
Using JavaBeans
components as
accessors to Enterprise
JavaBeans components

by A. Tost
V. M. Johnson

In this paper we describe how the use of
JavaBeansTM components together with
Enterprise JavaBeansTM (EJB) components can
help to develop flexible, mission-critical
applications. We show how an application can be
structured into three conceptual tiers, and how
the use of JavaBeans components on the middle
tier can help develop applications that can run in
different client/server environments (i.e., thin or
thick clients). This eases the separation of
server-side and client-side application
development, each focusing on different problem
domains. We also show that the additional level
of indirection provided by using JavaBeans
components as accessors to server-side
business objects helps users of IBM
SanFranciscoTM components to isolate their
client-side application development from
upcoming changes in the underlying back-end
technology (i.e., the migration from today’s
SanFrancisco infrastructure toward future EJB-
based releases of SanFrancisco).

Until fairly recently, the Java** programming lan-
guage has been used primarily by client appli-

cation programmers. It was used in “applets,” little
programs that can be downloaded from the Inter-
net and run in a browser, or in stand-alone appli-
cations, for example, using the Swing class library
for their graphical user interfaces. The appearance
of the JavaBeans** standard helped to develop and
promote the use of visual as well as nonvisual com-
ponents written in the Java language.

Today more and more server-side use of the Java
language can be found. Previously, Common Gate-
way Interface (CGI) scripts were usually used to let

a browser make a call to a server-side program. CGI
scripts are programs, called by the Web server, that
provide dynamic information to be displayed in the
browser. Now this approach is being replaced by the
use of “servlets.” Servlets are Java programs that are
called by the Web server just like a CGI script, but
they do not require a new process to be started by
each new request. Instead, a new thread is started
for each request, and each servlet instance can be
shared by many end users.

In addition to its use for developing servlets, the Java
language is being used for the development of en-
tire suites of business applications. In the SanFran-
cisco* product, IBM delivers application business
components written entirely in the Java language.
These components allow the creation of business ap-
plications by building on existing Java classes.

The SanFrancisco components proved that the use
of Java server-side components can considerably in-
crease productivity in developing business applica-
tions. In the same timeframe, a standard was devel-
oped by Sun Microsystems, IBM, and other
companies to formalize Java components on the
server, as well as the environment for these compo-
nents. This standard is called Enterprise Java-
Beans** (EJB). The IBM SanFrancisco product will
support the EJB standard in a future release.1

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 0018-8670/00/$5.00 © 2000 IBM TOST AND JOHNSON 293

This will make it possible to develop all parts of an
application in the Java language. The use of stan-
dard interfaces will further the reuse of existing bus-
iness components. An Enterprise JavaBeans com-
ponent developed on one platform, with one
particular transaction and persistence environment,
can be used without change on another platform, us-
ing a different transaction and persistence environ-
ment.

Application architectures: Three logical tiers

Most applications today are developed using the
Model-View-Controller (MVC) pattern.2 This pat-
tern, developed by Trygve Reenskaug for the Small-

talk programming environment, separates applica-
tion data (the model) from its presentation to the
user (the view). Moreover, the application logic,
which defines the flow of an application based on
user interaction (the controller), is further separated.
An application is built by associating all three—
model, view, and controller—with one another.

This allows an application to be conceptually split
into three tiers. The first tier contains the view, i.e.,
the presentation information. In traditional appli-
cations, the first tier is built using a library of graph-
ical user interface components. An example is the
Swing class library that is provided as part of the Java
Foundation classes. The library includes components
such as frames, panels, buttons, and input fields that
are used to build the presentation interfaces
(screens) for a user of the application.

In thin-client environments, where no application
software is installed and the client communicates
with the server through the Internet or an intranet,
the first tier is typically represented by a browser.
The browser displays Web documents that provide
the application interface. These documents are typ-
ically written using HyperText Markup Language

(HTML) or Dynamic HyperText Markup Language
(DHMTL). HTML and DHTML are standards that have
been adopted to facilitate the electronic exchange
and display of simple documents.

