
Preface

Performance is an important consideration for any
programming language. In spite of an initial lag in
performance of the Java** language, its performance
is improving, and this improvement is expected to con-
tinue. As the Java environment evolves, a concerted
effort to increase performance includes the techniques
and tools to identify improvement opportunities, and
the resulting development of algorithms and structures
to achieve higher levels of Java performance.

Performance affects many aspects of the software life
cycle, from requirements definition to use by cus-
tomers. In the context of the Java language, new con-
siderations are introduced because Java is still rel-
atively young, and time is needed to learn how to
apply familiar techniques to a Java environment. In
addition, the Java language itself introduces fresh
concepts and challenges. In this issue, eleven papers
discuss various topics on Java performance, begin-
ning with application experience and benchmarks
and continuing with tools and techniques for per-
formance analysis. Attention is then focused on the
performance of the implementation of the Java vir-
tual machine, including new directions for implemen-
tations that promise to deliver even higher levels of
performance for Java virtual machines and applica-
tions. We are indebted to R. F. Berry of the IBM Net-
work Computing Software Division in Austin, Texas,
for his considerable effort in organizing, developing,
and coordinating this issue.

Christ et al. view Java performance from an appli-
cation development perspective. A cost-effective ap-
proach for developing Java applications is made
possible through the use of specially designed
frameworks such as SanFrancisco*. The authors de-
scribe the issues associated with ensuring adequate
performance for large-scale applications built on
such frameworks, given the performance of the un-
derlying Java virtual machine implementation.

The Java language is being increasingly accepted be-
yond the business community. However, for numer-
ically intensive computation, some critical perfor-
mance deficiencies remain. Naive algorithm im-
plementations suffer from both the heavyweight

Java multidimensional implementation and the im-
portant, but expensive, language compliance con-
straints. Moreira et al. discuss this problem in their
paper. They introduce a new Java Array package that
presents array computations in a natural and famil-
iar way, based on FORTRAN 90 and ideally suited to
compiler (e.g., just-in-time compiler) optimization.
Their results are compelling, resulting in perfor-
mance nearly like FORTRAN for certain benchmarks.

Baylor et al. present an overview of Java bench-
marks—applications developed to elicit fundamen-
tal differences between competing Java virtual ma-
chine implementations or between software systems
employing those implementations (e.g., a Web ap-
plication server implementing servlet support).
Benchmarks help system developers identify opportu-
nities for improving the performance of a particular
virtual machine implementation. Benchmarks help ap-
plication programmers learn where a particular virtual
machine implementation may have weaknesses.

Viswanathan and Liang present a new Java virtual
machine interface specifically designed to support
performance monitoring and analysis of both applica-
tions and the virtual machine itself. The Java Virtual
Machine Profiler Interface, or JVMPI, is an important
and promising direction for Java analysis, since it frees
performance tool authors from the requirement of de-
tailed knowledge of the internals of any particular Java
virtual machine implementation. With JVMPI, porta-
ble tools for Java application and Java virtual machine
analysis become a viable alternative.

The Java language and environment are excellent
for the development and deployment of distributed
applications. Kazi et al. highlight the problem of as-
sessing the performance of complex distributed Java
applications that employ remote method invocation
for communication. The authors develop new tech-
niques for instrumenting and analyzing performance
data from multiple Java virtual machines, all coop-
erating in the execution of a single unit of work.

Alexander et al. describe the application of a technique
particularly well-adapted for Java application and Java

PREFACE IBM SYSTEMS JOURNAL, VOL 39, NO 1, 20002

virtual machine performance analysis. The technique,
named arcflow, is a scalable approach to recording
widely differing types of performance data in a com-
mon data model, and then generating a core set of ge-
neric reports. Although not restricted only to the Java
language in its application, the technique is well-suited
to highly structured environments, such as the Java vir-
tual machine and applications written in Java.

Initially, the primary focus for Java performance ac-
tivity was the client. This focus mirrored the early
perception of the Java language as a client technol-
ogy, a view fostered by the then-widespread use of
Java as a means to produce flashy animations on Web
pages. Early benchmarks concentrated on measur-
ing graphical and some computational characteris-
tics of a virtual machine implementation. These early
benchmarks have been used quite successfully for
tuning graphical and core Java virtual machine ac-
tivity. Gu et al. explore the use of benchmarks and
tools for obtaining improved Java virtual machine
performance on the client.

A notable shift in focus from client-side Java per-
formance to the performance of Java on the server
has occurred. The value of Java in making server
code portable is now recognized, and server-side de-
ployment of business logic written in the Java lan-
guage is growing. For example, Web application serv-
ers allow businesses to develop code in Java that
would formerly have been written in COBOL, C, or
Perl, and deploy it in the form of servlets. The in-
creasing use of the Java language in the computer
science curriculum of universities has also acceler-
ated the importance of delivering high-performance
Java for servers. Dimpsey, Arora, and Kuiper dis-
cuss the challenges with, and techniques for deliv-
ering, server-side Java with competitive performance.

The power of the Java language that enables code
to be written once and run anywhere was initially
diminished by concerns for the expected poor per-
formance of an interpretive language. When early
implementations were compared unfavorably with
the C language, many apprehensions about Java’s
performance were realized. Fortunately, great ad-
vances in just-in-time, or JIT, compilation have been
made. In a paper by Suganuma et al. the architec-
ture, algorithms, and capabilities of IBM’s high-per-
forming Java JIT compiler technology are described.

Dillenberger et al. describe successful efforts associ-
ated with combining the benefits of the Java language
with the benefits of large-scale enterprise data process-

ing systems. The OS/390* (Operating System/390) hard-
ware and software architecture delivers a highly
scalable, highly reliable platform for high-volume
enterprise transaction processing. Blending the ben-
efits of Java with the benefits of this mature operating
environment is a significant challenge. Achieving sat-
isfactory performance in this environment is an impor-
tant objective, but still greater opportunity exists. The
paper closes with a compelling discussion of a new Java
virtualmachinearchitecture that is specificallydesigned
for supporting high-volume transaction processing.

Alpern et al. describe the Jalapeño virtual machine
for servers. Jalapeño represents a new direction and
possible future for Java virtual machine implemen-
tations. The Java virtual machine is implemented al-
most entirely in Java itself, thus eliminating some of
the problems associated with porting across plat-
forms. Since it is written in the Java language, Java-
oriented optimizations tend to improve the perfor-
mance of the Java virtual machine.

As the Journal begins its 39th year, we would like to
acknowledge the support given by readers, authors,
and referees that have sustained its publication. We
are grateful for your support and encourage you to
continue your interest and participation. It also
seems appropriate to state a few facts that may es-
cape us as we focus on the contents. First, this quar-
terly publication is a refereed technical journal, which
means that the integrity of each paper is ensured by
a process that depends on peer reviews of content,
currency, and value by recognized experts within and
outside IBM. Second, it is intended for the software
and systems professional and applied research com-
munity worldwide. The papers are written for a tech-
nically aware readership, and we welcome submis-
sions by knowledgeable authors from around the
globe, within and outside IBM. Third, the Journal has
around 50000 subscribers worldwide. Of those, ap-
proximately two-thirds are technical professionals
and researchers outside IBM and one-third are IBM
employees; two-thirds are in the United States and
one-third are elsewhere.

The next issue of the Journal will feature papers de-
scribing insights gained through experiences in us-
ing the SanFrancisco frameworks, along with several
individual papers.

Gene F. Hoffnagle
Editor

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 PREFACE 3

