336 RICKE

Technical note

A three-dimensional framework for
information technology solutions

Today’s information technology products and
solutions are becoming increasingly complex and
confusing. Customers and solution providers
have more product and technology choices than
ever before. This complexity will always increase
as new products are added to the existing
ones—it will never decrease! A framework to
guide users through these choices is needed.
Just as a construction blueprint helps engineers
and builders and a city plan helps city planners,
an information technology framework can guide
its users in building solutions. This technical note
discusses a blueprint in generic terms and uses
examples from the transportation industry as an
analogy to the information technology industry.
The basic stack of IBM’s Open Blueprint® is
incorporated into a framework that expands the
physical network layer into more granular
product layers, so that relationships between
purchased products and delivered functions can
be determined. This allows users to make more
thoughtful decisions in a guided approach as
they design solutions.

Consider: SNA, DHCP, OC-3, TCP/IP, ATM, RS/6000*,
FTP, CICS*, 5665-147, XPQR, FTAM, 10BaseFB.'
Alphabet soup? Definitely. Confusing? Probably.
Magic? Maybe. This short list is representative of
the acronyms that drive information technology in-
dustry insiders crazy at times due to its complexity.
Knowing what the acronyms stand for is worn as a
badge of honor by some—a sure sign of a “nerd” to
others. Whatever their image, people who build in-
formation technology solutions have to deal with this
complexity. Out of this mess, they have to put to-
gether solutions that actually provide some useful
function to the people with the checkbooks. Solu-
tion providers are not physicists, scientists, doctors,

0018-8670/00/$5.00 © 2000 IBM

by D. D. Ricke

or magicians. They are professionals who now de-
sign solutions and choose products using everything
from pencil and paper, magazines and Web pages,
to notes on napkins and business cards.

IBM Open Blueprint structure

During the early 1990s, IBM developed a guide called
the Networking Blueprint.>* In 1994 it evolved into
the Open Blueprint** structure as more standards
were developed, the application layer was expanded,
and the systems management backplane was added.
The Open Blueprint structure is a guide that helps
its users choose the technologies and products
needed to create a solution. It is very similar to a
construction blueprint in that it can help its users
make intelligent choices about very complex tech-
nologies. It says where to put a particular function,
how strong that function should be, and most im-
portantly, it attempts to show how to connect those
functions together. It does not contain specific prod-
uct knowledge, nor does it guide its users in connect-
ing multiple devices together to form a solution.

The 1BM Open Blueprint structure (see Figure 1) has
two dimensions: vertical and horizontal. The verti-
cal dimension contains layers that model a device or
piece of hardware. This is similar to the standard OSI
(Open Systems Interconnection) model. From top
to bottom, the layers are: applications and applica-

©Copyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Figure 1 IBM Open Blueprint structure

Applications
and
Development
Tools
APPLICATIONS Dat
"\\BBN Presentation B
APPLICATION SoriEEs Access
ENABLING Services
SERVICES
Application/Workgroup
Services
DISTS?(IS'LFJETI\% Communication Object Management Distribution
SERVICES Services Services Services
Common Transport Semantics
NETWORK Transport Services ignali
SERVICES p Signaling

and
Control
Plane

Subnetworking

Physical Network

tion enabling services, distributed systems services,
common transport semantics, transport services, sub-
network services, and physical network. The hori-
zontal dimension contains the choices that can be
made in each of the vertical dimensions. For exam-
ple, the application enabling services layer has
choices of remote method invocation (RMI), Post Of-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

fice Protocol (POP), Open Database Connectivity
(oDBC), or HyperText Transfer Protocol/HyperText
Markup Language (HTTP/HTML). The transport ser-
vices layer (logical protocols related to software) has
choices of SNA (Systems Network Architecture),
TCP/IP (Transmission Control Protocol/Internet Pro-
tocol), etc. The subnetwork services layer (physical

RICKE 337

protocols related to hardware) has choices of: Eth-
ernet, token ring, ATM (asynchronous transfer
mode), etc. The physical network layer has copper
cabling, fiber, satellite, etc. These groupings allow
the acronyms mentioned earlier to be categorized,
so that users can make choices as to which function
will be used in their solution. To build one facet of
one device (to specify the functions that the device
would perform in implementing the solution to a par-
ticular business need), the user would pick one func-
tion for each layer. For example, the user may want
a device to run a CICS (Customer Information Con-
trol System) application using a TCP/IP transport pro-
tocol over a token ring subnetwork protocol over a
physical copper interface.

The Open Blueprint structure allows the user to
make choices in each layer independently from the
others. Historically, products were built that tied
these layers together in a predetermined way. For
example, IBM mainframe applications were accessed
through a front-end processor that used a transport
protocol of SNA over a subnetwork protocol of SDLC
(Synchronous Data Link Control) over a physical
copper V.35 physical interface. Today, customers ex-
pect vendors to create solutions that allow the cus-
tomer to choose each layer’s value independently of
the other layers’ values. Customers demand a more
open solution. The Open Blueprint structure does
not guarantee that there is a specific product or set
of products that the user can buy that would imple-
ment their choices. Just because a user chooses a set
of functions does not mean that those functions will
necessarily work together. Users usually try to get
concurrence from their vendors that the products will
work together and provide the advertised function
in an integrated solution.

The basic stack of layers that makes up the Open
Blueprint structure is used to build individual de-
vices. In order to build entire solutions of intercon-
nected devices, there is a need to put the Open Blue-
print structure into a framework that can expand the
scope of the design process to include the entire so-
lution. More detailed customer and product knowl-
edge is needed to make solution design decisions.
This customer knowledge is needed to allow a de-
signer to build a solution that is specialized for an
individual customer. The product knowledge is
needed to allow the designer to be very granular in
his or her choices of products (hardware, software,
adapter cards, cables) that satisfy the customer’s re-
quirements.

338 RickE

3-D framework

Whereas the Open Blueprint structure is two-dimen-
sional, this three-dimensional approach will allow
users to build complete detailed solutions. It is three-
dimensional (3-D) in terms of its ability to help its
users connect existing 2-D blueprint stacks together
into solution strings. A solution string represents all
the physical devices that a solution crosses as two
end points communicate with each other. Very spe-
cific product and customer knowledge is needed in
order for multiple stacks to be interconnected to
form a solution. Customer-specific business knowl-
edge, standards-based functional knowledge, and
vendor-specific product knowledge are all required
to create a valid solution. All of this detailed knowl-
edge can be made part of the framework by expand-
ing the existing Open Blueprint stack.

The Open Blueprint stack can be placed into an ex-
panded framework stack that includes the custom-
er’s business need and the physical network layer’s
product knowledge. The business need layer at the
top of the stack is the reason that this solution is be-
ing built. Business needs include customer relation-
ship management (CRM), enterprise resource plan-
ning (ERP), and other customer-specific functions,
such as “keep track of the customer’s purchases” or
“print a receipt.”

The bottom layer of the Open Blueprint structure
(physical network layer) can be expanded into prod-
uct layers to show the detailed products that deliver
all of the functions of the higher layers (business
need, application, transport protocol, and subnet-
work protocol). These product layers will include the
hardware, software, adapter cards, cables, and in-
terfaces that customers purchase to build a solution.
The products are purchased and installed to build
a device that delivers the functions of the stack. The
hardware layer represents a product, box, or device.
The software is the code or microcode that runs on
top of the hardware. The adapter card is usually an
add-on to the hardware to extend its function. The
cables plug into the interface that is delivered with
the hardware or the adapter card. The Open Blue-
print structure’s distributed systems services layer
and applications and application enabling services
layer choices are represented by the application that
delivers that function. The Open Blueprint struc-
ture’s common transport semantics layer can be rep-
resented by the transport protocol layer in the frame-
work. The extended framework stack, from top to
bottom, is shown in Table 1.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Figure 2 shows the relationship between the Open
Blueprint stack and the 3-D framework stack. The
main goal of the 3-D framework is to allow users to
design end-to-end solutions and select products that
meet the requirements of those solutions. Knowl-
edge of the interworkings of a particular piece of ap-
plication software are beyond the scope of this frame-
work. The 3-D framework relies on knowledge of
how standards-based protocols function. Therefore,
more emphasis is put on the layers below the appli-
cation layer. Other frameworks deal with the appli-
cations and application enabling services layers.