The second tier contains the controller. The control-
ler handles the reaction of the application to user
events and provides data to the view. In a traditional,
thick-client application, this will be done by running
the view and the controller in the same process on
one machine. The view and the controller commu-
nicate using standard Java event mechanisms. In a
thin-client environment, a “view server” might be re-
quired to handle the data traffic between the view
and the controller, since they are running in differ-
ent processes on different machines. For example,
a servlet can play the role of a view server.

The third tier contains the model, i.e., the applica-
tion data. The model knows nothing about how the
data are presented to a user, and in many cases, it
is designed and developed independently from any
actual application. In a business application environ-
ment, the model describes the business domain
model, which contains not only business data, but
also the processes that control the data.

For example, the SanFrancisco components contain
business objects as well as business processes that
are modeled for specific business domains, like gen-
eral ledger, or warehouse and order management.
These domain-specific objects and processes are
fairly stable, while the client application require-
ments change very often. Also, different client ap-
plications may share the same server-side business
object without knowing about each other.

In order to simplify the development of an applica-
tion, a client-side model may be introduced that rep-
resents the model to the view and the controller, and
encapsulates the access to the server-side model. Fig-
ure 1 shows all three logical tiers of the application.
Once the three tiers have been identified and de-
signed, the actual application can be implemented
for a particular target environment. In other words,
all three tiers can run on the same machine, or they
can be split up over several separate machines and
processes.

The server model: Enterprise JavaBeans

The Enterprise JavaBeans (EJB) standard defines the
server model. It specifies the interface that each bus-
iness component must implement. Each EJB com-

SanFrancisco defines a set of
object-oriented interfaces to an
infrastructure that can be used

to build e-business applications.

TOST AND JOHNSON IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000294

ponent exists in a server environment called the “con-
tainer.” The container lets a client access an EJB
component in an implementation-neutral way, and it
handles persistence and transaction mechanisms, etc.

Business components with persistent state data are
typically represented by “Entity” beans. Each En-
tity bean comes with a “home” interface, which al-
lows a client to create, delete, and access the bean.
An Entity bean’s home is found by using a naming
service. The transaction model that is used for an
Entity bean is not defined in the bean’s implemen-
tation, but in the form of a “deployment descriptor.”
The deployment descriptor is used by the bean con-
tainer to determine, for example, if a method on a
bean can be called only within an existing transac-
tion context.

The client model: JavaBeans

As explained earlier, access to the server model
should be encapsulated in form of a client model.
“Client” in this context stands for the second logical
tier, not necessarily the end-user client. This allows
greater flexibility in two ways: the server model can
be developed without a particular client environment
in mind, and the client (say, first and second tier)

can be developed without being dependent on a spe-
cific server infrastructure.

Moreover, the client model can hide many of the
complexities of the server programming model, mak-
ing it easier to develop an application that accesses,
for example, Enterprise JavaBeans components. The
EJB programming model requires the use of naming
interfaces to find the right objects, transaction in-
terfaces to handle transactional contexts, “home” in-
terfaces to create, delete, and retrieve EJB objects,
and many more interfaces. A client model can use
all of these while providing a much simpler inter-
face to its clients.

Since many of the interactions with the server model
are done through the use of standard (EJB) inter-
faces, a client model can easily be generated. Each
server-side EJB component can be handled by a cli-
ent-side object that redirects client calls to the right
server object, retrieves the EJB components’ state,
and so forth.

Thus, access to the server model is delegated to the
client model. Given the logical three-tier architec-
ture outlined above, the client model will always be
accessed locally; no remote call support is needed.

