384 HOUSEL AND SHIELDS

Emulator Express: A

system for optimizing
emulator performance
for wireless networks

IBM eNetwork™ Emulator Express is an IBM
program product that optimizes the operation of
Telnet 3270 and 5250 emulation over extremely
low-bandwidth networks. These optimizations
enable mobile workers using laptops, notebooks,
or other mobile devices to access legacy host
applications effectively over wide-area wireless
networks as well as low-bandwidth wireline
modem connections. This paper describes how
the Emulator Express system intercepts the data
stream and optimizes it transparently to both the
client emulator and the Telnet server. The
optimizations include a new data stream caching
technology, a new optimized protocol that
reduces the number of Telnet negotiation flows,
and traditional compression. The data stream
caching technology is particularly significant
because it may be applied to other distributed
application domains. The results of several
performance experiments are reported that
illustrate the improvements in data transport
volume and response time when using Emulator
Express.

his paper describes the design of Emulator Ex-

press (EE), an IBM program product’ that op-
timizes the operation of TN3270 and TN5250 em-
ulation to enable mobile workers using laptops,
notebooks, or other mobile devices to effectively ac-
cess legacy host applications over wide-area wireless
networks as well as low-bandwidth wireline modem
connections. EE is part of IBM’s SecureWay* and
eNetwork* wireless product offerings, including the
Secure Way Wireless Gateway and SecureWay Wire-
less Mobile Client software.' EE is middleware that

0018-8670/00/$5.00 © 2000 IBM

by B. C. Housel
I. Shields

can be used with any wireless or wireline technology
that implements the Transmission Control Protocol/
Internet Protocol (TCP/IP). As confirmation of its suc-
cess, some customers using EE technology report that
the performance of running host applications when
connected to their wireless networks often exceeds
that of running the same applications when con-
nected to a local area network (LAN).

Emulation. The 1BM 3270 and 5250 display termi-
nals are fixed-function, buffered, block-mode termi-
nals with a certain amount of formatting capability
built into the display. A large amount of the world’s
data is accessible through such terminals, and they
are common in many types of businesses. The orig-
inal terminals used binary synchronous communi-
cation (BSC) and later Systems Network Architec-
ture (SNA) protocols to communicate with a host.
Many emulators of these terminals are now avail-
able for personal computers, and it is common for
emulators to use TCP/IP and a specific Telnet regime
(TN3270 or TN5250) to communicate to a host com-
puter either directly or via a separate TN3270 or
TN5250 server that in turn is attached to the host
using SNA protocols.

©Copyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

The widespread use of today’s emulation products
testifies to the value of emulation. Although new
Web or Internet technology is slowly replacing the
legacy systems, access to these legacy systems will
be important for the foreseeable future. Indeed, new
emulators, written in the Java®* programming lan-
guage, such as IBM’s Host-On-Demand,? are de-
signed to access legacy systems.

Gateway mechanisms on various Web servers and
gateway products contain functions to access host
applications using SNA or Telnet emulation proto-
cols; e.g., the Customer Information Control System
(c1cs*) Transaction Gateway? supports 3270 emu-
lation to access host applications. Other recent de-
velopments in the emulation area have focused on
generalized tools that enable customers to map 3270
screens to customized Web pages. These develop-
ments include 1BM’s SecureWay Host Publisher,*
Host Access Class Library (HACL),® and the Internet
Engineering Task Force (IETF) TN3270E working
group draft on Open Host Interface Objects (OHIO).¢

The need for emulation over wireless networks.
Many businesses and public service entities such as
police departments have mobile field forces or of-
ficers who are in radio contact with some form of
base. Typically, such persons may be sent to a job
or location by a dispatcher who uses a 3270 or 5250
terminal connected to a central computer system.
Additional information from the same or a differ-
ent system may also be retrieved for particular cases,
such as a criminal record check associated with a li-
cense plate check when a police officer pulls over a
driver of a vehicle for a traffic infraction.

In such cases the dispatchers may become a bottle-
neck, particularly in crisis situations. Furthermore,
a dispatcher may not relay all available information
or may make errors. Finally, the voice channel itself
is not always clear. For such environments, a mobile
computer in the field person’s vehicle is a promising
way of reducing delay and increasing accuracy of in-
formation delivered to the mobile user. Ideally, the
field person given such a solution should be able to
access the same information as the desk-bound dis-
patcher could access, preferably without extensive
reprogramming of the underlying information sys-
tems.

The promise of wireless technology. Wireless tech-
nology has not yet lived up to expectations such as
those described in Imielinski and Badrinath.” There
are many reasons for this, not least of which is the

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

inherently low throughput over most commercially
available packet radio networks. Although the nom-
inal connection speed at the mobile client is fre-
quently as high as 19200 bps, the radio transmission
speed may be slower, and the nature of packet radio

The widespread use of
today’s emulation products
testifies to the value
of emulation.

is such that the packets flow serially through several
connections, further reducing the effective through-
put for interactive applications. A typical environ-
ment is shown in Figure 1.

In addition to the low bandwidth, the communica-
tions channel is usually subject to high error rates
because of radio interference, low power available
for operating the radio components in mobile units,
and poor or varying signal coverage. The high error
rates often exacerbate recovery when a packet that
may have actually reached the target destination is
retransmitted by the sender because the acknowl-
edgment did not arrive in time. Although the sec-
ond transmission is unnecessary, it will delay any fol-
lowing packets while it is transmitted and possibly
retransmitted by the underlying radio network equip-
ment or drivers. This problem becomes more seri-
ous as packet sizes increase, resulting in much greater
times both for the actual packet transmission and,
even more importantly, for the time that the packet
spends in queues waiting to be transmitted. In this
environment, the probability of retransmission rises
dramatically, and the retransmission attempts cause
further channel degradation.

For TN3270 and TN5250 emulation to be effective
over wireless networks, it is essential to significantly
reduce the amount of data normally transferred be-
tween a host application and a 3270 or 5250 termi-
nal emulator over such a TCP/IP connection. This re-
duction is particularly important in packet radio
networks where a private communications protocol
usually underlies the Internet Protocol (IP) transport.
For example, the ARDIS network uses a packet size
of 240 bytes and the RAM network a packet size of

HOUSEL AND SHIELDS 385

Figure 1 Typical connection for a wireless mobile worker

WIRELESS NETWORK
WIRELESS

\\§§ ZATEWAY

S

WIRELESS
CLIENT

BASE
STATION

APPLICATION
SERVERS

3270 (LEGACY)
APPLICATIONS

WIRELINE

NETWORK || Mﬂmmnﬂﬂﬂ WEB
SERVERS
: A (|
N
AN
\\ =
~ DATABASE
SERVERS

512 bytes. Both of these networks limit the number
of packets that may be outstanding without acknowl-
edgment. For the purpose of illustration let us as-
sume that the time required to transmit a radio
packet or acknowledgment is a constant ¢. If a mes-
sage fits into a single packet, it can be operated on
by the receiver after time ¢. However, if two radio
packets are required, it may take ¢ for the first to
arrive, t for the acknowledgment to be returned, and
another ¢ for the second packet to arrive. Adding
even a few bytes to a message may thus triple the
radio transfer time required before the receiver can
use the message.

Traditional approaches. Several methods exist for
achieving the goal of delivering 3270 or 5250 data
to a mobile unit. The first, and possibly most obvi-
ous, is simply to compress the data stream. Compres-
sion can be done by the radio network drivers as is
done by the IBM Secure Way Wireless Gateway and
SecureWay Wireless Mobile Client software. The
compression function is similar to the compression
scheme used by land-line modems. Each packet is
compressed independently of others. Compression
tends to be more effective with more data stream his-
tory, so this method, although reasonably effective,
is far from optimal.

