
Java programming
for high-performance
numerical computing

by J. E. Moreira
S. P. Midkiff
M. Gupta
P. V. Artigas
M. Snir
R. D. Lawrence

First proposed as a mechanism for enhancing
Web content, the JavaTM language has taken off
as a serious general-purpose programming
language. Industry and academia alike have
expressed great interest in using the Java
language as a programming language for
scientific and engineering computations.
Applications in these domains are characterized
by intensive numerical computing and often have
very high performance requirements. In this
paper we discuss programming techniques that
lead to Java numerical codes with performance
comparable to FORTRAN or C, the more
traditional languages for this field. The
techniques are centered around the use of a
high-performance numerical library, written
entirely in the Java language, and on compiler
technology. The numerical library takes the form
of the Array package for Java. Proper use of this
package, and of other appropriate tools for
compiling and running a Java application, results
in code that is clean, portable, and fast. We
illustrate the programming and performance
issues through case studies in data mining and
electromagnetism.

The Java** language is an attractive general-pur-
pose programming language for many funda-

mental reasons: clean and simple object semantics,
cross-platform portability, security, and an increas-
ingly large pool of adept programmers. In both in-
dustry and academia, using the Java language as a
programming language for scientific and engineer-
ing computations is of great interest. Applications

in these domains are characterized by intensive nu-
merical computing. The goal of this paper is to show
that the major impediment to the use of Java as a
vehicle for numerical computing—performance—is
not intrinsic to the language and can be solved using
techniques we describe.

It is true that, when commercial Java environments
are used, the performance of numerically intensive
Java programs falls woefully short of the perfor-
mance of FORTRAN programs. As shown later in the
case study of an electromagnetics application, the
performance of numerically intensive Java programs,
developed and compiled without the benefit of the
techniques described in this paper, can be as low as
1 percent of the performance of equivalent FORTRAN
programs. Although anecdotal evidence suggests that
performance degradations of up to 50 percent rel-
ative to FORTRAN 90 might be tolerated in numer-
ically intensive Java programs in order to gain its
other benefits, a 100-fold performance slowdown is
unacceptable.

The Java Grande Forum,1 reflecting in part results
from our own research, has identified five critical

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 0018-8670/00/$5.00 © 2000 IBM MOREIRA ET AL. 21

Java language and Java virtual machine issues re-
lated to the applicability of the Java language to solv-
ing large computational problems in science and en-
gineering. Unless these issues are resolved, it is
unlikely that the Java language will be successful for
numerical computing. The five critical issues are:

1. Multidimensional arrays—True rectangular mul-
tidimensional arrays are the most important data
structures for scientific and engineering comput-
ing. A large fraction of this paper is dedicated to
explaining the problem with the existing Java ap-
proach to multidimensional arrays. We also de-
scribe our solution to the problem, through the
design of a package implemented entirely in the
Java language for multidimensional arrays, which
we call the Array package for Java.

2. Complex arithmetic—Complex numbers are an
essential tool in many areas of science and en-
gineering. Computations with complex numbers
need to be supported as efficiently as computa-
tions with the primitive real number types, float
and double. The issue of high-performance com-
puting with complex numbers is directly tied to
the next issue.

3. Lightweight classes—The excessive overhead as-
sociated with manipulation of objects in the Java
language makes it difficult to efficiently support
alternative arithmetic systems, such as complex
numbers, interval arithmetic, and decimal arith-
metic. The ability to manipulate certain objects
as having just value semantics is absolutely fun-
damental to achieve high performance with these
alternative arithmetic systems. In this paper, we
describe how we were able to treat complex
numbers in Java as values, thus achieving
FORTRAN-like performance, without making any
changes to the language. The same approach can
be extended to other numerical types.

4. Use of floating-point hardware—Achieving the
highest-possible level of performance on numer-
ical codes typically requires exploiting unique
floating-point features in each processor. This ex-
ploitation is often at odds with the Java goal of
exact reproducibility of results in every platform.
In this paper we specifically consider the perfor-
mance impact of utilizing the POWER and Pow-
erPC* fused multiply-add (fma) instruction in Java.

5. Operator overloading—If multidimensional ar-
rays and complex numbers (and other arithmetic
systems) are to be implemented in Java as a set
of standard packages, then operator overloading
is necessary to make the use of these packages
more attractive to the application programmer.

Although operator overloading is a feature pri-
marily related to code usability and readability,
it does have performance implications. We dis-
cuss these implications in the context of complex
numbers.

This paper discusses our efforts and lists our accom-
plishments in addressing the performance problems
associated with using the Java language for numer-
ical computing. We focus mostly on multidi-
mensional arrays and complex numbers, but our dis-
cussion touches all of the previously mentioned five
issues. We show that, when our techniques are
applied, Java code can achieve between 55 and 90
percent of the performance of highly optimized
FORTRAN code in a variety of engineering and
scientific benchmarks. We illustrate the details of
these performance results through detailed case
studies in data mining and electromagnetism. We
also provide a summary of results for other bench-
marks. The compiler optimizations we discuss have
been implemented in our research prototype version
of the IBM High-Performance Compiler for Java
(HPCJ).2

The remainder of this paper is organized as follows.
The next section is an overview of the problems as-
sociated with the current Java approaches to mul-
tidimensional arrays and nonprimitive numerical
types. The third section describes the details
of the Array package for Java, which supports
FORTRAN-like performance for multidimensional ar-
ray computations in Java code. The subsequent sec-
tion is a case study of a data mining computation
illustrating the performance benefits that result from
using the Array package. The fifth section is a case
study of an electromagnetics application that makes
heavy use of complex numbers. The sixth section
summarizes performance results from a larger set
of numerically intensive benchmarks, showing that
Java implementations can be performance-compet-
itive with the best FORTRAN implementations. The
seventh section discusses some related work, and fi-
nally, the last section presents our conclusions, dis-
cusses the impact of our work, and elaborates on
some future research.

The Array package is freely available from alpha-
Works*, at http://www.alphaworks.ibm.com/tech/
ninja. Our project Web page, with additional infor-
mation on the Array package and our research in
general, is located at http://www.research.ibm.com/
ninja.

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200022

Java approach to multidimensional arrays
and complex numbers

In this section, we explain the performance problems
associated with the existing Java approaches to im-
plementing multidimensional arrays and alternative
arithmetic systems, particularly complex numbers.
We also discuss why the corresponding FORTRAN 90
approaches are so much more efficient. We give a
taste of our solutions to Java performance problems,
which are discussed in more detail in later sections.
We show how FORTRAN-like performance can be
achieved with 100 percent Java code while remain-
ing within the philosophy and spirit of the language.

Java arrays. Although the specification of Java ar-
rays does not mandate their exact organization, it
places sufficient constraints so that all implementa-
tions we know of appear as shown in Figure 1. The
figure shows how two-dimensional arrays would be
laid out, and accessed, in a Java implementation.

The Java language does not directly support arrays
of rank greater than one. Thus, a two-dimensional
array is represented as an array-of-arrays: an array
whose elements are, in turn, references to one-di-
mensional row arrays. Each array is represented as
an array object descriptor followed by a chunk of stor-
age that contains the elements of the array. The ar-
ray object descriptor contains the fields that are
present in all objects (lock bits, bits used by the gar-
bage collector, type information, etc.), as well as the
upper bound of the array. If a two-dimensional ar-
ray of type T is being represented, the elements of
each row array are either of type T, if T is a Java
primitive type, or references to objects of type T. In
Figure 1, each element is a Java primitive of type
double. Although the layout of the elements of the
array are not specified, they are typically contained
in a contiguous chunk of storage.

The advantages of this layout for an array are: very
general structures can be created, and the necessary

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 23

information to perform bounds checking is always
available. As seen in Figure 1, it is not required that
every row have the same length. Figure 1 is an ex-
ample of a ragged array. It is not even necessary for
every row to be unique—rows 2 and n 2 2 of array
A point to the same row array object, and thus
A[2][4] and A[n 2 2][4] name exactly the same el-
ement. Even more generality is possible with arrays
of Objects. In that case, each element can be an ar-
bitrary Java object, even another array of any rank
and type. All this generality comes with a perfor-
mance price—a price that is too high for numerical
programs that do not need the supplied generality.

First, consider array bounds checking. The Java lan-
guage specification requires that any access to an ar-
ray element that is not in bounds must throw an ex-
ception. The job of checking for out-of-bounds
exceptions exacts a significant toll on Java perfor-
mance. In Reference 3 it is shown that eliminating
array bounds checks alone produced speedups on
the IBM POWER and PowerPC processors three to
four times over keeping the checks. On some pro-
cessors, this overhead is less. The real impact on per-
formance, however, comes from having one or more
potential exceptions for every data access. Because
Java exceptions are precise, operations cannot be
moved past a potential exception. This limitation ef-
fectively precludes almost all optimizations tradition-
ally applied to numerical programs4,5—optimizations
that are necessary for good performance.

In Reference 3, techniques for creating program re-
gions free of array bounds exceptions are presented.
Even with these techniques, the Java array model
interferes with good optimization. Optimizing
bounds checks for an array reference A[i][j] inside
a loop structure requires: (1) determining the range
of values that i and j can take during execution of
the loop and (2) being able to test, before starting
loop execution, that those ranges will be within the
legal bounds of the array. Since a Java two-dimen-
sional array can have rows of different lengths, as
shown in Figure 1, the test has to be performed for
all rows of the array. A much simpler test could be
used if the array were guaranteed to be rectangular
(i.e., all rows of the same length).

