
Bridging the framework
modeling and
implementation gap

by R. Bunting

The IBM SanFranciscoTM initiative has established
a tools strategy to address the complexities of
framework development, including repetitive
coding tasks, consistent coding style, and an
overall compliance with the framework
implementation. To address these complexities,
the strategy includes an evolutionary approach
to cross-tool and cross-tool-provider integration,
the ability to address the needs of multiple
development audiences, and the existence of
multiple development scenarios. Rose SF Bridge,
from METEX Systems Inc., implements the
principles of this strategy with its integrated set
of tools for SanFrancisco application
development. This tool set helps application and
framework developers to extend the
SanFrancisco framework in conjunction with
tools for visual modeling and JavaTM

development.

SanFrancisco* supports an iterative development
cycle, as is customary with object-oriented de-

velopment. Various tools, some from IBM, some from
other vendors, simplify the development of SanFran-
cisco-based applications.1 The use of visual model-
ing, a common “best practice” of software design,
is supported via Rational Rose**.2 The visual model
is recorded in the Unified Modeling Language
(UML).3 The modeling and subsequent code gener-
ation is simplified by the framework models supplied
with SanFrancisco and tools including those from
METEX contained in Rose SF Bridge,4 the subject of
this paper.

The SanFrancisco Roadmap

The development approach is documented via the
SanFrancisco Roadmap, 5 which guides developers

through the development cycle and provides a set
of activities and standard templates to document a
domain’s business processes, tasks, and scenarios.
Throughout the development cycle, the activity of
mapping is performed, where the development ar-
tifacts are compared with UML models that document
the SanFrancisco frameworks. The development cy-
cle steps are:

● Collect and document the requirements
● Analyze the requirements
● Design the code
● Generate and test the code

For gathering requirements, the roadmap suggests
using either process modeling or use case modeling.
Both methods are supported by Rational Rose.

During the analysis step, more details are supplied
about users’ activity and the business logic required.
An analysis object model is created that identifies
the domain objects and their static relationships. Sce-
narios are documented via textual descriptions and
analysis-level object interaction diagrams.

During the design step, implementation decisions are
added to the analysis results. The analysis model is
extended with design details, and the application sce-
narios and the user interactions are refined with im-

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 0018-8670/00/$5.00 © 2000 IBM BUNTING 267

plementation details. A detailed description of each
application scenario and a complete design model
can be created and managed in Rational Rose. The
design model is then used as input to a code gen-
erator.

The code generator uses the static model, along with
the framework rules and design patterns, to create
the SanFrancisco objects, eliminating much of the
repetitive nature of framework-based coding.

What is Rose SF Bridge?

Rose SF Bridge assists SanFrancisco developers in
new development, or in migrating existing SanFran-
cisco-based models to Rose SF Bridge-based mod-
els. The product includes the SF Code Generation
Wizard, the SF Modeling Wizard, and the SF Model
Upgrade Tool.

The Rose SF Bridge is designed to work with the Ra-
tional Rose visual modeling tool to assist in the cre-
ation and refinement of UML models. Rational Rose
allows developers to define and communicate a soft-
ware architecture. A clearly defined architecture im-
proves communication among team members, maps
business processes to software architecture, and
makes critical design decisions explicit. The Rose SF
Bridge links the visual models to source code, pro-
viding an integrated development environment for
SanFrancisco. Currently code generation support is
present for both IBM’s VisualAge* for Java**6 and
Inprise/Borland’s JBuilder.7 Rose SF Bridge is cur-
rently available for SanFrancisco versions 1.2, 1.3,
and 1.4, and METEX Systems will continue to update
the code generation rules of Rose SF Bridge as the
SanFrancisco project develops.

Why use Rose SF Bridge?

Because of the complexity associated with a large
framework, a component-based visual modeling tool
is needed. Such tools capture the structure and be-
havior of architectures and components, show how
the elements of the system fit together, hide or ex-
pose details as appropriate for the task, maintain con-
sistency between a design and its implementation,
and promote unambiguous communication. Rose SF
Bridge is an integrated toolkit for SanFrancisco de-
velopment and bridges SanFrancisco’s application
framework, connecting the UML model to generated
Java code. Using the Rose SF Bridge simplifies the
SanFrancisco-based development process. The Rose
SF Bridge, along with Rational Rose, assists the de-

veloper in overcoming the complexities of object-ori-
ented development, thus simplifying SanFrancisco-
based development.

How does Rose SF Bridge work?

The Rose SF Bridge is integrated with Rational
Rose8 and with both VisualAge for Java and
JBuilder. The developer interacts with a UML rep-
resentation of the SanFrancisco framework. An in-
ternal rules engine supports numerous design and
code patterns specific to the SanFrancisco program-
ming model. The rules engine can rapidly create and
extend components that work within the SanFran-
cisco frameworks by generating implementation code
based on a high-level design model.