The nine layers of the framework stack represent the
decision points that a user must pass through to build
one device. These decisions should be made from
the top down. One should not make a software de-
cision until the application decision is made. The
adapter card supports the chosen subnetwork pro-
tocol, the software supports the chosen transport pro-
tocol, etc. The framework stack becomes a decision
collector as these choices are made. The user may
not make every decision. Some are made based on
history or the limits of the purchased product. Still
others are made by committee or even by use of a
dart board. This nine-layer stack is used to instan-
tiate a physical manifestation of the Open Blueprint
structure to build real solutions.

This stack of layers represents just one device, and
a solution usually requires more than one device. A
solution is a concatenation of these framework
stacks, where devices are connected together using
cables. In order for two devices to connect to each
other, the interface and cable layers must match. De-
pending on the function of the devices, other layers—
application, transport, and subnetwork—may also
have to match. A solution where one device is using
token ring cannot directly connect to another device
using Ethernet. Similarly, a fiber cable cannot con-
nect to a copper cable. This is analogous to some-
one trying to speak in Japanese to a listener who un-
derstands only English, or someone trying to plug
a three-prong grounded electrical plug into a two-
prong outlet. None of these examples will work with-
out the use of some “gateway” or interpreter that
connects two devices.

End points and gateways

There is one last set of concepts to discuss for the
solution to be complete: end-point devices and gate-
way devices. Some stacks act as end points to the
solution. The end-point stacks represent the two de-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Table 1 Extended framework stack

Business Reason the device is to be purchased;
need the problem being solved
Application Application that will implement the
solution
Transport Software-based protocol to be used
protocol
Subnetwork Hardware-based protocol to be used
protocol
Cable Type of cable that will connect to the
device
Interface Type of interface on the cable
Adapter card Adapter card that will be installed
Software Software that will support and
implement the application
Hardware Hardware that will support the
higher-layer functions

vices that are to communicate. Common end points
are servers, printers, desktop and laptop PCs, main-
frames, and Web servers. An example of an end-
point stack is a PC running Microsoft Windows** and
TCP/P over Ethernet using an RJ45 interface to con-
nect a Category 5 cable to get on the Internet in or-
der to browse a Web application. One selection is
made for each layer. Each layer in the stack is filled
in by the user as decisions are made. Other stacks
are partnered to form gateways. The simplest form
of a gateway device connects two devices using sim-
ilar layer choices. The gateway device can transform
one or more of the layers in the stack. For example,
a device comprised of two framework stacks could
transform the cable type from fiber to copper. Or a
device could transform token ring to Ethernet, or
HTML to 3270 format (a common screen format for
mainframe servers). Common gateways are routers,
switches, and hubs. Not all the layers in the gateway
stacks must contain values in order to create a so-
lution. Some gateway stacks are not concerned with
the higher layers of the stack. For example, a token
ring hub device has no concern as to what transport
protocol it uses—the hub operates only at the sub-
network layer.

We discuss an example of an actual solution with four
connected stacks (see Figure 3). Figure 3 shows the
difference between end-point stacks and gateway
stacks. Two end-point stacks are used to represent
the devices at the ends of the solution. Two gateway
stacks are used to represent the one device in the
middle of the solution. There is only one physical
device in the middle of the solution, but it is rep-
resented by two stacks because it requires two in-
terfaces or ports to interconnect the two end points.

RICKE 339

Figure 2

Mapping from 7-layer Open Blueprint structure to 9-layer framework stack

BUSINESS NEED

APPLICATIONS

APPLICATION ENABLING
SERVICES

DISTRIBUTED
SYSTEMS SERVICES

COMMON TRANSPORT
SEMANTICS

TRANSPORT
SERVICES

SUBNETWORK
SERVICES

PHYSICAL NETWORK

APPLICATION

TRANSPORT
PROTOCOL

SUBNETWORK
PROTOCOL

INTERFACE

SOFTWARE

—
 _‘
 ’ ADAPTER CARD

—>

HARDWARE

For example, a user may have a PC client that wants
to get information from a RISC (reduced instruction-
set computer) System/6000* (RS/6000*) server inter-
connected with an Ethernet hub. Both end-point
stacks, the PC and the RS/6000, could use the same
application layer of FTP (File Transfer Protocol) and
the same transport layer of TCP/IP. All four stacks
could use the same subnetwork layer of Ethernet.
One end-point and one gateway stack uses copper
while the other end-point and gateway stacks use fi-
ber. The PC end-point stack would use some PC hard-
ware type with the prerequisite software and an Eth-
ernet adapter card. The RS/6000 server would use a
RISC hardware platform and the appropriate TCP/IP
software along with an Ethernet adapter card. This
is a simple solution, but it shows how the stacks act
as decision collectors as these function and product
choices are made.

Every device in use in any network is either a gate-
way or an end-user device, or both. Every solution
in use in any organization can be built by connect-
ing the end-user stacks with one or more gateway

340 RIcKkE

stacks. Every solution can be described with this set
of layers and functions, regardless of the vendor, ap-
plication, or user. This model can be easily expanded
when the next big technology discovery changes the
way solutions are designed. A new layer can be in-
serted where appropriate. Past solutions have all fit
into this model. Furthermore, every organization
chooses from the same set of products and functions
to build solutions. Organizations differ only in how
the solutions are built, not in the basic building blocks
used to build these solutions. Designers all choose
from the same set of products. Customer networks
are comprised of multiple solutions where end-point
and gateway devices support multiple solutions at
the same time. For example, a network may contain
a PC that is used to browse a Web page on the In-
ternet and is also used to sign on to the corporate
mainframe server. These are two solutions that share
some of the same devices.

Designers of solutions may not be aware that they

are making these decisions for every device in their
organization, but they are. Some organizations as-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Figure 3 Solution example

ETHERNET
SUBNETWORK

ETHERNET ETHERNET
SUBNETWORK SUBNETWORK

ETHERNET
SUBNETWORK

TCP/IP
SOFTWARE
0s/2™
SOFTWARE
HUB PC
HARDWARE HARDWARE

TCP/IP

SOFTWARE

AIX™

SOFTWARE

RS/6000 HUB

HARDWARE HARDWARE
END-POINT DEVICE GATEWAY DEVICE

END-POINT DEVICE

sign these decisions to individual people. Some or-
ganizations have entire sections of people to make
decisions that fit into just one layer. The complexity
and number of choices can be mind-boggling. The
Open Blueprint structure and the expanded frame-
work stack are models that can help users make sense
of all these choices.

Other industries also use blueprints. We can inves-
tigate the transportation industry as an analogy to
the information technology industry. There are many
similarities, and this analogy may help in understand-
ing the usefulness of a blueprint and how it helps to
organize thoughts and decisions.

The transportation industry includes trucking, air-
lines, shipping, express services, etc. It is similar to
the information technology industry because both
are concerned about getting information or pack-
ages from one point to another. Both industries use
alayered approach to design solutions. Both involve
a series of locations, connected together. The infor-
mation technology (IT) industry uses cables, whereas

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

the transportation industry uses roads or airline and
shipping routes. Both have terminals (end points),
switching stations, and hubs (gateways). Their solu-
tions can be defined as strings of boxes tied together
to serve a common purpose.

Starting from the top of the framework stack and
working down, we can look at three examples of val-
ues for each layer in the transportation industry (see
Table 2).

Both industries have gateways and end points. An
airport is a gateway that allows people to arrive in
planes and depart by a different mode of transport,
such as a bus or car. A distribution terminal ware-
house is a gateway that transforms the shipping ma-
terial from a truck to a train. We even see examples
of encapsulation, as we do in the information tech-
nology field. Cars are sometimes encapsulated on
railway carriers or ships. Both industries require com-
mon cables and protocols on directly connected de-
vices. A car cannot ride directly on a railroad track.
A locomotive cannot travel on water.

RICKE 341

Table 2 Using the framework to investigate the transportation industry

To deliver a
product

Business need (the reason the
package is being sent)
Application (the thing being sent)

Transport protocol (how it is
packaged)

Subnetwork protocols (the Truck
physical medium it travels on)
Cable (the surface matter) Highway

Bamboo steamer

Cardboard box

Interface (the port type) Warehouse door Airport runway Mailbox

Adapter card (the doorway type) Garage door Airport gate Loading dock

Software (the delivery Shipping/receiving Airline reservation Post office
application) system system tracking system

Hardware (the building involved) Warehouse Airport Post office

To travel for To deliver the
vacation mail
Family of five “Dear John”
letter
Airplane seats Plain envelope
Plane Mail carrier

Air Road or street

This analogy is not exact, but it may give a more fa-
miliar frame of reference to understand the useful-
ness of a design framework. We discuss this frame-
work further in the next section. We also describe
why it is a three-dimensional framework. Solution
designers and users need assistance in the solution
design process because of the complexity and mul-
titude of choices that are available. In a typical cus-
tomer network, there are hundreds of solutions that
need to be designed. Each layer in each device needs
to be filled in for every device in every solution, and
each solution will have to work concurrently with the
others on the same set of products. A three-dimen-
sional approach will help solution designers reach
their goals.