Another major impediment to optimization in Java
is the ability to alias rows of an array. Aliasing oc-
curs when two or more apparently different varia-
bles or references actually refer to the same datum.
An example of aliasing is shown in Figure 1, where
A[2] and A[n 2 2] refer to the same row. More-

over, B[1], B[2], A[2] and A[n 2 2] all refer to the
same row. The problem with aliasing is that many
optimizations rely on moving data reads and writes
relative to one another. For this rearrangement to
be legal, it is necessary that (1) all writes to a datum
be kept in order; (2) that no write to a datum be
moved prior to a read of the same datum; and (3)
that no read from a datum be moved after a write
to the same datum. Essential to determining the le-
gality of a transformation is the ability to determine
when two operations are to different data and, there-
fore, independent. Aliasing makes this more diffi-
cult because it is no longer possible to say that just
because two variables have different names, or be-
cause different array elements have different coor-
dinates, they must refer to different memory loca-
tions.

The final problem with Java arrays that we discuss
is the cost of accessing an element. Accessing ele-
ment A[2][4] requires the following steps: (1) get
the reference to the array object A; (2) determine
that A is not a null pointer; (3) determine that “2”
is an in-bounds index for A; (4) get the reference to
the array object that is row 2; (5) determine that this
object reference is not a null pointer; (6) determine
that “4” is an in-bounds index for A[2]; and (7) get
the data element A[2][4]. In contrast, as we will see,
FORTRAN 90 requires only two steps.

FORTRAN 90 arrays. The structure of a FORTRAN
90 two-dimensional array is shown in Figure 2. It has
two major components: a block of dense, contigu-
ous storage that holds the data elements of the ar-
ray, and a descriptor that contains the address of the
block of dense storage, bounds information for each
dimension, the size of individual data elements, and
other information used to index the array. This in-
dexing information is used to access array elements
and implement array sections. Accessing an element
of the array is straightforward: the base address of
the storage is extracted from the descriptor, and the
subscript, along with the indexing information con-
tained in the descriptor, is used to compute an off-
set into the data storage.

Because of the information contained in the descrip-
tor, array sections (see array B in Figure 2, which
corresponds to the shaded elements of A) can be
implemented efficiently. A section of a FORTRAN 90
array A is a view of A that accesses some subset of
the elements of A. The section has the following
properties: (1) it (logically) utilizes the same stor-
age as the original array, thus a change of an ele-

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200024

ment value contained in A and the section is reflected
in both; (2) the section has rank less than or equal
to the rank of A; (3) the elements in the section are
defined by enumerating element indices along each
axis; and (4) each element enumerated must be a
valid, in-bounds element of the original array axis.
Let A be an array of shape 8 3 8. Then B f
A(2 ; 8 ; 2, ;) associates B with rows 2, 4, 6, 8, and
all columns of the original array A. The reference
B(3, 4) accesses row 6 and column 4 of the original
array A. This example is illustrated in Figure 2.

The design of FORTRAN 90 arrays has several advan-
tages. First, because the storage is dense and con-
tiguous, access requires a single pointer dereference
and offset computation, regardless of the rank or di-
mensionality of the array being accessed. Second, the
ability to take sections allows great flexibility in pass-
ing portions of arrays to library functions. Third, a
rich set of intrinsic functions (i.e., built-in operators
expressed syntactically as functions) that operate on
arrays can be supported. Fourth, most primitive op-
erations in the language (e.g., 1, 2, p, and /) are over-
loaded and specify the operation applied element-
wise over the entire array. Finally, despite its support
of array sections, aliasing disambiguation with
FORTRAN 90 arrays is much simpler than with Java
arrays. Given two two-dimensional FORTRAN 90 ar-
ray sections A(lA

1 ; uA
1 ; sA

1 , lA
2 ; uA

2 ; sA
2) and

B(lB
1 ; uB

1 ; sB
1 , lB

2 ; uB
2 ; sB

2), alias disambiguation
is a matter of showing that A Þ B or that the in-
tersection of the ranges is empty: (lA

1 ; uA
1 ; sA

1) ù
(lB

1 ; uB
1 ; sB

1) 5 À or (lA
2 ; uA

2 ; sA
2) ù (lB

2 ; uB
2

; sB
2) 5 À. Even if disambiguation cannot be done

at compile time, the run-time test is trivial. In com-
parison, the disambiguation of two two-dimensional
Java arrays, with their unrestricted pointers as shown
in Figure 1, is almost always impossible at compile
time (without extensive interprocedural analysis) and
very expensive at run time.

FORTRAN 90 arrays are not, however, without their
faults. Storage association exposes the programmer
to the fact that data elements are contiguous in mem-
ory, and that the next logical element of the array
is also adjacent in storage to the previous element.
Quite frequently, FORTRAN programs rely on stor-
age association to execute correctly. In addition, op-
timizations that alter the layout of an array6–9 are
globally visible. As a consequence, data typically have
to be copied to and from the original layout. Copy-
ing makes these optimizations more fragile and less
useful, since the overhead of copying the arrays twice
must be factored into the cost model for determin-
ing whether the optimization should be performed.

A solution for true multidimensional arrays in Java.
To overcome the performance deficiencies inherent
to Java arrays, we developed the Array package for
Java. The Array package is a class library that im-
plements true rectangular multidimensional arrays
that combine (1) the efficiency of FORTRAN 90 ar-
rays, (2) the flexibility of data layout of Java arrays,
and (3) the safety and security features provided by
the Java requirement for bounds checking. With the
Array package, multidimensional arrays are created

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 25

using standard Java constructs. For example, the
code

doubleArray2D A 5 new doubleArray2D(m,n);

doubleArray2D B 5 new doubleArray2D(m,n);

declares two two-dimensional arrays A and B of (rect-
angular) shape m 3 n. Elements of these arrays can
be accessed using set and get methods from the class
doubleArray2D. For example,

A.set(j,i,B.get(i,j));

copies element (i, j) of array B into element (j, i)
of array A. A more detailed description of the Array
package appears in the next section. For now,
suffice it to say that the Array package has

FORTRAN-like semantics to facilitate compiler op-
timizations.

Complex numbers in the Java and FORTRAN 90
languages. In the FORTRAN programming language,
complex numbers are supported as primitive types.
Arithmetic operations with complex numbers can be
coded as easily as with real numbers. Multidimen-
sional arrays of complex numbers are directly sup-
ported in FORTRAN. Java, in contrast, does not sup-
port primitive complex types. The typical approach
for implementing complex numbers and complex
arithmetic in Java is through the definition of a Com-
plex class. Some components of such a class, which
is being proposed for standardization by the Java
Grande Forum,1 are shown in Figure 3. Objects of
this class are used to represent complex numbers.
We note that a Complex object typically requires 32

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200026

bytes for representation: a 16-byte object descriptor
(present in all Java objects) and two 8-byte fields for
the real and imaginary parts.

The operation a 3 b 1 c, where a, b, and c are
complex numbers, can be coded in Java as

a.times(b).plus(c)

where a, b, and c are references to objects of class
Complex. Note that the evaluation of a.times(b) cre-
ates a new Complex object to hold this intermediate
result. Method plus is then invoked on this interme-
diate result, creating yet another object with the re-
sult of a 3 b 1 c.

The approach of representing complex numbers as
objects of class Complex, and the associated creation
of objects to represent the output of computations,
results in a very high cost for using complex num-
bers in Java. As seen in the MICROSTRIP benchmark
results (in the case study on electromagnetics, where
a detailed analysis of this benchmark is given), ap-
plications using a Java Complex class (to represent
complex numbers) can be 100 times slower than the
equivalent applications in FORTRAN 90. These per-
formance problems can be addressed by using the
technique of semantic expansion, 10 as implemented
in our research prototype HPCJ.

Semantic expansion treats standard classes as lan-
guage primitives. Unlike traditional procedure or
method “inlining,” which (intuitively) treats the in-
lined method as a macro, semantic expansion uses
the compiler’s built-in knowledge of the class seman-
tics to directly generate efficient, legal code. With
semantic expansion, Complex objects and operations
on those objects are recognized by the compiler and
treated essentially as language primitives (largely as
FORTRAN 90 would treat them). The arithmetic
methods of class Complex are treated by semantic
expansion as operating and returning complex val-
ues (pairs of [real, imaginary] doubles). If the con-
sumers of theses values are other arithmetic meth-
ods of Complex, they are semantically expanded to
directly use the complex values. That is, only the re-
sulting value of an operation is propagated from one
step to the next. Otherwise, the value is converted to
a Complex object, with all the properties of a regular
Java object. By treating complex numbers as values
whenever possible, temporary Complex objects do not
have to be created for arithmetic operations, thus
reducing the allocation and garbage collection over-
head. This approach delivers the same performance

benefit for complex numbers as the proposed value
object extension for Java,1 without requiring lan-
guage changes. We show in the section on the elec-
tromagnetics case study and in the subsequent sec-
tion that semantic expansion can sometimes improve
the performance of Java applications using complex
arithmetic to approximately 80 percent of the per-
formance of corresponding FORTRAN 90 programs.

The problems we described earlier associated with
Java multidimensional arrays are exacerbated with
arrays of complex numbers. A Java two-dimensional
array of Complex, declared as Complex[][] C, is just
a collection of pointers to Complex objects. Optimiz-
ing null-pointer checks requires, in general, an in-
spection of the entire array. In addition to the in-
discriminate row-level aliasing shown in Figure 1,
Java arrays of Complex objects are subject to indis-
criminate element-level aliasing, making the issue of
alias disambiguation even harder.

We address the problems related to Java arrays of
complex numbers by including in the Array package
classes that represent true rectangular arrays of com-
plex numbers (e.g., ComplexArray2D). These arrays
always have a complex number associated with each
element, and there is no aliasing between two dif-
ferent elements.

The role of operator overloading. The Array pack-
age, the Complex class, semantic expansion, and
other compiler techniques we developed can success-
fully achieve high levels of performance with numer-
ical computing in Java. However, we are still left with
the difficulty of writing, maintaining, and reading pro-
grams that make extensive use of classes to repre-
sent numerical and array types. Some form (maybe
limited) of operator overloading is necessary to al-
low application programmers to write their codes in
a clear and intuitive notation. At a minimum, it is
necessary to support operator overloading of the ba-
sic arithmetic (1, 2, p, /, %) and relational (55,
!5, ,5, ,, ., .5) operators, as well as of the ar-
ray indexing operator ([]).