Compared to the SanFrancisco code generator, the
Rose SF Bridge code generator is more tightly in-
tegrated with Rational Rose. In addition, it can per-
form an “assisted merge” during code generation,
which allows design changes made in the Rose model
to be propagated to existing source code without loss
of existing method bodies. This eliminates the need
to manually merge newly generated code with ex-
isting code. As the application design evolves, the
model and code remain consistent.

The Rose SF Bridge Modeling Wizard

The Rose SF Bridge captures semantic information
about classes used and extended within the SanFran-
cisco framework. The modeling wizard component
encourages SanFrancisco-compliant design and au-
tomates the setting of code generation properties
based on the underlying framework programming
conventions. The workflows of the modeling wizard
include (1) creating a new SanFrancisco-compliant
class, (2) extending or modifying an existing class,
and (3) creating an aggregation (relationship) be-
tween two existing classes. The dialogs of the wizard
will vary based on the chosen workflow.

Our example shows the new class creation workflow.
The wizard is launched without an existing class se-
lected, and the “Class Type Selection” screen is dis-
played. (See Figure 1.)

The user is prompted to select one of the basic San-
Francisco classes: Entity, Dependent, Command, or
Controller.

Here “Create Entity Subclass” is selected and the
“Next” button pressed to advance to the “Class Dec-
laration” screen (Figure 2).

BUNTING IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000268

Figure 2 Each class is named, has a custom pluralization, and resides within some package.

Figure 1 The Class Type Selection window of the Rose SF Bridge Modeling Wizard

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BUNTING 269

Here, properties common to all SanFrancisco classes
are entered including:

● Class name
● Custom pluralization. The default plural form

(class name 1 “s”) will be filled in automatically.
If the class has a nonstandard plural (e.g., com-
pany 3 companies), the plural can be entered
here. Pluralizations are used for collections of ob-
jects of the class.

● Package. The user can type in the package name
or select a package via the “Browse . . .” button.

● Extends. This field will be automatically filled in
with the name of the selected class. The browser
can be fitted with a filter to browse only classes
that extend directly or indirectly from the selected
class. This allows the user to extend indirectly from
the selected class.

● Implements. The user can type in, or select via the
“Browse . . .” button, the interfaces that the class
will implement.

Once these properties have been set, the “Next” but-
ton is pressed to proceed to the next screen, which

contains type-specific information. These type-spe-
cific properties vary depending on the basic SanFran-
cisco class originally selected. Figure 3 shows prop-
erties specific to the Entity basic class.

Properties are also set for the Command and Con-
troller basic classes. There are no type-specific prop-
erties associated with the Dependent basic class. If
the user is creating or modifying a class derived di-
rectly or indirectly from the Dependent class, the user
will be immediately presented with the “SanFran-
cisco Documentation” screen. (See Figure 4.) Here
values are entered for: the version number, the pur-
pose, pre- and post-conditions, and any comments.

When “Next” is pressed from the “Documentation”
screen, the wizard advances to the “Summary”
screen. This screen (Figure 5) shows all properties—
generic and type-specific—for review prior to class
creation. If changes to the class’s properties are re-
quired, the “Back” button is pressed; otherwise the
“Finish” button is pressed to complete creation of
the class. Figure 6 shows the new class “Contact” in
the Rose model. The developer is now responsible

Figure 3 Properties specific to the SanFrancisco Entity class and its subclass

BUNTING IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000270

Figure 5 Details of the class to be created

Figure 4 Documentation window

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BUNTING 271

for completing the class design, adding appropriate
attributes and operations to capture its business logic.
When design is complete, the class is ready for code
generation, as shown for the DeliveryType class in
the next example.

The Rose SF Bridge Code Generation
Wizard

Rose SF Bridge code generation is based on the tech-
niques9 of traditional language code generators;
however, these techniques of mapping a modeling
notation to the object model of the target language
have been enhanced to include flexible rule sets and
well-known design patterns supported in the San-
Francisco framework. Rational Rose is used to cap-
ture, and record in UML, semantic information about

classes used and extended within the SanFrancisco
framework. Using this information, the Rose SF
Bridge Code Generation Wizard follows rules derived
from the SanFrancisco programming model to gener-
ate implementation code specific to the foundation
layer of the framework. This code generation shields
the complexity of the framework and generates a sig-
nificant amount of implementation code that allows
the application to tie in to the foundation layer.

For this example, we show code generation for the
DeliveryType class from a sample application, “Get
Physical Sports Equipment” (GPSE). (See Figure 7.)
This class is the result of the application of detailed
class design. As the DeliveryType class is a subclass
of Entity, the SanFrancisco programming model dic-
tates the Abstract Factory design pattern will be ap-

Figure 6 A class created with the window Modeling Wizard and the corresponding properties in the Class Specification
window

BUNTING IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000272

plied to the specification class, resulting in three
classes in the implementation model, i.e., the Java
source code:

● Interface class: Java interface retaining the name
of the specification class (Delivery Type) and ex-
tending the interface of its superclass (Entity)

● Implementation class: Java class with the suffix
“Impl” appended to the specification class name
(DeliveryTypeImpl) and extending the implemen-
tation class (of Entity). The following mandatory
operations are declared on the implementation
class: toString, destroy, internalizeFromStream,
and externalizeToStream.

