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Java Virtual Machine
Profiler Interface

We present the Java™ Virtual Machine Profiler
Interface (JVMPI), which defines a general-
purpose and portable mechanism for obtaining
comprehensive profiling data from the Java
virtual machine. We show that it is extensible,
nonintrusive, and powerful enough to suit the
needs of different profilers and virtual machine
implementations. With the JVMPI, most profiler
vendors will not need to build custom
instrumentation in the Java virtual machine. In
addition, we solve challenges to profiler design
and implementation posed by the multithreading
and garbage collection support provided by the
Java virtual machine. Profilers based on the
JVMPI can produce thread-aware CPU time
profiles, uncover heavy memory allocation sites,
detect unnecessary object retention, pinpoint
scalability problems caused by high monitor
contention, reveal thread deadlocks, and perform
interactive profiling with minimum overhead. We
also describe HPROF, a profiler based on JVMPI,
developed by us to demonstrate the power of
JVMPI.

Proﬁlingl is an important step in software devel-
opment. We use the term profiling to mean, in
abroad sense, the ability to monitor and trace events
that occur during run time, the ability to track the
cost of these events, and the ability to attribute the
cost of the events to specific parts of the program.
For example, a profiler may provide information
about what portion of the program consumes the
most amount of CPU time, or about what portion of
the program allocates the greatest amount of mem-

ory.

This paper is mainly concerned with profilers that
provide information to programmers, as opposed to
profilers that provide feedback to the compiler or
run-time system. Although the fundamental princi-
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ples of profiling are the same, there are different re-
quirements in designing these two kinds of profil-
ers. For example, a profiler that sends feedback to
the run-time system must incur as little overhead as
possible so that it does not slow down program ex-
ecution. In contrast, a profiler that constructs the
complete call graph may be permitted to slow down
the program execution significantly.

In this paper, we discuss techniques for profiling sup-
port in the Java** virtual machine.? Java applica-
tions are written in the Java programming language*
and compiled into machine-independent binary class
files, which can then be executed on any implemen-
tation of the Java virtual machine. The Java virtual
machine is a multithreaded and garbage-collected
execution environment that generates various events
of interest for the profiler. For example:

* The profiler may measure the amount of CPU time
consumed by a given method in a given class. In
order to pinpoint the exact cause of inefficiency,
the profiler may need to isolate the total CPU time
of a method A.f called from another method B.g,
and ignore all other calls to A.f. Similarly, the pro-
filer may only want to measure the cost of execut-
ing a method in a particular thread.

e The profiler may inform the programmer why there
is excessive creation of object instances that be-
long to a given class. The programmer may want
to know, for example, that many instances of class
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D are allocated in method C.h. More specifically,
it is also useful to know that the majority of these
allocations occur when B.g calls C.h, and only when
A.f calls B.g.

e The profiler may show why garbage is not being
collected for a certain object. The programmer may
want to know, for example, that garbage collec-
tion is not performed for an instance of class C be-
cause it is referred to by an instance of class D,
which is then referred to by a local variable in an
active stack frame of method B.g.

e The profiler may identify the monitors that are con-
tended by multiple threads. It is useful to know,
for example, that two threads, T, and T,, repeat-
edly contend to enter the monitor associated with
an instance of class C.

e The profiler may inform the programmer what
causes a given class to be loaded. Class loading not
only takes time, but also consumes memory re-
sources in the Java virtual machine. By knowing
the exact reason why a class is loaded, the program-
mer can optimize the code to reduce memory us-
age.

We present the Java Virtual Machine Profiler In-
terface (JVMPI) in this paper. Using this interface,
profilers can obtain profiling data from the Java vir-
tual machine. The contribution of this paper is to
describe the design of the JVMPI and to justify its de-
sign choices. Following are the significant proper-
ties of the JVMPI:

¢ Comprehensive—Profilers based on the JVMPI can
produce thread-aware CPU time profiles, uncover
heavy memory allocation sites, detect unnecessary
object retention, pinpoint scalability problems
caused by high monitor contention, and reveal
thread deadlocks. The JVMPI enables profilers to
derive the above types of information by provid-
ing a mechanism to trace a key set of relevant Java
virtual machine run-time events, assign costs to
them, and attribute the costs to specific execution
contexts.

¢ General-purpose—Profilers need not rely on cus-
tom instrumentation in the virtual machine. The
JvMPI is efficient and powerful enough to suit the
needs of different profilers and Java virtual ma-
chine implementations. First, it supports a variety
of profiling techniques. For example, both code in-
strumentation and statistical sampling are sup-
ported. Second, it supports interactive profiling
with minimum overhead. Profilers may accept in-
teractive input from users and perform selective
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profiling, or they may simply write the profile data
to a disk file.

e Portable—The JvMPI is designed to be completely
independent of the underlying Java virtual machine
implementation. For example, the heap profiling
interface does not rely on the allocation and gar-
bage collection algorithm used by the virtual ma-
chine.

 Nonintrusive—When profiling is disabled, the Java
virtual machine incurs only a test and branch over-
head for each event traced by the JVMPI. Most
events occur in code paths that can tolerate the
overhead of an added check. As a result, the Java
virtual machine can be deployed with profiling sup-
port in place. Profiling measurement can be per-
formed with minimal discrepancy between the
profiling environment and the actual run-time
environment.