As an example, consider the evaluation of b[i, j] 5
a[i 1 1, j] 1 a[i 2 1, j], where b and a are two-
dimensional arrays of complex numbers (implement-
ed as ComplexArray2D). Ideally, we would like to code
this operation as

b[i,j] 5 a[i11,j] 1 a[i21,j] (1)

which is an operator-overloaded representation for

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 27

b.set(i,j,a.get(i11,j).plus(a.get(i21,j))) (2)

The set and get methods correspond to the over-
loaded array indexing operator ([]) and the plus
method corresponds to the overloaded addition op-
erator (1). Operator overloading is fundamental for
productivity and clarity of numerical codes using non-
primitive arithmetic systems and array classes. (An
alternative to defining operator overloading in the
language is to make use of visual editors that present
a more convenient interface to numerical program-
mers. Unfortunately, it binds the programmer to a
particular development environment.)

Operator overloading also has an impact on perfor-
mance. Rules for the semantics of operator overload-
ing must be simple, and code written with overloaded
operators (e.g., code fragment 1) is typically equiv-
alent to code that creates temporary objects (e.g.,
code fragment 2). In other words, object reuse in
code with overloaded operators is difficult. Thus, the
kind of optimizations through semantic expansion
that we describe for complex numbers is even more
important.

The Array package for Java

The goal of the Array package for Java is to over-
come the limitations inherent in Java arrays in terms
of performance and ease of use, as compared to ar-
ray implementations in other languages. A major de-
sign principle of the Array package is to define a set
of classes implementing FORTRAN 90-like multidi-
mensional arrays that are highly optimizable, ame-
nable to compiler analysis techniques, and that con-
tain the functionality necessary for numerically
intensive computing. We have modeled the Java Ar-
ray package along features of the FORTRAN 90 lan-
guage11 and the A11/P11 libraries.12,13 Not sur-
prisingly, the reader will also find similarities with
APL, since that programming language undoubtedly
influenced the design of FORTRAN 90. However, APL
is a much more dynamic language, with strong sup-
port for polymorphism of data and functions. The
design of the Java Array package, particularly as de-
scribed in this paper, follows the more static nature
of FORTRAN 90. This design allows us to leverage
mature compiler technologies that have been devel-
oped for FORTRAN over the course of many years.
It is important to emphasize that the Array package
is written entirely in the Java language. Its use does
not require any code preprocessing steps, just the
appropriate import statements.

A word about notation: From now on, when we use
the term Array (with an uppercase A) we refer to
the constructs provided by the Array package. The
standard arrays in the Java language will be referred
to as Java arrays (with a lowercase a).

The functionality provided by the Array package is
implemented by a set of basic methods and oper-
ations that are highly optimizable. The class hier-
archy inside the Array package has been defined to
enable aggressive compiler optimization. As an ex-
ample, we make extensive use of final classes, since
most Java compilers (and, in particular, javac) are
more easily able to apply method inlining to meth-
ods of final classes. This approach also statically binds
the semantics of methods, thus facilitating semantic
expansion. In the most commonly used methods of
the Array package (i.e., simple element-wise oper-
ations) the cost of a method call dominates the cost
of the computation done by the method. Therefore,
inlining those methods is essential for good perfor-
mance.

In contrast to Java arrays discussed in the previous
section, Arrays defined by the Array package have
properties (e.g., a nonragged rectangular shape and
constant bounds over their lifetime) that are easy to
detect and use by an optimizing compiler. Thus, for
problems that map well to rectangular multidimen-
sional structures, the Array package provides both
functionality and performance and is the obvious
choice over Java arrays.

Arrays are n-dimensional rectangular collections of
elements. An Array is characterized by its rank (num-
ber of dimensions or axes), its elemental data type
(all elements of an array are of the same type), and
its shape (the extents along its axes). Rank, type, and
shape are immutable properties of an Array. All Ar-
ray classes are named using the following scheme:
^type&Array^rank&D. As an example, floatArray3D is a
three-dimensional Array of single precision floating-
point numbers. In the current version of the Array
package, type can be any of the Java primitive types
(boolean,byte,char,short,int,long,float,double), Com-
plex (for complex numbers), or Object for general
objects. The currently supported values for rank are
0, 1, 2, and 3.

Class hierarchy. All Array classes are derived from
a base abstract class Array, which defines the com-
mon methods for all types of Arrays. Arrays are fur-
ther subdivided according to their (elemental) type
and rank. We also define the Index and Range helper

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200028

classes for indexing and sectioning an Array (see the
later subsection on indexing for more details). Var-
ious exception classes are also provided by the Ar-
ray package for reporting errors that occur during
array operations. Figure 4 shows the class hierarchy
of the Array package.

We note that the fully qualified name of the Array
package for Java, in accordance with Java standards,
is com.ibm.math.array. Use of this fully qualified name
allows us to build knowledge about the Array pack-
age into our compiler.

Transactional behavior, array semantics, and excep-
tions. All operations (methods and constructors) of
the Array package have, in the absence of Java vir-
tual machine (Jvm) failure, transactional behavior.
That is, only two outcomes of an array operation are
possible: (1) the operation completes without any
error, or (2) the operation is aborted, in which case
an exception is thrown before any user-visible data
are changed.

If a Jvm failure occurs (e.g., it runs out of stack space)
during the execution of an Array package operation,
the program enters an unrecoverable error state, and
the results of the partial operation are observable
only by postmortem tools. Therefore, the fact that
the transactional behavior is violated in this partic-
ular case is irrelevant.

In order to clearly identify what was the cause for
aborting an Array package operation, exceptions are
thrown. These exceptions have descriptive names
that make the cause of the exception clear to the
user. For example, a NonconformingArrayException is
thrown if the user attempts to add two Arrays of dif-
ferent shapes, indicating that the add operation can-
not be performed because the Arrays do not match.
Other exceptions are thrown in other scenarios. The
number of methods that might throw a particular ex-
ception is very large, so we do not cover all cases
extensively in this paper.

All exception classes are derived from the Runtime-
Exception class. In Java, exceptions derived from the
RuntimeException class are not required to be caught
by user code. Hence, it is not an error for a piece
of code to invoke an Array package method but not
declare (using a throws clause) or catch an excep-
tion that may be thrown by that method. In current
numerical algorithms, conditions that would raise an
exception typically result from programming bugs.
The expectation is that the programmer will fix the

bug rather than add exception-handling code to han-
dle it at run time. Nevertheless, if the programmer
would like to catch the exception, it can still be done,
and so no limitations have been placed on excep-
tion handling.

Array operations also implement array semantics: In
evaluating an expression (e.g., A 5 A p B 1 C), all
data are first fetched (i.e., A, B, and C are read from
memory), the computation is performed (i.e., A p
B 1 C is evaluated), and only then are the results
stored (i.e., A is modified). Of course, a high-per-
formance system should implement array semantics
while optimizing to avoid unnecessary copying. (See
the subsection on internal optimizations for more
details.)

Array constructors. The shape of an array is spec-
ified at its creation through a constructor, and it is
immutable. The Array package defines three con-
structors for each Array class, illustrated in Figure
5. The first constructor shown builds a new Array
whose shape is specified by the parameters. The sec-
ond constructor shown builds a new Array that is a
copy of the Array input parameter. The new Array
has its own storage and shares no data with the in-
put Array. Finally, the third constructor shown builds
a new Array with elements copied from a conven-
tional Java array. If the Java array is multidimen-
sional, it must be rectangular. Again, the new Array
has its own storage area.

Indexing elements of an array. Elements of an ar-
ray are identified by their indices (coordinates) along
each axis. Let a k-dimensional array A of elemental
type T have extent nj along its jth axis, j 5 0, . . . ,
k 2 1. Then, a valid index i j along the jth axis must
be greater than or equal to zero and less than nj . An
attempt to reference an element A[i0 , i1 , . . . , i k21]
with any invalid index i j causes an ArrayIndexOutOf-
BoundsException to be thrown.

The Array package allows an axis of an Array to be
indexed by either an integer, a Range object or an
Index object. Indexing with an integer specifies a sin-
gle element along an axis. Indexing with a Range ob-
ject is like addressing using triplets in FORTRAN: a
first element, a last element, and an optional stride
(which defaults to one) specify a regular pattern of
elements. An Index object is a list of numbers that
is used by the Array package method to select the
enumerated elements along the given axis. Index ob-
jects are convenient for scatter-gather operations and
for operations on sparse data in general. When in-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 29

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200030

dexing with an Index or Range object, all the indices
must be valid (i.e., within bounds), or an ArrayIndex-
OutOfBoundsException is thrown.

Indexing operations are used in accessor methods that
read or write data from or to an array, and in sec-
tioning methods that create views of an array. Ac-
cessor methods support all possible combinations of
integer, Range, and Index indices. That is, the sub-
script along any given dimension can be either an
integer, a Range object, or an Index object. Section-
ing methods only support combinations of integer
and Range indices. Supporting sections defined with
Index objects would require a complicated and slow
descriptor for the Array and impair efficient access
to Array elements in the common cases. Array ac-
cessors can be implemented efficiently even with In-
dex objects.

Defined methods. The Array package defines four
groups of methods that are always present in any Ar-
ray package class: Array operation, Array manipu-
lation, Array accessor, and Array inquiry. A group
of methods is just a collection of methods with sim-
ilar functionality. The complexity of operations is,
in most cases, similar for methods of a group.

Array operations. Array operations are scalar oper-
ations applied element-wise to a whole Array. The
methods in this category include assignment, arith-
metic and arithmetic-assign operations (analogous,
for example, to 15 and p5 operators in Java), re-

lational operations, and logic operations (where ap-
propriate for the elemental data type). These oper-
ations are further subdivided as Scalar-Array and
Array-Array operations. Scalar-Array operations ap-
ply the operation to a scalar and each element of
the Array. Array-Array operations apply the oper-
ation to all equivalent elements of two Arrays. If both
Arrays in an Array-Array operation do not have the
same shape, a NonconformingArrayException is
thrown. These operations are highly optimizable and
parallel in nature.