386 HOUSEL AND SHIELDS

Another approach to delivering data to mobile units
is to implement the 3270 or 5250 emulator on the
land-line side of the communications channel and
use a program to scrape information from the screen,
typically by using the Extended High-Level Language
Application Programming Interface (EHLLAPI) avail-
able on many platforms to allow programmatic ac-
cess to the display contents and formats. Such ap-
proaches may be specific to a particular application
set and its screen formats, or they may be more gen-
eral and combine more efficient compression than
is possible for independent packets along with some
form of screen caching. Either of these screen scrap-
ing approaches requires corresponding software on
the mobile side to reconstitute the scraped data into
a format for presentation to the mobile user, either
as a literal image of the original or a customized ab-
breviated form. The latter method has been used by
vendors such as Telxon, and the former method was
embodied in the TBM ARTour server.®?

One major drawback to the EHLLAPI screen scrap-
ing approach is that not all of the 3270 or 5250 data
stream is available to the EHLLAPI application. This
drawback is particularly important for 5250 appli-
cations that use advanced field characteristics, such
as auto-fill or auto-entry, which are not available to

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

EHLLAPI applications. Another major deficiency is
the requirement to have, for general emulation, a
special emulator to rebuild the display on the client
device. Thus, users cannot use their emulator of
choice. This approach is suited to an environment
where specific application programming is done for
the mobile unit to adapt existing applications for mo-
bile use. It is not well-suited to a general approach
that attempts to reconstitute arbitrary application
screens at the mobile unit, because it cannot do so
with fidelity on account of the EHLLAPI limitations.

Emulator Express approach. The 1IBM Emulator Ex-
press product provides efficient emulation over low-
bandwidth network connections without the limita-
tions described above. EE provides dramatic im-
provement over wireless networks and also notice-
ably improves emulator performance over modem
land-line connections. More specifically, the main
objectives of the EE product are to:

¢ Optimize the delivery of 3270 and 5250 data to mo-
bile users over TCP/IP connections using Telnet
(TN3270 and TN5250) protocols, thus enabling
mobile clients to use 3270 or 5250 emulation over
low-bandwidth (e.g., wireless) connections with ac-
ceptable performance in terms of cost and re-
sponse time. The use of TCP/IP-based transport is
consistent with the directions taken by wireless net-
work providers: the Cellular Digital Packet Data
(CcDPD) protocol supports IP; the IBM Secure Way
Wireless Gateway and SecureWay Wireless Mo-
bile Client provide an IP interface over a public
packet radio network such as ARDIS and RAM; GSM
(Global System for Mobile Communications) pro-
vides TCP/IP transport over public switched net-
works.

e Operate with any vendor’s emulator or Telnet
server. Several vendors manufacture 3270 or 5250
emulators that operate on a personal computer and
use TN3270 or TN5250 forms of the Telnet pro-
tocol over TCP/TP networks to connect to host com-
puters. Most of these work with EE so customers
are usually able to continue using familiar emu-
lators.

e Operate without imposing any restrictions on the
data delivered to the emulator over the Telnet pro-
tocol.

* Be easy to install and configure. Ease of use was
considered to be very important for gaining mar-
ket acceptance. EE requires a minimum of addi-
tional configuring, and client configurations can
be updated dynamically at run time.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Unlike screen-scraping techniques that operate on
screen display buffers, the EE data reduction algo-
rithms operate on the native 3270 or 5250 data
stream directly. EE employs three optimization tech-
niques: caching of data stream segments, compres-
sion of transmission buffers, and Telnet protocol re-
duction. Caching and compression are aimed at
significantly reducing the volume of data transmit-
ted over the network, whereas Telnet protocol re-
duction reduces the number of flows during session
establishment to improve initial connection time and
also eliminates problems associated with sending
keep-alive messages to out-of-range mobile units. A
detailed discussion of each of these techniques com-
prises the rest of the paper.

The next section gives a general overview of the Em-
ulator Express system. The third section describes
the additional configuration required for EE. The
fourth section discusses the TCP/IP and Telnet com-
munications aspects of EE and other optimizations
that were implemented to improve initial connec-
tion time and to handle unsolicited keep-alive mes-
sages. The fifth section addresses the formats and
protocols relevant to the EE caching function and
the cache manager that is responsible for managing
the persistent cache on both the EE client and the
EE server. The sixth section reports on experiments
to measure EE performance both in terms of data
reduction and response time. Finally, the conclusions
are stated.

Overview of Emulator Express data
reduction

As shown in Figure 2, EE uses a dual-proxy config-
uration that consists of a Client Side Intercept (CSI)
program located in the mobile unit and a Server Side
Intercept (SSI) program located in the wireline net-
work typically at or near the host system. This dual-
proxy approach borrows from the IBM eNetwork
WebExpress model "' for optimizing Web brows-
ing over wireless networks. The CSI-SSI pair is trans-
parent to both the client’s emulator and the Telnet
server (and host application). The emulator commu-
nicates with the CSI via a TCP/IP connection using the
TCP/IP loop-back feature that enables TCP/IP commu-
nication without the need for data to pass over an
external communications adapter. The CSI and SSI
communicate using a private protocol over a TCP/IP
connection. The wireless link exists on this connec-
tion, and CSI and SSI cooperate to perform data re-
duction. The emulator data stream seen by the em-
ulator and the Telnet server is the same as though

HOUSEL AND SHIELDS 387

Figure 2 Dual-proxy model

e

! EMULATOR EXPRESS
OBLE UNIT | CLIENT/SERVER

EMULATOR | | CLIENT SIDE TP GVER
R INTEROEPT (= W

1| ©sh NETWORK

|

.

|

TELNET SERVER AND APPLICATION

|
|
|
|
|
SERVER SIDE | | TELNET | | 8270/5250
INTERCEPT | SERVER |m HOST
(ssl) : APPLICATION
|
|
|

Figure 3 Basic data stream caching model

SOURCE
(e.g., HOST)

>—— p— e =P (g,

SEGMENT COMPRESS
RESOLVE/REDUCE

DECOMPRESS COMBINE
RESOLVE/EXPAND

there were a direct Telnet connection between the
emulator and the Telnet server; i.e., the CSI recon-
structs data received from the SSI into valid Telnet
data. Similarly, the data stream received by the SSI
from the CSI is recomposed into a valid Telnet data
stream that is delivered to the Telnet server. There-
fore, except for minor configuration changes, the em-
ulator and Telnet server are completely unaware of
the presence of the EE system. EE configuration is
discussed in more detail in the next section. Although
not shown in Figure 2, many mobile clients may be
connected to a single SSI; likewise, a single SSI may
communicate with many different Telnet servers (and
application hosts).

388 HOUSEL AND SHIELDS

Data stream caching, a new technology. As shown
in Figure 3, the heart of the EE system is a combi-
nation of caching and compression technology that
significantly reduces the large outbound (host-to-cli-
ent) data streams typical of 3270 and 5250 sessions.
Most 3270 and 5250 applications use menus or other
screen formatting techniques that result in parts of
the displayed image such as prompts or instructions
to recur many times in a typical application. The EE
caching technology does not attempt to maintain a
screen image, but rather uses knowledge of the ap-
propriate 3270 or 5250 data stream protocol to break
an output data stream into segments that are likely
to have high probability of being reused on a later

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

screen, or possibly even the same screen. The seg-
ments are cached at both SSI and CSI so that when
a segment recurs, only the segment number is re-
transmitted to the CSI. By combining this caching with
amore traditional compression approach, EE is usu-
ally able to reduce outbound data streams by a fac-
tor of five or more. The data stream that is trans-
mitted over the radio network is thus characterized
by transmission of significantly less data and, usu-
ally, fewer packets. Periodically, a snapshot of the
current caches is saved as a checkpoint. Later ses-
sions may use the last successful checkpoint as a start-
ing point for the caches to be used in that session.
The caching technology is discussed in greater de-
tail in the fourth section.