Figure 1 Three logical tiers

VIEWER
VIEW

SERVER

CLIENT

MODEL

SERVER

MODEL

CONTROLLER

TIER 1 TIER 2 TIER 3

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 TOST AND JOHNSON 295

In order to reach maximum flexibility for accessing
the client model from different variations of view-
controller pairs, the client model should support a
standard for its access. The JavaBeans specification
defines such a standard. So, for maximum flexibility
the client model should always be designed and im-
plemented as a JavaBeans component. This allows
it to be used in a component-based development
environment like IBM VisualAge* for Java, where
JavaBeans components can be visually programmed.
It can also be used in environments where the ac-
tual implementation of the client model is not known
at compile time. A JavaBeans component can be ac-
cessed at run time by the “introspection” mechanism,
which retrieves information about the interfaces sup-
ported by a JavaBeans component.

Commands

Most commercial applications not only access and
change properties of business objects; they also run
business processes that span multiple business ob-
jects. In the IBM SanFrancisco product, these pro-
cesses are typically encapsulated in “commands.” A
command is a class that represents a business pro-
cess. A SanFrancisco command object is instantiated
locally by the client that uses it. It then gets a bus-
iness object as its target. Upon execution, the com-
mand will be transferred to its target’s address space
(i.e., the server), executed there, and returned to the
client with the result data.

This behavior fits very well into the architecture we
have described. The client model will instantiate the
command, send it to the server for execution, and
provide the resulting data to the client application
in a standardized way.

The SanFrancisco beans

The SanFrancisco product provides “SanFrancisco
beans” that act as accessors to the server-side bus-
iness objects. The most commonly used business ob-
jects are shipped as ready-to-use JavaBeans compo-
nents that can be imported into an interactive
development environment like VisualAge for Java.
Moreover, a “bean wizard” is provided that lets a
developer generate a JavaBeans component for any
existing business class.

Access to server-side business object data can be op-
timized by caching some of the data in the JavaBeans
component. If and how this is done is transparent
to the client of the SanFrancisco bean, since there

is no impact on the client interface that the bean pro-
vides.

Most business objects are not stand-alone objects;
they are part of a collection of business objects. Cli-
ents gain access to a target business object either by
running a query or by accessing the entire collection
and iterating over its elements until the target ob-
ject is found. SanFrancisco business objects are of-
ten accessed through a “controller.” A controller is
associated with a “company,” which represents the
organizational hierarchy of the enterprise. Each con-
troller handles those business objects that are part
of the same company. One controller is responsible
for one particular type of business object. The con-
troller’s interface lets a client retrieve, add, or de-
lete an individual business object or an entire col-
lection of business objects. It also provides a query
interface.

Business objects that are not owned by a controller
may be stand-alone objects, or they may be owned
by another business object, or they may be contained
in yet another collection of business objects. Thus
objects can be accessed in different ways. A SanFran-
cisco bean hides this complexity from the client by
providing different “modes” under which a bean can
operate. Thus, a business object can be accessed
through a controller or directly from its owning bus-
iness object without any impact on the client inter-
face of the bean.

Moreover, each bean can represent an individual
business object as well as an entire collection of bus-
iness objects. This is especially useful in the follow-
ing common scenario: A client retrieves a collection
of business objects and displays them on the screen.
The user selects the business object to work with,
and this object is displayed in a new window, where
the user can make changes to it. This entire scenario
can be handled by one SanFrancisco bean. The bean
wizard even generates visual beans to display the col-
lection and an individual object. Thus, the scenario
described here can be implemented very quickly.

SanFrancisco beans also encapsulate the transaction
handling that is necessary to access a server-side bus-
iness object. Transactions are started and commit-
ted when necessary, based on a transaction policy
that can be set on each bean. For example, each
change to a property of the business object can be
sent to the server object inside its own transaction.
Or, all changes to an object may be collected in the

TOST AND JOHNSON IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000296

bean until the user’s work is completed, and the bus-
iness object then updated in one transaction.