In Figure 6 we compare some elementary Array op-
erations described using a math notation and the no-
tation defined by the Array package. When there is
more than one Array package version for the expres-
sion, the first expression is the most straightforward
and intuitive form. The alternative forms for an op-
eration lead to better performance, as they avoid cre-
ating (at least some) intermediate objects. (The
forms are semantically equivalent, if the whole op-
eration is legal.) It is unrealistic to expect users of
the Array package to write all Array expressions in
the less intuitive but more efficient form. An intel-
ligent compiler should be able to automatically trans-
late the Array expressions to the best-performing ver-
sion.

Array manipulation. Methods in this group include
section, permuteAxes, and reshape. These methods
operate on the array as a whole, creating a new view
of the data and returning a new Array object express-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 31

ing this view. A new Array object is needed because
an Array object always has constant properties, and
the new Array view may have different basic prop-
erties than the original array (e.g., a different rank
or shape). This new Array object shares its data with
the old object when possible to avoid the overhead
of data copying.

Sectioning an Array means obtaining a new view to
some elements of a given Array. A section is a new
Array object that shares its data with the original Ar-

ray, as a FORTRAN 90 section shares its data with the
base array. Since data are shared, only a descriptor
needs to be created, resulting in a fast sectioning op-
eration. Figure 7 illustrates how a sectioning oper-
ation works. For two-dimensional Arrays, the first
index applies to rows, and the second index applies
to columns. This example creates a section B cor-
responding to rows 1 and 2 and columns 1 and 3 of
A. Because sections are first-class Array objects, op-
erating on an Array section is indistinguishable from
operating on any other Array object.

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200032

The permuteAxes method implements generic axis in-
terchange. Although permuteAxes(1,0) returns a trans-
posed two-dimensional array, permuteAxes is more
general than a simple transpose because any axis can
be replaced by any other axis, as long as all axes that
exist in the original Array also exist in the permuted
Array. If this condition is not met, the method call
is illegal and an exception is thrown. For example,
B 5 A.permuteAxes(2,1,0) exchanges axes 0 and 2 of
a three-dimensional Array A. That is, B(i,j,k) 5 A(k,j,i).
The expression B 5 A.permuteAxes(1,1,0) is illegal,
and throws a run-time InvalidArrayAxisException, since
axis 1 appears twice and axis 2 is missing. Permuting
the axis of a given array is a fast operation that only
creates a new descriptor. No data copy is needed as
the data are shared with the original array. If the user
wants data copy to take place, the copy constructor
always guarantees that the data are actually copied,
as in the example in Figure 8.

The reshape method returns a new Array with the
same data as the old Array but with a different shape.
Every element in the old Array is mapped to an el-
ement of the new Array. Therefore, the new Array
has the same number of elements as the old Array.
The algorithm used to map Array elements is the
following. The data are first (logically) linearized by
visiting all axes in order and all elements within an
axis in index order. The logically linearized elements
are then copied into a new Array with the shape spec-
ified in the reshape call, again by visiting all axes and
all elements within an axis in order. Figure 9 gives

examples of reshape method calls. The reshape
method throws an InvalidArrayShapeException if the
specified shape does not have the right number of
elements.

Because Array objects have immutable shape, re-
shaping an Array implies creating a new Array ob-
ject. A copy of data is needed because our descrip-
tor, which is designed to be fast for common
operations, is not rich enough to express the ef-
fect of a reshape. We choose not to have a com-
plex descriptor that supports fast reshaping for two
reasons: First, the complex descriptor would slow
down most other methods. Second, a common pur-
pose of an Array reshape operation is to reorga-
nize the data in order to obtain faster access, and
so data copying is a desirable consequence of the re-
shape operation.

Array accessor methods. The methods of this group
are get, set, and toJava. These are methods that
allow the user to extract and change the array data.
Figure 10 contains examples of uses of the meth-
ods in this group. The get and set methods are
straightforward. The programmer is provided in-
dexing methods (described earlier) to select one
or more elements. A get returns the specified el-
ements, and a set updates the specified elements.
The method toJava allows a user to extract a Java
array from an Array package Array. This feature,
together with constructors that convert Java ar-
rays into Array package Arrays, allows pieces of

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 33

code that work with Java arrays to coexist with (i.e.,
exchange data with) pieces of code that use the
Array package.

Because the basic purpose of this group of methods
is to move data in and out of Arrays, data copy is

always performed. The common operations are
fast—for example, extracting a single element from
an array. Extracting an entire subarray (e.g., a row
of a two-dimensional array) using a single Array class
operation is typically faster than extracting one el-
ement at a time.

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200034

Array inquiry methods. This group contains methods
last, size, rank, and shape. They are fast, descriptor-
only operations that return information about the
constant properties of the Array.

The method last (used as an example in Figure 10)
returns the last valid index along a given axis. The
method size, when invoked without arguments, re-
turns the number of elements in the Array; if invoked
with an int argument, it returns the number of el-
ements along this given axis. The method rank re-
turns the rank of the Array (i.e., the number of axes
or dimensionality of the Array). Finally, the shape
method returns a Java array of integers whose el-
ements are the sizes of the Array along each indi-
vidual axis.

Comparing array operations in FORTRAN 90 and with
the Array package for Java. As previously mentioned,
we have patterned our design of the Array package
along the lines of the FORTRAN 90 language. Figure
11 provides a side-by-side comparison of equivalent
FORTRAN 90 and Java Array package constructs.

Readers familiar with FORTRAN 90 will notice an al-
most one-to-one correspondence between the two
approaches. This correspondence has both perfor-
mance as well as usability implications. From a per-
formance perspective, optimization techniques de-
veloped for FORTRAN 90 can be applied to the Array
package. From a usability perspective, programmers
used to FORTRAN 90 features will find correspond-
ing functionality in the Array package.

Internal optimizations. The semantics of Array op-
erations imply that they are performed on Arrays as
they would be performed on scalars. That is, the re-
sult is computed before assignment into the target
array. Therefore, execution of an Array operation
logically follows the sequence: (1) all operands are
fetched from memory, (2) all computation is per-
formed, and (3) the result is stored to memory. The
ordering between steps (2) and (3) implies that, in
general, the result of the operation must be first
stored in a temporary Array and then copied to the
final target.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 35

To provide good performance, the supplied Array
operations avoid data copying—a costly opera-
tion—as much as possible. For example, consider the
code in Figure 12. A naive implementation would
perform the plusAssign method in two steps: First,
a new Array object is created to store the sum of the
two Arrays. Then, the contents of the new object are
copied back to the first Array. The unnecessary copy-
ing degrades performance. The result of an Array
operation can be written directly to the target Array
(thus eliminating the need for the temporary Array
and the copy operation) if doing so does not over-
write any memory location before its use as an op-
erand. The Array package uses a form of dynamic
dependence analysis14 to determine when this con-
dition holds. It then bypasses the unnecessary tem-
porary Array and copy.

BLAS routines. The Basic Linear Algebra Subpro-
grams (BLASs)15 are the building blocks of efficient
linear algebra codes. BLAS implements a variety of
elementary vector-vector (level 1), matrix-vector
(level 2), and matrix-matrix (level 3) operations. We
have designed a Blas class as part of the Array
package. It provides the functionality of the BLAS op-
erations for the multidimensional Arrays in that
package. Note that this is a 100 percent Java imple-
mentation of BLAS and not an interface to already
existing native libraries. Therefore, we have a com-
pletely portable parallel implementation of BLAS that
works well with the Array package. The code in the
Blas class is optimized to take advantage of the in-
ternals of the Array package implementation. Ap-
plication code making use of these methods will have
access to tuned BLAS routines with no programming
effort.

Figure 13 illustrates several features of the Array
package by comparing two straightforward imple-

mentations of the basic BLAS operation dgemm. The
dgemm operation computes C 5 aA* 3 B* 1 bC,
where A, B, and C are matrices and a and b are
scalars. A* can be either A or A T . The same holds
for B*. In Figure 13A the matrices are represented
as doubleArray2D objects from the Array package.
In Figure 13B the matrices are represented as dou-
ble[][]. For simplicity, in both cases we omit the test
for aliasing between C and A or B. Nevertheless, we
want to emphasize that such a test is much simpler
and cheaper for the Array package version.

The first difference is apparent in the interfaces of
the two versions. The dgemm version for the Array
package transparently handles operations on sections
of a matrix. Sections are extracted by the caller and
passed on to dgemm as doubleArray2D objects. Sec-
tion descriptors have to be explicitly passed to the
Java arrays version, using the m, n, p, i0, j0, and k0
parameters. The calling format for computing C(0
; 9, 10 ; 19) 5 A(0 ; 9, 20 ; 39) 3 B(20 ; 39,
10 ; 19) using the Array package is

dgemm(NoTranspose,NoTranspose,1.0,
A.section(new Range(0,9),

new Range(20,39)),
B.section(new Range(20,39),

new Range(10,19)),0.0,
C.section(new Range(0,9),

new Range(10,19)))

and using Java arrays is

dgemm(NoTranspose,NoTranspose,10,20,10,0,10,
20,1.0,A,B,0.0,C)

Next, we note that the computational code in the
Array package version is independent of the orien-

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200036

tation of A or B. We just perform a (very cheap)
transposition, if necessary, by creating a new descrip-
tor for the data using the permuteAxes method. In
comparison, the code in the Java arrays version has
to be specialized for each combination of the ori-

entation of A and B. (We only show the two cases
in which A is not transposed.)