» Extensible—The JVMPI can easily be extended to
keep up with Java virtual machine evolution. It is
easy to add new virtual machine events to the ex-
isting framework.

We have implemented the JVMPI in the Java 2 SDK,
Standard Edition, version 1.2.* To demonstrate the
comprehensive profiling support provided by the
JVMPI, we have developed a profiler called HPROF
based on the JVMPI. Numerous tool vendors have
already built profilers that rely on the JvMPL. Com-
mercially available examples include Optimizelt!**
3.0 from Intuitive Systems,> JProbe** from KL
Group,® and TrueTime** and TrueCoverage** from
Compuware NuMega.’

We begin by describing the design of the J'VMPI and
giving an overview of the HPROF profiler. We then
justify our design choices for the JVMPL. We assume
the reader is familiar with the basic concepts of the
Java programming language® and the Java virtual
machine.?

JVMPI design

Why design a profiling interface? A profiling inter-
face, as opposed to direct profiling support in the
virtual machine implementation, offers the follow-
ing advantages:

Different profilers may be used with the same vir-
tual machine, allowing various presentations of the
profiling information. For example, one profiler may
simply record profile data in a trace file, whereas an-
other may process the profile data and present the
data interactively through a user interface. Similarly,
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Figure 1  Profiler architecture
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the same profiler can work with different virtual ma-
chine implementations, as long as they all support
the same profiling interface. This flexibility allows
tool vendors and virtual machine vendors to lever-
age one another’s products effectively.

Profilers need not rely on custom instrumentation
in the virtual machine. Therefore, users need not
have a copy of a virtual machine for each profiling
tool in use. In addition, profiling tool vendors need
not maintain virtual machine source code on their
target platforms.

A profiling interface, although providing flexibility,
also has potential shortcomings. On the one hand,
profiler front ends may be interested in a diverse set
of events that occur in the virtual machine. On the
other hand, virtual machine implementations from
different vendors may be different enough that it is
impossible to expose all the interesting events
through a general-purpose interface.

The contribution of our work is to reconcile these
differences. We have designed a general-purpose
profiling interface that is suitable for a wide variety
of virtual machine implementations and profiler
front ends.

We describe next the key role played by the JvMPI
in the overall profiling architecture.

Role in overall profiling architecture. Figure 1 illus-
trates the overall profiling architecture. The JVMPI
is a binary function-call interface between the Java
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virtual machine and a profiler agent that runs in the
same process. The JVMPI provides a mechanism for
the profiler agent to interact with the Java virtual
machine and present profiling data to the front end.
The in-process function-call interface allows max-
imum control with minimum intrusion on the part
of a profiling tool.

Note that although the profiler agent runs in the
same process as the virtual machine, the profiler front
end typically resides in a different process, or even
on a different machine. The profiler front end is sep-
arated to prevent it from interfering with the appli-
cation. Process-level separation ensures that re-
sources consumed by the profiler front end are not
attributed to the profiled application. Our experi-
ence shows that it is possible to write compact pro-
filer agents that delegate resource-intensive tasks to
the profiler front end, so that running the profiler
agent in the same process as the virtual machine does
not overly distort the profiling information.

The profiler agent is typically implemented as a
dynamically loaded library. The Java virtual machine
loads the profiler agent at startup and looks for a
prespecified entry point. Then, the virtual machine
and the profiler agent initialize a JVMPI function
pointer table to their implementations of the JVMPIL.
The function table consists of two sets of functions,
one implemented by the profiler agent and the other
implemented by the virtual machine. The Java vir-
tual machine makes function calls to inform the pro-
filer agent about various events that occur during the
execution of the Java application. The agent in turn
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receives profiling events and calls back into the Java
virtual machine to issue control requests or to ob-
tain more information in response to particular
events.

Using function calls is a good approach to an effi-
cient binary interface between the profiler agent and
different virtual machine implementations. Sending
profiling events through function calls is somewhat
slower than directly instrumenting the virtual ma-
chine to gather specific profiling information. How-
ever, as we will see in a later subsection on the over-
head of disabled profiling events, a majority of the
profiling events are sent in situations where the Java
virtual machine can tolerate the additional cost of
a function call.

Event notification. The profiler agent implements
only one function, NotifyEvent. This function is called
by the virtual machine to inform the profiler agent
of run-time events. Events are represented by data
structures consisting of an integer indicating the type
of the event and the identifier of the thread whose
execution caused the event, followed by information
specific to the event. To illustrate, we list the def-
inition of the JVMPI_Event structure and one of its
variants gc_info below. The gc_info variant records
information about an invocation of the garbage col-
lector. The event-specific information indicates the
number of live objects, total space used by live ob-
jects, and the total heap size.

typedef struct {
jint event_type;
JNIEnv *thread_id;

union {

struct {
jlong used_objects;
jlong used_object_space;
jlong total_object_space;
} gc_info;

1y
} JVMPI_Event;
The following are key types of JVMPI events:

e THREAD_START, THREAD_END. Events of these
types are issued when threads start and end in the
Java virtual machine.

e CLASS_LOAD, CLASS_UNLOAD. Events of these
types are issued when classes are loaded and un-
loaded in the Java virtual machine.
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* CLASS_FOR_INSTRUMENT. Events of this type are
issued when classes become ready to be instru-
mented by the profiler agent. The virtual machine
passes a pointer to a class file in the event data.
The profiler can instrument the class file and set
the pointer to the newly instrumented class.