Basic flow. Let us consider a typical outbound data
stream. There will usually be many fields on the
screen containing static text that is used to prompt
for input. Some input fields may be preloaded with
data that can be changed by the user. The SSI will
analyze this data stream and divide it into segments.
A key field is generated for each segment. If the
cache already contains the segment, then the two-
byte block number replaces the segment data in the
output data stream. Otherwise, the new data are both
cached for possible future use and forwarded to the
CSI. An LRU (least recently used) algorithm is used
to discard the oldest segments when the cache be-
comes full.

The compression logic works on the data buffers to
be sent between the SSIand CSI. Unlike caching, com-
pression in EE operates in both directions and starts
afresh each time a new session is established. Many
compression algorithms are readily available, " and
the choice depends on the overall system objectives
(compression ratio versus computing cycles). We
found arithmetic compression to be extremely effec-
tive for 3270 and 5250 emulator data streams con-
taining, as they do, mostly textual data. Arithmetic
compression may consider only the current charac-
ter in the input stream (order-0 compression) or the
previous n characters (order-n compression). High-
er-order compression usually does a better job of
compression but requires more memory and more
CPU cycles than lower-order compression. Arithmetic
compression was chosen for EE because, in a wire-
less environment, the better data reduction was
deemed more important than saving CPU cycles or
memory. The choice was made to use arithmetic or-
der-3 compression for EE to provide aggressive com-
pression within the typical CPU and memory con-
straints of contemporary mobile devices. A candidate

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

extension for EE is to permit additional compression
options, either different orders of arithmetic com-
pression or different schemes altogether.

The output buffer is compressed, and the result is
then sent over the CSI-SSI TCP/IP connection. Surpris-
ingly, we found compression to be effective even
when most of the buffer consists of segment ad-
dresses (in contrast with the actual segment data).
This occurs because there is substantial redundancy
in the segment control headers that are required to
delineate segments in the data stream.

At the EE client, the incoming data stream is first
decompressed. The caching instructions in the de-
compressed data stream are now analyzed to recon-
struct the original data stream. Cached segments are
retrieved, and new segments are stored in the cache
as appropriate. In this way, the EE client maintains
a mirror image of the server’s view of the cache.

Emulator Express configuration

Because the EE system uses intercept programs, a
certain amount of configuration is necessary. The
Telnet emulator program is configured to commu-
nicate with the CSI rather than the ultimate Telnet
server. This communication is entirely within the mo-
bile device and is done in memory using the TCP/IP
loop-back feature. Similarly, the CSI must be con-
figured to connect to the appropriate SSI. The SSI
uses a single port to listen for incoming connections
from clients. During session establishment, an ini-
tial packet containing the destination Telnet address
and port number is sent from the CSI to the SSI, so
that the SSI can construct the final connection to the
destination Telnet server.

Figure 4 shows the client definitions for two appli-
cation hosts, Hostl and Host2. The host name (or
address) and port number define the location of the
destination Telnet server. The client port specifies
the csI listening port for all sessions initiated to a
particular host. This port may or may not be the same
as the actual port used by the host applications. For
example, the host and client ports are the same for
sessions to Host1. However, the client port for Host2
(17023) is different from the host port (23). This is
necessary in order to distinguish the sessions among
the respective hosts.

The client port number is also sent to the SSI in the
initial packet. As we shall see in the fifth section, the
client port number is used to anchor a pair of syn-

HOUSEL AND SHIELDS 389

Figure 4 Client configuration

& Emulator Express Client Configuration M= &

Configured Host Connections

Host Mame or IP Address | Host Port | Client Port I
23 23
23 17023

Delete

Add.
LChange.. |
S

[— | | 9.67.128.143:17000 | Advanced..l

Cloze | Help |

chronized cache instances associated with sessions
to a particular host.

In summary, when the CSI receives a connection on
a given listening port, it establishes a connection to
the SSI and sends an initial packet containing the cli-
ent port number and the host Telnet server address
and port number. Upon receiving the initial packet,
the SSI establishes a connection to the host Telnet
server, and the communication channel from the em-
ulator to its Telnet server is now complete. This cir-
cuit of the three TCP/IP connections is maintained for
the duration of the Telnet session. The only config-
uration at the SSI (except for trace flags) is the lis-
tening port number for incoming CSI connections.
All session configuration is done at the client sys-
tem. This design minimizes the administration of SSI
servers and gives end users the open-ended flexibil-
ity to configure their host connections as required.

Emulator Express and Telnet

In this section, the TCP/IP and Telnet communica-
tions aspects of EE are discussed. Other optimiza-
tions implemented to improve initial connection time
and to handle unsolicited keep-alive messages are
also discussed.

TN3270 and TN5250. The Telnet protocol is defined
in IETF Request for Comment (RFC) 854" and was
originally designed to allow a Network Virtual Ter-
minal (NVT) to access applications across the ARPAnet
established by the Advanced Research Projects
Agency. Because of the relatively high cost of 3270
or 5250 terminals compared to the limited-function

390 HOUSEL AND SHIELDS

ASCII terminals frequently used with minicomput-
ers, several manufacturers introduced protocol con-
version products that would allow an ASCII terminal
to connect to the protocol converter which, in turn,
was connected to a host network using BSC or SNA
protocols. Increasing acceptance of TCP/IP networks
led to the idea of combining the Telnet function with
protocol conversion and produced Telnet 3270
(TN3270) > and later TN5250." These combinations
provide the display protocol conversion (emulation)
at a Telnet client while providing a centralized com-
munications protocol conversion to access the host
BSC or SNA network at a Telnet server. The 3270 or
5250 data stream is thus transported intact across
the 1P network via TCP/IP. With the rise in popularity
of personal computers, it became common to have
the Telnet client actually run on a PC and present
the data either to the character-based console or in
a graphical window on the PC desktop. Similarly, as
TCP/IP connectivity moved into the mainframe com-
puter and AS/400* systems themselves, the Telnet
(TN3270 or TN5250) server could also be imple-
mented within these larger systems, removing the
need for a separate processor and communication
line.

Communication between a Telnet client and server
is initiated by the client opening a TCP/IP socket to
a port on the server. The assigned well-known port
for Telnet is 23, although it is possible to use a dif-
ferent port, for example, if it is deemed desirable to
have two different Telnet servers on a system. The
user at the client end must have a method of spec-
ifying the 1P address or name of the Telnet server
machine and also the port to use. Additional con-
figuration options are typically available to the user,
including the ability to designate an SNA logical unit
(LU) name to be used within the SNA name space of
the host system or features of the terminal being em-
ulated such as number of rows and columns.

Telnet sessions using circuits of TCP/IP connections.
With the addition of the two intercepts in the sys-
tem, the single Telnet connection, or session, is now
replaced by three connections: a connection from
the emulator to the CSI, a connection from the CSI
to the SSI, and a connection from the SSI to the Tel-
net 3270 or Telnet 5250 server or host system. The
connection between the two intercepts is imple-
mented in the present design with one TCP socket
connection for each Telnet session. This implemen-
tation allows each session to be managed by its own
thread or process independently of the other sessions
running on the same processor. Alternate ap-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Figure 5 Emulator Express Telnet reduction

SB,TT_IS type,SE

DO_BIN,WILL_BIN,
DO_EOR,WILL_EOR
DO_BIN,WILL_BIN,
data

DO_BIN,WILL_BIN,DO_EOR,WILL_EOR,data

TELNET SERVER SSl Csl EMULATOR
DO_TT
DO_TT,SB,TT_SEND,SE N
" DO_TT
WILL_TT
SB,TT_SEND,SE
SB,TT_IS type,SE
WILL_TT,SB,TT_IS type,SE
WILL_TT
SB,TT_SEND,SE

> DO_BIN,WILL_BIN,

DO_EOR,WILL_EOR

DO_BIN,WILL_BIN,
data

proaches might allow all sessions to be multiplexed
over a single pipe between the two intercepts. Al-
though TCP is used between the two intercepts in the
present design, another protocol could be substituted
if it were more suited to the underlying transport me-
dium. Indeed, a protocol based on the User Data-
gram Protocol (UDP) was tried early in the devel-
opment cycle. However, the small performance gain
achieved was offset by loss of reliability and less sta-
ble performance as compared with TCP.