Finally, in the Array package version, we can easily
perform some shape consistency verifications before

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 37

entering the computational loop. If we pass that ver-
ification, we know we will execute the entire loop
iteration space without exceptions. This verification
guarantees the transactional behavior of the method.
Such verifications would be more expensive for the
Java arrays, because we would have to traverse each
row of the array to make sure they are all of the ap-
propriate length. Furthermore, at least the row-
pointer part of each array would have to be privat-
ized inside the method to guarantee that no other
thread changes the shape of the array.

This example illustrates some of the benefits, both
for the programmer and the compiler, of operating
with the true multidimensional rectangular Arrays
of the Array package. We summarize the benefits
the Array package brings to compiler optimizations
in the subsection that follows the next one.

Arrays of complex numbers. Figure 14 shows some
components of class ComplexArray2D that imple-
ments two-dimensional Arrays of complex numbers.
Inside the Array, values are stored in a packed form,
with (real, imaginary) pairs in adjacent locations of
the data array. This is similar to the FORTRAN style
for representing arrays of complex numbers and only
requires 16 bytes of storage per complex value. The
declaration

ComplexArray2D a 5 new ComplexArray2D(m,n);

creates and initializes to zero an m 3 n Array of com-
plex values, not complex objects. The equivalent
structure with Java arrays would be created with

Complex[][] b 5 new Complex[m][n];
for (i50; i,m; i11)

for (j50; j,n; j11)
b[i][j] 5 new Complex(0, 0);

We note that, in the latter case, b is an array of ref-
erences to Complex objects. Each entry has to be cre-
ated individually and occupies a full 32 bytes.

The get operation of class ComplexArray2D returns
a new Complex object with the same value as the
specified Array element. The set operation assigns
the value of a Complex object to the specified Array
element. Semantic expansion can be used to opti-
mize the execution of operations involving Arrays
of complex numbers. In particular, the set and get
operations can be recognized and translated to code
that operates directly on complex values. Let us go
back to the example in the subsection on the role of
operator overloading that evaluates

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200038

b.set(i,j,a.get(i11,j).plus(a.get(i21,j)))

where a and b are objects of class ComplexArray2D.
The compiler can emit code that directly retrieves
the values associated with elements (i 1 1, j) and
(i 2 1, j) of Array a, computes the sum of those
values, and stores the result in element (i, j) of Ar-
ray b. Not a single object creation needs to be per-
formed.

The Array package and compiler optimizations. In
this subsection we summarize the features of the Ar-
ray package that play a strong role in enabling im-
portant compiler optimizations. We want to empha-
size that there is a strong synergy here, since the
Array package would be of little value if code using
it could not be optimized to achieve high perfor-
mance.

First, all classes in the Array package that implement
multidimensional Arrays (e.g., intArray1D, double-
Array3D, ComplexArray2D) are final. As a result, the
semantics of code using those classes are statically
bound at compile time. In particular, the compiler,
using semantic expansion, can recognize set and get
methods and emit code that directly accesses ele-
ments of Arrays. Obviously, such code must contain
the necessary checks to guarantee that the indices
are in bounds. This optimization has been imple-
mented in our research prototype compiler.16

Second, all Arrays in the Array package have rect-
angular and immutable shape. This is particularly
useful for the bounds checks optimizations described
in References 3 and 17. The rectangular shape of
Arrays makes it trivial to identify extents along each
axis. The immutability property makes it unneces-
sary to perform a (potentially costly) privatization
to safeguard against another thread changing the
shape of an Array. The rectangular shape also re-
sults in a more restrictive form of aliasing, which can
be trivially disambiguated at run time. Bounds check-
ing optimization has also been implemented in our
research prototype compiler.16

Finally, the transactional behavior of Array opera-
tions allows them to be extensively optimized. Once
the initial validation tests have been performed suc-
cessfully, an Array operation always executes to the
end. This implies that aggressive optimizations like
loop transformations and parallelization can be ap-
plied without concern for the semantics of the oper-
ation under exceptions. The main computational part
of an Array operation is totally free of exceptions.

Support for implicit parallelism in the Array pack-
age. We conclude this section on the Array package
by describing how the package provides support for
implicit parallelism. We note that the version of the
Array package in alphaWorks does not have any of
the parallelism features described here. We call the
version with support for parallelism the parallel Ar-
ray package. The parallel Array package allows a user
program written in a completely sequential style to
obtain the performance benefits of parallelism trans-
parently. The user program does retain control over
the extent of parallelism desired by calling an ini-
tializer method of the parallel Array package that
sets the number of parallel threads to be used for
the application.

The parallel Array package employs a master-slave
mechanism in the implicitly parallel routines and uses
the multithreading facilities available in Java. Our
design principles in developing this mechanism were:
(1) create threads only once and reuse them in dif-
ferent operations; and (2) allow the master to con-
trol the assignment of work to helper threads. The
first principle eliminates the cost of creating new
threads for each parallel operation. The second prin-
ciple supports better exploitation of data locality be-
tween operations.

Figure 15 shows the basic actions performed when
an operation is executed in parallel. Solid boxes in-
dicate mutex operations performed on per-thread
data structures, and dashed boxes indicate mutex op-
erations performed on a global shared data struc-
ture. Solid arrows indicate flow of control, and dashed
arrows indicate notify events. The master thread ini-
tially creates the number of helper threads specified
by an initialization call from the application program.
It then begins executing the program. Each newly
created helper thread marks itself as idle and waits
for work on a synchronization object associated with
it. This allows the Java notify method to be used to
restart a specific thread.

When the master thread encounters a parallel op-
eration, it computes T, the desired number of threads
to perform the operation. It then notifies helper
threads 1, . . . , T 2 1 to start work. All of the
threads, including the master, perform their part of
the computation. When each thread finishes work
on the parallel operation, it signals its completion
by decrementing a shared counter. If the master
thread is not the last thread to finish work (as can
be determined by examining the shared counter to
see whether it is zero), it marks itself as idle and waits

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 39

on its synchronization object. If a helper thread is
the last thread to finish, it notifies the master to con-
tinue. All helper threads, when finished with the op-
eration, mark themselves as idle and wait for the next
parallel operation.

Case study: Data mining

In this section, we present a case study, using a data
mining application, that illustrates some of the pit-
falls and opportunities in using the Java language to
develop a numerically intensive application. Data
mining18 is the process of discovering useful and pre-
viously unknown information in very large databases,
with applications that span both scientific and com-
mercial computing. Although typical data mining ap-
plications access large volumes of data from either
flat files or relational databases, such applications
often involve a significant amount of computation
above the data access layer. High-performance data
mining applications, therefore, require both fast data
access and fast computation. The details of the spe-

cific data mining problem we considered are de-
scribed in Appendix A.

Although Java is an attractive vehicle for develop-
ing and deploying data mining applications across
different computing platforms, a major concern has
been its performance. We show that this concern is
well-founded but can be dealt with by using well-de-
signed class libraries, such as the Array package de-
scribed in the last section. In particular, we show that
a plain Java implementation suffers from the follow-
ing major performance problems, both of which are
exacerbated by its lack of support for true multidi-
mensional arrays:

● Bounds checking and null pointer checks on array
accesses—The overhead of checking each array ac-
cess for a null pointer or out-of-bounds access vi-
olation takes its toll on performance. To make mat-
ters worse, a single reference to a d-dimensional
array in Java translates into d references to one-
dimensional arrays, requiring d null pointer checks

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200040

and d out-of-bounds checks. The algorithm to op-
timize these checks away in a compiler by creating
safe regions17 is significantly simpler for a true mul-
tidimensional array because its shape is constant
along all axes, and there is no need to copy arrays
to the working memory of a thread for thread-safety
of the transformation.

● Poor data locality and instruction scheduling—Loop
transformations, such as interchange, tiling, and
outer loop unrolling, typically used by optimizing
compilers to improve data locality and instruction
scheduling, cannot be readily applied to loops in
which an exception may be thrown. This restric-
tion is a consequence of the need to support pre-
cise exceptions in Java. Furthermore, different ar-
rays constituting a multidimensional array in Java
are not necessarily stored together in a single con-
tiguous block of memory, leading to inherently
poor data locality.

Using the Array package allows us to deal with these
problems quite effectively. The methods in our im-
plementation of this package perform all checks for
possible exceptions before the main part of the com-
putation. As a result, the main computation can
be optimized in the same manner as equivalent
FORTRAN or C11 code, while still remaining strictly
Java-compliant. The main loops in the methods of
the Blas class are transformed manually using well-
known techniques15 to get better uniprocessor
performance through improved data locality, in-
struction scheduling, and register utilization.
Furthermore, the Array package internally uses con-
tiguous memory for all of the data of a multidimen-
sional Array, leading to improved data locality and
more efficient indexing of elements.

The data mining implementations. We experi-
mented with five different implementations of the
scoring algorithm described in Appendix A. The first
version is a plain Java implementation of the scor-
ing algorithm. That is, it does not make use of the
Array package described in the previous section. In-
stead, it uses standard Java arrays. The second im-
plementation is our enhanced Java code, which im-
plements the scoring using classes from the Array
package. The third implementation is an implicitly
parallel version of the application that is derived from
the enhanced Java code but uses the parallel Array
package. The implicitly parallel Java version is iden-
tical to the enhanced Java version, except for a call
at the beginning of main to an initializer method of
the parallel Array package, indicating the number
of threads to be used. We also derive an explicitly

parallel version of the application, which explicitly
uses the multithreading facilities in Java together
with the sequential version of the Array package. Fi-
nally, we also use a FORTRAN 90 version, with calls
to the Engineering and Scientific Subroutine Library
(ESSL), of the scoring algorithm. The FORTRAN
901ESSL version serves as a reference: It helps us
evaluate how well Java is doing relative to a language
and library known for high performance.