¢ METHOD_ENTER, METHOD_EXIT. Events of these
types are issued when the virtual machine starts
and finishes method executions.

* NEW_ARENA, DELETE_ARENA. We introduce the
abstract notion of a heap arena, in which objects
are allocated. Events of these types are issued when
heap arenas are created and deleted from mem-
ory. These events, along with the other allocation
and garbage-collection related events described in
the following two items, are described later in de-
tail.

NEW_OBJECT, DELETE_OBJECT. Events of these

types are issued when objects are allocated and

subject to garbage collection from a heap arena.

* MOVE_OBUJECT. Events of this type are issued when

objects are relocated to different heap arenas dur-

ing garbage collection.

COMPILED_METHOD_LOAD, COMPILED_METHOD

_UNLOAD. Events of these types are issued when

a just-in-time (JIT) compiler compiles methods to

native code and loads them in memory and when

the compiled code is unloaded from memory.

MONITOR_CONTENDED_ENTER. Events of this

type are issued when a thread blocks as it attempts

to enter a monitor already owned by another
thread.

MONITOR_CONTENDED_ENTERED. Events of this

type are issued when a thread finishes waiting to

enter a monitor and acquire the monitor.

MONITOR_CONTENDED_EXIT. Events of this type

are issued when threads exit a monitor and dis-

cover that another thread is waiting to enter the
same monitor.

MONITOR_WAIT. Events of this type are issued

when threads wait on a condition variable.

MONITOR_WAITED. Events of this type are issued

when threads finish waiting on a condition vari-

able.

* HEAP_DUMP. Events of this type are issued to

dump the state of the heap.

MONITOR_DUMP. Events of this type are issued to

dump the state of all the monitors and the threads

in the system.

We will not go into the details of the event-specific
data for each event type in this paper. But they are
fully described in the JVMPI documentation that is
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shipped with the Java 2 SDK, Standard Edition, re-
leases version 1.2 and onward.*

To efficiently pass data during event notification, the
JVMPI uses unique identifiers to refer to virtual ma-
chine entities such as threads, classes, methods, and
objects. An identifier is assigned to an entity by the
virtual machine during its defining event when all
the information associated with that identifier is sent.
For example, the defining event for a class identi-
fier, the CLASS_LOAD event, contains, among other
entries, the name of the class. An identifier is valid
until its undefining event arrives, after which it may
be reused. For example, a class identifier becomes
invalid after the corresponding CLASS_UNLOAD
event is notified.

Assigning unique identifiers during run time should
be cheap in most Java virtual machine implemen-
tations. A thread is identified by its JNIEnv interface
pointer. Other entities may be uniquely identified
by their address in memory. Since objects may be
relocated during garbage collection, we specify that
MOVE_OBUJECT events invalidate an object identifier.
The MOVE_OBJECT event-specific data contain,
among other fields, the new object identifier.

Java virtual machine call-backs. The Java virtual ma-
chine implements a set of call-back functions to en-
able the profiler agent to set control parameters and
obtain more information in response to event no-
tification. Following are the key call-back functions:

¢ EnableEvent, DisableEvent. These functions are used
by the profiler agent to selectively enable or dis-
able notification of a specified type of event at run
time. The virtual machine returns a code indicat-
ing success, failure, or that notification for the event
type is not supported. For example, all the events
notified for heap profiling may be turned off when
CPU time profiling is being performed. Notifica-
tion of event types may be enabled or disabled any
number of times while the application is running.

* RequestEvent. This function is used by the profiler
agent to request the notification of certain event
types such as HEAP_DUMP and MONITOR_DUMP.
Such events happen only at the request of the pro-
filer agent and cannot be enabled or disabled. This
call-back can also be used to request the virtual
machine to send the event-specific data for the de-
fining event of a particular Java virtual machine
entity, given its valid JvMPI identifier. We provide
more details of why this event is needed in the sub-
section on interactive profiling.
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GetCallTrace. This function is called by the profiler
agent to obtain the dynamic stack trace up to a
specified depth of a given thread at a given time.
SuspendThread, ResumeThread. These functions
are used by the profiler agent to suspend and
resume threads.

ThreadHasRun. This function is used to determine
whether a thread has run since the last time it was
suspended. Details on how this call-back may be
implemented are given later in the discussion on
statistical sampling.

GetThreadStatus. This function is called to obtain
the status of a thread, whether it is runnable,
blocked, or waiting on a monitor, and whether it
has been suspended or interrupted.

EnableGC, DisableGC, and RunGC. These functions
are called to enable, disable, or run the garbage
collector.

We will not describe the arguments taken by the Java
virtual machine call-backs here. Please refer to the
documentation shipped with the Java 2 SDK, Stan-
dard Edition, version 1.2 and onward* for a detailed
description of the Java virtual machine call-backs.

The JvMPI also provides for utility call-backs into the
virtual machine to create system threads, store thread
local storage, obtain the accumulated CPU time con-
sumed by a thread, and create and use raw moni-
tors.

Our design makes the JVMPI completely extensible.
Extending the JVMPI to evolve with the Java virtual
machine would typically require defining new events
and their JVMPI_Event variants. The existing frame-
work does not need to be changed.