The framework and the solution design
process

The two-dimensional Open Blueprint structure is an
integral part of the new framework stack. Frame-
work stacks represent individual devices that make
up a customer’s solution. A solution is a string of
these stacks interconnected with cables. The frame-
work is an architecture that guides solution design-
ers through the confusion of multiple product and
functional choices to build customer-specific solu-
tions. The end goal for a solution designer is a valid
workable solution. Customers want to know what
products to buy and vendors want to know what prod-
ucts to sell. The framework supports intelligence that
understands interconnectivity issues between the de-
vices as well as product-specific interoperability is-
sues within a device. It supports the solution design
process attributes that follow.

Top-down guided decision-making process. A guided
design process is necessary to help users make deci-

342 RICKE

sions in the appropriate order. It also drastically re-
duces the number of decisions. Without a guided ap-
proach, decisions regarding each device in a solution
have to be made one device and one layer at a time.
In other words, to fill in each layer of each stack in
the solution, the user has to process information and
make a separate decision on each layer. In a solu-
tion with 20 stacks strung together, users would have
to make 180 (20 stacks times 9 layers) separate deci-
sions.

Generic-to-specific choices. A guided approach al-
lows users to make generic decisions at the begin-
ning of the design process and specific product deci-
sions at the end of the process. Users cannot make
specific, very detailed, product decisions until they
have all the information that will affect that decision.
Also, a solution design process can help the user to
understand the requirements of the next stack in the
solution. In other words, users should not make a
product or function decision in one stack without
looking at the requirements of the stack to which it
connects.

Interconnectivity knowledge. A good solution design
process can incorporate the requirements of one de-
vice to connect to another device. The framework
stacks are connected to each other to form solutions.
The process can assist the user in discerning how to
connect the stacks together to form a solution. For
example, a good design approach can “know” if a
stack that represents an IBM mainframe can connect
to a stack that represents an IBM multiprotocol
router.

Detailed product knowledge. Product knowledge is

essential to a solution design process. Designers must
know the capabilities of a product before they can

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

choose to use it in a solution. A good design approach
can guide users to the correct product choices, based
on the users’ functional requirements. The frame-
work stack has nine layers that include functions and
products. A good design approach can determine
whether the chosen products will work together. For
example, users need assistance to know if SNA trans-
port protocol can run over an ATM subnetwork pro-
tocol.

The benefits of this solution design process are ex-
panded later in this section.

3-D decision clouds. There are six main decision
points that a user or designer has to pass through
to determine a valid solution: business need, appli-
cation, transport protocol, subnetwork protocol, in-
terface, and product (software, hardware, adapter
cards, cables).

Without the framework, these decisions are made
one at a time for each and every stack in the solu-
tion. These decisions should be made in order, from
top to bottom. The architecture of the 3-D frame-
work has a structure called a “cloud” that is a place-
holder for unmade decisions. The cloud represents
all the different ways to provide one of the functions.
For example, if a network designer decides to use
TCP/IP as a transport protocol in the solution, but has
not yet decided exactly what subnetwork protocol
or products will be used to build the TCP/IP trans-
port protocol, he or she can leave the TCP/IP trans-
port cloud in place. Those detailed decisions can be
made at a future time.

The Internet is a perfect example of a TCP/IP trans-
port cloud. An intranet is also a good example of a
cloud. The Internet is one network to which an or-
ganization connects; an intranet is a network that
exists inside of a corporation. An intranet would start
as a cloud, but it would be replaced by a solution
design that can be implemented to provide Web-
based applications to users. The Internet would prob-
ably stay a cloud in a solution design, because de-
signers usually do not care how the Internet is built.
They do not know or care how many routers their
solution will use. They just want to use the Internet
as a connection cloud to other organizations.

Many solution designs in place today were drawn
with clouds, each usually labeled with the function
that it provides. For example, it is very common to
see a circle that connects two boxes together in a so-
lution design. This circle, or cloud, could be labeled

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

“token ring” or “SNA” or “e-mail.” These are exam-
ples of specific clouds for different decision points:
“Token ring” is a subnetwork cloud, “SNA” is a trans-
port cloud, “e-mail” is an application cloud. When
these clouds are used in diagrams, no mention is
made as to the specifics that will deliver the chosen
function. The decision is left to others in the orga-
nization who have responsibility for that piece of the
puzzle.

The 3-D aspect of the cloud comes in the sense that
it contains all the ways to build a particular function.
If one could pick up a cloud and shake it, one would
hear pieces of the solutions rattling around inside
(see Figure 4). There is a cloud type for each major
decision, and furthermore there is a cloud for each
chosen function within the cloud type. There are SNA,
TCpP/1P, Ethernet, ATM, e-mail, and Web browser
clouds. The rattling noise would be caused by small
strings of stacks called “configurations.” These con-
figurations are comprised of other clouds connected
with gateway stacks. The gateway transforms one
cloud’s function to the other cloud’s function. These
clouds can be replaced by still other strings. Higher-
layer cloud types contain configurations comprised
of the next lower-layer cloud type. In other words,
clouds can be nested inside configurations. For ex-
ample, a transport cloud contains configurations
comprised of gateway stacks connecting subnetwork
clouds. These subnetwork clouds contain configu-
rations comprised of gateway stacks connecting in-
terface clouds. As decisions are made, these clouds
are replaced with chosen configurations. The clouds
are simply placeholders for unmade decisions.

Another nice aspect of having “our heads in the
clouds” is that we can ignore the parts of a solution
that we are not concerned with. A designer of a high-
er-layer application may not be concerned with which
interface type a device will use: fiber or copper wir-
ing, for example. This designer may not know or care
how many network devices are in the solution. He
or she can leave these decisions to other people in
the organization. These decisions would remain as
clouds to the application designer; a networking spe-
cialist could fill them in when needed. It works the
other way around, also. Network designers may not
be concerned with exactly which applications are go-
ing to use their networks. They may be building a
utility network that multiple applications will use.
In this case, the network designers can ignore the
higher layers (business need and application) of the
decision process and concentrate on the decisions
over which they have control.

RICKE 343

Figure 4 3-D framework clouds and configurations. Circles and ovals are clouds, boxes are gateways, and strings of

circles and boxes are configurations.

Benefits. There are many benefits to a 3-D solution
design approach that has the attributes described ear-
lier.

Top-down guided decision-making process. The first
major benefit of a 3-D solutions-oriented approach
is that the framework guides its users through the
decision clouds until they get to the desired solution.
This guided approach allows solution designers to
see the results of their decisions right away. If they
decide to use a particular function, the framework
will tell them what possible configurations can fulfill
that particular function. The guided approach en-
sures that the designer has configured a solution that
will work. All the decisions that affect a solution will
be thought through in the correct order. Product
decisions will not be made before functional deci-
sions are made; product decisions will be based on
the required functions of the higher layers and on
the number of required interfaces, price, processing
power, etc.

344 Ricke

Generic-to-specific choices. The next major benefit
of the 3-D framework is found in the way choices
are made, from the generic to the specific. This is
the approach most people use to make a decision.
Decision trees are more generic at the top and more
specific at the bottom. For example, a man may want
a companion to spend time with—a generic need.
He could invest time in a friend, or join a social pro-
gram, or buy a computer and get on the Internet, or
adopt a pet. Each choice moves him toward a spe-
cific decision. If he decides to adopt a pet, he could
get a dog, or cat, or fish. If he decides on a dog, he
could get a poodle, a Doberman, or a bichon frise.
Each decision brings him closer to his solution. The
3-D framework implements this in three ways:

1. Generic clouds are replaced with specific config-
urations.

2. Generic stacks are replaced with specific stacks
(more layers filled in).

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

3. Generic characteristics are replaced with specific
characteristics.

Generic clouds to specific configurations. Many times
designers will want to use a particular function in
their design because of the benefits it provides. For
example, some subnetwork protocols are faster than
others. Some are more standards-based than others.
Some applications are ubiquitous, which means that
programmers are more readily available to write the
applications. The ability to replace a functional cloud
with a configuration that supports the function is very
important. This allows the user to start with a ge-
neric choice and move toward a specific choice. The
choice of configurations is based upon the gateway
devices and the number and type of clouds in the
configuration.