Telnet protocol reduction. In order to speed session
startup, some optimization of the standard Telnet
negotiation protocol is done between the client and
server-side intercepts. This optimization is accom-
plished by presuming that if terminal negotiation is
requested, it will indeed be performed, and by pre-
suming that if 3270 or 5250 terminal types are ne-
gotiated, the corresponding binary and the end-of-
record negotiations will also be successful. Figure 5
shows the reduction in number of flows using this
approach. Figure 6 shows a further possible optimi-
zation where the client does not wait for the server
to start the negotiation but instead forwards the in-
formation for the previous successful negotiation
presuming that the same negotiation will occur again.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

The reduction in number of flows is clearly shown
by comparing the exchanges between CSI and SSI with
those between CSI and emulator or SSI and Telnet
server. Reducing the number of exchanges in this
way makes the session startup significantly faster than
it would be using the normal number of exchanges.
This increase in startup speed can be particularly im-
portant for applications where the user will make a
connection to interrogate the host system or report
status and then disconnect after a relatively short ses-
sion. A side benefit resulting from using networks
that impose an additional charge for each packet sent
is a reduction in the number of packets required for
session startup and thus in cost.

Optimizing TCP “keep-alive” messages. An addi-
tional optimization is performed by the SSI that re-
sponds to keep-alive messages (such as timing marks)
without forcing them to the client side. Since mo-
bile clients may frequently move in and out of range,
this optimization has the additional benefit of pre-
venting the session termination of a temporarily un-
reachable client as well as the obvious one of reduc-
ing the air traffic. A drawback of this approach is that
the SST will not detect loss of connection with a cli-
ent unless that loss is reported by the underlying

HOUSEL AND SHIELDS 391

Figure 6 Further optimized EE Telnet negotiations

TELNET SERVER SSI

WILL_TT,SB,TT_IS type,SE

(O] EMULATOR

DO_TT
WILL_TT
SB,TT_SEND,SE
SB,TT_IS type,SE

DO_TT
WILL_TT
SB,TT_SEND,SE
SB,TT_IS type,SE

DO_BIN,WILL_BIN,
DO_EOR,WILL_EOR
DO_BIN,WILL_BIN,
data

DO_TT,SB,TT_SEND,SE,
DO_BIN,WILL_BIN,DO_EOR,WILL_EOR,data

» DO_BIN,WILL_BIN,

DO_EOR,WILL_EOR

DO_BIN,WILL_BIN,
data

transport mechanism. This drawback is particularly
detrimental where a client is using a particular LU.
For example, if the client-side system is restarted
while out of radio range and the server does not de-
tect the session loss, then every connection attempt
using the client LU name will fail until the original
session is deactivated by some means or another. To
address this problem, the CSI reports what sessions
are still active whenever a new session is established.
This information allows the SSI to terminate any ses-
sions that are no longer active. The current system
terminates all three sockets for each connection if
any one terminates. It does not attempt to maintain
the sockets between client and CSI or between SSI
and server if the socket between CSI and SSI is ter-
minated abnormally. The ability to survive such out-
ages would be a possible enhancement.

Emulator Express caching

One challenge to developing data stream caching is
determining what unit (object) is to be cached. Un-
like other caching contexts (e.g., Web browsers,
CPUs), emulator data streams do not consist of a se-
ries of uniquely identifiable objects, because the em-
ulator and the host application maintain state infor-

392 HOUSEL AND SHIELDS

mation and cooperate to interpret the data. The
objective was to determine meaningful segments that
would be large enough to obtain a significant reduc-
tion in data if they are cached and also have a high
access frequency. As noted earlier, the EE caching
technology does not attempt to maintain a screen
image, but rather uses knowledge of the appropri-
ate 3270 or 5250 data stream protocol to break an
output data stream into segments that are likely to
have a high probability of being reused on a later
screen, or possibly even the same screen. The seg-
mentation algorithm is thus a function of the data
stream being processed—in our case TN3270 and
TN5250 data streams. In principle this caching tech-
nology can be applied to many other data streams by
providing segmentation functions that are specific
to the particular data stream.

The segments are cached at both SSI and CSI so that
when a segment recurs only the segment number is
retransmitted to the CSI. As illustrated in Figure 3,
there are two persistent caches for each emulator
session: one at the SSI and one at the CSI. Making
the caches persistent allows EE to adapt to the us-
age pattern of an individual and provide improved
performance on subsequent connections. Unlike tra-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

ditional buffer compression techniques, the EE per-
sistent cache avoids having to relearn the usage pat-
tern each time a new session is established.

A 32-bit CRC (cyclic redundancy check) is generated
for each segment and used as the key field. EE caches
at most 32767 segments, so the use of a 32-bit CRC
makes it extremely unlikely that two different seg-
ments can have the same key. If a segment with the
same key as a new segment is already cached, the
cached segment is compared with the new segment.
If the segments match, the segment is replaced in
the outbound data stream with an instruction to ac-
cess the segment from the cache of the CSI. If there
is no match for the key, the new segment is inserted
in the cache. If the key is found but the input seg-
ment does not match the cache segment, the exist-
ing cache segment is deleted, and the input segment
is inserted in the cache (with the same key). When-
ever a new segment is inserted in the cache, the seg-
ment data are emitted to the output buffer with an
instruction to insert the segment in the cache at the
CSI. In order to avoid unnecessary wasted space, the
EE server will only cache segments greater than a
predefined minimum size. Segments that are smaller
than this minimum are replaced in the outbound data
stream buffer with an instruction to copy these data
without caching. The process of resolving segments
generates output data stream buffers to be sent to
the client (CSI).

Session establishment and active cache creation.
When a session is first established between a given
mobile client and host application, a persistent cache
is allocated at the CSIand SSL, respectively. It is called
the active cache because it is accessed while the ses-
sion is active. The first time a session is created the
active caches are empty. Over the lifetime of the ses-
sion, segments are stored and retrieved from the ac-
tive cache; the cache becomes increasingly popu-
lated, and the degree of data reduction increases
since there will be more “cache hits.” For caching
towork correctly, it is necessary that the active cache
on the CSI and SSI remain perfectly synchronized. If
the sSI replaces a data segment with a cache refer-
ence, it is necessary to guarantee the availability of
the cached entry at the CSI so that the segment data
can be retrieved. One possible alternative would be
to devise a recovery protocol that would request the
partner to send the data in the event of a cache fail-
ure. This alternative, however, requires many addi-
tional message flows, adds much complexity, and was
deemed unacceptable in the wireless environment
where the goal is minimizing data flow.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

For subsequent sessions, however, we would like to
use a cache that was generated during a previous ses-
sion between the same client and host. To reuse
caches across session instances requires that the ac-
tive caches be saved with complete integrity before
the session terminates. However, what if the session
is abruptly terminated because of loss of signal, net-
work outages, or a power loss? Abrupt disconnec-
tions are normal in a wireless environment. Follow-
ing a sudden failure, the active cache must be
considered useless because its state is unknown; seg-
ments in transit or in memory buffers will be lost. To
guarantee the generation of consistent versions of
the cache, a checkpointing protocol was developed.

Checkpointing. To cope with the prospect of unex-
pected failures, it is necessary to periodically gen-
erate a consistent copy of the active cache, called a
checkpoint. The criterion for when to take a check-
point is a function of session activity and time. For
example, if the checkpoint time interval has passed
but no activity has occurred on the session, no check-
point is taken.