The HPROF profiler. To illustrate the power of the
JVMPI and show how it may be utilized, we describe
some of the features in the HPROF agent, a simple
profiler agent shipped with Java 2 SDK, Standard Edi-
tion, version 1.2 and onward. The HPROF agent is a
dynamically linked library. It interacts with the JVMPI
and presents profiling information either to the user
directly or through profiler front ends.

We can invoke the HPROF agent by passing a special
option to the Java virtual machine:

java -Xrunhprof ProgName

ProgName is the name of a Java application. Note
that we pass the -Xrunhprof option to java, the op-
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Figure 2 HPROF heap allocation profile
SITES BEGIN (ordered by live bytes) Thu May 13 14:13:28 1999
rank percent live allocated stack class name
trace
self ~accum bytes objs bytes objs
1 6.88% 6.88% 160004 1 160004 1 1006 int[]
2 5.15% 12.03% 119688 9974 199128 16594 3162 spec/benchmarks/_205_raytrace/ObjNode
3 3.12% 15.15% 72540 1395 72540 1395 2550 spec/benchmarks/ 205 raytrace/TriangleObj
4 277% 17.93% 64428 1239 64428 1239 3344 spec/benchmarks/_205_raytrace/TriangleObj

timized version of the Java virtual machine. We need
not rely on a specially instrumented version of the
virtual machine to support profiling.

Depending on the type of profiling requested, HPROF
instructs the virtual machine to send it the relevant
profiling events. It gathers the event data into pro-
filing information and outputs the result by default
to a file. For example, the following command ob-
tains the heap allocation profile for running a pro-
gram:

java -Xrunhprof:heap=sites ProgName

Figure 2 contains a part of the heap allocation pro-
file generated during a run of the _227_mtrt bench-
mark from the SPECjvm98 suite.® We show only parts
of the profiler output here. A crucial piece of infor-
mation in the heap profile is the amount of alloca-
tion that occurs in various parts of the program. An
integer array occupies 6.88 percent of the live bytes
according to the SITES record in Figure 2. We
can also see that 5.15 percent of the live bytes is
occupied by 9974 instances of the spec/bench-
marks/_205_raytrace/ObjNode class and that it is only
a fraction of the total allocation of instances (16 594)
of the same class at that site; the rest has been col-
lected as garbage.

A good way to relate allocation sites to the source
code is to record the dynamic stack traces that led
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to the heap allocation. Figure 3 shows another part
of the profiler output that illustrates the stack traces
referred to by the four allocation sites presented in
Figure 2.

A stack trace consists of the identifier of the thread
to which the trace belongs and a set of frames. Each
frame contains a class name, method name, source
file name, and the line number where the method
was executing. The user can set the maximum num-
ber of frames collected by the HPROF agent. The de-
fault limit is four. Stack traces reveal not only which
methods performed heap allocation, but also which
methods were ultimately responsible for making calls
that resulted in memory allocation. For example, in
the heap profile shown in Figure 3, both traces 3344
and 2550 cause allocation of spec/benchmarks/
_205_raytrace/TriangleObj class instances. Each trace
originated from different methods executing in dif-
ferent threads.

The HPROF agent has built-in support for profiling
CPU usage. For example, Figure 4 is part of the gen-
erated output after the HPROF agent performs sam-
pling-based CPU time profiling on a run of the
_202_jess benchmark from the SPECjvm98 suite.®

The HPROF agent periodically samples the stack of
all running threads to record the most frequently ac-
tive stack traces. The count field in Figure 4 indicates
how many times a particular stack trace was found
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Figure 3 HPROF stack traces

THREAD START (obj=1d7{f8, id = 1, name="main", group="main")
THREAD START (0bj=3468f8, id = 6, name="Thread-1", group="main")

THREAD START (0bj=3467b8, id = 7, name="Thread-2", group="main")

TRACE 1006: (thread=1)
spec/benchmarks/_205_raytrace/Canvas.<init>(Canvas.java:82)
spec/benchmarks/_205_raytrace/RayTracer.run(RayTracer.java:76)
spec/benchmarks/_205_raytrace/RayTracer.inst_main(RayTracer.java:57)

spec/benchmarks/_227_mtrt/Main.runBenchmark(Main.java:24)

TRACE 3162: (thread=6)
spec/benchmarks/_205_raytrace/OctNode.CreateChildren(OctNode.java:233)
spec/benchmarks/_205_raytrace/OctNode.CreateChildren(OctNode.java:250)
spec/benchmarks/_205_raytrace/OctNode.CreateChildren(OctNode.java:250)

spec/benchmarks/_205_raytrace/OctNode.CreateChildren(OctNode.java:250)

TRACE 3344: (thread=7)
spec/benchmarks/_205_raytrace/Scene.ReadPoly(Scene.java:345)
spec/benchmarks/_205_raytrace/Scene.LoadSceneOrig(Scene.java:119)
spec/benchmarks/_205_raytrace/Scene.LoadScene(Scene.java:70)

spec/benchmarks/_205_raytrace/Scene.<init>(Scene.java:591)