● Factory class: Java class with the suffix “Factory”
appended to the specification class name (Deliv-
eryTypeFactory).

Next, creation and initialization logic is added to
these three classes. One or more initialize methods
on the interface class, and create methods on the fac-
tory class, are created for each initialize operation
present on the specification class.

If loose coupling is selected on the specification class,
the parameters to the initialize method on the in-
terface class will match those found on the initialize
or create method on the specification class. If the
coupling property on the specification class is set to
either “tight” or “both,” the first parameter on the
specification initialize or create method is expected
to be the owning class for the tight coupling case.
If the coupling property is set to “both,” two initial-
ize methods will be created on the interface class for

Figure 7 The Rose SF Bridge code generator, launched from the Tools menu of Rational Rose

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BUNTING 273

each initialize method present on the specification
class.

For the implementation class, an empty construc-
tor, an uninitialize method, and an update method
are declared.

If the factory class exists, static create operations are
declared for every initialize operation on the spec-
ification class. If loose coupling is selected on the
specification class, one static create operation is de-
clared. If tight coupling is selected, two static create
operations are declared. If “both” is selected, all
three static create operations are declared. In ad-
dition, if tight coupling is selected, an abstract spe-

cial factory operation is declared for every initialize
operation on the specification class.

Figure 8 shows the Code Generation Wizard with
the “Rose Model to Java Source” configuration se-
lected as active. Configurations group together ex-
ecution “pipelines” of components. For example,
generating Java implementations as Java source code
files requires a different set of target components
than generating Java classes for the VisualAge for
Java repository. With a configuration set as active,
code generation proceeds by selecting the model el-
ements from the tree view of the master component
properties in the “Configure Components” window
and clicking “Apply.” Next, the target connection

Figure 8 DeliveryType class selected for generation

BUNTING IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000274

(i.e., base path directory) is set in the “Connection”
tab as shown in Figure 9 and once again, “Apply”
is pressed.

With the compulsory options set, the “Next” button
is pressed to advance to the “Step 2” dialog where
the generation is executed and monitored. The mas-
ter is the current Rose model selection and the tar-
get is Java source selection in C:\Source Code. Press-
ing “Compare” begins the process of exporting the
Rose model selection, interpreting its code gener-
ation properties, applying SanFrancisco program-
ming conventions, and exporting it to the Java source
code format. Then, the existing source code (if any)
is imported from the target directory and a prelim-
inary merge analysis takes place, where differences
are identified and merge actions are proposed.

Figure 10 shows this step of the code generation pro-
cess. Here we see that the generated files do not ex-
ist in the target model and hence the proposed merge
action is to add the files. Pressing “Apply” results in
the application of the merge actions. Check marks
indicate that the merge actions have been applied
successfully to the target model (i.e., the Java source
code).

The Appendix contains the code that was generated
from this activity. Notice that three classes have been
generated: one for the interface, one for the imple-
mentation, and one for creation (called the facto-
ry). Also, notice that actual method bodies are gen-
erated and not just method signatures or skeletons.
There is still some code required to complete de-
tails of the business logic that extends the framework;

Figure 9 Target Connection set to a directory where the implementation source will reside

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BUNTING 275

however, a significant savings in implementation ef-
fort was achieved using the code generator.

Now that source code exists in the directory spec-
ified by the target model, for subsequent generation,
as the design evolves, there may be more complex
merge actions. Figure 11 shows the generation pro-
cess once an additional attribute has been added for
the DeliveryType class. Notice that the merge ac-
tions are more complex than just adding an attribute,
because this attribute is referenced in a number of
locations within the target implementation; in par-
ticular the internalizeFromStream method difference
is highlighted. Once again, the value of the code gen-
erator is obvious and the power of incremental gen-
eration is evident. The alternative would be for a de-

veloper to manually search source code listings to
ensure the full impact of the additional attribute is
realized.

VisualAge for Java integration

In the previous section the “Rose Model to Java
Source” configuration was examined. As an alter-
native, a Rose model may be translated to the Vi-
sualAge for Java repository. For consistency and ease
of use, the steps are very similar, with the exception
of the target connection. Figure 12 shows this con-
nection setting.

In this case, the target identifies the Java servlet that
brokers communication between Rose SF Bridge and

Figure 10 Differences highlighted (left) and proposed merge actions displayed (right)

BUNTING IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000276

the VisualAge for Java repository. The launch of this
servlet is shown in Figure 13, which displays Visu-
alAge and the menu option to run the HTTP VA In-
tegrator. With the servlet, the user does not have to
perform the typical manual import/export steps of
transferring the source into the VisualAge for Java
repository.

The model upgrade tool

As some developers may want to modify code gen-
erated by the original IBM SanFrancisco code gen-
erator, METEX worked with IBM to provide a tool for
those developers. The SanFrancisco Model Upgrade
Tool performs the conversion necessary for models
originally designed for the IBM SanFrancisco code
generator to be processed by METEX’s Rose SF
Bridge.

