the
second stage the technical people are in the lead.
During the development process many different roles
are fulfilled in the project team. The domain ana-
lysts know everything about the domain, the mar-
ket, the users, etc., and almost nothing about the
technology. The technical people know how to de-
velop software in a SanFrancisco environment and
know a great deal about Java, object orientation, and
similar things. Some of them have domain knowl-
edge, but not as much as the domain analysts.

The first part of the process focuses on the domain
of the system to be developed. The steps to be fol-
lowed can be pictured as in Figure 7.

The first step is to define the requirements of the
application to be developed. The domain analyst,
managed by the domain lead, performs this step. By
looking at trends in the market, talking with custom-
ers and marketing people, etc., the analyst produces
a document that describes the requirements of the
new system. SanFrancisco is not an issue here. This
step is about describing what is needed, not about
how the frameworks provide support. The document
is created in Microsoft Word** and disseminated
throughout the whole company to be discussed with
everyone involved.

Figure 7 IBS roadmap domain steps

STEP 1
REQUIREMENTS DEFINITION

STEP 2
DOMAIN ANALYSIS

STEP 3
HANDOUT SESSION

STEP 4
MAPPING TO FRAMEWORKS

INITIAL DESIGN
CLASS DIAGRAM
INCLUDING SANFRANCISCO
 MAPPING

MS WORD
MS WORD

MS WORD

FEATURE DEFINITION

 SMARTDRAW

CONCEPTUAL MODEL

 RATIONAL ROSE

RATIONAL ROSE

MS WORD

ANALYSIS
SCENARIO

TASK DEFINITION ISSUE LIST MAPPING DOCUMENT

MS WORD MS WORD

DFD

VAN DER SALM IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000310

The second step is the domain analysis. During this
step the requirements are structured according to
the processes to be supported, tasks that are part of
the processes, features that are part of the tasks, and
descriptions in plain English about what these pro-
cesses, tasks, and features should do. To create a
clear view of the processes and to define the bor-
ders for each process, each process is structured in
a data flow diagram (DFD) with a drawing tool.
Within IBS Consist, SmartDraw** is used. Of course,
DFDs are not part of any object-oriented design meth-
odology. However, using DFDs helps to lay out the
process on a domain level very well. In communi-
cations between domain people and technical peo-
ple and among domain people it is particularly help-
ful. In the long term, this documentation will not be
maintained. It is just used to define the processes.
A domain analyst is able to create a DFD, but cre-
ating a correct class diagram is much more difficult.
High-level class diagrams are created during this
step. Design leads make the diagrams when talking
with the domain people. At this stage SanFrancisco
is still not involved, so there is nothing that has any-
thing to do with SanFrancisco in the class diagrams.

The handout session is an important element of the
first part of the process. During the domain anal-
ysis, features are defined. A feature is a comprehen-
sive part of work that can be done in a relatively small
amount of time (61 month). During the handout
session, the domain analyst tells the developers all
the details about the feature that they will work on.
It is in these discussions that SanFrancisco becomes
important for the first time. Items not clear to the
developers are written down on an issue list.

From then on the developers are in the lead. After
the handout session the requirements are mapped
to the frameworks. Standard forms are filled in, de-
scribing in detail how and where the mapping will
be done and what “LEGO brick” mechanism will be
used. The design class diagrams are then created (us-
ing Rational Rose**). The mapping to the frame-
works is part of these designs.

The steps from the domain analysis to the mapping
are performed iteratively on a feature level. Much
communication takes place between the developers
and the domain analysts about the trade-off between
using the frameworks “plain” or enhancing or replac-
ing them. On the one hand, most of the time it is not
clear to the domain people how much effort will be
needed to change or enhance the frameworks to
meet their exact requirements. On the other hand,

it is not always clear to the developers how impor-
tant some requirements are for the application to
be accepted or to have a unique appearance in the
marketplace. If developers and domain analysts can-

not decide what is best, the domain lead will make
the decision. If the choice means that the amount
of time needed will be too great, the project man-
ager decides whether or not to implement the spe-
cific feature in the first release.

A second, and large, part of the development pro-
cess consists of all the technical work. This stage can
be pictured as in Figure 8.

After the mapping to the frameworks has been done
and all the choices have been made about adding
functionality to the frameworks, the developers com-
plete the design. This work includes producing the
class diagrams, writing design scenarios in HTML (Hy-
perText Markup Language) format, and creating ob-
ject interaction diagrams, if necessary. Part of the
design work is coding the requirements in such a way
within Rational Rose that much of the Java code can
be generated automatically. After the design is fin-
ished, the design lead reviews it to be sure all the
standards have been followed and a sound and cor-
rect design has been developed. After this review,
the test paths are defined to make clear what is to
be tested after the coding. This operation is done
using XML (Extensible Markup Language) so that
the test scripts will be generated and processed au-
tomatically later.