TRACE 2550: (thread=6)
spec/benchmarks/_205_raytrace/Scene.ReadPoly(Scene.java:345)
spec/benchmarks/ 205 raytrace/Scene.LoadSceneOrig(Scene.java:119)
spec/benchmarks/ 205 raytrace/Scene.LoadScene(Scene.java:70)

spec/benchmarks/_205_raytrace/Scene.<init>(Scene.java:591)
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Figure 4 HPROF profile of CPU usage hot spots
CPU SAMPLES BEGIN (total = 226) Thu May 13 14:29:55 1999
rank  self accum count trace
1 1593% 15.93% 36 30
2 9.73% 25.66% 22 170
3 7.52% 33.19% 17 8
4 4.87% 38.05% 11 18
5 3.10% 41.15% 7 164
6 221% 43.36% 5 14
7 221% 45.58% 5 163
8 221% 47.79% 5 166
9 1.77% 49.56% 4 174
10 1.33% 50.88% 3 172
CPU SAMPLES END

java/io/FilelnputStream.readBytes
spec/benchmarks/_202_jess/jess/ValueVector.equals
java/io/UnixFileSystem.getBooleanAttributesO
java/lang/ClassLoader.defineClass0
spec/benchmarks/_202_jess/jess/Value.equals
java/io/FilelnputStream.open
spec/benchmarks/_202_jess/jess/Node2.appendToken
spec/benchmarks/_202_jess/jess/Node2.findinMemory
spec/benchmarks/_202_jess/jess/Token.data_equals

spec/benchmarks/_202_jess/jess/Node2.findinMemory

method

to be active. These stack traces correspond to the
CPU usage hot spots in the application.

The HPROF agent can also report complete heap
dumps and monitor contention information. We will
not list more examples of how the HPROF agent pre-
sents the information obtained through the profil-
ing interface in this paper. Instead, we will discuss
the details of how various profiling interface features
are supported in the virtual machine.

JVMPI design justifications

What were the motivations behind the design choices
made for JVMPI? As we have stated before, our high-
level goal is to create a general-purpose and porta-
ble profiling interface for the Java virtual machine.
Our design must be flexible enough to suit the needs
of a variety of Java virtual machine implementations
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and profiler front ends. The JVMPI must provide com-
prehensive profiling support, i.e., the user must be
able to perform various types of profiling such as CPU
time profiling, heap profiling, and thread and mon-
itor profiling. The JVMPI must support interactive
profiling, and its implementation must be nonintru-
sive when profiling is turned off. The JVMPI must pro-
vide a way to attribute event costs to specific
execution contexts of the program for effective per-
formance analysis. In addition, it must solve the chal-
lenges posed by garbage collection and multithread-
ing support provided by the Java virtual machine. In
the following subsections we demonstrate how our
design achieves the above goals.

Cost attribution to specific execution contexts. How
do we attribute event costs to specific execution con-
texts? In particular, how do we do so effectively in
a multithreaded environment?

VISWANATHAN AND LIANG
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We had a number of design options—present infor-
mation at the method call level, or at a finer gran-
ularity such as basic blocks or different execution
paths inside a method. On the basis of our experi-
ence with tuning Java applications, we believe that
there is little reason to attribute cost to a finer gran-
ularity than a method and the source code line num-
ber where the method was executing. Programmers
typically have a good understanding of cost distri-
bution inside a method and can easily pinpoint the
inefficiency with the source code line number; meth-
ods in Java applications tend to be smaller than, for
example, C or C++ functions.

Itis not enough to report a flat profile consisting only
of the portion of time in individual methods. If, for
example, the profiler reports that a program spends
a significant portion of time in the String.getBytes
method, how do we know which part of our program
indirectly contributed to invoking this method if the
program does not call this method directly?

A good way to attribute profiling costs to specific ex-
ecution contexts is to report the dynamic stack traces
executed by the thread that caused the resource con-
sumption. Dynamic stack traces become less infor-
mative in some programming languages where it is
hard to associate stack frames with source language
constructs, such as when anonymous functions are
involved. Fortunately, anonymous inner classes in
the Java programming language are represented by
classes with informative names at run time.

The GetCallTrace call-back provides the dynamic
method call stack trace of a thread up to a specified
depth at any point. Each stack trace element con-
sists of a method identifier and the line number in
the source code where the method was executing.
The defining information for a method identifier is
notified when the class to which it belongs is loaded
into the virtual machine. As we saw earlier, the data
sent during any event notification contain the iden-
tifier of the thread whose execution caused the event.
When the profiler agent receives an event notifica-
tion, it can use GetCallTrace to determine the cur-
rent call-stack of the corresponding thread in which
the event occurred.

CPU time profiling. JVMPI supports both statistical
sampling and code instrumentation. Statistical sam-
pling is less disruptive to program execution, but can-
not provide completely accurate information. Code
instrumentation, in contrast, may be more disrup-
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tive, but allows the profiler to record all the events
of interest.

The Java virtual machine is a multithreaded execu-
tion environment. One difficulty in building CPU time
profilers for such systems is how to properly attribute
CPU time to each thread, so that the time spent in
amethod is accounted for only when the method ac-
tually runs on the CPU, not when it is unscheduled
and waiting to run.

Statistical sampling. The basic thread-aware CPU
time-sampling algorithm that is supported by the
JVMPI is as follows:

while (true) {
sleep for a short interval;

for each thread T {
call ThreadSuspend on T;

}

for each thread T {
if ThreadHasRun is true for T {
GetCallTrace for T;
assign a cost unit to the stack trace;

}
}

for each thread T {
call ThreadResume on T;

}

The profiler needs to suspend the thread while col-
lecting its stack trace, otherwise a running thread may
change the stack frames as the stack trace is being
collected.