Experimental results. We now describe the perfor-
mance results obtained for the different implemen-
tations of the data mining code on an IBM RS/6000*
Model F50 four-way SMP (symmetric multiproces-
sor) using 332 MHz PowerPC 604e processors. We
show the performance of the scoring algorithm,
which is the bulk of the computation in the data min-
ing code. We used the IBM XLF 6.1 compiler (with
-O3 optimization level) for the FORTRAN 90 pro-
gram. Results for Java code represent the best ob-
tained using both the IBM HPCJ2 (with -O optimiza-
tion level) and IBM Java Developer Kit (DK) 1.1.6
with the IBM JIT (just-in-time) compiler. (The IBM DK
with JIT compiler delivered the better performance
for Java arrays, while the IBM HPCJ was better with
the Array package.)

Figure 16 shows the serial performance of the Java
and FORTRAN 90 codes as a fraction of the perfor-
mance obtained by the FORTRAN 90 version. The
numbers at the top of the bars indicate million float-
ing-point operations per second (Mflops). The plain
Java program (with Java arrays) achieves 25.8
Mflops, which is 22 percent of the FORTRAN 90 per-
formance. The enhanced Java version (with the Ar-
ray package) performs significantly better, achiev-
ing 109.2 Mflops, or 91 percent of the FORTRAN 90
performance.

Figure 17 shows the performance of the parallel
codes for different numbers of threads. Again, the
numbers at the top of the bars indicate Mflops. The
implicitly parallel code achieves a speedup of 2.7 with
four threads, reaching a performance of 292.4
Mflops. The explicitly parallel code consistently de-
livers better performance, achieving 343.7 Mflops on
four threads, which represents a speedup of 3.1 over
the enhanced Java version.

Discussion. We now present the reasons for the per-
formance differences we have seen in the various im-
plementations of the data mining code. We also draw
some general conclusions about writing numerically
intensive Java applications. Finally, we compare the

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 41

two approaches to exploiting parallelism: writing ex-
plicitly parallel code, and using a parallel subsystem
to extract parallelism out of an application written
in a completely sequential style.

Performance of serial versions. The Array package
provides a higher level of abstraction to the program-
mer than the primitive operations on arrays currently
defined in the Java language specification. Our ex-
perimental results demonstrate that using this pack-
age also leads to better performance. There are two
main reasons for the difference in performance be-
tween the plain Java version (that uses primitive ar-
ray operations) and the enhanced Java version (that
uses the Array package): (1) greater negative impact
of array bounds checking on the performance of the
plain Java version, and (2) better data locality and
instruction scheduling of the Blas class library code,
used by the enhanced Java version.

In the plain Java program, bounds checking is per-
formed for all array accesses. Since the Java language
requires precise exceptions, all code-reordering
transformations must be disabled in loops that have
bounds checking. An additional measurement
showed that the performance of this program jumps
to 36.5 Mflops if all array bounds checks are opti-

mized away. As discussed earlier, it is easier for the
compiler to apply transformations17 to deal with this
problem if the program uses the Array package. In
fact, for the scatter and gather operations over sparse
arrays in our data mining application, static tech-
niques, such as those discussed in Reference 17, are
insufficient to optimize the bounds checks, because
they cannot handle subscripted subscripts. In con-
trast, when using the Array package, bounds check-
ing on an Array dimension accessed using an Index
object is performed simply by comparing the min-
imum and maximum elements of the Index object
with zero and the dimension length, respectively. The
minimum and maximum elements for each Index ob-
ject are computed at creation time in its constructor
to enable efficient bounds checking later.

The Blas class provides the benefit of making a tuned
implementation of commonly needed operations,
such as matrix multiplication, available to the pro-
grammer. This is similar to the approach adopted
by providers of high-performance libraries such as
LAPACK19 and ESSL.20 As with the implementation
of the rest of the Array package, all checks for con-
ditions leading to exceptions are performed at the
beginning, so that compiler optimizations can be ap-

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200042

plied effectively to performance-critical sections of
the code.

We observe that by using the Array package, which
does not use any native libraries, the Java version
of the data mining code achieves a level of perfor-
mance close to that delivered by the FORTRAN
901ESSL version. Thus, we show that it is possible
to obtain competitive performance, even on a nu-
merically intensive production quality code, with
pure Java.

Performance of parallel versions. Our experiments
with explicitly parallel and implicitly parallel imple-
mentations of the data mining code show that it is
possible to get the benefits of parallelism by simply
using the parallel version of the Array package, and
that manual parallelization of an application can typ-
ically achieve higher performance than a purely li-
brary-based approach. Manual parallelization is
more amenable to global decisions that increase op-
portunities for exploiting parallelism and reduce the
overhead of parallelization.

The support for implicit parallelism in our imple-
mentation of the Array package entirely hides the
complexity of parallelization from the end user. The

user merely has to specify the degree of parallelism
desired. In contrast, the implicitly parallel code suf-
fers from four main sources of performance degra-
dation relative to the explicitly parallel code: (1)
higher overhead of threading operations, (2) greater
load imbalance, (3) more serial components, and (4)
poorer cache utilization and a greater amount of
cache traffic from interference in shared data. These
factors are largely a consequence of the fact that the
implicitly parallel code exploits parallelism at a finer
granularity than the explicitly parallel code. The ex-
plicitly parallel version has a single dominant par-
allel outer loop. The overhead of waking up helper
threads and waiting for them to finish is incurred only
once, and a bigger section of the code is parallel-
ized. Additionally, most of the temporary Arrays
used in the explicitly parallel code are read and writ-
ten by a single thread, so that this version attains very
good cache utilization and avoids the problems of
cache line invalidations resulting from false sharing.
The implicitly parallel code, by its very nature, re-
lies on library calls over shared data.

We observe that even though the implicitly parallel
approach does not lead to the best possible perfor-
mance, it consistently delivers good performance as
the number of threads is increased. On four proces-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 43

sors, it leads to a respectable speedup of 2.7 over
the sequential code, as compared with a speedup of
3.1 obtained using the explicitly parallel approach.
For many users, this performance level would be ac-
ceptable, given the ease with which it is obtained.

Case study: MICROSTRIP

Our second case study comes from the (much sim-
plified) electromagnetics application MICROSTRIP.21

This example is representative of many applications
that deal with physical phenomena. It implements
a numerical iterative solver for the partial differen-
tial equation that describes the behavior of a phys-
ical system. MICROSTRIP makes heavy use of
complex arithmetic. We use it to illustrate some
additional Java performance issues, not discussed
in the data mining case study:

● Complex numbers—Java does not support complex
numbers as primitive types. The typical approach
is to define a Complex class and then use Complex
objects to implement complex numbers. We will
see that this approach leads to enormous object
creation and destruction overhead.

● Storage efficiency—This issue is related to imple-
menting complex numbers as Complex objects.
Each Complex object includes, in addition to the
double fields for the real and imaginary parts, data
that describe the object. It results in a 100 percent
storage overhead. Also, Java arrays of Complex (e.g.,
Complex[],Complex[][]) are actually arrays of ref-
erences to Complex objects. This leads to poor mem-
ory locality and poor memory system performance.

In the case of MICROSTRIP, we achieve high perfor-
mance through a combination of semantic expan-
sion (discussed earlier) and features of the Array
package. Semantic expansion is a compilation tech-
nique that replaces method calls by code that directly
implements the semantics of those methods. This
technique allows us to support complex numbers in
Java as efficiently as in FORTRAN. The Array pack-
age has a strong synergy with semantic expansion.
Multidimensional Arrays of complex numbers (e.g.,
ComplexArray1D and ComplexArray2D) deliver bet-
ter locality than Java arrays of Complex objects. How-
ever, semantic expansion is absolutely necessary to
allow efficient access to elements of these arrays.

The MICROSTRIP implementations. We experi-
mented with three different implementations of the
iterative solver for MICROSTRIP. The first version is
a plain Java implementation that uses Java arrays of

Complex objects. The second implementation is our
enhanced Java code that uses classes from the Array
package. Each of the two Java versions can be com-
piled with or without the semantic expansion tech-
nique. As we shall see in the following subsection,
semantic expansion has a significant impact on per-
formance. Finally, we use a FORTRAN 90 version of
the solver, which serves as a yardstick for evaluating
the performance of Java. This FORTRAN version
achieves approximately 50 percent of the peak per-
formance of our benchmark machine. (It achieves
140 out of a 266 peak Mflops.) Therefore, it con-
stitutes a good reference point against which we com-
pare our Java performance.

Experimental results. We now discuss the perfor-
mance results obtained for the different implemen-
tations of the MICROSTRIP code on an IBM RS/6000
Model 590 workstation. This machine has a 67-MHz
POWER2* processor with a 256-KB single-level data
cache and 512 MB of main memory. The peak com-
putational speed is 266 Mflops. To execute the Java
versions, we used both the IBM HPCJ (with -O op-
timization level) and IBM DK 1.1.8 with the IBM JIT
compiler. (We report the best result achieved in each
case.) We used the IBM XLF 6.1 compiler (with -O3
optimization level) for the FORTRAN version.

Figure 18 shows five different results for the
MICROSTRIP benchmark. The problem parameters
are those described in Reference 21 and Appendix
B. The numbers at the top of the bars indicate
Mflops. The bars labeled “plain” and “enhanced”
show the performance for the plain (Java arrays) and
enhanced (Array package) Java implementations, re-
spectively, without semantic expansion. (The best re-
sults for these cases were achieved with IBM DK 1.1.8.)
Both versions achieve approximately 1 Mflop. This
performance would typically be delivered by current
Java environments. The bars “plain 1 exp” and “en-
hanced 1 exp” show the performance for the plain
and enhanced Java implementations, respectively,
with semantic expansion (using our research proto-
type compiler). The plain Java version achieves 45.6
Mflops with semantic expansion, whereas the en-
hanced Java version achieves 75.8 Mflops. Finally,
the bar labeled “FORTRAN” shows the performance
of the FORTRAN implementation. The FORTRAN ver-
sion achieves 139.5 Mflops, or 52 percent of the peak
computational speed of the machine.