Taking a checkpoint. When the CSI determines that
a checkpoint is necessary, it calls the cache manager
to prepare the active checkpoint. The active cache
files are locked, dirty pages are flushed to disk, the
active cache files are copied to temporary files, the
cache state is set to prepared, and finally the active
cache files are unlocked so that session activity may
continue. After the cache of the CSI is prepared, a
checkpoint request is sent to the SSI; this command
is “piggy-backed” on the next message sent to the
host to avoid an extra message flow. The SSI first pre-
pares its cache in the same manner as the CSI and
immediately commits to create the next cache check-
point. Commit simply consists of renaming the tem-
porary files created during the prepare step and
changing the cache state to reset. At any given point
in time there may be two checkpoints labeled CPo
and cP1. Two checkpoints are necessary to ensure
that there is always a valid checkpoint even if a fail-
ure occurs during checkpoint creation. After the
checkpoint is successfully created, the SSI returns a
positive acknowledgment to the CSI consisting of the
checkpoint time stamp and a checkpoint number (0
or 1). As with the checkpoint request, the acknowl-
edgment message is piggy-backed on the next mes-
sage sent from the host to the client. When the CSI
receives the positive acknowledgment, it creates its
next checkpoint in like manner as the SSI except that
it tags its checkpoint with the checkpoint time stamp
and checkpoint number received on the checkpoint

HOUSEL AND SHIELDS 393

response from the SSI. The €SI also sets state infor-
mation indicating that a confirmation response to
the SsI is pending. A confirmation message is sent
from the CSI to the SSI to confirm successful gener-
ation of the checkpoint on the client device. Now

During session initiation
it is necessary
to determine which cache
checkpoint to activate.

we are guaranteed to have identical consistent cache
checkpoints at both the SSI and the cSI. When the
SsI receives the confirmation message, it deletes its
oldest checkpoint, thereby freeing up disk space.

Storing checkpoints. If we wish to use the same cache
across multiple session instances, it is necessary to
associate the checkpoint files with a specific client-
host configuration. To accomplish this association,
checkpoint files are anchored to the client port (de-
scribed previously) at both the cSI and the ssI. For
each client port, a state file and the checkpoint files
are saved. Since a single SSI may service many cli-
ents, a client port alone is not sufficient at the SSI to
associate checkpoint files with a specific session. In
addition, a unique client identifier (ID) is required.
Each checkpoint consists of a data file that contains
the cached data segments and an index file keyed by
the computed CRC value of a segment for fast ac-
cess. At any point in time, one or two checkpoints
may exist.

Client ID. At first glance, deriving a unique client
identifier seems trivial because a client is uniquely
identified by its IP address. However, this alterna-
tive fails to take into account that dynamic address
assignment (DHCP) is typically used to assign IP ad-
dresses for mobile client devices, for example, using
the PPP or SLIP protocols. If the client 1P address is
dynamically assigned, then the 1P address is useless
for uniquely identifying the client device across mo-
dem connections (wireless or wireline). To overcome
this problem, a unique persistent client ID is gener-
ated by the SsI the first time a client device connects.
Currently, the client ID is a four-byte entity composed
of the three low-order bytes of clock time and a one-

394 HOUSEL AND SHIELDS

byte sequence number. For multiple server (SSI) sup-
port, a 16-byte globally unique identifier (GUID)
could be used. When a session is initiated, the CSI
sends a SelectCheckpoint command. Initially, it con-
tains a null client ID. When the SSI receives the null
client ID, it generates a unique identifier and returns
it to the csI. Client IDs are made persistent at both
ends. If a client ID received by the SSI does not exist,
the SSI reuses the ID; the server does not allocate a
new ID. At the SSI, the client ID and the client port
number are used to uniquely determine the cache
checkpoints for a given client-host connection.

A practical problem with client IDs occurs when an
installation replicates an existing hard drive to cre-
ate a new system. This problem was not considered
during the design of EE but occurs frequently in prac-
tice. If the generated client ID is not first removed
from the hard drive, multiple actual clients may share
a common, supposedly unique, identifier. The server
cannot distinguish between a new session from a
cloned ID and an undetected restart of the original
owner of the 1D, and the results are unpredictable.
The automatic assignment of a new client ID to one
of the offending systems is a possible enhancement.

Checkpoint selection during session establishment.
During session initiation it is necessary to determine
which cache checkpoint to activate. When a mobile
user starts a session with a particular host applica-
tion, the CSI must identify the checkpoint that was
created during a previous session with the same ap-
plication (i.e., via the same client port) and then com-
municate this checkpoint identifier to the SSI so that
it can activate the corresponding checkpoint instance.

Activating a checkpoint. During session startup, the
CSI activates its most recent checkpoint with the ex-
pectation that the SSI can do likewise. Activating a
checkpoint means that the checkpoint files are cop-
ied to temporary files that will serve as the active
cache during the lifetime of the session. The check-
point files themselves are never modified once cre-
ated. Next, the CSI sends a SelectCheckpoint com-
mand to the SSI and sets its state to checkpoint
response pending. Upon receipt of a SelectCheck-
point command, the SST attempts to locate the check-
point identified by the time stamp and checkpoint
number in the command. Theoretically, by design
of the checkpointing protocol, the SSI should always
find the checkpoint specified in the SelectCheckpoint
command. If found, a positive response is sent to the
csl. If, for some reason (e.g., media failure) the
checkpoint is not found, the SSI returns a “Not-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Found” response to the CSI, and creates a fresh ac-
tive cache. When the CSI receives the NotFound re-
sponse, it also starts with a fresh active cache, and
processing continues. Eventually, checkpoints will
occur to generate new checkpoint instances.

Multiple sessions to the same host. On VM (virtual
machine) and Mvs (Multiple Virtual Storage) sys-
tems, some users may have more than one user ID
and, therefore, can have multiple concurrent sessions
with the same host. With AS/400 systems, users may
have multiple sessions for the same user ID. With
modern emulators these sessions appear in separate
client windows. Therefore, it may be quite natural
and productive for a user to interactively switch
among various host applications by clicking differ-
ent emulator windows on the desktop.

One means for implementing multiple sessions to
the same host would be to specify multiple-session
configurations to the same host and assign different
client port numbers for each. However, this alter-
native was rejected because it substantially increases
client configuration and resource usage. It would be
necessary to define multiple emulator sessions and
their corresponding CSI definitions (as shown in Fig-
ure 4). Each defined session would require its own
set of cache resources and, thereby, could substan-
tially increase the amount of disk space required. We
developed a much more user-friendly and resource-
efficient solution that allows the creation of multi-
ple concurrent sessions to the same host using a sin-
gle client port number. However, this approach raised
a number of challenging questions: Does each such
session have its own cache and checkpoints? How
are these sessions identified and bound to the proper
cache? Must the checkpoint activity be synchronized
across the different sessions? Are any additional con-
figuration parameters needed?

All sessions between the same client and host that
have the same client CSI listening port share com-
mon cache checkpoint files. However, each session
gets its own active cache when the session is started.
Checkpointing on each session is done indepen-
dently. The last session to execute a successful check-
point creates the latest checkpoint. However, since
the checkpoint files are shared, race conditions can
occur either when one session is being established
and another is checkpointing or when more than one
session is attempting to checkpoint at the same time.

One of the goals of our design was to never require
one session to wait for the completion of a check-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

point in progress on another session. In a wireless
environment this wait could take seconds. The only
time a checkpoint is not available for activation is
when it is being created. The €SI and sSI allow for
two checkpoints to exist: CP0 and CP1. Persistent state
information is maintained that records the check-
point states for a given client ID. A labeling scheme
is used to guarantee that at least one checkpoint is
available for activation. Only one checkpoint is per-
mitted to be in progress at any given time, ensuring
that at least one of the two checkpoints will be free
(unlocked) at all times.