The main difficulty in the above scheme is how to
implement ThreadHasRun, i.e., how to determine
whether a thread has run in the last sampling inter-
val. We should not attribute cost units to threads that
are waiting for an I/O operation or waiting to be
scheduled in the last sampling interval. Ideally, this
problem would be solved if the scheduler could in-
form the profiler of the exact time interval in which
a thread is running, or if the profiler could find out
the amount of CPU time a thread has consumed at
each sampling point.

Unfortunately, modern operating systems such as
Windows NT** and Solaris** neither expose the ker-
nel scheduler nor provide ways to obtain accurate
per-thread CPU time. For example, the GetThread-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000



Times call on Windows NT returns per-thread CPU
time in 10 millisecond increments, too inaccurate for
profiling needs.

Our solution is to determine whether a thread has
run in a sampling interval by checking whether its
register set has changed. If a thread has run in the
last sampling interval, it is almost certain that the
contents of the register set have changed.

The information gathered for the purpose of pro-
filing need not be 100 percent reliable. It is extremely
unlikely, however, that a running thread maintains
an unchanged register set, which includes such reg-
isters as the stack pointer, the program counter, and
all general-purpose registers. One pathological ex-
ample of a running program with a constant register
set is the following C code segment, where the pro-
gram enters into an infinite loop that consists of one
instruction:

loop: goto loop;

In practice, we find that it suffices to compute and
record a checksum of a subset of the registers, thus
further reducing the overhead of the profiler.

An important aspect of our sampling algorithm worth
pointing out is that it does not depend on the num-
ber of processors on the machine. Therefore, it would
work equally well on uniprocessor and multiproces-
sor machines.

The cost of suspending all threads and collecting
their stack traces is roughly proportional to the num-
ber of threads running in the virtual machine. A mi-
nor enhancement to the sampling algorithm dis-
cussed earlier is that we need not suspend and collect
stack traces for threads that are blocked on mon-
itors managed by the virtual machine. This enhance-
ment significantly reduces the profiling overhead for
many multithreaded programs in which most threads
are blocked most of the time. From our measure-
ments, profiling a multithreaded program (10 total
threads, two-thirds runnable at a time), with our sam-
pling-based CPU time profiler with a sampling inter-
val of one millisecond, incurs less than 20 percent
overhead on platforms such as Windows NT and So-
laris.

Alternatively, the profiler may perform program

counter sampling. The Java virtual machine notifies
COMPILED_METHOD_LOAD events when methods
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get compiled into native code and loaded into mem-
ory. When they are unloaded, the Java virtual ma-
chine sends COMPILED_METHOD_UNLOAD events.
The start and end address of the compiled code,
along with the source code line number mapping, is
sent as a part of the COMPILED_METHOD_LOAD
event-specific data. Thus, the profiler agent has
enough information to attribute the sampled pro-
gram counter value to a particular method and its
source code.

Code instrumentation. Code instrumentation is also
supported in two ways. The profiler agent may
measure the time spent on the CPU between
METHOD_ENTER and METHOD_EXIT events by the
thread generating the events for all methods. Nat-
urally, this approach introduces additional C func-
tion call overhead to each profiled method.

A less disruptive way that is supported by JVMPI is
to allow the profiler agent to dynamically inject pro-
filing code directly into the profiled program. This
type of code instrumentation is easier on platforms
using the Java language than on traditional CPUs, be-
cause there is a standard class file format. The JVMPI
allows the profiler agent to instrument every class
file before it is loaded by the virtual machine using
the CLASS_FOR_INSTRUMENT event. The profiler
agent may, for example, insert a custom bytecode
sequence that records method invocations, control
flow among the basic blocks, or other operations per-
formed inside the method body. When the profiler
agent changes the content of a class file, it must en-
sure that the resulting class file is still valid accord-
ing to the Java Virtual Machine Specification.

Heap profiling. Heap profiling serves a number of
purposes: pinpointing the part of a program that per-
forms excessive heap allocation, revealing the per-
formance characteristics of the underlying garbage
collection algorithm, and detecting the causes of un-
necessary object retention.

Excessive heap allocation leads to performance deg-
radation for two reasons: the cost of the allocation
operations themselves and, because the heap is filled
up more quickly, the cost of more frequent garbage
collections. With the JVMPI, the profiler agent can
track all NEW_OBJECT events. At each event, the
agent can obtain the stack trace that serves as a good
identification of the heap allocation site. The pro-
grammer should concentrate on optimizing busy
heap allocation sites. The profiler agent can also
monitor DELETE_OBJECT events to keep track of
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how many objects allocated from a given site are be-
ing kept alive.

Unnecessary object retention occurs when an object
is no longer useful but is being kept alive by another
object that is in use. For example, a programmer may
insert objects into a global hash table. These objects
cannot be collected as garbage as long as any entry
in the hash table is useful and the hash table is kept
alive.

An effective way to find the causes of unnecessary
object retention is to analyze the heap dump received
in a HEAP_DUMP event. The heap dump contains in-
formation about all the garbage collection roots, all
live objects, and how objects refer to one another.
This information can be processed and analyzed by
the profiler front end.

An alternative way to track unnecessary object re-
tention is to provide the direct support in the pro-
filing interface for finding all objects that refer to a
given object. The advantage of this incremental ap-
proach is that it requires less temporary storage than
complete heap dumps. The disadvantage is that un-
like heap dumps, the incremental approach cannot
present a consistent view of all heap objects that are
constantly being modified during program execution.