The upgrade is performed in three steps:

1. Process “#directives” included in the documen-
tation field of the model elements. These were
used instead of the more standard code gener-
ation properties used by Rose SF Bridge.

2. Analyze and convert “create” and “initialize” op-
erations. “Create” operations are not necessary
when using the full features of Rational Rose,
such as the abstract property checkbox.

3. If desired, remove #directives.

Summary

As many framework developers and users have ob-
served, the ability to quickly understand the archi-
tecture and mechanisms within a framework, and
then apply these elements while developing with a
framework, is critical. It is essential that a proven
development process and a set of mature tools be
applied in a holistic manner. We have seen how Rose
SF Bridge integrates with the Rational Rose visual

Figure 11 Master and target differences and proposed merge actions

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BUNTING 277

Figure 12 Setting the target connection for the VisualAge for Java repository

Figure 13 VisualAge for Java: running the HTTP VA Integrator

BUNTING IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000278

modeling tool to assist in the creation of UML mod-
els that enhance development documentation and
provide input for code generation, and also how to
reduce development time by applying a set of mod-
eling and code generation wizards. Visual modeling
allows developers to define and communicate a soft-
ware architecture, resulting in: accelerated develop-
ment, by improved communication among various
team members; improved quality, by mapping bus-
iness processes to software architecture; and in-
creased visibility and predictability, by making crit-
ical design decisions explicit visually. As part of the
complete set of tools, Rose SF Bridge supplements
basic visual modeling tasks by providing assistance
in defining and modeling SanFrancisco-specific
classes and generating code for these classes. This
tool set assists the developer in overcoming complex-
ities of object-oriented and framework development
through a series of wizards, builders, and design and
code generation rules aimed at simplifying SanFran-
cisco-based development.

Appendix

This code was generated by the Rose SF Bridge code
generator.

DeliveryType interface.
DeliveryType.java

package GPSE;

import com.ibm.sf.gf.*;
import com.ibm.sf.cf.*;

/**
* <TT>
*
Purpose:
*
Description:
*
Note: This documentation has been automatically
* generated.
* </TT>
* @version 1.3.4
* @since JDK1.0
*/
public interface DeliveryType extends DescribableDynamicEntity {

/**
* The fully qualified name of this Interface class
*
* Note: This documentation has been automatically generated.
*/
public static final String INTERFACE_NAME5

''GPSE.DeliveryType'';
/**
* Gets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return DCurrencyValue
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public DCurrencyValue getFlatRate¼ throws

com.ibm.sf.gf.SFException;
/**
* Sets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @param DCurrencyValue newFlatRate <I>(Mandatory)</I>
* @return void
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public void setFlatRate(DCurrencyValue newFlatRate) throws

com.ibm.sf.gf.SFException;
/**
* Gets the attribute directly
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return DCurrencyValue
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*
RESTRICTED : This method is NOT for client

use
*/
public DCurrencyValue getFlatRateForRestrictedUse¼ throws

com.ibm.sf.gf.SFException;
/**
* Gets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return int
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public int getNumberOfDays¼ throws com.ibm.sf.gf.SFException;
/**
* Sets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @param int newNumberOfDays <I>(Mandatory)</I>
* @return void
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public void setNumberOfDays(int newNumberOfDays) throws

com.ibm.sf.gf.SFException;
/**
* Gets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return boolean
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public boolean getExpedite¼ throws com.ibm.sf.gf.SFException;
/**
* Sets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @param boolean newExpedite <I>(Mandatory)</I>
* @return void
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public void setExpedite(boolean newExpedite) throws

com.ibm.sf.gf.SFException;
/**
*
*
Assumptions:

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BUNTING 279

*
Note:
* @param DeliveryTypeController owner <I>(Mandatory)</I>
* @param DescriptiveInformation description

<I>(Mandatory)</I>
* @param DCurrencyValue initFlatRate <I>(Mandatory)</I>
* @param int initNumberOfDays <I>(Mandatory)</I>
* @return void
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*
RESTRICTED : This method is NOT for client

use
*/
public void initialize(DeliveryTypeController owner,

DescriptiveInformation description, DCurrencyValue initFlatRate, int
initNumberOfDays) throws com.ibm.sf.gf.SFException;

/**
*
*
Assumptions:
*
Note:
* @param DTime placeDate <I>(Mandatory)</I>
* @return DTime
*
Result:
*
PreConditions:
*
PostConditions:
*/
public DTime calculateDeliveryDate(DTime placeDate);

}

DeliveryType implementation.
DeliveryTypeImpl.java

package GPSE;

import com.ibm.sf.gf.*;
import com.ibm.sf.cf.*;

/**
* <TT>
*
Purpose:
*
Description:
*
Note: This documentation has been automatically
* generated.
* </TT>
* @version 1.3.4
* @since JDK1.0
*/
public class DeliveryTypeImpl extends DescribableDynamicEntityImpl
implements DeliveryType. Distinguishable {

