
Books

SanFrancisco Component Framework: An Introduc-
tion, Paul Monday, James Carey, and Mary Dangler,
Addison-Wesley Longman, Inc., Reading, MA, 2000.
338 pp. (ISBN 0-201-61587-8).

IBM’s SanFrancisco* component framework is the
topic of this book, written to provide software de-
velopers and managers with a short and readable in-
troduction to using this enterprise framework to con-
ceive and build business-oriented applications. The
product is the result of the joint work of IBM and
independent software vendors to define a custom-
izable, object-oriented framework as a standard plat-
form to create, configure, and manage different kinds
of applications ranging from ledger control to a ware-
housing system.

For many years existing legacy systems have had sev-
eral common problems, as many developers know:
large parts of applications often needed to be re-en-
gineered, maintenance issues and dynamic business
requirements presented many challenges, and peo-
ple needed constant retraining. The contribution of
SanFrancisco, in my opinion, is that it offers an ap-
proach that follows the line of the current object-
oriented methodologies (Unified Modeling Lan-
guage [UML] Objectory and Catalysis) and improves
this process by providing the benefits associated with
framework technologies.

SanFrancisco Component Framework contains fifteen
well-written chapters divided into five sections, pro-
viding different levels of detail about SanFrancisco
as the reader progresses. The first chapters describe
the overall architecture of SanFrancisco and how it
makes use of object-oriented development. This part
is good for readers interested primarily in a brief and
complete description of SanFrancisco. Of course, a
better understanding requires reading the rest of the
book. Subsequent chapters give a deeper insight into
the layers that form the framework core, examples
of usage, common processes (patterns), and pro-
gramming of client applications. This content is of
value to many audiences (analysts, designers, imple-

mentors, project managers, etc.), explaining the ra-
tionale of the framework and outlining its advantages
in the new software development world that, in my
opinion, is evolving.

A remarkable strength of the book is its clear ed-
ucational purpose, something difficult to find in much
of the literature that treats the documentation and
usage of frameworks. Not only are technical aspects
of SanFrancisco covered, but simple examples, con-
ceptual diagrams, and lists of desired tasks that take
real advantage of the framework facilities are ex-
plained in a comprehensive and reasonable way.

The key point for developers is to understand the
layered style that organizes the SanFrancisco frame-
work and the IBM aims that are reflected in this ar-
chitecture: to provide isolation of specific technol-
ogies, allow integration with legacy systems, and
provide the core of the solution that would have to
be supplied by any application in a particular domain
(especially a business domain). The SanFrancisco ar-
chitectural vision comprises: the core business pro-
cess layer (the most specific layer), which captures
the main classes and processes for a particular ap-
plication domain (i.e., general ledger, accounts re-
ceivable and accounts payable, order management,
and warehouse management); the middle layer, the
common business objects layer, consisting of classes,
processes, and mechanisms that are common across
many application domains (i.e., companies, currency,
customers, banks, accounts, financial calendar, and
generalized mechanisms); and the bottom layer, the
foundation and utilities layer, which provides the ba-
sic services needed by a business application and iso-
lates applications from the underlying technologies.
Finally a Java** virtual machine is the “basement”
that ensures portability and isolation of hardware
platforms. Following the design features of a layered
style, each of these layers offers services with a well-
defined interface to its upper layer and uses services
provided by its lower layer. This property has a close

rCopyright 2000 by International Business Machines Corpo-
ration.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 0018-8670/00/$5.00 © 2000 IBM BOOKS 403

relationship with reusability. Furthermore, IBM
achieves another important goal: layers can be eas-
ily extended and replaced in the future, while pre-
serving the same interface with other layers.

An important note should be made at this point. A
given application need not necessarily be built on
the core business process layer; developers are free
to decide on what layer they choose to build their
particular applications (and this is not a minor is-
sue). A wide range of applications can be built using
this powerful and robust kernel, but unfortunately
it does not seem to be easy to achieve for novice users
because of the need for specific knowledge and train-
ing. This aspect is clearly beyond this introductory
book, and the interested reader should look for re-
lated materials.

Other useful features of the book include documen-
tation techniques—applied to every phase of devel-
opment such as requirements gathering, scenario de-
velopment, and analysis and design—that help to
train developers to identify requirements fulfilled in
the SanFrancisco framework; availability of scenar-
ios, class diagrams, and implementations of the sce-
narios; and textual template descriptions combined
with UML diagrams, Javadoc tools, and getting-
started tutorials. The framework supports a set of
generalized mechanisms (based on the design pat-
terns described by Gamma, Helm, Johnson, and Vlis-
sides, the Gang of Four) that capture and specify
common procedures and allow the application of
these well-engineered solutions to several problems,
thus maximizing reuse. The coverage and discussion
of these facilities is generally good, although the San-
Francisco vision about patterns is not very easy to
understand at a first reading. Perhaps because the
authors refer to patterns from different points of view
at the same time, this is often a source of confusion.