In practice, we do not find the size of heap dumps
to be a problem. Typically, the majority of the heap
space is occupied by primitive arrays. Because there
are no internal pointers in primitive arrays, elements
of primitive arrays need not be part of the heap
dump.

Algorithm-independent allocation and garbage collec-
tion events. Many memory allocation and garbage col-
lection algorithms are suitable for different Java vir-
tual machine implementations. Mark-and-sweep,
copying, generational, and reference counting are
some examples. This presents a challenge to design-
ing a portable profiling interface: Is there a set of
events that can uniformly handle a wide variety of
garbage collection algorithms?

We have designed a set of profiling events that cover
all garbage collection algorithms that we are cur-
rently concerned with. As we have seen earlier, the
virtual machine issues the following set of events:

* NEW_ARENA(arena identifier, or ID)
* DELETE_ARENA(arena ID)
* NEW_OBJECT(arena ID, object ID, class ID)
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* DELETE_OBJECT(object ID)
* MOVE_OBJECT(old arena ID, old object ID, new
arena ID, new object ID)

Our notation encodes the event-specific information
in a pair of parentheses, immediately following the
event type. Let us go through some examples to see
how these events may be used with different garbage
collection algorithms:

* A mark-and-sweep collector issues NEW_OBJECT
events when allocating objects and issues DE-
LETE_OBJECT events when adding objects to the
free list. Only one arena ID is needed.

* A mark-sweep-compact collector additionally is-
sues MOVE_OBJECT events. Again, only one arena
is needed; the old and new arena IDs in the
MOVE_OBJECT events are the same.

* Astandard two-space copying collector creates two
arenas. It issues MOVE_OBJECT events during gar-
bage collection and issues a DELETE_ARENA event
followed by a NEW_ARENA event with the same
arena ID to free up all remaining objects in the
semi-space.

* A generational collector issues a NEW_ARENA
event for each generation. When an object is
scavenged from one generation to another, a
MOVE_OBUJECT event is issued. All objects in an
arena are implicitly freed when a DELETE_ARENA
event arrives.

* A reference-counting collector issues NEW_OB-
JECT events when new objects are created and is-
sues DELETE_OBJECT events when the reference
count of an object reaches zero.

In summary, the simple set of heap allocation events
supports a wide variety of garbage collection algo-
rithms.

Monitor profiling. Monitors are the fundamental
synchronization mechanism in the Java programming
language. Programmers are generally concerned with
two issues related to monitors: the performance im-
pact of monitor contention and the cause of dead-
locks.

Monitor contention is the primary cause of the lack
of scalability in multiprocessor systems. Monitor con-
tention is typically caused by multiple threads hold-
ing global locks too frequently or too long.

Frequently contended monitors can be tracked by

tracing MONITOR_CONTENDED_ENTER events.
Monitors being held for unnecessarily long periods
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of time can be tracked by tracing MONITOR_CON-
TENDED_ENTERED events that indicate the amount
of elapsed time the current thread was blocked be-
fore it entered the monitor. Tracing MONITOR_CON-
TENDED_EXIT events indicates possible performance
problems caused by the current thread holding the
monitor for too long.

During all these events, the overhead of issuing the
event is negligible compared to the performance im-
pact of the blocked monitor operation. The profiler
agent can obtain the stack trace of the current thread
and thus attribute the monitor contention events to
the parts of the program responsible for issuing the
monitor operations.

If every thread is waiting to enter monitors that are
owned by another thread, the system runs into a
deadlock situation. The profiler agent can request
a MONITOR_DUMP event to find the cause of this kind
of deadlock.’

The MONITOR_DUMP event data include informa-
tion about the owner of each contended monitor,
the list of threads waiting to enter the monitor, and
the stack trace of all the threads. To obtain a con-
sistent view of all threads and all monitors, all threads
must be suspended using the SuspendThread call-
back.

Interactive profiling. An approach to support inter-
active profiling is to specify that all events must be
recorded by the profiler agent and selectively passed
onto the profiler front end. But this puts too much
overhead on the agent and does not meet the re-
quirements of programmers and tools vendors.

InJvMPI, event notification can be selectively enabled
or disabled at run time using EnableEvent and Dis-
ableEvent. The need for dynamically enabling and
disabling profiling events requires added checks in
the virtual machine code paths that lead to the gen-
eration of these events. But we see in the next sub-
section that this requirement poses minimum over-
head for the majority of events.

A problem that arises when profiler events can be
enabled and disabled is that the profiler agent re-
ceives incomplete, or partial, profiling information.
This problem has been characterized as the partial
profiling problem." For example, if the profiler agent
enables CLASS_LOAD events after a number of
classes have been loaded and a number of instances
of these classes have been created, the agent may
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encounter NEW_OBJECT events that contain an un-
known class identifier. This situation can occur for
any identifier if its defining event was disabled.

A straightforward solution is to require the virtual
machine to record all profiling events in a trace file,
whether or not these events are enabled by the pro-
filer agent. The virtual machine is then able to send
the appropriate information for any entities unknown
to the profiler agent. This approach is undesirable
because of the potentially unlimited size of the trace
file and the overhead when profiling events are dis-
abled.