/**
* The version number of this class
*
* Note: This documentation has been automatically generated.
*/
static final int versionNumber5 1;
/**
* The fully qualified name of this Implementation class
*
* Note: This documentation has been automatically generated.
*/
public state final String IMPLEMENTATION_NAME5

''GPSE.DeliveryTypeImpl'';
protected DCurrencyValue ivFlatRate;
protected int ivNumberOfDays;
protected boolean ivExpedite;
/**
* Gets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return DCurrencyValue
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public DCurrencyValue getFlatRate¼ throws

com.ibm.sf.gf.SFException {
return (DCurrencyValue)

Global.factory¼.copyDependent(null, ivFlatRate);
}
/**
* Sets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically

* generated.
* @param DCurrencyValue newFlatRate <I>(Mandatory)</I>
* @return void
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public void setFlatRate(DCurrencyValue newFlatRate) throws

com.ibm.sf.gf.SFException {
setDirty¼;
ivFlatRate 5 (DCurrencyValue)

Helper.setDependentToDependent(ivFlatRate, newFlatRate, this);
}
/**
* Gets the attribute directly
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return DCurrencyValue
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*
RESTRICTED : This method is NOT for client

use
*/
public DCurrencyValue getFlatRateForRestrictedUse¼ throws

com.ibm.sf.gf.SFException {
return (ivFlatRate);

}
/**
* Gets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return int
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public int getNumberOfDays¼ throws com.ibm.sf.gf.SFException

{
return (ivNumberOfDays);

}
/**
* Sets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @param int newNumberOfDays <I>(Mandatory)</I>
* @return void
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public void setNumberOfDays(int newNumberOfDays) throws

com.ibm.sf.gf.SFException {
setDirty¼;
ivNumberOfDays 5 newNumberOfDays;

}
/**
* Gets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return boolean
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public boolean getExpedite¼ throws com.ibm.sf.gf.SFException {

return (ivExpedite);
}
/**
* Sets the attribute
*
*
Assumptions:
*
Note: This documentation has been

automatically

BUNTING IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000280

* generated.
* @param boolean newExpedite <I>(Mandatory)</I>
* @return void
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public void setExpedite(boolean newExpedite) throws

com.ibm.sf.gf.SFException {
setDirty¼;
ivExpedite 5 newExpedite;

}
/**
*
*
Assumptions:
*
Note:
* param DeliveryTypeController owner <I>(Mandatory)</I>
* @param DescriptiveInformation description

<I>(Mandatory)</I>
* @param DCurrencyValue initFlatRate <I>(Mandatory)</I>
* @param int initNumberOfDays <I>(Mandatory)</I>
* @return void
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*
RESTRICTED : This method is NOT for client

use
*/
public void initialize(DeliveryTypeController owner,

DescriptiveInformation description, DCurrencyValue initFlatRate, int
initNumberOfDays) throws com.ibm.sf.gf.SFException {

// NO MATCHING initialize METHOD
// WAS FOUND IN THE PARENT CLASS
// PLEASE UPDATE THE FOLLOWING
// ''super.initialize'' CALL
super.initialize(NO_MATCH_FOUND);

BaseFactory factory 5 Global.factory¼;

// Primitive types initialization
ivNumberOfDays 5 initNumberOfDays;
// No matching initialize parameter found for

attribute ivExpedite

// Dependent initialization
setFlatRate(initFlatRate);

// No matching attribute was found for initialize
parameter owner

// No matching attribute was found for initialize
parameter description

}
/**
*
*
Assumptions:
*
Note:
* @param DTime placeDate <I>(Mandatory)</I>
* @return DTime
*
Result:
*
PreConditions:
*
PostConditions:
*/
public DTime calculateDeliveryDate(DTime placeDate) {

// Please insert your code here
}
/**
*
*
Assumptions:
*
Note:
* @return String
*
Result: a String containing the Id of the
* Distinguishable object
*
* #ValidationNotRequired
*
PreConditions: none
*
PostConditions: the object is not modified
*/
public String getId¼ {

// Please insert your code here
}
/**
* Retrieves the description of this object as a String
* in a format/language determined by the locale that is currently
* active in the environment this call was made in.
*
*
Assumptions:
*
Note:
* @return String

*
Result: language dependent description selected
* using the active Locale. Returns '' '' if

this.getDescriptiveInformation¼

* 55 null or if a description cannot be found using the standard
* lookup mechanism.
*
PreConditions:
*
PostConditions: Object’s state unmodified
*
* #index 1
* #ValidationNotRequired
*/
public String getDescription¼ {

// Please insert your code here
}
/**
* Retrieves the description of this object as a String
* in a format/language determined by the given Locale.
*
*
Assumptions:
*
Note:
* @param String locale determines which locale dependent
* form of the description to retrieve <I>(Mandatory)</I>
* @return String
*
Result: language dependent description of
* object selected using the
* given locale. Returns '' '' if

this.getDescriptiveInformation¼

* 55 null or if a description cannot be found using the standard
* lookup mechanism.
*
PreConditions:
*
PostConditions: Object’s state unmodified
*
* #index 2
* #ValidationNotRequired
*/
public String getDescription(String locale) {