Generic stacks to specific stacks. The second way the
3-D framework allows users to move from generic
to specific is in the way decisions are stored inside
the gateway stacks. As configuration choices are
made to replace clouds, the generic stacks for the
gateway devices that connect the clouds are replaced
by stacks with more layers filled in.

Generic characteristics to specific characteristics. The
third way that designers move from generic to spe-
cific choices is in the values of the product layers:
hardware, software, adapter cards, and cables. De-
signers do not want to make product decisions until
all the requirements are known. They may know that
they want to use PC-type hardware for one device in
the solution, but they are unsure of how much mem-
ory they need or what the speed or size of the PC will
need to be. Therefore, the designer can use a ge-
neric piece of hardware, called a PC, during the func-
tional design phase. When actually making product
choices, the designer can replace the PC hardware
layer with a specific model of a PC, such as an Ap-
tiva® Model 32E. Or the designer may need an Eth-
ernet hub somewhere in the design, but he or she
does not know how many ports or what type of man-
agement is needed. Therefore, he or she can leave
the generic Ethernet hub hardware layer intact un-
til the point in the design where the number of ports
and the management type are known. The generic
hardware layer can then be replaced with the spe-
cific model number of the chosen Ethernet hub. Ge-
neric software products can be replaced with a soft-
ware layer that uses a specific version number of that
software product.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Interconnectivity knowledge. Another benefit of this
approach is in the confidence that the 3-D frame-
work gives its users in knowing that the designed so-
lution will work. We will discuss how this is accom-
plished in the next section. This level of confidence
comes from the following three features of the frame-
work:

1. Configurations are strings of stacks that work to-
gether.

2. Gateways are two stacks in a valid partnership.

3. Stacks are built following rules that ensure the
layers will work together.

Configurations. The clouds are placeholders for con-
figurations, which provide the function that the cloud
represents. If the user knows all the choices for how
to provide a certain function, the user can make a
better decision. For example, a vacationing family,
traveling on the highway, decides to eat lunch at a
hamburger restaurant. After lunch they get back on
the highway and see a taco stand. If they had only
known, they could have chosen to eat there! The con-
figurations inside the cloud represent all the possi-
ble ways to provide the cloud’s function. The user
can be assured that he or she did not miss any so-
lution choices. Further, the user can be assured that
the configurations are valid. The clouds and devices
that make up the configuration represent a work-
able solution. This is guaranteed because the strings
are built following rules that ensure that the appli-
cation, transport, subnetwork, interface, and cable
protocols all agree before two stacks are partnered
across a cable. We discuss this further in the next
section.

Gateways. Stacks are partnered together internally
to form gateways. The 3-D framework ensures that
the two stacks will work together. The two stacks rep-
resent different sides of the same device—traffic flows
into one and out the other. These stacks are like fac-
ets of a gemstone. They represent all the functions
that a particular set of products can perform. Not
all stacks that have the same set of product layers
can be gateway partners with each other. Product
knowledge experts have to confirm that two stacks
can form a gateway. For example, a valid stack could
be a router with the correct level of software run-
ning TCP/IP over token ring subnetwork protocol us-
ing a copper cable. A second equally valid stack is
a router with the correct level of software running
IPX (Internetwork Packet Exchange) transport pro-
tocol over an Ethernet subnetwork using a fiber ca-
ble. These are both valid stacks that share a com-

RICKE 345

mon set of product layers. That does not mean that
the router can necessarily transform TCP/IP over to-
ken ring to IPX over Ethernet. Only someone who
understands these products can guarantee that these
stacks will work together to form a gateway. In prac-
tice, the only guarantee that something will work is
to try it in a test lab or a customer’s production net-
work. We discuss how the 3-D framework supports
this expectation in the next section.

Stacks. The individual stacks contain knowledge of
how the layers within the stack interact with each
other. These stacks represent all the different func-
tions that a set of product layers can perform. One
set of product layers will perform many functions that
are based on the higher layers of the stack. Stacks
may all share the same set of products but each per-
forms a different function. The function that a par-
ticular set of products performs is based on the ca-
pabilities of that product set. For example, some
products, like hubs, switches, and repeaters, only work
at the subnetwork layer. Some products, like rout-
ers, usually work at the transport protocol layer. A
function of the 3-D framework, discussed in the next
section, verifies that the product layers in a stack will
deliver the functional layers in that stack. We also
discuss how the 3-D framework creates all known
stacks.

Detailed product knowledge. One last benefit is that
solutions can be built either from the top down or
from the bottom up. The top-down approach answers
the question: “What products do I need to buy to
provide these functions to meet my business need?”
The bottom-up approach answers the question: “I
have this set of products already installed in my net-
work. What else can I do with them?” This question
is very common. Most designers do not design in a
vacuum; they design based on what they already have
installed. They may want to know what other func-
tions can be added to this mix of products. The 3-D
framework allows the designer to start at the top and
work down to the bottom layers. It also allows a user
to define a set of products and determine what other
functions that set of products will perform.

The 3-D framework incorporates the Open Blueprint
structure, guides users in design, and gives a level
of confidence that the product choices will provide
the required functions and that the strings of devices
will work. It allows designers to work with only the
pieces of the solution over which they have some con-
trol. It allows designers to pass their proposed so-
lutions from one group in an organization to another

346 RICKE

group in order to continue the design process. It is
a different way to view the world, but it models the
reality of the very complex information technology
industry. In the next section we discuss the 3-D
framework architecture.

Architecture for the 3-D framework

We have discussed blueprints in general and how
they are used in multiple industries. We have dis-
cussed a three-dimensional approach that would al-
low the solution designer to make better decisions.
Now we discuss the 3-D framework’s architecture,
implemented in a PC-based solutions advisor tool (us-
ing Borland’s ObjectVision, REXX [Restructured Ex-
tended Executor] programs, SQL [Structured Query
Language] queries, and IBM’s DB2* [DATABASE 2*]
databases) that has been written to prove that these
concepts will work. This architecture describes how
the different pieces of the 3-D framework can be built
and put together. The solutions advisor tool imple-
ments this architecture.

The 3-D framework architecture has two main goals:
(1) to model distributed network solutions, and (2)
to offer designers all the possible choices for solu-
tions while guiding the decision-making process.

The reality of the information technology industry
is that it is complex. It was easier to design solutions
when there were not so many choices. There will al-
ways be more choices, never fewer. Technologies
rarely go away. There are customers still using 25-
year-old BSC (binary synchronous communication)
protocols in their networks today.

The second main goal makes the 3-D framework
unique—it attempts to know all the answers. Stor-
ing all the answers in a retrievable format is a prob-
lem. One would want to be able to retrieve a solu-
tion based on product or functional characteristics
of that solution. For example, a designer may want
to find a solution that uses TCP/IP transport, Ether-
net subnetwork, fiber cabling, and an e-mail appli-
cation. These characteristics would become search
arguments used to retrieve potential solutions. One
approach is to store a solution as a series of product
and functional characteristics in a long string. Each
string of characteristics would represent one solu-
tion. Assuming there was a reasonable limit to the
number of devices in a string, this approach would
not have an infinite number of configurations to
store, but it would easily become an unmanageable
number. Also, the search engine to retrieve a solu-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

tion would require that each and every string be
searched to find a match. There would be no way to
guide the user through the six decision points that
were mentioned earlier.

The approach used for the 3-D framework is to store
a set of information in a structure and then refer to
that set of information in a higher-level structure.
This greatly reduces the number of solution strings
that are created, stored, and retrieved. Solutions are
broken down into the smallest possible components.
These components are put together into stacks, the
stacks are put together into configurations, the con-
figurations are put into solutions, and the solutions
are put into networks. This approach allows the cre-
ation, storage, and retrieval processes of the solu-
tions advisor tool to be broken down into manage-
able sizes. This approach also makes decision points
anatural part of the process. It allows the 3-D frame-
work and the solutions advisor tool to return to the
users a smaller number of possible choices. It is hard
to make a choice when there are hundreds to choose
from. The concept of decision trees, starting with the
generic and moving to the specific, is used in the so-
lutions advisor tool. This reduces the number of
stored solutions.