Since the SanFrancisco beans hide the access to the
server-side business object, the client is not depen-
dent on how this is actually implemented. In other
words, the EJB-based release of the SanFrancisco
product will use EJB interfaces to access the server
object instead of SanFrancisco-specific interfaces. All
of the characteristics of the server-side business ob-
ject, e.g., the fact that it may be contained in a con-
troller, will remain, regardless of the underlying in-
frastructure.

Thin or thick client?

More and more business applications are developed
to run in a thin-client environment. This means the
actual user uses a browser (or an applet) as the pre-
sentation interface, and the actual application logic
runs on a middle tier, i.e., the Web server or appli-
cation server. On the other hand, many applications

still run as installed clients on a personal computer.
These applications typically use the Swing class li-
brary for the graphical user interface.

Business objects and business processes should be
developed to be independent from the client envi-
ronment in which they will be used. JavaBeans com-
ponents, if used as accessors to server-side business
objects as described above, are useful in both envi-
ronments.

IBM VisualAge for Java allows an application to be
created visually by “wiring” together nonvisual and
visual beans. Since SanFrancisco beans follow the
JavaBeans standard, they can be used in this envi-
ronment. The client application can now be created
without having to know about the server-side pro-
gramming interface. This is all handled by the San-
Francisco bean. Thus, no manual programming is
required, making real component-based application
development a reality. (See Figure 2.) Moreover,
business processes can be modeled visually by wir-

Figure 2 A thick-client approach

USER

INTERFACE

BEANS

SANFRANCISCO

BEANS

SANFRANCISCO

BUSINESS

OBJECT ENTITY

SANFRANCISCO

COMMANDS

NONVISUAL

JAVABEANS

COMPONENTS

SERVER(S)CLIENT

VIEW MODELCONTROLLER

CLIENT AND APPLICATION LOGIC SEPARATION

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 TOST AND JOHNSON 297

ing nonvisual SanFrancisco beans together. The re-
sult of this is yet another bean, which now, on a higher
level, represents some business logic. However, it is
recommended that such business logic be encapsu-
lated in a “command,” which can be executed on the
server, leading to better performance. SanFrancisco’s
predefined business processes are implemented as
commands.

A thin-client environment is usually implemented by
using servlets. A servlet is a piece of Java code that
resides on the server and is called by the Web server
to process a request that came from a browser. IBM
VisualAge for Java provides a “Visual Servlet
Builder” that lets a developer visually create the user
interface that a servlet will return. These visual serv-
lets are JavaBeans components, and they can be pro-
grammed to interact with other beans, for example,
with SanFrancisco beans. Here again, the fact that
business objects are “wrapped” by JavaBeans com-
ponents allows a servlet to be easily created.

Recently, the Java Server Pages standard emerged.
A Java Server Page (JSP) can be described as a “re-
verse” servlet. While a servlet is a Java class that con-
tains HTML or DHMTL pieces, a JSP is an HTML or
DHTML page that contains Java code. Ideally, a com-
bination of the two is used, with a servlet handling
the nonvisual side of a user request, and the JSP de-
fining the output. (See Figure 3.)

A JSP can retrieve properties from a JavaBeans com-
ponent through the “^bean&” tag, using introspection.
In a SanFrancisco environment, the servlet would
set up the SanFrancisco bean and execute the re-
quired calls on it, and then pass it to an associated
JSP to display its result state.

An application example

Examining an application that has been built and de-
ployed on the IBM SanFrancisco product will help
to illustrate the need for an architecture that pro-

Figure 3 A thin-client approach

SANFRANCISCO

BEANS

SANFRANCISCO

BUSINESS

OBJECT ENTITY

SANFRANCISCO

COMMANDS

NONVISUAL

JAVABEANS

COMPONENTS

SERVER(S)CLIENT

JAVA

SERVER

PAGE

BROWSER

(DYNAMIC)