If cpo is the oldest checkpoint, then the next check-
point request will result in the construction of a new
CP0 (cp0’), and CP1 will be marked as the oldest
checkpoint. CP1 will be activated as the active cache
for any new sessions that are started during the
checkpoint processing. The files associated with CP0
are deleted when the prepared cache is committed.
At the CSI, after the positive acknowledgment is re-
ceived from the SSI and the new checkpoint is com-
mitted, the files associated with CP1 are deleted. At
the ss1, the files associated with CP1 are deleted when
a confirmation message is received from the CSI as
described previously. The cP1 files are retained un-
til confirmation is received in order to guarantee that
there is a valid checkpoint pair at the CSI and SSI even
in the event of checkpoint failure.

If a cs1 attempts a checkpoint and checkpoint pro-
cessing is in progress for another session with the
same client port number or the checkpoint is being
activated for session startup, the checkpoint request
is simply aborted, and normal processing continues.
This polite, laissez-faire philosophy toward check-
pointing is based on the recognition that the exact
timing or even the content of a checkpoint is not cru-
cial as long as the checkpoints are created with rea-
sonable frequency. What is crucial is that the check-
point protocol guarantee that the checkpoints
created at the CSI and SSI are perfectly synchronized
and that the protocol does not introduce noticeable
delays in normal session traffic. In all likelihood dif-
ferent sessions will win the checkpoint race over a
reasonable period of time.

Implications. The above design has the virtues of sim-
plicity, nonblocking, and continuous availability. It
is guaranteed that session initiation is always pos-
sible, that very few resources are locked for very long,
and that no waiting is required for cache checkpoint-
ing. In the event of failure to activate a checkpoint,
processing starts from scratch with empty caches.

HOUSEL AND SHIELDS 395

However, at first glance it seems to have one major
deficiency. Namely, if we assume that different ses-
sions are dedicated to different host applications, one
might expect that the cache buildup for one appli-
cation would not be effective for use by other con-
currently running applications. In the above design,
the latest checkpoint would reflect the activity of the
application running on a given session. This has not
proven to be a problem in practice, possibly because
there are many common segments across disparate
applications (e.g., log-on screen). If it is important
for an application to have its own dedicated cache,
the user can simply configure a separate session to
the same host with a different client port number.
Alternatively, assuming a common client listening
port for all applications to the same host, a user may
initially execute his or her suite of common appli-
cations sequentially, and the effect will be to form
a union of the respective caches. This might be best
done in a wireline modem or LAN environment to
prime the cache. Subsequently, when multiple ses-
sions to the same hosts are constructed in a wireless
environment, the cache will contain a representative
set of segments for all the applications. Over time
the cache will become biased toward the most fre-
quently used application—a desirable effect.

The cache manager. The cache manager is the soft-
ware component that allocates and deallocates cache
space and stores and retrieves variable-length seg-
ments to and from the cache. This cache had to meet
a number of requirements:

* Ability to store variable-length segments (from 16
to 4000 bytes).

e Efficient random keyed access to the data. Each
segment is typically small (e.g., 100 bytes). It is im-
portant to quickly access a given segment as a func-
tion of its key and minimize disk 1/0, particularly
for frequently referenced segments.

¢ Bounded in size and self-organizing. Since a ses-
sion may run an indeterminate length of time, a
means to reclaim space had to be provided when
the cache becomes full. An LRU algorithm was im-
plemented to delete the oldest segments when the
cache became full.

* Persistent across sessions. The cache data had to
be persistent so that the benefits accrued from cach-
ing on one session (from a given client/sS1/Telnet
server) could be carried over to the next session.

The main components (objects) of the cache man-
ager are shown in Figure 7.

396 HOUSEL AND SHIELDS

An EE cache consists of three files: a segment store,
anindex store, and a state file. Each store is comprised
of a set of fixed-length blocks, and BlockManager is
the base class that is responsible for managing the
blocks. The state file pertains to cache checkpoint-
ing discussed above.

The SegmentCache, a subclass of BlockManager, sup-
ports the ability to store variable-length data seg-
ments using one or more blocks of the segment store.
In object-oriented terminology, a segment store is
an instance of the SegmentCache class.

The B-Tree class, also a subclass of the BlockMan-
ager, implements a B-Tree index, where each block
corresponds to a B-Tree node. Each B-Tree entry
is composed of a segment key and the address of the
segment in the segment store. The segment key is
a 32-bit CRC value computed for its respective seg-
ment. The address of a segment is the block number
of the first block of a segment in the segment store.

The IndexCache is a container class that consists of
a B-Tree object and a SegmentCache object. The
IndexCache provides the interfaces to the €SI and
SSI components that access the cache. It is respon-
sible for coordinating the activity across the segment
and index stores; e.g., the index must be updated
when a new segment is written.

BlockManager. The primary methods of the Block-
Manager are shown in Figure 7. When a block is al-
located, it is marked in use, and ownership is trans-
ferred to the calling application. When a block is
deallocated, ownership is transferred back to the
BlockManager (i.c., placed on a free-block list). A
BlockManager store is pageable. Blocks are paged
to or from real memory so that file 1/0 is eliminated
for blocks that are resident. Typically, around 20 per-
cent of the blocks accessed require a file I/0 oper-
ation. The flush method forces all “dirty” pages to
disk whenever a cache checkpoint is required.

The block size and the number of blocks are input
parameters to the BlockManager constructor. The
segment store typically consists of many small seg-
ments. Each segment is stored in an integral num-
ber of blocks. And the block size is small (48 bytes)
to minimize access time and reduce wasted space.
There may be unused space in the last block of a
variable-length segment. The block size for the in-
dex store is tuned to the size of the B-Tree node
which is defined by the maximum number of keys
(degree) per node. Currently the degree of the B-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Figure 7 Cache manager object

Indexed Cache
resolveSegment, prepare, getPrepareCPTime, ...

insertKey,
searchKey,
deleteKey,
flush
’ ‘ ’ ‘ ’ readSegment,
& TREE writeSegment,
SegmentCache deleteSegment,
setindexCache,
checkPoint
BlockManager BlockManager

allocBlock, deallocBlock
readBlock, writeBlock
allocBlockChain,
deallocBlockChain,
flush, ...

Tree is 15, meaning that a node can hold a maxi-
mum of 29 keys and have up to 30 successor nodes.
Thus, the BlockManager permits the block access
(and paging) to be tuned to the particular usage de-
sired.

We wanted to avoid having to preallocate the max-
imum cache size permitted for all users. Some users
may have more repetitive usage than others, and
their caching demands may vary greatly. To handle
this situation, we implemented a method to “grow”
the cache incrementally. An initial allocation is spec-
ified when the segment store is created; subsequently,
as the current allocation becomes full, space is in-
crementally added. This process repeats until a max-
imum allocation is reached, and then the LRU
algorithm is used to free old segments when new
segments are to be stored.

SegmentCache. In the SegmentCache, variable-
length segments are allocated over one or more
blocks. These blocks are chained together to form
a block-chain. Each allocated segment is placed on
an LRU chain when it is created (written). Each time
a segment is referenced, it is moved to the head of
the LRU chain. When the cache is filled, a predefined

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

percentage of the oldest segments are freed; i.e., all
the blocks in the block chain of each freed segment
are deallocated. The setIndexCache method is used
to bind a B-Tree index to the segment store. It is
called when an instance of IndexedCache is created.
The segmentCache object needs to be aware of its
indexes so that the respective index entries can be
deleted when a segment on the LRU chain is de-
allocated. It is possible to associate multiple indexes
with a segment store, but we only use one.

IndexedCache. The IndexedCache class ties together
the segment store and its index store. The creation
of an IndexCache object causes an active cache to
be instantiated either by copying the latest check-
point files to working temporary files or by opening
new files if no checkpoints exist. When an Indexed-
Cache object is destroyed, the corresponding active
cache files are deleted. That is, the currently “active”
cache space is deleted. Persistence is achieved by pe-
riodically taking checkpoints, which guarantees sav-
ing a consistent copy.