The 3-D framework accomplishes its two main goals
by using many structures to hold all the information
needed for a user to design a solution. These struc-
tures are implemented by the solutions advisor tool
in the form of databases. Figure 5 shows the major
concepts of the 3-D framework in one diagram. We
review these concepts, or structures, from bottom
to top.

There are ten primary structures in the 3-D frame-
work architecture. We cover each one in enough de-
tail to show the completeness of the architecture. Al-
gorithms and detailed data structures used in the
architecture and the solutions advisor tool are be-
yond the scope of this technical note.

Figure 5 shows a hierarchy of structures on the left
side. On the right side is a diagram that shows how
these structures interact. The horizontal line across
the middle of the diagram divides customer- or user-
specific structures above the line, and generic struc-
tures available to all users below the line. This line
represents the reality that every customer network
is different, while they all have the same set of prod-
ucts and functions from which to choose.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Structure 1: Characteristics. Characteristics are used
to describe the details of a solution. They are also
used as keywords that the search engine uses to re-
turn solutions. Characteristics are the lowest com-
mon denominator of all solutions. There are nine
types of characteristics that closely match the layers
in the extended framework stack introduced earlier.
“Business need” is not a database characteristic type,
even though it is a layer in the framework stack. Bus-
iness needs are so specific to an organization that
there is no way to standardize them and store them
in a database. Also, some business needs are so com-
plex that many concurrent solutions will need to be
developed to support their functions. All the other
layers are based on some standard repeatable func-
tion or product. The new characteristic type that does
not match any framework stack layer is “feature.”
This is used for miscellaneous comments that can
be attached to a stack of characteristics. The lower
characteristic types (product characteristics: hard-
ware, software, adapter cards, and cable) are prod-
ucts that can be purchased. The higher character-
istic types (functional characteristics: feature,
application, transport, subnetwork, and interface)
are functions that are delivered by the products.

Each of the nine characteristic types is stored in a
separate database in the solutions advisor tool. For
example, the hardware database holds information
such as product number, model number, revision
number, number of interface slots, etc. The product
number is usually four digits and represents a piece
of hardware that performs specific functions. The
model number is usually three characters and usu-
ally represents the size of the product. This is very
detailed information that describes the hardware
product itself. If the database were fully populated,
there would be one entry for each and every differ-
ent piece of hardware.

Each entry is assigned an identifier that is referenced
by higher-level structures. There is also a way to cre-
ate a generic, or primary, characteristic that repre-
sents all of its more specific, or secondary, charac-
teristics. For example, a generic token ring adapter
card could be defined that would represent all the
specific token ring adapter card characteristics. The
difference between the specific token ring adapter
cards is in their performance or number of interfaces,
not in the function they perform. Therefore, the ge-
neric token ring adapter card characteristic can be
used in the higher-level structures to represent any
of the token ring adapter cards.

RICKE 347

Figure 5 3-D framework hierarchy

CUSTOMERS
@ NETWORKS

I 1 1 I
BOXES *

I T T I

[T T I

@ SOLUTIONS

CUSTOMER-
SPECIFIC
STRUCTURES

@ CONFIGURATIONS
@ KEYWORDS

GENERIC
STRUCTURES
(GENERATED)

[] []
[] []
INTERNAL EXTERNAL H_H
[] []
{ | |
@ NU PARTNERS
[] []
| =
NETWORKING UNITS e —
(STACKS) I 1 f
[] []
@ CHARACTERISTICS | HARDWARE | [soFtware | [AoaPTERCARD | [INTERFACE | _
[sUBNETWORK | | TRANSPORT | [aPpLicATION | | FeaTuRE |

This reduces the number of solutions that a user will
see. It also allows the user to make the specific to-
ken ring adapter card choice after a functional so-
lution has been found. This specific choice can then
be based on price, performance, or availability. Val-
ues for product characteristics— hardware, software,
adapter cards, and cables—automatically have
aliases associated with them. Hardware part num-
bers become aliases for hardware device numbers.
Feature codes are aliases of product numbers. This is
useful to users who want to search for a solution using
a part number, feature code, or product number.

348 RickE

Some characteristics require special treatment. For
example, entries in the interface database have a field
to hold the partner interface. Some interfaces, such
as RJ45, come in male and female forms. There are
two entries created in the database for RJ45, one
male and one female, that refer to each other as part-
ners. This information is used to verify that the gen-
der of the cables matches before the stacks contain-
ing them are defined as partners. The solutions
advisor tool is also concerned about the function that
the interface performs. For example, Ethernet hubs
and adapter cards both use female RJ45 interfaces,

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

but one is on an adapter and the other is on a hub.
The interface characteristic contains not only the
physical type of interface, but also the gender and
the logical function of the physical interface (in this
example, hub interface vs adapter card interface).

Another special case is the cable characteristic type.
It is defined with two interfaces: left and right. This
is used to make sure that this cable can be used to
connect two stacks together using the correct inter-
faces. This interface information is also used by a
program in the solutions advisor tool that creates
other cable database entries by concatenating cable
entries together. In other words, there are cables that
are formed by connecting multiple smaller cables to-
gether.

Application characteristics, some transport charac-
teristics, and some subnetwork characteristics have
both a client and a server form. Some subnetwork
protocols, such as SDLC, have a client side and a
server side. The solutions advisor tool ensures that
a stack with an SDLC client cannot connect to an-
other stack unless it uses SDLC server protocol. Stacks
with client application characteristics can commu-
nicate only with stacks that have partnering server
characteristics. The transport characteristics iden-
tify which transport protocols are routable or
bridged. The functional characteristic types, appli-
cation, transport, and subnetwork, are also used for
the names of clouds.

These characteristics would be created by a product
knowledge expert. The existing solutions advisor tool
uses a minimal number of characteristics for testing
and proof of concept. The more knowledge the tool
has, the larger the number of solutions it can create.
Once a product is entered into the database, only
product updates would have to be entered. There
would be a substantial amount of work to get all of
IBM’s products entered into this type of database, but
the rewards would be significant. The tool would still
be useful even if a small number of products were
entered, because placeholder characteristics could
be entered to represent the functions of the missing
products. Older products that are not marketed
would be useful in the database, because customers
still design solutions that cross those older products.
Other vendor products could be entered as well.
Also, interoperability options would be created us-
ing a mixture of vendors in one solution. These prod-
uct characteristics would also be entered into a prod-
uct database that holds information such as price,

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

availability dates, withdrawal dates, and vendor in-
formation.

The functional characteristics would be entered only
once. These entries would define the rules that the
protocols, applications, and interfaces follow. These
entries would be built by a knowledge expert who
understands the intricacies of the particular function.
The expert may be an application designer or a pro-
tocol architect. A product using a standard-based
protocol must follow rules for that standard.

Structure 2: Networking units. Networking units
(NUs) are the extended framework stacks. The term
was chosen because the stack provides one unit or
piece of a solution. An NU is a collection of char-
acteristics. NUs are generated by the solutions ad-
visor tool and confirmed by product knowledge ex-
perts. NUs represent all the different functions that
a set of products can perform. The NUs are a col-
lection of layers that represent a facet of a product.
They are generated by the tool by following relation-
ships between the characteristics. These relationships
are displayed in Figure 6. Each of the nine charac-
teristic types has a single-letter abbreviation.

The relationships define how the layers interact. The
product knowledge expert enters these relationships
for each product. The arrows show how one char-
acteristic determines the other characteristics with
which it can work. The numbers in the diagram rep-
resent the order that the generator follows as it cre-
ates the NUs. For example, Arrow 1 points from hard-
ware to hardware. This is used when one piece of
hardware can support another piece of hardware in-
side one NU or stack. For example, a PC supports a
display. Both are pieces of hardware and a display
is usually required with a PC. Arrow 2 points from
hardware to software. For example, hardware for a
router would point to software that is required for
arouter. These arrows define prerequisite relation-
ships. For example, the transport protocol choice is
based on the hardware, software, and subnetwork
choices. The hardware characteristic points to ev-
ery other characteristic, because it is the basis for
every NU.