Although the contents of the book are mainly cen-
tered in server-side aspects, the last chapters of San-
Francisco Component Framework address some is-
sues related to client applications, taking briefly into
account the type of client and interface needed,
stand-alone applications, Web-based systems, mul-
tithreading, and JavaBeans** components, among
other subjects. Some knowledge of the SanFrancisco
programming model is required for developers to
build a well-behaved application, but developers are
not restricted to SanFrancisco alone, and other com-
mercial products can be used and integrated.

With respect to building graphical user interfaces
(GUIs) in the presentation layer, SanFrancisco offers
a full Model-View-Controller architecture that
achieves a component separation that does not ex-
ist in the Java Abstract Window Toolkit (AWT), giv-
ing to client application developers all the benefits
that this classical style provides. It is my impression
that the controllers (called “maintainers” in San-
Francisco terminology) seem to be overloaded in
functionality in the SanFrancisco approach, and it
is difficult to understand the relationship that appears
to connect view and model in the diagram of the
Model-View-Maintainer depicted in Chapter 13.
Some of the conceptual issues surrounding these mis-
leading aspects would benefit from revision.

Overall, I recommend that any developer or man-
ager involved in business applications read (or at
least skim) this book, which offers a valuable set of
experiences, design guidelines, and framework sup-
port, as well as an updated view of, and new trends
in, software engineering practice. The SanFrancisco
framework aims to bridge the gap between theory
and practice and address reuse of both large and
common patterns of behavior, reducing the “time
to market” for business applications. These goals ap-
pear to be very ambitious in the software engineer-
ing domain, but I believe they are also the founda-
tional reasons for its existence.

Mohamed E. Fayad
Computer Science & Engineering
University of Nebraska
Lincoln
Nebraska

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

SanFrancisco Life Cycle Programming Techniques,
Maynard Johnson, Randy Baxter, and Tore Dahl,
Addison-Wesley Longman, Inc., Reading, MA, 2000.
210 pp. (ISBN 0-201-61658-0).

In the business world, many processes have several
stages through their life cycle (a beginning, an in-
termediate state or states, and an end), and certain
rules are used to decide when a process is ready to
move from one stage to another. The relationships
between data and control are far from trivial in soft-
ware organizations. In software applications, data

BOOKS IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000404

and control are traditionally closely coupled, and this
fact leads to difficult maintenance and customiza-
tion tasks. Use of the so-called SanFrancisco* Life
Cycle pattern to achieve a clear separation of these
parts—life-cycle control, state information, and bus-
iness data—is the focus of the techniques presented
in this book. The state-like pattern is defined within
the SanFrancisco framework as a common process
that developers can recognize and apply in different
contexts, having the benefits of well-proven designs
and the ability to shorten the development cycle.

“Life Cycle pattern” refers to data-driven processes
used to achieve state changes. An application that
is used to perform a business process that progresses
from one well-defined state to another is a natural
candidate to be defined in terms of a Life Cycle pat-
tern. Basically, a Life Cycle pattern comprises the
following business concepts: (1) a state machine that
is able to recognize patterns of conditions and take
a predefined action for each situation it recognizes,
such as modify behavior of components, invoke a
method, or move the processing focus from one bus-
iness task to another; (2) a set of conditions that ex-
ist at any given time to define the current state—
thus the life cycle observes the conditions associated
with particular component instances and determines
if it should perform any action; and (3) a mechanism
that allows the addition or removal of behavior from
an object at run time (giving the effect of supporting
“dynamic run-time inheritance”). Although the con-
cepts are explained in the book in a correct and rea-
sonable way, I sometimes had the sensation of be-
ing lost in a confusing picture of class hierarchies
and mechanisms. Perhaps the wide number of vari-
ations and patterns around the state pattern are dif-
ficult to understand in a first reading.

A previous reading of the book SanFrancisco Com-
ponent Framework: An Introduction (see the first re-
view in this section) is strongly recommended be-
fore starting the advanced topics of this book. After
such preparation, the reader will find full coverage
of the pattern divided into three sections: an intro-
ductory section; a first part describing how the Life
Cycle pattern is used and extended by the SanFran-
cisco order management core business process to
build several different order types (sales orders, pur-
chase orders, etc.); and a second part showing how
to use life-cycle programming techniques in your own
applications. This section details the specific steps
that developers must follow when they want to ex-
tend the predefined order types of SanFrancisco.

These contents are complemented with concrete ap-
plication examples, diagrams and code, and some
practical tips. The order management domain is used
as a basic example to show practical applications of
the underlying pattern, but no special knowledge
about this topic is required.

After reading through the book, I did not have the
impression of discovering novel ideas, rather I found
a well-documented set of specific techniques to ap-
ply in life-cycle processes of business domains.

If you are searching for technical aspects of the San-
Francisco framework, this book will be suitable for
your needs. It is a complete and technical guide to
applying this powerful pattern in a wide range of bus-
iness applications, and to gaining expertise within
the SanFrancisco framework.

Mohamed E. Fayad
Computer Science & Engineering
University of Nebraska
Lincoln
Nebraska

*Trademark or registered trademark of International Business
Machines Corporation.

Software Project Management: A Unified Frame-
work, Walker Royce, Addison-Wesley Longman,
Inc., Reading, MA, 1998. 406 pp. (ISBN 0-201-30958-
0).