Discussion. We now discuss why the performance
of the Java versions without semantic expansion is
so poor. We also discuss why, with semantic expan-

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200044

sion, the performance of the enhanced Java version
is better than the plain version. We note that the syn-
ergy between the Array package and semantic ex-
pansion leads to pure Java performance that is a
respectable 55 percent of the best FORTRAN per-
formance we can achieve.

Java without semantic expansion. Coding the itera-
tive solver using Java arrays leads to very poor per-
formance in current implementations of Java. The
reason is that each arithmetic operation (e.g., meth-
ods plus and times) creates a new Complex object to
represent the results. (See Figure 3.) Object creation
is a very expensive operation and causes the plain
Java version of MICROSTRIP to be approximately 100
times slower than the reference FORTRAN version.

The ComplexArray2D class offers a significant stor-
age benefit compared to Complex[][], since it only
stores complex values and not Complex objects (a
50 percent reduction in storage and associated im-
provements in memory bandwidth and cache behav-
ior). The performance of numerical codes that use
ComplexArray2D, however, is just as bad as codes that
use Java arrays of Complex objects. Execution con-
tinues to be dominated by object creation and

destruction. In fact, every get operation on a
ComplexArray2D results in a new temporary object.
The performance of this enhanced version on cur-
rent Java environments is approximately 200 times
slower than the reference FORTRAN.

Java with semantic expansion. The benefits of treat-
ing complex numbers as values rather than objects
are enormous. We were able to increase the perfor-
mance 40- and 100-fold for the plain and enhanced
versions, respectively. Of particular importance is the
synergy between the Array package and semantic ex-
pansion. By eliminating the cost of creating tempo-
rary objects, semantic expansion makes the use of
ComplexArray2D objects viable from a performance
perspective. ComplexArray2D, in turn, delivers bet-
ter memory behavior than Java arrays of Complex
objects. The combination of the two approaches de-
livers a Java performance on a complex arithmetic
application that is 55 percent of the best FORTRAN
performance.

Additional experiments

We performed additional experiments to further il-
lustrate the performance impact of our techniques

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 45

for optimizing Java numerical codes. In this section
we present a summary of results from eight bench-
marks. Four of these benchmarks perform real arith-
metic, and the other four complex arithmetic. We
compare the performance of Java and FORTRAN ver-
sions of the benchmarks. We perform all our exper-
iments on an IBM RS/6000 Model 590 workstation. This
machine has a 67-MHz POWER2 processor with a
256-KB single-level data cache and 512 MB of main
memory. The peak computational speed is 266
Mflops.

FORTRAN programs are compiled using version 6.1
of the IBM XLF compiler with the highest level of op-
timization (-O3 -qhot, which performs high-order
loop transformations4). Results for two different Java
versions of each benchmark are reported. One ver-
sion, which we call plain, is an implementation of
the benchmark using Java arrays. The numbers re-
ported for this version correspond to the best ob-
tained using IBM DK 1.1.8 with the IBM JIT compiler.
(The JIT compiler, which incorporates many advanced
optimizations such as bounds checking and null pointer
checking elimination, performs better than HPCJ when
Java arrays are used.) The other Java version, which
we call best, represents the best result we achieved from
a pure Java implementation of the benchmark. It uses
multidimensional Arrays from the Array package and
aggressive compiler optimizations in our research pro-
totype version of IBM HPCJ to generate safe regions of
code (i.e., regions without potential exceptions) and
perform semantic expansion. For the real arithmetic
benchmarks, we also enabled the use of the fused-mul-
tiply add (fma) instruction of the POWER2 hardware for
both the Java and FORTRAN versions of the benchmark
(the default for FORTRAN is to use the fma). This rep-
resents the performance that can be achieved with Java
if the current proposals for relaxed floating-point arith-
metic are approved.1 Because of some technical dif-
ficulties, we could not enable the use of the fma in Java
for the complex arithmetic benchmarks. In that case,
we chose to also disable the use of fma in FORTRAN.

To guarantee a fair comparison, all three versions
of each benchmark (FORTRAN, Java arrays, and Ar-
ray package) were automatically generated from a
common representation. We use an internally
developed language, z-code—a very simplified
FORTRAN-like language, to code each of the bench-
marks. From the representation in z-code, an auto-
matic translator generates all three versions of a
benchmark. The translator takes care of adjusting
array indexing to guarantee that arrays are accessed

in their preferred mode (column-major for FORTRAN
and row-major for Java).

Real arithmetic benchmarks. The real arithmetic
benchmarks are: CHOLESKY, BSOM, SHALLOW, and
TOMCATV. CHOLESKY is a straightforward imple-
mentation of the Cholesky decomposition algorithm,
as described, for example, in References 22 and 23.
It computes the upper triangular factor U of a sym-
metric positive definite matrix A such that A 5 UTU.
We implemented our code so that the factorization
is performed in place, with the upper half of matrix
A being replaced by the factor U. For our experi-
ments, we factor a matrix of size 1000 3 1000. The
BSOM (batch self-organizing map) benchmark is a
data-mining kernel representative of technologies in-
corporated into Version 2 of the IBM Intelligent Min-
er*. (It was not used in the data mining application
described earlier.) It implements a neural-network-
based algorithm to determine clusters of input rec-
ords that exhibit similar attributes of behavior. We
time the execution of the training phase of this al-
gorithm, which actually builds the neural network.
This phase consists of 25 epochs. Each epoch updates
a neural network with 16 nodes using 256 records
of 256 fields each. SHALLOW is a computational ker-
nel from a shallow water simulation code from the
National Center for Atmospheric Research. The
data structures in SHALLOW consist of 14 matrices
(two-dimensional arrays) of size n 3 m each. The
computational part of the code is organized as a time-
step loop, with several array operations executed in
each time step. For our measurements, we fix the
number of time steps T 5 20 and use n 5 m 5 256.
TOMCATV is part of the SPECfp95 suite (available
at http://www.spec.org). It is a vectorized mesh gen-
eration with Thompson solver code. The benchmark
consists of a main loop that iterates until convergence
or until a maximum number of iterations is executed.
At each iteration of the main loop, the major com-
putation consists of a series of stencil operations on
two (coupled) grids, X and Y, of size n 3 n. In ad-
dition, a set of tridiagonal systems is solved through
LU decomposition. For our experiments, we use a
problem size of n 5 513.

Results for these four benchmarks are summarized
in Figure 19. The height of each bar is proportional
to the best FORTRAN performance achieved in the
corresponding benchmark. The numbers at the top
of the bars indicate actual Mflops. For the “plain” Java
version, two-dimensional arrays of doubles were rep-
resented using a Java double[][] array. The “best” Java
version uses doubleArray2D Arrays from the Array

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200046

package. The use of multidimensional Arrays from
the Array package in turn enables bounds checking
and other optimizations. In all cases we observe sig-
nificant performance improvements between the
“plain” and “best” Java versions. Improvements
range from a factor of 2.5 (19.5 to 58.5 Mflops for
TOMCATV) to a factor of 5 (19.3 to 104 Mflops for
CHOLESKY). We achieve Java performance that
ranges from 65 percent (TOMCATV) to 80 percent
(CHOLESKY, BSOM, and SHALLOW) of fully optimized
FORTRAN code.

Complex arithmetic benchmarks. The complex
arithmetic benchmarks are: MATMUL, LU, FFT, and
CFD. MATMUL computes C 5 C 1 A 3 B, where
C, A, and B are complex matrices of size 500 3 500.

We use a dot-product version of matrix multiplica-
tion, with an i-, j-, k-loop nest. The i, j, and k loops
are blocked and the i and j loops are unrolled, in all
versions, to improve performance.4 LU is a straight-
forward implementation of Crout’s algorithm22,23 for
performing the LU decomposition of a square ma-
trix A, with partial pivoting. The factorization is per-
formed in place and, in the benchmark, A is of size
500 3 500. FFT computes the discrete Fourier trans-
form of a two-dimensional complex function, rep-
resented by an n 3 m complex array. We use the
Daniel-Lanczos method described in Reference 23
to compute the one-dimensional FFTs in the two-di-
mensional FFT. For our experiments we use n 5 m 5
256. CFD is a kernel from a computational fluid
dynamics application. It performs three convolutions

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 47

between pairs of two-dimensional complex functions.
Each function is represented by an n 3 m complex
array. The computation performed in this benchmark
is similar to a two-dimensional version of the NAS
Parallel Benchmark FT. Again, for our experiments
we use n 5 m 5 256.

Results for these four benchmarks are summarized
in Figure 20. Again, the height of each bar is pro-
portional to the best FORTRAN performance achieved
in the corresponding benchmark, and the numbers
at the top of the bars indicate actual Mflops. For the
“plain” Java version, complex arrays were repre-
sented using a Complex[][] array of Complex objects.
No semantic expansion was applied. The “best” Java
version uses ComplexArray2D Arrays from the Ar-
ray package and semantic expansion. In all cases we

observe significant performance improvements be-
tween the “plain” and “best” Java versions. Improve-
ments range from a factor of 24 (2.5 to 60.2 Mflops
for FFT) to a factor of 53 (1.7 to 89.5 Mflops for
MATMUL). We achieve Java performance that ranges
from 60 percent (LU) to 85 percent (FFT and CFD)
of fully optimized FORTRAN code.

Related work

The importance of having high-performance librar-
ies for numerical computing in the Java language has
been recognized by many authors. In particular, Ref-
erences 24–26 describe projects to develop such li-
braries entirely in Java. In addition, there are ap-
proaches in which access to existing numerical
libraries (typically coded in C and FORTRAN) is pro-

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200048

vided to Java applications.27–29 The Array package
includes a Blas class, so that efficient linear algebra
libraries can be developed for it.

It is well known that programming with libraries has
its limitations. Certain classes of applications can be
effectively expressed in terms of linear algebra op-
erations. These applications can be efficiently imple-
mented on top of (very successful) linear algebra li-
braries such as LAPACK and ESSL. Other classes of
applications are not so well-structured. In those
cases, the programmer has to develop the applica-
tion from scratch, counting on minimal library sup-
port. For this reason, the Array package is more than
just a library: It is a mechanism to represent array
operations in a manner that can be highly optimized
by compilers. Linear algebra code can be developed
with the Array package using the BLAS primitives.
Less-structured code can use the Array operations
directly. With the appropriate compiler support, Java
code built on top of the most basic set and get
operations of the Array package can achieve
FORTRAN-like performance.