These layer relationships allow the NU generator in
the solutions advisor tool to create all the possible
combinations of layers that represent all the possi-
ble ways to build a stack. This information is useful
in determining the product requirements to create
an NU that delivers certain functional characteris-
tics. The layers allow the solutions advisor tool to

RICKE 349

Figure 6 3-D framework layer relationships

7

v

SUBNETWORK 7 p INTERFAGE

A Z' N T

16

A APPLICATION (A)

TRANSPORT (T)

20 APPLICATION
v

7'} 10
18
S > m
19 INTERFACE ()
e -
. ADAPTER CARD (R)
14
SOFTWARE (S)
2 5
HARDWARE » SOFTWARE ™ ADAPTER CARD HARDWARE (H)

SUBNETWORK (U)

L1 L1

. L1

answer questions such as: “What version of software
x works with hardware y?” or “What products are
required to allow us to use a subnetwork protocol
of ATM over a copper RJ45 interface?” Product
knowledge experts know the answers to these ques-
tions. Designers need to know the answers as well.
These layer relationships guarantee that all possi-
ble valid NUs are generated by the tool.

Most NUs that are stored in configurations contain
generic product characteristics that represent the
specific products. This reduces the number of pos-
sible configurations. The generic product character-
istics can be replaced with specific product charac-
teristics at the end of the solution design process.
For example, there could be an NU that represents
a PC with Microsoft Windows** using a modem run-
ning SLIP (Serial Line Internet Protocol) to get on
the Internet using the HTML application. This NU
contains generic hardware, generic software, and ge-
neric adapter card characteristics. It can be used in
a configuration and will represent any PC with any

350 RICKE

version of Microsoft Windows and any modem. This
is valid because any PC that supports Microsoft Win-
dows and a modem can perform this function. Later,
as the customer decides on a version of Microsoft
Windows, a modem manufacturer, and a brand of
PC, these generic characteristics can be replaced with
more specific ones.

There are 13 types of NUs, as shown in Table 3. Only
the first two contain any product characteristics; the
first is used to represent end-point devices. Types
2-8 are gateway devices. Six of these are generic and
are replaced by other NU types as functional deci-
sions are made during the design process. The ge-
neric gateway NUs connect cloud NUs together in con-
figurations. Types 9-12 represent cloud NUs (the
clouds that were discussed earlier are represented
using these four NU types). Solutions can be repre-
sented by a string of NUs as shown in Figure 7. The
clouds are replaced by other strings of NUs until the
solution is represented by two end-point NUs con-
nected via multiple gateway NUs.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Figure 7 Generic gateway NUs connecting cloud NUs in a configuration
END- CLOUD |CLOUD GATE- | GATE- CLOUD |CLOUD END-
POINT NU NU WAY WAY NU NU POINT
NU NU NU NU
Table 3 NU types for 3-D framework
NU Type (Name) Purpose Contains Referenced by Replaced By
Characteristics of Configuration
Type Found In
1 (Product application) End point (product-specific) All types
2 (Product) Gateway (product-specific) ~All types but application
3 (Generic interface) Gateway Interface, cable, Subnetwork cloud Type 1 or
subnetwork, transport Type 2 NU
4 (Generic subnetwork Gateway Subnetwork, transport, Type 1 NU
application) application
5 (Generic subnetwork) Gateway Subnetwork, transport Bridged or transport Type 3 NU
cloud
6 (Generic transport application) Gateway Transport, application Type 4 NU
7 (Generic transport) Gateway Transport Application cloud Type 5 NU
8 (Generic application) Gateway Application Business need cloud Type 6 NU
9 (Subnetwork cloud) Cloud Subnetwork Bridged or transport Configuration
cloud
10 (Bridged cloud) Cloud Subnetwork Transport cloud Configuration
11 (Transport cloud) Cloud Transport Application cloud Configuration
12 (Application cloud) Cloud Application Business need cloud Configuration
13 (Null) Represents a cable Feature Bridged or transport
cloud

Table 3 explains the function of each of the 13 NU
types. It also shows which characteristics are stored
in each NU type, along with which configurations re-
fer to these NU types. The last column contains in-
formation on what replaces each NU type as deci-
sions are made during the design process. Cloud NU
types are replaced by configurations, while gateway
NU types are replaced by other gateway or product-
specific NU types.

Structure 3: NU partners. The NUs are in partner-
ship with each other in two ways: internally and ex-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

ternally. These partnerships allow the tool’s gener-
ator to create valid configurations in the form of
strings of cloud and gateway NUs. Internal partner-
ships between two NUs form one gateway device. Ex-
ternal partnerships between two NUs are automat-
ically built if the application, subnetwork, transport,
cable, and interface characteristics match.

This external partnership models the real world in
that two devices have to be running the same pro-
tocols across a common set of cables in order for
them to communicate meaningfully. Many products

RICKE

351

in the marketplace today are emulators—they em-
ulate another product’s capabilities by running the
same protocols. Very few devices are configured to
know exactly which products are on the other end
of a connected cable. Just as product layers, discussed
earlier, follow a standard, these external partnerships
also follow a standard. Typical product stacks start
with an application layer creating a frame of infor-
mation that is passed to the transport layer, where
a header is added. The frame is then passed to the
subnetwork layer, where another header is attached
before it is passed as a packet to the physical layer,
where still other headers are added. The packet then
goes across the interface to the cable, to the other
end of the cable, and through the partner’s inter-
face. The packet is then stripped of headers and sent
back up the stack to the application layer. The 3-D
framework matches this reality in the way the stacks
are generated and in the way that external partner-
ships are created.

The tool can also generate potential internal part-
nerships. Product knowledge experts need to verify
that these potential partnerships are valid. They
know if a product can act as a gateway to transform
a packet on one interface into a packet with char-
acteristics matching the second interface of the gate-
way.

The tool’s generators follow these external and in-
ternal partnerships of the cloud and gateway NUs to
create valid configurations. Internal partnerships of
generic NUs are based on the partnerships of which
their specific NUs are capable.

Structure 4: Keywords. Keywords are used by the
solution designer to search for answers from the so-
lutions advisor tool. Keywords can be used to find
characteristics, layer relationships, NUs, configura-
tions, and solutions. The keywords database also
holds information that relates primary (generic)
characteristics and NUs to their secondary (specific)
characteristics and NUs. Aliases are defined here also.
The keywords database is a structure that helps users
find and build solutions.

Structure 5: Configurations. Configurations are gen-
erated collections of NUs in a string that represents
a valid concatenation of gateway device NUs and
cloud NUs. These configurations provide a specific
function, defined by the cloud in which the config-
uration resides. For example, there are thousands
of ways to build a TCP/IP transport cloud. The dis-
tinction between all the possible configurations is de-

352 RICKE

pendent on what lower-level subnetwork protocols
are used and is based on the type and number of gate-
way devices that are used. One of the simplest TCP/IP
transport solutions is an Ethernet hub. More com-
plex solutions use many and varied subnetworks, con-
nected via switch gateway devices or router gateway
devices. Regardless of the complexity inside these
configurations, they all perform the same TCP/IP
transport function. They would all be stored as TCP/IP
transport clouds. These configurations will contain
other lower-level subnetwork clouds. These subnet-
work clouds represent all the configurations that pro-
vide that subnetwork function, such as token ring or
Ethernet. Lower-level clouds are represented by NUs
that live in configurations. These configurations are
defined by the higher-layer cloud function that they
perform.

These configurations are generated by the solutions
advisor tool. There is a generator for each of the five
cloud types. The configuration database holds strings
of NUs and a functional characteristic that represents
the cloud function performed by the configuration.
The solutions advisor tool limits the lengths of the
configurations depending on the type of cloud be-
ing generated. This will prevent the generation of
configurations of unrealistic lengths. The longest
configuration string in the tool today is 26 NUs. This
string contains seven clouds connected via six gate-
ways. Each cloud is represented by two NUs and each
gateway is represented by two NUs (2X7 + 2X6 = 26).

Configurations that live in a subnetwork cloud con-
tain only gateway devices (usually hubs or repeat-
ers). There are no clouds in the string because there
are no cloud types lower than the subnetwork cloud.
For example, an Ethernet cloud will contain only
Ethernet hubs and repeaters.

Structure 6: Clouds. Clouds are placeholders that
represent all the configurations that can deliver the
function that the cloud represents. Clouds are rep-
resented in configurations as two NUs. These cloud
NUs are external partners to gateway and end-point
NUs and internal partners to each other. There are
five types of clouds: business need, application, trans-
port, bridged, and subnetwork.