// Please insert your code here
}
/**
* Retrieves the DescriptiveInformation object encapsulating
* the locale sensitive description of this object.
*
*
Assumptions:
*
Note:
* @return DescriptiveInformation
*
Result: the DescriptiveInformation object
* that represents the description of this Describable. Returns
* null if this Describable has no DescriptiveInformation
* attached to it.
*
PreConditions:
*
PostConditions: Object’s state unmodified
*
* #ValidationNotRequired
*/
public DescriptiveInformation getDescriptiveInformation¼ {

// Please insert your code here
}
/**
* Returns a descriptive string for the object
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return String
* @exception SFRuntimeException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public String toString¼ throws SFRuntimeException {

try {
String retVal 5 super.toString¼;
return (retVal);

}
catch (Exception ex) {

throw (new SFRuntimeException(ex,
new

TextResource(''MSG_RMTSFEXCEP_DEFAULT'',''com.ibm.sf.g
f.resources.SFExceptionResources'',

(Object
[]) null, ''Runtime Exception has Occurred'')));

}
}
/**
* Constructor of this class
*
*
Assumptions:
*
Note: This documentation has been

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BUNTING 281

automatically
* generated.
* @return void
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public void DeliveryTypeImpl¼ throws

com.ibm.sf.gf.SFException {
// Please insert your code here

}
/**
* Reads the state of an object from a stream
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @param BaseStream stream <I>(Mandatory)</I>
* @return void
* @exception java.io.IOException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public void internalizeFromStream(BaseStream stream) throws

java.io.IOException {

// Should we skip this internalization
if

(stream.skipThisClass(IMPLEMENTATION_NAME)) {

super.internalizeFromStream(stream);
return;

}

// internalize the version number
int objectIntStreamVersion 5 stream.readInt¼;

// read the primitive types
ivNumberOfDays 5 stream.readInt¼;
ivExpedite 5 stream.readBoolean¼;

// read the DescribableDynamicEntityImpl’s (parent
of current class) state

super.internalizeFromStream(stream);

// read the contained dependents
ivFlatRate 5 (DCurrencyValue)

stream.readDependent(this, ivFlatRate);
}
/**
* Writes the state of an object to a stream
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @param BaseStream stream <I>(Mandatory)</I>
* @return void
* @exception java.io.IOException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public void externalizeToStream(BaseStream stream) throws

java.io.IOException {

// externalize the version number.
stream.writeInt(versionNumber);

// Write the primitive types.
stream.writeInt(ivNumberOfDays);
stream.writeBoolean(ivExpedite);

// Write the DescribableDynamicEntityImpl’s
(parent of current class) state

super.externalizeToStream(stream);

// Write the contained dependents
stream.writeDependent(this, ivFlatRate);

}
/**
* Destroys the state of an object
*
*
Assumptions:
*
Note: This documentation has been

automatically
* generated.
* @return void

* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
protected void destroy¼ throws com.ibm.sf.gf.SFException {

BaseFactory factory 5 Global.factory¼;

// Dependent destruction
factory.deleteDependent(this, ivFlatRate);

// call parent to destroy its contained objects
super.destroy¼;

}
}

DeliveryType factory.
DeliveryTypeFactory.java

package GPSE;

import com.ibm.sf.gf.*;
import com.ibm.sf.cf.*;

/**
* <TT>
*
Purpose:
*
Description:
*
Note: This documentation has been automatically
* generated.
* </TT>
* @version 3.6.2
* @since JDK1.0
*/
public abstract class DeliveryTypeFactory extends DynamicEntityFactory {

/**
*
*
Assumptions:
*
Note:
* @param DeliveryTypeController owner <I>(Mandatory)</I>
* @param AccessMode access <I>(Mandatory)</I>
* @param DescriptiveInformation description

<I>(Mandatory)</I>
* @param DCurrencyValue initFlatRate <I>(Mandatory)</I>
* @param int initNumberOfDays <I>(Mandatory)</I>
* @return DeliveryType
* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public static final DeliveryType

createDeliveryType(DeliveryTypeController owner, AccessMode access,
DescriptiveInformation description, DCurrencyValue initFlatRate, int
initNumberOfDays) throws com.ibm.sf.gf.SFException {

boolean finished 5 false;
DeliveryType newDeliveryType 5 null;
DeliveryTypeFactory factory 5

(DeliveryTypeFactory)

Global.factory¼.getSpecialFactory(''GPSE.DeliveryType'');

if (factory 55 null) {
/*
CODE GEN: CODE GENERATOR

FORCED COMPILE ERROR: PLEASE CHECK THIS
CODE FOR THE ID PARAMETER

TO MATCH THE ID PARAMETER ON YOUR CREATE
METHOD. THE CODE

GENERATOR IS MAKING A BEST GUESS AT THIS CODE...
ONCE VERIFIED OR FIXED,

REMOVE THESE COMMENTS. REPLACE DUMMY ID
PARAMETER WITH PASSED-IN

ID
*/
String key 5

StringFactory.createDMethodAccessKey(null, null);

if
(owner.containsDeliveryTypeKey(key)) {

DResultMessage
resultMessage 5 DResultMessageFactory.