The next step is generation of the Java code with
use of a Rose-to-Java generator (named the San-
Francisco Code Generator, or SFCG) that is part of
the SanFrancisco tool set. After that step the method
implementation has to be coded manually. Of course,
subsequent steps include technical testing, integra-
tion testing, and usability testing, the same as in any
other software development environment. A large

A large part of the
development process

consists of all the
technical work.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN DER SALM 311

part of the testing is done automatically. The test
script generator uses XML and is being developed by
IBS Consist.

From experience with this method, IBS Consist has
found that it is a structured way to obtain high-qual-
ity applications. Especially from a financial perspec-
tive, the SanFrancisco frameworks provide very rich
functionality that can be easily enhanced.

Benefits for IBS Consist from using
SanFrancisco

But Charlie, remember what happened to the man who
suddenly got everything he always wanted. . . . He lived
happily ever after.

—Roald Dahl (from Charley and the
Chocolate Factory)

IBS Consist was one of the first companies to start
using the SanFrancisco frameworks worldwide. Af-
ter making the effort to step into the object-oriented

and Java world, the benefits of working in the San-
Francisco environment and being such an early
adopter are tremendous. The original goal of devel-
oping SanFrancisco-based applications that could be
sold worldwide by other SanFrancisco partners has
been reached earlier than expected with much bet-
ter results than expected. Because IBS Consist is now
a part of the global IBS enterprise, it is able to de-
velop products in a worldwide organization with a
worldwide distribution channel. Being able to build
a large network of SanFrancisco partners worldwide
that use and sell one another’s components is still
a goal, both for IBS and for IBS Consist.

By informing customers about SanFrancisco, its
“LEGO brick” possibilities, and the open architecture,
IBS Consist has developed a much closer relation-
ship with many customers. Customers believe in the
SanFrancisco goals and stay with IBS Consist to grow
together into this new world. The decision by IBM
to put an EJB foundation underneath SanFrancisco
based on WebSphere* has done much to help, be-

Figure 8 IBS roadmap development stage

STEP 5
DESIGN

CLASS DIAGRAMS TEST PATH DEFINITION

TASK DEFINITION

TASK DEFINITION

HTML

RATIONAL ROSE

RATIONAL ROSE

DESIGN SCENARIOS

OBJECT INTERACTION
DIAGRAMS (IF NECESSARY)

STEP 6
DESIGN REVIEW

STEP 7
CODE GENERATION

STEP 8
METHOD
IMPLEMENTATION

STEP 9
TESTING

XML

ROSE TO Java

VAN DER SALM IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000312

cause it makes the SanFrancisco architecture a truly
open one.

A new opportunity to give service to IBS Consist cus-
tomers has been developed. Because customers re-
alize that it takes time to learn about the framework
technology, they like to be helped in obtaining this
knowledge. IBS Consist has a great deal of experi-
ence in gaining such knowledge because it trained
its own large group of developers in object orien-
tation, Java, and SanFrancisco. The company main-
tains a structured training program, available through
its intranet, that helps interested employees obtain
the proper knowledge. Apart from theoretical as-
pects, this environment offers many practical cases,
based on real-life experience, that help developers
grow into the SanFrancisco world. Customers are
very interested in this experience, and IBS and IBS
Consist help them to obtain this kind of knowledge.

But mainly, IBS will deliver, with the help of its Cen-
ter of Excellence within IBS Consist, a state-of-the-
art, next-generation, Java- and SanFrancisco-based
application. This application is built and delivered
according to the LEGO brick principle so customers
can buy open applications.

The component-based software industry

An important question to answer is: “Will the LEGO
brick dream really come true?” In other words:
“What has to happen in the industry for components
to be successful and grow in acceptance?” Is CBD just
another kid on the block like Computer Assisted
Software Engineering tools, AD Cycle,* etc.—tech-
nical promises that had their use in the software in-
dustry but never fulfilled everything they promised?
Every new trend always promises better time to mar-
ket, more productivity, better applications, more
standardization, etc. Why is CBD different?

For IBS Consist B.V. the question is not: “Is CBD ac-
tually going to happen?” The real question is: “When
are all prerequisites filled in to make it happen?”
There is no doubt about the need for the IT industry
to become truly industrialized. All major package
vendors are criticized about poor implementation
and enormous implementation times. As a response,
all major players are investing in CBD so that soft-
ware implementation will become more and more
a “plug and play” world.