Business need cloud. Configurations that are stored
in business need clouds contain strings of applica-
tion cloud NUs (Type 12) and application gateway
NUs (Type 8) that connect the application clouds to-
gether. The gateway devices can transform (move
from) one application to another. For example, a

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

user may use a Telnet application to gain access to
amainframe and then use a CICS application to gain
access to some mainframe data. The mainframe is
an example of an application gateway, because it
transforms one application to another. The gateway
and the two application clouds form a configuration
that satisfies the requirements of the business need
cloud.

Application cloud. Configurations stored in applica-
tion clouds contain transport cloud NUs (Type 11)
and transport gateway NUs (Type 7). For example,
an end user may use two transport protocols to gain
access to a mainframe application. IPX transport pro-
tocol might be transformed to SNA transport proto-
col by a PC device. The PC device is the transport
gateway that allows an end-point device using IPX
to access another end-point device that uses SNA.

Transport cloud. Configurations stored in transport
clouds contain bridged cloud NUs (Type 10) or sub-
network cloud NUs (Type 9) and subnetwork gate-
way NUs (Type 5). The transport clouds represent
the function performed by one transport protocol.
For example, a typical TCP/IP transport protocol could
use many subnetwork protocols connected via trans-
port gateways (routers are examples of transport
gateways). An end-point NU using token ring sub-
network may want to gain access to another end-
point host NU using Ethernet. Token ring and Eth-
ernet would be represented by subnetwork cloud NUs.
This typical configuration would use a router to con-
nect these two subnetwork clouds together.

Bridged cloud. Configurations that are stored in
bridged clouds contain subnetwork cloud NUs (Type
9) and subnetwork gateway NUs (Type 5). Bridged
clouds are used in special cases to represent proto-
cols where we need to know if the transport proto-
col is being bridged instead of routed. Token-ring
source-route bridging is an example of a bridged
transport protocol. Configurations that live inside the
bridged cloud are subnetwork clouds connected via
bridges.

Subnetwork cloud. Configurations stored in subnet-
work clouds contain only gateway NUs (Type 3)—
they contain no cloud NUs. These configurations are
typically strings of hubs or switches. Subnetwork
clouds contain configurations that can contain lower-
level cloud types. These lower-level clouds are not
expanded into their configurations until a solution
is created, when they are replaced by lower-level con-
figurations by the designer as decisions are made.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

All of the structures below the line in Figure 5 are
used by all designers. These structures are the build-
ing blocks for a solution. The characteristics repre-
sent products or functions. Layer relationships are
used to build collections of characteristics called NUs.
NUs are partnered and strung together to build con-
figurations. Collections of configurations are rep-
resented by clouds. These are all generated from
product-knowledge-expert input. Usually, product
knowledge experts know their products very well, and
they know how one product interacts with other
products. They can recommend their products based
on functional requirements of the solution. The so-
lutions advisor tool can be used to gather this prod-
uct knowledge from the experts and put the prod-
ucts together to form valid stacks, configurations, and
solutions.

Structure 7: Solutions. The solution structure is the
first above the line in Figure 5. The structures above
the line are all customer-specific. Solutions are
strings of NUs that have been built by the designer
using the solutions advisor tool. The typical solution
shown in Figure 5 contains two end-point devices
connected by a string of gateway devices. These so-
lution strings can contain end points, gateways, and
possibly clouds. Some of the clouds may have been
replaced by configurations. Each solution in the cus-
tomer’s network could be designed this way. A typ-
ical customer may require dozens of solutions in his
or her network. Each solution could be designed and
then stored in a customer database.

A typical solution could start with a business need
cloud (see sidebar). For example, a bank may have
a solution under design for a teller to update a cli-
ent’s savings account with a deposit transaction. The
business need cloud would connect two end points.
In this case, the teller’s PC and the mainframe where
the client’s database information is stored are the
end points. At the beginning of the solution design
process the solution simply shows a teller PC con-
nected to a business need cloud connected to a main-
frame end point. As the designer works through the
decision process, he or she can replace this cloud with
a configuration that uses the designer’s chosen ap-
plications.

The business need cloud could be replaced by a con-
figuration that contains two application clouds con-
nected by an application gateway. The first of these
application clouds could represent a mainframe CICS
application and the second could represent a
PC-based application, such as Telnet. The gateway

RICKE 353

RECORD DEPOSIT TO

354 Ricke IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

between the two application clouds represents a de-
vice that transforms the PC application to the CICS
application. These devices typically run some kind
of middleware software.

Next, the two application clouds can be replaced with
configurations that contain transport clouds. The cor-
rect configuration to use is dependent on the design-
er’s goals and maybe on the existing network that
must support the solution. As these decisions are
made, the gateway and the application clouds can
be replaced with more specific devices and config-
urations that contain more specific choices. The first
application cloud could be replaced by a configura-
tion that contains a TCP/IP cloud and an 1PX cloud
connected via a transport gateway device. The sec-
ond application cloud could be replaced by a con-
figuration that contains multiple TCP/IP clouds con-
nected via router gateway devices. As the designer
makes more specific decisions, he or she works down
the framework stack. These decisions are temporarily
stored in clouds and in generic gateway NUs.

In our banking example, the solution may be com-
plete. The designer may not need to expand the SNA,
TCP/IP, and IPX transport clouds further—the func-
tions may exist in the designer’s network. If the de-
signer wants to make product decisions that will sup-
port the transport clouds, then he or she can replace
the transport clouds with configurations that contain
either bridged or subnetwork clouds that represent
the chosen subnetwork protocol. And further, these
clouds can be replaced with configurations that con-
tain specific product NUs, such as hubs or switches.

So, beginning with two end points (a PC and a main-
frame) to be connected to satisfy some business need,
the designer ends with a complete list of all the prod-
ucts that would be required to satisfy that business
need and all the lower-level requirements deter-
mined along the way. Figure 8 shows how clouds are
replaced by configurations as decisions are made.
Here circles represent clouds and rectangles repre-
sent NUs. Each circle and rectangle is labeled with
the NU type used at that point in the decision pro-
cess. Arrows show a cloud being replaced by a con-
figuration that contains lower-layer clouds and gate-
ways. The arrows also show how NUs are replaced
by more detailed NUs during the design process. De-
signers can keep replacing clouds and NUs until they
have a string of NUs of Types 1 and 2 (the product
NUs), or they can stop at any point and leave a cloud
in the solution as a placeholder.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Structure 8: Boxes. Boxes represent real, physical
pieces of hardware. They are collections of NUs, all
with the same base product characteristics. As shown
in Figure 9 each NU is a different facet, or interface,
into the box.

Boxes are customer- and location-specific. The de-
signer determines the location of the end points,
gateways, and clouds, then puts the NUs from each
solution into these boxes. Some solutions will share
the same physical boxes. After each NU from each
solution is put into a box, the box structure looks like
a list of products to be purchased. It is now very sim-
ilar to a product configurator listing. It lists the hard-
ware, software, adapter cards, and cables that must
be available for the box to provide all the functions
required for each solution that crosses the box. One
can buy a box, but not an NU. Boxes usually contain
very specific product characteristics. One box de-
scription may represent a larger quantity of boxes.
For example, one office could contain 20 PCs that all
provide the same function; one box can represent
all 20 PCs.

Structure 9: Networks. Networks are collections of
boxes. The network database can be used to answer
questions such as: “What products are installed at
a specific location?” or “How many cables do I need
to order for the switch at this location?” or “How
many token-ring interfaces do I have on this rout-
er?” It can also be used to create wiring diagrams
that specify which cables interconnect specific boxes.

Structure 10: Customers. The customer database
holds information such as customer number, con-
tacts, addresses, etc. Structure 10 in Figure 5 shows
that the network and boxes are customer-specific en-
tities.