createDResultMessage(ResultMessageSeverityEnum.SEVERE_E
RROR, ''com.ibm.sf.cf'',''ACOMMON002'');

DReplacementTextTranslatableString classText 5

DReplacementTextTranslatableStringFactory.createDReplacement

BUNTING IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000282

TextTranslatableString(''GPSE'',''DeliveryType'');

resultMessage.addReplacementText(classText);

DReplacementTextNonTranslatableString keyText 5

DReplacementTextNonTranslatableStringFactory.
//

CODE GEN: REPLACE DUMMY ID PARAMETER WITH PASSED-IN ID

createDReplacementTextNonTranslatableString(PLEASE_REPLA
CE_THIS_ID);

resultMessage.addReplacementText(keyText);

com.ibm.sf.cf.ErrorsException exception 5 new

com.ibm.sf.cf.ErrorsException(resultMessage);
throw (exception);

}

/* CODE GEN: END OF CODE
GEN COMMENTS */

Entity entity 5

Global.factory¼.createEntity(''GPSE.DeliveryType'', access, owner.getHandle¼,
null);

Exception caughtException 5 null;
try { // cast

to correct interface and initialize
newDeliveryType 5

(DeliveryType) entity;

newDeliveryType.initialize(owner, description, initFlatRate,
initNumberOfDays);

owner.registerOwnedDeliveryType(newDeliveryType);
finished 5 true;

} catch (Exception excl) {
caughtException 5

excl;
} finally {

if (!finished) {
try {

entity.uninitialize¼;

Global.factory¼.deleteEntity(entity);

DResultMessage resultMessage 5

DResultMessageFactory.createDResultMessage(ResultMessageSe
verityEnum.SEVERE_ERROR,''com.ibm.sf.cf'', ''ACOMMON052'');

DReplacementTextTranslatableString classText 5

DReplacementTextTranslatableStringFactory.createDReplacement
TextTranslatableString(''GPSE'',''DeliveryType'');

resultMessage.addReplacementText(classText);

throw (new com.ibm.sf.cf.ErrorsException(caughtException,
resultMessage));

} catch
(com.ibm.sf.gf.GFException exc2) {

DResultMessage resultMessage 5

DResultMessageFactory.createDResultMessage(ResultMessageSe
verityEnum.SEVERE_ERROR,''com.ibm.sf.cf'', ''ACOMMON050'');

DReplacementTextTranslatableString classText 5

DReplacementTextTranslatableStringFactory.createDReplacement
TextTranslatableString(''GPSE'',''DeliveryType'');

resultMessage.addReplacementText(classText);

throw (new com.ibm.sf.cf.ErrorsException(caughtException,
resultMessage));

}
}

}
}
else { // Delegate to special

factory
newDeliveryType 5

factory.create(owner,
access, owner.getHandle¼, description, initFlatRate, initNumberOfDays);

}

return (newDeliveryType);
}
/**
*
*
Assumptions:

*
Note:

* @param DeliveryTypeController owner <I>(Mandatory)</I>

* @param AccessMode access <I>(Mandatory)</I>

* @param Handle locationHandle <I>(Optional)</I>

* @param DescriptiveInformation description
<I>(Mandatory)</I>

* @param DCurrencyValue initFlatRate <I>(Mandatory)</I>

* @param int initNumberOfDays <I>(Mandatory)</I>

* @return DeliveryType
* @exception com.ibm.sf.gf.SFException
*
Result:

*
PreConditions:

*
PostConditions:

*/
public static final DeliveryType

createDeliveryType(DeliveryTypeController owner, AccessMode access, Handle
locationHandle, DescriptiveInformation description, DCurrencyValue
initFlatRate, int initNumberOfDays) throws com.ibm.sf.gf.SFException {

boolean finished 5 false;
DeliveryType newDeliveryType 5 null;
DeliveryTypeFactory factory 5

(DeliveryTypeFactory)

Global.factory¼.getSpecialFactory(''GPSE.DeliveryType'');

if (factory 55 null) {
/*
CODE GEN: CODE GENERATOR

FORCED COMPILE ERROR: PLEASE CHECK THIS
CODE FOR THE ID PARAMETER

TO MATCH THE ID PARAMETER ON YOUR CREATE
METHOD. THE CODE

GENERATOR IS MAKING A BEST GUESS AT THIS CODE...
ONCE VERIFIED OR FIXED,

REMOVE THESE COMMENTS. REPLACE DUMMY ID
PARAMETER WITH PASSED-IN

ID
*/
String key 5

StringFactory.createDMethodAccessKey(null, null);

if
(owner.containsDeliveryTypeKey(key)) {

DResultMessage
resultMessage 5 DResultMessageFactory.

createDResultMessage(ResultMessageSeverityEnum.SEVERE_E
RROR, ''com.ibm.sf.cf'',''ACOMMON002'');