The resolveSegment method accepts a data segment
buffer and returns the address of the segment in the
cache or a NOT-FOUND return code if the segment

HOUSEL AND SHIELDS 397

Figure 8 Session status display

Seszszion Status EHE
Host: 967 43.72 Start Time: 08:54: 26

Last Activity: 10:6E:04

Statiztics
Tatal Last

Client -» Server [408)
Client <- Server [520)

3351 -» 3870
EY3649 <- 74438 5334 <- 147

LCloze i

Cancel Sezzion Help

cannot be found. The resolveSegment processing
includes: computing the segment key (i.e., CRC),
searching the B-Tree, and writing the segment in the
cache if it was not found. Writing the segment in the
cache includes writing the data into the segment store
and inserting the key and address of the segment in
the index.

The prepare method is called to prepare the cache
for making a checkpoint. The BlockManager flush
method is called to force all dirty pages to the seg-
ment store and the index files, and the file flush op-
eration is called to force all file buffers to disk. Fi-
nally, the state file of the cache is updated to indicate
that the current active cache is in the prepared state.

Emulator Express performance

New users are often amazed at the responsiveness
of applications when using Emulator Express. Com-
ments such as “this is faster than my office LAN” are
not uncommon, even though the user is using an ap-
plication from a car-mounted mobile terminal.

EE includes a status display so that the user may dis-
play the data traffic counts for a session as shown in
Figure 8. Both the raw counts sent to and from the
application as well as the amounts sent between the
EE CSI and sSI are shown. Total counts in each di-
rection as well as the count and direction for the last
message are displayed. The display shown in Figure
8 indicates total traffic from the host of some 674
kilobytes (KB), whereas only 74 KB were actually
sent between EE SSI and CSI, or a reduction of ap-
proximately 9:1. Note that the last message of 147

398 HOUSEL AND SHIELDS

bytes was all that was transferred instead of the 5334
bytes needed to display the screen shown in Figure 9.

The reductions seen for different application sets vary
widely. Ratios between 5:1 and 10:1 are common
over a complete session, with occasional figures as
high as the 36:1 measured above for individual
screens with high amounts of repetition. Note also
that inbound data from CSI to SSI may slightly in-
crease where input is mostly an attention key with
no user data input as is the case with the illustration
shown here. However, the resulting data are still
much smaller than outbound data, and any signif-
icant user input will generally see compression have
a noticeable effect on inbound data.

The AS/400 system supports both 3270 and 5250 ap-
plications. We have done some limited measure-
ments with scripts running the same application from
both TN3270 and TN5250 connections and found
that even though the 5250 connection results in as
much as 50 percent more outbound data, EE reduces
the SSI-to-CSI data transfer to about the same final
amount regardless of whether the 3270 or 5250 data
stream is being used.

To illustrate the effectiveness of EE, we performed
some measurements with a script that does several
telephone directory lookups followed by completion
of a travel expense account. The script was recorded
with the 1BM eNetwork Personal Communications
(pcoM) emulator program and includes delays be-
tween output and the following input such as occur
in normal interactive usage. Response time summa-
ries are shown in Figure 10.

We used the ARDIS packet radio (wireless) commu-
nications network and the IBM eNetwork Wireless
Client Version 4 along with the IBM eNetwork Wire-
less Gateway Version 4 (predecessor products to the
currently available SecureWay Wireless Client and
SecureWay Wireless Gateway) for the radio runs,
whereas we used the former 1BM Global Network
(IGN) at several different connect speeds for the
dial-up runs. Runs were made with and without EE,
and these are designated as express or native, respec-
tively. Normally, the IBM eNetwork Wireless Client
compresses transmitted data. For comparison we
also did the native radio runs with this compression
disabled. For all the runs with EE we disabled the
compression in the eNetwork Wireless Client since
EE already compresses the data. For the dial-up con-
nections we did not do anything to disable any mo-
dem compression. All runs were made on a week-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Figure 9 3270 screen

|
o ~a T

1
e

— = -
= =
[

October

[mp BT N S R

F3 Holiday
F9 Help

Connected to remote zervershost 127.0.0.1 uzing port 17023

0= Inoa

n

I

December
T

p
1

n

end or during off-peak hours to minimize the effects
of heavy network congestion. Data shown are the
average of two runs performed at separate times over
a period of four days. The averages were also tab-
ulated for each run, and the differences between each
run of a pair were found to be quite small. EE runs were
all made with an existing (warm) cache. Response times
were obtained by analyzing trace data from the PCOM
emulator and represent the response from an input ac-
tion to the last output action for that input.

We have not attempted to quantify the impact of er-
rors or congestion in a radio network on the EE user
because such measurements would require addi-
tional information from the appropriate carrier. In
normal use we have noticed degradation in response
time on some networks during certain periods of the
day. On some occasions this degradation was suf-
ficient to prevent us from completing a script in na-
tive mode at all, although we were able to complete
the script when using EE.

By reducing the amount of output data as much as
it does, EE obviously reduces the time required to

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

transmit messages and thus significantly improves re-
sponse time as is evident in Figure 10. The script had
approximately 60 interactions, so each second of re-
sponse time saved is a minute of time saved for the
total job.

Over slow links with variable delays, such as fre-
quently seen with radio networks, this reduction in
transmission time is doubly important. Delaying a
short message for two or three times the transmis-
sion time does not usually trigger retry activity,
whereas delaying a long message for even part of its
transmission time may trigger retry activity that can
easily spiral out of control. Thus, an EE user will see
more consistent behavior and will also suffer less
from extensive or irrecoverable retry activity. Fig-
ure 11 shows the distribution of response times us-
ing EE over the ARDIS network without eNetwork
Wireless compression and also using a native PCOM
session both with and without the eNetwork Wire-
less compression. A few responses for the native un-
compressed connections fell outside the range shown
here, being longer than 20 seconds, whereas approx-

HOUSEL AND SHIELDS

399

Figure 10 Response time comparison

EXPRESS DIALUP 19200 [|
EXPRESS DIALUP 9600 [|

EXPRESS DIALUP 4800 [|
EXPRESSDIALUP2400 [|
NATVEDIALUP 19200 [|
ePRessrao0 [

NATIVE DIALUP 9600 | \

NATIVE DIALUP 4800 |

NATIVE RADIO COMPRESSED ‘

NATIVE RADIO UNCOMPRESSED ‘

NATIVE DIALUP 2400 |

0 2 4

6 8 10 12 14

AVERAGE RESPONSE TIME IN SECONDS

imately 75 percent of the EE responses were received
within three seconds.

For the script that we used, approximately 135 KB
of data are sent from the host for each session. The
combined effects of EE caching and compression re-
duced this amount to just under 10 KB. The reduc-
tion of 13:1 was achieved here using the same data
for each run. Actual production usage with 3270 ap-
plications has shown data reductions typically be-
tween 5:1 and 10:1. The cache files occupied approx-
imately 220 KB of disk space and did not reach their
configured maximum size of 512 KB.

The results shown in this section are measurements
of one environment. Many factors influence the per-
formance of EE systems, including the speed and re-
liability of the connection between the client and the
server systems. Other factors include the nature of
the workload or application, the SSI load, the net-
work load between the SSI and the host or Telnet
server, and the host load, to name a few. This lim-
ited set of experiments represents only a small sam-
ple of the possibilities of EE. Actual measurements
in other environments may vary.

Conclusions

This paper has described novel technologies that
make it possible to run general 3270 and 5250 em-
ulation from a mobile unit over very low-bandwidth

400 HOUSEL AND SHIELDS

wide-area wireless networks. These technologies
(data stream caching and Telnet protocol reduction)
combined with traditional compression are described
in the context of their implementation in the IBM Em-
ulator Express, part of the IBM SecureWay wireless
product suite. Performance measurements show that
Emulator Express enjoys a significant compression
ratio for Telnet traffic and improves response times
on links up to 56 Kbps.