We can review the 3-D framework and the solutions
advisor tool by reviewing these structures from top
to bottom. The tool allows a designer to support mul-
tiple customers. Each customer has a network that
supports multiple concurrent solutions. Many of
these solutions work across the same set of installed
products or boxes. The boxes have multiple inter-
faces and are connected via multiple cables. The so-
lutions are comprised of stacks connected end-to-
end. These solutions cross functional clouds. The
clouds contain stacks that deliver specific function.
These stacks are partnered together across the ca-
ble if they share common protocols and cables. They
are partnered internally if the products work to-
gether. Relationships between product and func-

RICKE 355

Figure 8 3-D framework design process

BECOMES _ |

CABLE

PRODUCT APPLICATION GENERIC SUBNETWORK GENERIC TRANSPORT BRIDGED
END POINT 4 APPLICATION GATEWAY . GATEWAY CLOUD
PRODUCT-SPECIFIC GENERIC SUBNETWORK GENERIC APPLICATION TRANSPORT
GATEWAY - GATEWAY 8 GATEWAY CLOUD
GENERIC INTERFACE GENERIC TRANSPORT SUBNETWORK APPLICATION
- GATEWAY APPLICATION GATEWAY CLOUD CLOUD

356 RickE IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Figure 9 3-D framework networks and boxes

BOX 1 BOX 2
1 1
END-NODE NU7
QUANTITY = 20
NU9
INTERFACE #2
BOX 4 1
NU20 |__
NUso |1
i
1
ADDED PRODUCT [\ /"] 2
CHARACTERISTIC BOX 5

BOX 3
4 1
EXTERNAL
PARTNERS !
I
NU47
2
EXTERNAL B0 !

PARTNERS

HARDWARE
CHARACTERISTIC

tional layers determine if the stack is capable of de-
livering a set of functions. There is a finite number
of possible stacks that a given set of products can
build. These layers are definable based on product
and functional characteristics. These products and
functions can be categorized and their relationships
defined.

Figure 10 shows one sample solution with two end-
point NUs (N14 and N4) connected via clouds and
gateway NUs. It shows multiple clouds, gateways, con-
figurations, NUs, and characteristics in one diagram.
Each NU, characteristic, and configuration is num-
bered to represent one entry in its respective data-
base. The end-point NUs were initially connected via
a business need cloud. This cloud was replaced by
Configuration 1042, which is comprised of two ap-
plication clouds connected via an application gate-
way. The end-point NU on the left (N14) uses Ap-
plication Protocol A7 to communicate across the A7
application cloud (represented by two cloud NUs la-
beled N90) to the application gateway (represented
by N25 and N26). The end-point NU on the right (N4)

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

uses Application Protocol A8. The application cloud
that supports A8 has been replaced by Configura-
tion 901, which contains two transport clouds con-
nected via a transport gateway (N15 and N20). The
transport gateway transforms Transport Protocol T6
to T7. The T7 transport cloud has been replaced with
Configuration 727. This cloud replacement strategy
is continued until just two end points are connected
via multiple gateway NUs.

We have reviewed some of the detail that shows how
the 3-D framework and the solutions advisor tool
work. The tool follows the same rules and informa-
tion flow that the IT industry follows. Currently, the
tool has enough product and functional knowledge
entered to prove its validity. It was written using Bor-
land’s ObjectVision. There are 35 screens that al-
low the user to enter characteristics and layer rela-
tionships and perform keyword searches for
characteristics, relationships, NUs, partners, and con-
figurations. The screens allow designers to generate
NUs, partnerships, cables, configurations, and clouds.
The tool can be used to build solutions, boxes, and

RICKE 357

Figure 10 3-D framework cloud relationships

BUSINESS NEED
CLOUD

APPLICA- APPLICA-
APPLICATION TION TION
NU CLOUD GATEWAY

N14 N9O N9O N25 N26

CONFIGURATION 1042

| I

APPLICATION
NU

N7 N7

CONFIGURA-
TION 302

networks for specific customers. Users can create re-
ports on wiring charts, solution and product costs,
and spreadsheets. These screens call 60 REXX pro-
grams that create and query the 110 DB2 databases
using SQL calls.

We can now look at some of the practical uses for
this tool. The tool can be used to answer questions
at any point in the hierarchy discussed in Figure 5.
For example, the tool can answer the following ques-
tions:

1. What version of MRNS (multiprotocol routing
network services) software will support TCP/IP
over ATM?

2. What can I connect to my PC with an Ethernet
RJ45 card?

3. How many devices support both an ESCON (En-
terprise Systems Connection) channel and an
ATM interface card?

4. Show me the options that I have for building an
SNA network using frame-relay and 56 kilobyte-
speed modems.

358 Ricke

5. How many fiber strands do I need to install be-
tween two particular buildings?
6. What products are installed in the wiring closet
on the 27th floor of this building?
7. Isit possible to convert from frame-relay to ATM?
8. Does this switch support DHCP (Dynamic Host
Configuration Protocol) pass-through?
9. How much does this solution cost?
10. What products are required to allow a PC run-
ning IPX to sign on to a mainframe?
11. Can I run CICS over ATM?
12. Will DHCP work using a mainframe as a server?
13. What Netfinity* software runs on Windows?
14. What does the acronym “XPQR” stand for? (The
answer: It does not stand for anything!)

The tool can also be used to design complete net-
works. Solutions can be created using keyword
searches to find products, NUs, partners, configura-
tions, and solutions. These solutions can be merged
into one network and the tool will allow the user to
build boxes to contain all the required products. The
tool could be useful to anyone involved in the IT in-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

dustry. Designers at all levels of the solution design
process could benefit. People in the networking, PC,
mainframe, storage, printer, midrange, and applica-
tions development areas would be able to answer
questions and design solutions more quickly.

Summary

This paper has documented a three-dimensional ap-
proach to designing information technology solu-
tions. We reviewed the existing two-dimensional ref-
erence model and discussed a way to incorporate the
2-D stack into a 3-D framework, so that product
knowledge could be incorporated into the decisions
about which functions would be used in a given so-
lution. This extension allows solution designers to
build real-world multidimensional solutions. We dis-
cussed four attributes of a good solution design pro-
cess, incorporated by the 3-D framework. These are:
top-down decisions, generic-to-specific choices, in-
terconnectivity, and interoperability product knowl-
edge. This framework provides an architecture for
intelligent software that supports a real-world com-
plex solution design process.

Product-specific knowledge can be entered into this
framework and standard solutions generated by in-
terconnecting standard networking unit stacks.
Clouds can be used as placeholders for standard
functions and later replaced by generated configu-
rations as decisions are made by solution designers.
The 3-D framework can be used to guide designers
as they make functional and product decisions. A
PC-based solutions advisor tool has been written as
a proof of concept for the 3-D framework architec-
ture.

Acknowledgments

The author would like to thank the many customers
and I1BM colleagues who have offered assistance and
guidance. Julio Ibarra, from Florida International
University of Miami, read an early version of the
technical report and offered advice. Terry Burnside
and Guy Sanders assisted with the database design
used in the solutions advisor tool. Linda Ricke of-
fered editing and style assistance. Thanks go also to
the anonymous reviewers and to the Systems Jour-
nal editors for their valuable suggestions and con-
tributions.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft Corporation.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Cited references and note

1. “SNA, DHCP, OC-3, TCP/IP, ATM, RS/6000, FTP, CICS,
5665-147, XPQR, FTAM, 10BaseFB”—most of these acro-
nyms are used in the body of this technical note and expanded
in context. A few are not: OC-3 (Optical Carrier Level 3), 5665-
147 (product number for CICS version 5), FTAM (file trans-
fer, access, and management), and 10BaseFB (an IEEE stan-
dard for connecting two repeaters with a fiber optic link).

2. Networking Blueprint Executive Overview, GC31-7057, IBM Cor-

poration.

. The Networking Blueprint, SX33-6090, IBM Corporation.

. Open Blueprint Technical Overview, GC23-3808, IBM Corpo-

ration.

W

Accepted for publication January 17, 2000.

David D. Ricke /BM North America Sales and Distribution Di-
vision, 101 North Monroe Street, Tallahassee, Florida 32301 (elec-
tronic mail: dricke@us.ibm.com). Mr. Ricke is a software IT ar-
chitect with the IBM Software Group, where he designs complex
e-business solutions for customers. He received a B.A. degree in
computer and information sciences from the University of Flor-
ida in 1979. From 1980 through 1989 he worked as a systems pro-
grammer for Duke Power, E-Systems, Blue Cross Blue Shield of
Florida, and Southeast Toyota. Mr. Ricke joined IBM in 1989
and has held various positions, including market support repre-
sentative, large systems and networking systems engineer, instruc-
tor, and, most recently before taking his current position, as a
networking architect. He coauthored IBM publication SG24-5071,
Customer Implemented Networking Campus Solutions, in 1999. His
professional interests include design methodologies, product in-
tegration, and presenting customer solutions. He enjoys Gator
sports, golf, foosball, and ultimate frisbee.

RICKE 359