DReplacementTextTranslatableString classText 5

DReplacementTextTranslatableStringFactory.createDReplacement
TextTranslatableString(''GPSE'',''DeliveryType'');

resultMessage.addReplacementText(classText);

DReplacementTextNonTranslatableString keyText 5

DReplacementTextNonTranslatableStringFactory.
//

CODE GEN: REPLACE DUMMY ID PARAMETER WITH PASSED-IN ID

createDReplacementTextNonTranslatableString(PLEASE_REPLA
CE_THIS_ID);

resultMessage.addReplacementText(keyText);

com.ibm.sf.cf.ErrorsException exception 5 new

com.ibm.sf.cf.ErrorsException(resultMessage);
throw (exception):

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BUNTING 283

}

/* CODE GEN: END OF CODE
GEN COMMENTS */

Entity entity 5

Global.factory¼.createEntity(''GPSE.DeliveryType'', access, locationHandle,
null);

Exception caughtException 5 null;
try { // cast

to correct interface and initialize
newDeliveryType 5

(DeliveryType) entity;
newDeliveryType.initialize(owner, description, initFlatRate,

initNumberOfDays);

owner.registerOwnedDeliveryType(newDeliveryType);
finished 5 true;

} catch (Exception exc1) {
caughtException 5

exc1;
} finally {

if (!finished) {
try {

entity.uninitialize¼;

Global.factory¼.deleteEntity(entity);

DResultMessage resultMessage 5

DResultMessageFactory.createDResultMessage(ResultMessageSe
verityEnum.SEVERE_ERROR,''com.ibm.sf.cf'',''ACOMMON052'');

DReplacementTextTranslatableString classText 5

DReplacementTextTranslatableStringFactory.createDReplacement
TextTranslatableString(''GPSE'',''DeliveryType'');

resultMessage.addReplacementText(classText);

throw (new com.ibm.sf.cf.ErrorsException(caughtException,
resultMessage));

} catch
(com.ibm.sf.gf.GFException exc2) {

DResultMessage resultMessage 5

DResultMessageFactory.createDResultMessage(ResultMessageSe
verityEnum.SEVERE_ERROR,''com.ibm.sf.cf'',''ACOMMON050'');

DReplacementTextTranslatableString classText 5

DReplacementTextTranslatableStringFactory.createDReplacement
TextTranslatableString(''GPSE'',''DeliveryType'');

resultMessage.addReplacementText(classText);

throw (new com.ibm.sf.cf.ErrorsException(caughtException,
resultMessage));

}
}

}
}
else { // Delegate to special

factory
newDeliveryType 5

factory.create(owner,
access, locationHandle, description, initFlatRate, initNumberOfDays);

}

return (newDeliveryType);
}
/**
*
*
Assumptions:
*
Note:
* @param DeliveryTypeController owner <I>(Mandatory)</I>
* @param AccessMode access <I>(Mandatory)</I>
* @param Handle locationHandle <I>(Optional)</I>
* @param DescriptiveInformation description

<I>(Mandatory)</I>
* @param DCurrencyValue initFlatRate <I>(Mandatory)</I>
* @param int initNumberOfDays <I>(Mandatory)</I>
* @return DeliveryType

* @exception com.ibm.sf.gf.SFException
*
Result:
*
PreConditions:
*
PostConditions:
*/
public abstract DeliveryType create(DeliveryTypeController

owner, AccessMode access, Handle locationHandle, DescriptiveInformation
description, DCurrencyValue initFlatRate, int initNumberOfDays) throws
com.ibm.sf.gf.SFException;
}

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Rational Software Cor-
poration or Sun Microsystems, Inc.

Cited references and notes

1. http://www-4.ibm.com/software/ad/sanfrancisco/tools.html/.
2. Rational Rose—see www.rational.com/rose/.
3. UML—see www.rational.com/uml/.
4. Rose SF Bridge—see www.metex.com/products/.
5. http://www-4.ibm.com/software/ad/sanfrancisco/concepts/

ibmsf.sf.T_SFConceptsAndFacilities.html/.
6. VisualAge for Java—see www.ibm.com/software/ad/vajava/.
7. Inprise/Borland JBuilder—see www.borland.com/jbuilder/.
8. http:

//www.rosearchitect.com/mag/archives/9810/extend.shtml/.
9. See http://embedded.com/98/9803fe3.html for a discussion of

code generation techniques.

Accepted for publication December 10, 1999.

Russ Bunting Metex Systems Inc., 350 Bay Street, Toronto, On-
tario M5H 2S6 (electronic mail: Russ.Bunting@metex.com). Mr.
Bunting is manager of product development at Metex Systems.
He earned a B.S. degree in computer engineering from the Uni-
versity of Toronto. Mr. Bunting is a member of the IEEE and
is a certified instructor of Rational’s object-oriented analysis and
design techniques and UML. His current focus is upon applying
these techniques, specifically visual modeling, toward the devel-
opment of infrastructure and tools to promote software engineer-
ing best practices and their application to collaborative multiagent
software systems.

BUNTING IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000284