HTML

VIEW MODELCONTROLLER

CLIENT AND APPLICATION LOGIC SEPARATION

TOST AND JOHNSON IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000298

vides flexible access to business objects while main-
taining good overall performance. Provider Solu-
tions’ ProviderFIRST** Outcomes Manager3

application is a health care solution that allows med-
ical personnel to collect, transmit, and view data
about patients that are recovering or being treated
in nonhospital settings. This includes care given at
locations such as nursing homes, or even in-home
care. Caregivers enter data about the status of the
patients and the treatments that they are being given.
Data may be entered into the application using scan-
ning or faxing combined with optical character rec-
ognition. This approach eliminates the potential for
keying errors, although data may also be entered us-
ing a manual keyboard. The application is designed
to allow data to be entered or accessed from remote
work locations, often where the patient is located.
This also allows users in different locations to access
a patient’s data and collaborate with other caregiv-
ers on possible courses of treatment.

Data are stored locally for each branch of the health
care agency. This makes the data available for im-
mediate use and analysis. Internet access to the data
allows users from different locations to collaborate
when reviewing and analyzing the data. Data are also
managed centrally, so that information can be shared
or combined for analysis of larger areas. Data may
be transmitted to external locations, such as govern-
ment agencies, when necessary. The assessment data
are used in a variety of ways, such as determining
treatments that are needed, measuring the effective-
ness of those treatments, and reporting required in-
formation to government agencies.

This diverse environment places several require-
ments on the application. Many of the users must
access the data via the Internet. They must be able
to do this without installing software, other than a
browser, on their portable workstations. Fax and
scanner input of data must also be supported. Se-
curity is critical in the application because of the per-
sonal nature of the data. It must be possible to limit
different users to accessing different portions of the
data, and to limit users to performing only autho-
rized actions on the data they can access. Some of
the analysis processing that is performed can be com-
putationally intensive. It must be possible to perform
that processing on adequate server systems. Several
types of data must be maintained by the application.
Personal information about patients and informa-
tion about their treatments, as well as data about the
results of those treatments, must be integrated to
provide an overall history for each patient.

Architecturally these requirements have been met
by distributing both data and processing. An inte-
grated object design supports patient information as
well as information on treatments and the effective-
ness of those treatments. This same object design is
used on each branch’s server. A patient’s data are
stored on the server for the branch that is respon-
sible for the care of the patient. These data may be
accessed remotely by others in the health care net-
work by instantiating objects remotely and execut-
ing commands local to the entity objects. Then only
the results of the commands are moved across the
network.

The data from all of the branches are also managed
centrally to allow broader analysis. Outcomes form
the basis of process improvement within the health
care community, allowing better care for a partic-
ular diagnosis by monitoring and comparing objec-
tively the results of various protocols of care for that
diagnosis.

The data may also be reformatted and transmitted
to required government agencies using the mandated
government format—generally fixed-format record
structures, one record per assessment. Objects are
instantiated and the data are extracted and trans-
lated into the fixed format. The file is then transferred
via FTP (File Transfer Protocol) over a TCP/IP (Trans-
mission Control Protocol/Internet Protocol) connec-
tion. Nonvisual SanFrancisco client programs are
used to format the file. From an application devel-
opment standpoint, the file extraction and format-
ting is treated as just another user interface.

A thin-client architecture is used to provide remote
access to the application over the Internet. A second-
tier Web server acts as a SanFrancisco client and ac-
cesses the SanFrancisco business objects residing on
a third-tier data server. A command framework is
used to access all entities. Longer-lived objects use
commands to execute business logic and return data
to the user interface. The Web server code uses the
results of the data server processing to dynamically
build the pages returned for display in the user’s
browser.

Different users may access and update different parts
of the persistent data. This is controlled by SanFran-
cisco object security combined with business logic
that limits certain users to certain views of the data
through the user interface.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 TOST AND JOHNSON 299

Client programs are also used to support data entry
via fax and scanners. These programs use the results
of optical character recognition to initialize and make
persistent new objects associated with a patient’s
care.