Another important trend that reinforces investments
in CBD technology is the demand from customers to

become independent of their software suppliers.
Open applications are wanted. In the last decade,
the trend for large organizations has been to get rid
of the tailor-made software they had and implement
standard applications. To a certain extent this change
has been successful. Although implementation times
are long, the results are not always exactly what is
needed, and the costs are higher than expected, the
process of implementing “ERP-like solutions” is much
more manageable than the process of developing and
maintaining all needed information systems by them-
selves. However, the real downside is that if every-
one implements the same kind of ERP system from
the same supplier, it is difficult to obtain competi-
tive advantage from the information systems. There-
fore, the demand of organizations will be to obtain
the best of both worlds—the maintainability and
manageability of standard application environments
and the perfect fit of tailor-made solutions. CBD is
necessary to fulfill this demand.

Before the IT industry can make this happen, many
things have to change. The most important ones fol-
low.

1. The first step is to standardize the “plumbing” un-
derneath all information systems. This standard-
ization is needed to make applications truly open.
This process is going very fast at this moment. The
main types of plumbing that will remain are the
EJB model versus the COM/DCOM model. For San-
Francisco developers, IBM’s decision to move San-
Francisco to the EJB plumbing environment
means that SanFrancisco frameworks are becom-
ing a fully open standard.

2. The tools available for development in a CBD envi-
ronment must be improved. The Java language
is easier to use than C11 but is still considered
low-level programming. To improve development
speed, the productivity of Java tools has to im-
prove.

3. CBD has long been a technical issue. However,
what is important about components is their con-
tent. Technology vendors have to become con-
tent providers. It will take some time for these
vendors to realize this and change their way of
working.

4. The major application vendors have to enable
CBD. However, they also have to protect their cur-
rent markets and, therefore, are looking for an
evolutionary way to grow into CBD. This will take
some time.

5. CBD needs to set standards on methods, technol-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 VAN DER SALM 313

ogies, tools, etc. It will take some time for these
standards to be accepted worldwide.

The gurus predict that in the future 60 to 80 percent
of all software development will be based on CBD.
IBS Consist agrees with this assessment but thinks it
will take at least five years before it happens. The
market is being set now. Because of the necessary
learning curve and the component development
time, application vendors should invest now in this
paradigm.

Summary and conclusions

IBS Consist has long been involved with the SanFran-
cisco technology. The promise of SanFrancisco was
that applications could be delivered like LEGO bricks,
that is, by assembling all kinds of components on a
general architecture. It meant that customers had a
choice of truly open applications.

Since the technology has been used for some time
and the first applications developed with the tech-
nology have been delivered, this LEGO brick prom-
ise could be reviewed. Experience shows that San-
Francisco contains several mechanisms that fulfill the
promise. Of course, it is important to use these mech-
anisms so that LEGO brick environments will flour-
ish.

Working in a component-based development envi-
ronment requires new ways of working compared to
working in a more traditional environment. The most
critical part is mapping the requirements to the func-
tionality that is already in the frameworks. It is dif-
ficult to choose between the quick solution of using
the rich framework functionality or using more time
to change the frameworks so that they support the
requirements more precisely.

This technical note has provided an overview of how
the LEGO brick dream is implemented in the San-
Francisco environment. In addition, the way in which
IBS Consist works in this environment is described.
It is intended to provide the reader with a high-level
understanding of these topics.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of LEGO Systems, Inc.,
Sun Microsystems, Inc., Microsoft Corporation, Object Manage-
ment Group, The Open Group, 3COM Corporation, SmartDraw
Software, Inc., or Rational Software Corporation.

Cited references

1. R. L. van der Salm, “Introducing Shareable Frameworks into
a Procedural Development Environment,” IBM Systems Jour-
nal 37, No. 2, 200–214 (1998).

2. Component Based Development, Management Guide, Butler
Consulting Group Limited, Netherlands (March 1998).

3. Component Based Development, 1998 Report Series, Butler
Consulting Group Limited, Netherlands (April 1998).

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley Publishing Co., Reading, MA (1995).

5. Based on the California Roadmap by E. Callebaut, IBS (1998).

Accepted for publication December 10, 1999.

Rob van der Salm IBS Consist B.V., Nevelgaarde 20, P.O. Box
500, 3430 AM Nieuwegein, Netherlands (electronic mail:
Rob.van.der.Salm@consist.nl). Mr. van der Salm is a deputy di-
rector for research and development within IBS Consist B.V. He
has been involved in the SanFrancisco project since 1996. Before
that he worked as a project manager for several application ven-
dors.

VAN DER SALM IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000314