This work raises the question: Should we investigate
the possibility of adding new (optional) protocol to
the TN3270 and TN5250 Telnet regimes that would
support the Emulator Express optimizations? Such
extensions would require emulators and Telnet serv-
ers to support the compression, caching, and pos-
sibly the protocol reduction functions provided in
the CSI and sSI, respectively. There are arguments
for integrating these functions into Telnet: First,
these optimizations may become much more perva-
sive across the Telnet domain, since they would prob-
ably be implemented by various emulator and Tel-
net server vendors. Second, including these optimi-
zations as part of Telnet would yield a more efficient
system since the three TCP/IP connections required
by EE (for a single session) would be replaced by a
single connection. Third, these optimizations would
work in concert with the transport layer security (TLS)
enhancement recently added to Telnet.? TLS defeats
the optimizations described here because the CSI and
SSI require the emulator data streams to be in the

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Figure 11

Distribution of response times over radio communications

60

50

40 —

30

20

NUMBER OF RESPONSES

[EXPRESS
[0 NATIVE/COMPRESSED
] NATIVE UNCOMPRESSED

1: 0 EHTDHL6[]8[HJEJJD%:E - - B

16 18 20

RESPONSE TIME IN SECONDS

clear. If the EE optimizations were built into the
TN3270 and TN5250 protocols, the optimizations
could be applied before and after the data stream
is encrypted and decrypted, respectively.

A key advantage of the current approach is that a
single implementation can offer optimization trans-
parently to any emulator session; i.e., no changes to
any emulator or Telnet server are required. We ar-
gue that adequate security in most practical cases is
possible with the EE model if we encrypt the CSI-SSI
session. Since the CSI is coresident with the emula-
tor, there is negligible exposure of compromise over
the emulator or CSI session. If we presume that the
ssIresides in a secure domain, either colocated with
the Telnet server or resident on the secure side of
a firewall, there is minimal exposure of compromise
for data flowing on the SSI and Telnet-server con-
nection. As an aside, we note that the data stream
on the CSI-SSI session consists largely of arithmet-
ically compressed references to cached data and is
not easily readable by a casual eavesdropper. Al-
though this situation would not deter a serious at-
tack, it may well be sufficient protection for some
applications where absolute privacy is less important.

Perhaps the most far-reaching aspect of this work

is the development of the data stream caching tech-
nology. In principle, this technology can be applied

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

to venues other than emulation and, therefore, can
contribute toward improving efficiencies for a wide
range of distributed network applications.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references

1. IBM SecureWay Wireless Software, product documentation on
the IBM SecureWay wireless software products, including Se-
cureWay Wireless Client and Gateway and eNetwork Em-
ulator Express, can be found at http://www.software.ibm.com/
enetwork/mobile/library.

2. IBM Host-On-Demand Certified “100% Pure Java™” Web-
to-host access software runs smoothly on all Java-enabled sys-
tems; see http://www.networking.ibm.com/netmsg22.html.

3. CICS Transaction Gateway, Version 3.0, Administration and
Programming, SC34-5448-00, IBM Corporation (September
1998); see http://www.software.ibm.com/ts/cics/library/
manuals.

4. SecureWay Host Publisher, Version 2, G325-3937-00, IBM Cor-
poration (September 1999).

S. IBM eNetwork Personal Communications Version 4.3 for Win-
dows 95, Windows 98, and Windows NT Host Access Class Li-
brary, SC31-8685, IBM Corporation (January 1999).

6. T.Brawn and S. Gunn, Internet Draft draft-ietf-tn3270e-ohio-
01.txt, IETF TN3270E Working Group (April 1999).

7. T. Imielinski and B. R. Badrinath, “Mobile Wireless Com-
puting: Challenges in Data Management,” Communications
of the ACM 37, No. 10, 18-28 (October 1994).

HOUSEL AND SHIELDS

401

8. ARTour Emulator Express Server for ALX, Version 2, GC31-
8299-00, IBM Corporation (March 1996).

9. ARTour Emulator Express Server for OS/2, Version 2, GC31-
8298-00, IBM Corporation (March 1996).

10. B. Housel and D. Lindquist, “WebExpress: A System for Op-
timizing Web Browsing in a Wireless Environment,” Proceed-
ings of the Second Annual Conference on Mobile Computing
and Networking (1996), pp. 108-116.

11. B.C.Housel, G. Samaras, and D. B. Lindquist, “WebExpress:
A Client/Intercept Based System for Optimizing Web Brows-
ing in a Wireless Environment,” Mobile Networks and Appli-
cations 3, No. 4 (January 1999).

12. H. Chang et al., “Web Browsing in a Wireless Environment:
Disconnected and Asynchronous Operations in ARTour
WebExpress,” Proceedings of the Third Annual ACM/IEEE
International Conference on Mobile Computing and Network-
ing (1997), pp. 260-269.

13. M. Nelson, The Data Compression Book, M&T Publishing
Inc., New York (1992).

14. J. Postel and J. Reynolds, Telnet Protocol Specification, RFC
854, IETF Network Working Group, NIC 18639 (May 1983).

15. P.Rehkter, Telnet 3270 Regime Option, RFC 1041, IETF Net-
work Working Group (January 1998).

16. C. Graves, T. Butts, and M. Angel, TN3270 Extensions for
LUname and Printer Selection, RFC 1646, IETF Network
Working Group (July 1994).

17. J. Penner, TN3270 Current Practices, REC 1576, IETF Net-
work Working Group (January 1998).

18. B. Kelly, TN3270 Enhancements, RFC 2355, IETF Network
Working Group (January 1988).

19. P. Chmielewski, 5250 Telnet Interface, RFC 1205, IETF Net-
work Working Group (February 1991).

20. M. Boe, Internet Draft draft-ietf-tn3270e-telnet-tls-02.txt, IETF
TN3270E Working Group (July 1999).

Accepted for publication December 3, 1999.

Barron C. Housel Chapel Hill, North Carolina (electronic mail:
bchousel@yahoo.com). Dr. Housel recently retired from IBM as
a Senior Technical Staff Member. He joined IBM in 1964 after
receiving an M.S. in engineering science from the University of
Oklahoma. He received an M.S. in computer science from Stan-
ford University in 1968 and a Ph.D. in computer science from
Purdue University in 1973. He was active in the development of
database technology with IBM Research in San Jose, California,
from 1973 to 1977. During the years 1977 to 1978 he was a guest
faculty member in the Computer Science Department at Purdue
University. In 1979 Dr. Housel joined IBM in Raleigh, North
Carolina, where he contributed to the design and development
of SNA and networking products. He has been involved in the
development of wireless products and technology since 1995. He
was a member of the IBM Academy of Technology and is a mem-
ber of the IEEE and ACM professional societies. Dr. Housel has
18 patent filings and 25 patent publications.

lan Shields IBM Pervasive Computing Division, P.O. Box 12195,
Research Triangle Park, North Carolina 27709 (electronic mail:
ishields@us.ibm.com). Mr. Shields joined IBM in Canberra, Aus-
tralia, as a systems engineer in 1973 where he worked on com-
munications systems for several Commonwealth Government ac-
counts. He moved to Montreal, Canada, in 1979 where he worked
in the Communications Systems Marketing Center and the East-
ern Region Field Support Center and developed an NCP user
line control for Lotto Quebec as well as providing other com-

402 HOUSEL AND SHIELDS

munications support. He moved to Raleigh, North Carolina, in
1984 and rejoined IBM in 1987 at the Research Triangle Park
laboratory where he is currently a senior programmer in the Per-
vasive Computing Division. Mr. Shields has worked on develop-
ment of custom code as well as mainline products and has spent
several years working on products designed for use with radio
networks. He has several patent filings and three issued patents.
He studied pure mathematics and philosophy at the Australian
National University and graduated with a B.A. (Hons) in 1974.
He received an M.S. in computer science from North Carolina
State University in 1995 and is currently pursuing a Ph.D. there.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