Summary

In order to access a server-side Enterprise JavaBeans
component, it is useful to create a client-side Java-
Beans component that handles all communication
with the server. The client-side component can be
migrated when server interfaces change (for exam-
ple, when SanFrancisco migrates toward EJB sup-
port), and it provides a simple interface to the cli-
ent.

A JavaBeans component can be examined through
introspection. It can be used in environments that
support visual application construction, like IBM Vi-
sualAge for Java. It can be used in both thick- and
thin-client environments.

This allows the business object to be created with-
out having a specific client environment in mind. At
the same time, the client application can be created
without much knowledge about the server-side pro-
gramming model.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.
or Provider Solutions Corporation.

Cited references

1. IBM SanFrancisco Migration to Enterprise JavaBeans, see
http: //www.software.ibm.com/ad/sanfrancisco/pdf/sfmigrejb_
430a.pdf.

2. T. Lewis, G. Andert, P. Calder, E. Gamma, W. Pree, L. Rosen-
stein, K. Schmucker, A. Weigand, and J. Vlissides, Object-Ori-
ented Application Frameworks, Manning Publications Com-
pany, Greenwich, CT (1995), pp. 38–43.

3. E. J. Jaufmann, Jr. and D. C. Logan, “The Use of IBM San-
Francisco Core Business Processes in Human Resources
Scheduling,” IBM Systems Journal 39, No. 2, 285–292 (2000,
this issue).

General references

V. D. Arnold, R. J. Bosch, E. F. Dumstorff, P. J. Helfrich, T. C.
Hung, V. M. Johnson, R. F. Persik, and P. D. Whidden, “IBM
Business Frameworks: SanFrancisco Project Technical Overview,”
Technical Forum, IBM Systems Journal 36, No. 3, 437–445 (1997).
K. Bohrer, “Middleware Isolates Business Logic,” Object Mag-
azine 7, No. 9, 40–46 (November 1997).

K. Bohrer, V. Johnson, A. Nilsson, and B. Rubin, “Business Pro-
cess Components for Distributed Object Applications,” Commu-
nications of the ACM 41, No. 6, 43–48 (June 1998).
C. F. Codella, D. N. Dillenberger, D. F. Ferguson, R. D. Jack-
son, T. A. Michalsen, and I. Silva-Lepe, “Support for Enterprise
JavaBeans in Component Broker,” IBM Systems Journal 37, No.
4, 502–538 (1998).
Implementing Application Frameworks: Object-Oriented Frame-
works at Work, M. Fayad, D. Schmidt, and R. Johnson, Editors,
John Wiley & Sons, Inc., New York (1999).
P. Monday and A. Nilsson, “Real World Java for Business: IBM
SanFrancisco Application Business Components,” Cutter IT Jour-
nal 11, No. 11, 17–23 (November 1998).
SanFrancisco papers in the IBM Systems Journal 37, No. 2, 156–
225 (1998).

Accepted for publication November 24, 1999.

André Tost IBM Software Group, 3605 Highway 52 North, Roch-
ester, Minnesota 55901 (electronic mail: atost@us.ibm.com). Mr.
Tost works as an advisory software engineer for IBM’s Software
Group. He holds a degree in electrical engineering from Be-
rufsakademie Stuttgart, Germany, and has been working on various
object-oriented development projects over the last six years. He
currently works as a client architect for the IBM SanFrancisco
project.

Verlyn M. Johnson IBM Software Group, 3605 Highway 52 North,
Rochester, Minnesota 55901 (electronic mail: verlyn@us.ibm.com).
Dr. Johnson joined IBM in 1979. His background includes build-
ing and maintaining financial and manufacturing applications, de-
signing and administering databases, and building application de-
velopment tools. Currently he is working with the SanFrancisco
group to help customers understand how to best use SanFran-
cisco, and to build relationships between the development team
and customers to ensure that requirements are understood and
met in future releases of the product.

TOST AND JOHNSON IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000300