To begin with, this book is quite readable for some-
one familiar with software development, but could
be considered difficult for a project manager with-
out that familiarity. The vocabulary used is some-
times technical, but that should be acceptable since
management of software development projects is a
bit different from that of conventional projects. For
example, applying project management principles
to an iterative development model (like the spiral
model) adds considerable complexity to the straight-
line project management model.

The author, Walker Royce, developed the approach
detailed in this book by managing various software
development projects within the government and
aerospace and commercial arenas. His project man-
agement principles and concepts are not only dis-
cussed extensively throughout the book, but are sum-
marized in a detailed case study.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BOOKS 405

The content of this book (excluding appendices) is
organized in the following four parts:

● Software Management Renaissance
● A Software Management Process Framework
● Software Management Disciplines
● Looking Forward

The review that follows covers each of these four sec-
tions.

Part 1, Software Management Renaissance, starts
by presenting the reader with a good summary of
the problems that have persisted in software devel-
opment since its beginning. A statement made early
in this section tends to set the stage, not only for this
portion, but for the entire book: “The best thing
about software is its flexibility, while the worst thing
about software is its flexibility.” This characteristic
makes the development of software difficult to con-
trol, yet is necessary for the creation of software that
will have good usability with strong functionality.

This section could be briefly skimmed if the reader
has a good knowledge of the history of software de-
velopment. If not, then it should be read thoroughly,
since it sets the stage for the remainder of the book.
The author’s intent is to make us aware of the many
software development problems that have persisted
in the past, so we can avoid them through use of a
different paradigm in the future.

Part 2, A Software Management Process Framework,
attempts to standardize a common process for the
development of software. The word “attempts” is
used simply because what is presented will be used
as a framework from which the reader will need to
pick and choose appropriate elements. The frame-
work presented is an architecture that has been seg-
mented into four life-cycle categories: (1) phases
(engineering and production), (2) artifacts (manage-
ment, requirements, design, implementation, and de-
ployment), (3) workflows (activities), and (4) check-
points (major, minor, and status assessment).

An understanding of the content of these categories
is key in choosing which elements to apply to a given
project and, consequently, to make the transition
from a conventional to an iterative approach to soft-
ware development and the control of that develop-
ment.

I have always felt that it was impossible to have a
single process for the development of all software.

This section of the book supports that premise by
emphasizing that an effective project manager must
first choose what is necessary and essential for the
project being developed, then apply the appropri-
ate development model (i.e., iterative, waterfall, etc.).

Part 3, Software Management Disciplines, takes the
process concepts that have been established in Part
2 and applies management discipline to them. First
of all, it is recognized that the planning of a software
development project needs to be iterative, just as the
actual development. This is necessary to obtain the
correct balance between level of detail planning and
buy-in among stakeholders. A rough model of a work
breakdown structure is provided as a starting point
in obtaining this balance.

Project organizations and responsibilities are dis-
cussed, along with the effects (both positive and neg-
ative) that a company’s organizational structure can
have on the makeup of the development team. Un-
derstanding these effects, the author defines what he
feels are necessary roles and responsibilities, then
places them into a project organizational chart.

Even though all the process definition and tailoring
discussed earlier are necessary, the fact remains that
a significant amount of process automation is also
required in order for modern software development
projects to operate profitably. Opportunities for au-
tomation are identified for each of the work flows
previously identified.

Based on the old adage that “you cannot manage
what you cannot measure,” the following seven core
metrics are identified and classified into two cate-
gories.

Management metrics:

● Work and progress (work performed over time)
● Budgeted cost and expenditures (cost incurred

over time)
● Staffing and team dynamics (personnel changes

over time)

Quality metrics:

● Change traffic and stability (change traffic over
time)

● Breakage and modularity (average breakage per
change over time)

● Rework and adaptability (average rework per
change over time)

BOOKS IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000406

● Mean time between failures (MTBF) and maturity
(defect rate over time)

These metrics are discussed extensively.

Part 4, Looking Forward, attempts to perceive what
the future might be in terms of controlling software
development. This, along with a discussion of the
next generation of software economics, takes us from
the metrics that are used today and evolves toward
the future by showing how they can be better tuned
to the iterative processes discussed earlier.

Emphasis is made on the fact that the management
of successful software development projects will con-
tinue to be hard work, and there will likely be no
breakthrough in the near future. With this in mind,
some direction is given to the major cultural shifts
that will likely need to occur in the software devel-
opment community to make the transition from the
old to the new feasible.

I recommend the book for reading, with some res-
ervations. Although the book is based on good con-
cepts and principles, much of the information pre-
sented may apply well into the future for most
organizations. (To apply all the ideas in this book
would require the reader’s organization to be at a
minimum of level three, or possibly four, on the Soft-
ware Engineering Institute’s Capability Maturity
Model.) What this really means is that most readers
will likely want to apply some of the ideas to their
next project and eventually evolve to others as their
organizations mature.

Jim Abraham
IBM Learning Services
Rochester
Minnesota

Note—The books reviewed are those the Editor thinks might be
of interest to our readers. The reviews express the opinions of
the reviewers.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 BOOKS 407