We solve the partial profiling problem based on one
observation: The Java virtual machine keeps track
of information internally about the valid entities
whose identifiers can be sent with profiling events.
The virtual machine does not need to keep track of
outdated entities (such as a class that has been loaded
and unloaded), because they will not appear in pro-
filing events. When the profiler agent receives an un-
known entity (such as an unknown class identifier),
the entity is still valid, and thus the agent can im-
mediately obtain all the relevant information from
the virtual machine. At this point RequestEvent
comes in. Using this call-back, the profiler can re-
quest information about unknown entities received
as part of a profiling event. For example, when the
profiler agent encounters an unknown class identi-
fier, it may request the virtual machine to send the
same information that is contained in a CLASS_LOAD
event for this class.

Certain entities need to be treated specially by the
profiling agent in order to deal with partial profiling
information. For example, if the profiling agent dis-
ables the MOVE_OBJECT event, it must immediately
invalidate all object IDs it knows about because they
may be changed by future garbage collections. With
the MOVE_OBUJECT event disabled, the agent can re-
quest the virtual machine to send the class informa-
tion about unknown object IDs. However, such re-
quests must be made only when garbage collection
is disabled by using the DisableGC call-back. Other-
wise, garbage collection may generate a MOVE_OB-
JECT event asynchronously and invalidate the ob-
ject ID before the virtual machine obtains the class
information for this object ID.

Overhead of disabled profiling events. If the over-
head of disabled profiling events is minimal, JVMPI
can be shipped with production Java virtual ma-
chines. It offers two advantages: applications can be
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profiled directly on the same virtual machines on
which they run normally, and the user is saved from
the space and administrative overheads of maintain-
ing a special version for profiling.

The need for dynamically enabling and disabling pro-
filing events requires added checks in the code paths
that lead to the generation of these events.

The majority of profiling events are issued relatively
infrequently. Examples of these types of events are
class loading and unloading, thread start and end,
garbage collection, and Java Native Interface (JNI)
global reference creation and deletion. The JVMPI
can easily support interactive low-overhead profil-
ing by placing checks in the corresponding code paths
without having a performance impact on normal pro-
gram execution.

Heap profiling events, in particular NEW_OBJECT,
DELETE_OBJECT, and MOVE_OBJECT, could be
quite frequent. An added check in every object al-
location may have a noticeable performance impact
on program execution, especially if the check is in-
serted in the allocation fast path that typically is in-
lined into the code generated by the JIT compilers.
Fortunately, garbage-collected memory systems by
definition need to check for possible heap exhaus-
tion conditions in every object allocation, even in the
fast path. We can thus enable heap allocation events
by forcing every object allocation into the slow path
with a false heap exhaustion condition, and check
whether heap profiling events have been enabled and
whether the heap is really exhausted in the slow path.
Because no change to the allocation fast path is
needed, object allocation runs in full speed when
heap profiling is disabled.

The METHOD_ENTER and METHOD_EXIT events are
also generated frequently. They can be easily sup-
ported by the JIT compilers that can dynamically
patch the generated code and the virtual method dis-
patch tables.

Related work

Some of the design rationales of a comprehensive
profiling interface such as the JVMPI have been pre-
sented by the authors in an earlier paper.' The cur-
rent paper, however, is the first complete account of
the JVMPI design and implementation.

Extensive work has been done in CPU time profiling.
The gprof tool, '? for example, is a sample-based pro-
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filer that records call graphs, instead of flat profiles.
Recent research *° has improved the performance
and accuracy of time profilers based on code instru-
mentation. Analysis techniques have been developed
such that instrumentation code may be inserted with
as little run-time overhead as possible.'*'” Our sam-
pling-based CPU time profiling uses stack traces to
report CPU usage hot spots and is the most similar
to the technique of call graph profiling.'® Sansom et
al." investigated how to properly attribute costs in
profiling higher-order lazy functional programs. Ap-
pel et al.” studied how to efficiently instrument code
in the presence of code inlining and garbage collec-
tion. None of the above work addresses the issues
in profiling multithreaded programs, however.

Issues similar to profiling multithreaded programs
arise in parallel programs,®* where the profiler typ-
ically executes concurrently with the program and
can selectively profile parts of the program.

Heap profiling similar to that reported in this paper
has been developed for C, Lisp,* and Modula-3.*
To our knowledge, our work is the first that con-
structs a heap profiling interface that is independent
of the underlying garbage collection algorithm.

We have a general-purpose profiling architecture,
but sometimes it is also useful to build custom pro-
filers® that target specific compiler optimizations.

There have been numerous earlier experiments (for
example, see Reference 26) on building interactive
profiling tools for Java applications. These ap-
proaches are typically based on placing custom in-
strumentation in the Java virtual machine implemen-
tation.

Conclusions

We have presented the Java virtual machine profiler
interface (JVMPI) and justified its design choices. We
have demonstrated that its scope includes mul-
tithreaded CPU usage profilers, heap allocation and
garbage collection profilers, monitor contention pro-
filers, and thread deadlock detectors. In addition, we
have shown that the JVMPI supports interactive pro-
filing and carries extremely low run-time overhead.

The JVMPI solves the problem of profilers relying on
custom instrumentation. It is general-purpose and
powerful enough to suit the needs of different pro-
filing tool vendors and virtual machine vendors.
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We believe that our work lays a foundation for build-
ing advanced profiling tools for the Java language.
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