Cierniak and Li30 describe a global analysis technique
for determining that the shape of a Java array of ar-
rays (e.g., double[][]) is indeed rectangular and not
modified. The array representation is then trans-
formed to a dense storage, and element access is per-
formed through index arithmetic. This approach can
lead to results that are as good as those obtained from
using multidimensional Arrays in the Array pack-
age. We differ in that we do not need global anal-
ysis: Arrays from the Array package are intrinsically
rectangular and can always be stored in a dense form.
We have also integrated support for complex num-
bers in our true multidimensional Arrays.

The technique of semantic expansion we use is sim-
ilar to the approach taken by FORTRAN compilers
in implementing some intrinsic procedures.11 Intrin-
sic procedures can be treated by the FORTRAN com-
piler as language primitives, just as we treated the
Complex class in Java. Semantic expansion differs
from the handling of intrinsics in FORTRAN in that
both new data types and operations on the new data
types are treated as language primitives. Still regard-
ing semantic expansion, the work by Wu and Padua31

targets standard container classes for semantic ex-
pansion. In their paper, the container semantics are
not used for local optimizations or transformations
inside the container. Instead, the semantics are used
to help data flow analysis and detect parallelizable
loops. Their work illustrates how semantic informa-

tion about standard classes exposes new optimiza-
tion and parallelization opportunities.

Array operations are natural candidates for the ex-
ploitation of parallelism. Exploiting parallelism has
been done extensively before both at the lan-
guage32–34 and subsystem12,35,36 levels, with different
degrees of transparency to the application program-
mer. So far, we have successfully exploited parallel-
ism inside the Array package operations while
achieving total transparency to the programmer. A
combination of the Array package with semantic ex-
pansion can lead to programs that are amenable to
automatic parallelization using techniques devel-
oped, for example, for FORTRAN. This will result in
transparent parallelization of the user code itself.

The efficacy of the Array package in supporting ap-
plications of a varied nature is demonstrated by the
results described in the sections containing the two
case studies and the additional experiments. The
strong synergy between the Java Array package for
multidimensional Arrays and the aggressive compiler
optimizations is the main differentiator in our work.

Conclusion

We have demonstrated that high-performance nu-
merical codes can be developed in the Java language.
The benefits of using Java from a productivity and
demographics point of view have been known for a
while. Many people have advocated the development
of large, computationally intensive Java applications
based on those benefits. However, Java performance
has consistently been considered an impediment to
its applicability to numerical codes. This paper has
presented a set of techniques that lead to Java per-
formance that is competitive with the best FORTRAN
implementations available today.

We have used a class library approach to introduce
in Java features of FORTRAN 90 that are of great im-
portance to numerical computing. These features in-
clude complex numbers, multidimensional arrays,
and libraries for linear algebra. These features have
a strong synergy with the compiler optimizations that
we have developed, particularly bounds checking op-
timization and semantic expansion. We have dem-
onstrated this synergy, and the resulting performance
impact, through two detailed case studies. We have
also conducted a broader performance evaluation
using eight other numerical benchmarks.

We demonstrated that we can deliver Java perfor-
mance in the range of 55–90 percent of the best

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 49

FORTRAN performance for a variety of benchmarks.
This step is very important in making Java the pre-
ferred environment for developing large-scale nu-
merically intensive applications. However, there is
more than just performance to our approach. The
Array package and associated libraries create a Java
environment with many of the features that expe-
rienced FORTRAN programmers have grown accus-
tomed to. This combination of delivering features
and performance for numerical computing in the
context of the Java language is the core of our ap-
proach to making Java the environment of choice
for new numerical computing.

Regarding future work, we want to exploit more of
the benefits generated by the Array package. One
of our goals is automatic parallelization of user code
developed with the Array package. We can leverage
many techniques developed for parallelizing
FORTRAN and C, but good alias disambiguation is
essential. We are currently implementing alias dis-
ambiguation techniques in our compiler, taking ad-
vantage of the semantics of the Array package.
Another area we are exploiting is data layout opti-
mization. By hiding the actual layout of data from
the user (elements can only be accessed through get
and set accessor methods), the Array package facil-
itates optimizations of this layout. In particular, we
are pursuing the use of recursive block formats,6

which can be very beneficial in systems with deep
memory hierarchies. By taking advantage of these
and other optimizations, we can envision a future
not too distant in which Java numerical codes will
actually outperform their FORTRAN counterparts.

Acknowledgments

The authors wish to thank Ven Seshadri of IBM Can-
ada for helping and supporting our experiments with
HPCJ.

Appendix A: The data mining computation

The specific data mining problem considered here
involves recommending new products to customers
based on previous spending behavior. As input, we
have available both detailed purchase data for the
customer set, as well as a product taxonomy that gen-
erates assignments of each product to spending cat-
egories. In the specific application discussed here,
we utilize approximately two thousand such catego-
ries. Recommendations are drawn from a subset of
eligible products. For each customer, a personalized
recommendation list is generated by sorting this list

of eligible products according to a customer-specific
score computed for each product. In some commer-
cial situations, there may be an incentive to prefer-
entially recommend some products over others be-
cause of overstocks, supplier incentives, or increased
profit margins. This information can be introduced
into the recommendation strategy via product-de-
pendent scaling factors, with magnitudes reflecting
the relative priority of recommendation. We now
give a more precise description of the scoring
algorithm.

Let there be m products eligible for recommenda-
tion, p customers, and n spending categories. Each
product i has associated with it an affinity vector Ai ,
where Aik is the affinity of product i with spending
category k. These affinities can be interpreted as the
perceived appeal of this product to customers with
participation in this spending category. They are de-
termined by precomputing associations37 at the level
of spending categories. The collection of affinity vec-
tors from all products forms the m 3 n affinity ma-
trix A. This matrix is sparse and organized so that
products with the same nonzero patterns in their af-
finity vectors are adjacent. The matrix is shown in
Figure 21. Because of this organization, matrix A can
be represented by a set of g groups of products. Each
group i is defined by f i and l i , the indices of the first
and last products in the group, respectively. All prod-
ucts with the same nonzero pattern belong to the
same group. This nonzero pattern for the products
in group i is represented by an index vector I i , where
I ik is the position of the kth nonzero entry for that
group. Let len(I i) be the length of index vector I i .
Also, let g i 5 l i 2 f i 1 1 be the number of products
in group i. Then the affinity matrix Gi for group i
is the g i 3 len(I i) dense matrix with only the non-
zero entries of rows fi to li of A. This representation
of A is shown in Figure 21.

Each customer j has an associated spending vector
Sj , where Sjk is the normalized spending of customer
j in category k. The collection of spending vectors
of all customers forms the p 3 n spending matrix
S. This matrix is also sparse, but customers are not
organized in any particular order. (The affinity ma-
trix is relatively static and can be built once, whereas
the spending matrix may change between two exe-
cutions of the scoring algorithm.) We also define a
p 3 n normalizing matrix N, which has the same
nonzero pattern as S, but with a one wherever S has
a nonzero:

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200050

Njk 5 H1 if Sjk Þ 0
0 if Sjk 5 0 (3)

The structure of matrices S and N are shown in Fig-
ure 22. The nonzero pattern of row j of matrix S is
represented by an index vector J j , where J jk is the
position of the kth nonzero entry for that row (cus-
tomer). The actual spending values are represented
by a dense vector s j , of the same length as J j , which
has only the nonzero entries for row j of S. This rep-
resentation of S is shown in Figure 22. Matrix N does
not have to be represented explicitly.

Let r i be the priority scaling factor for product i as
discussed earlier in this appendix. The score F ij of
customer j against product i is computed as:

Fij 5 ri

Ok51
n AikSjkOk51
n AikNjk

(4)

Note that ¥k51
n AikS jk is the dot-product of row i of

A by column j of S T . Similarly, ¥k51
n AikNjk is the

dot-product of row i of A by column j of N T . Let
Lp(r1 , r2 , . . . , rm) denote an m 3 p matrix L with

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 51

L ij 5 r i , 1 # i # m, 1 # j # p. Then, Equation
4 can be rewritten as a matrix operation:

F 5 Lp~r1, r2, . . . , rm! p ~ A 3 S T! 4 ~ A 3 N T!
(5)

where 3 denotes matrix multiplication, 4 denotes
two-dimensional array (or element-by-element) di-
vision, and p denotes two-dimensional array (ele-
ment-by-element) multiplication.

Using the representations of A and S discussed pre-
viously, the scores for a customer j against all prod-
ucts in a product group i can be computed in the
following way. First, two vectors « and h of size n
are initialized to zero:

«@1 ; n# 5 0
(6)

h@1 ; n# 5 0

Then, the compressed vector s j is expanded by as-
signing its values to the elements of « indexed by J j .
(This is a scatter operation.) Similarly, an expanded
representation of the jth row of N is stored into h:

«@ Jj# 5 sj (7)

h@ Jj# 5 1

Now, the scores of customer j against products f i to
l i can be computed by:

F@ fi ; li, j# 5 L1~rfi, rfi11, . . . , rli! p ~Gi 3 «@Ii#!

4 ~Gi 3 h@Ii#! (8)

where 3 now denotes matrix-vector multiplication,
and 4 and p denote one-dimensional array (element-
by-element) division and multiplication, respectively.
Note that we have two gather operations, in «[I i]
and h[I i]. If we group several customers together,

forming a block from customer j1 to customer j2, the
operations in Equation 8 become dense matrix mul-
tiplications, array division, and array multiplication:

F@ fi ; li, j1 ; j2# 5 Lj22j111~rfi, rfi11, . . . , rli!

p ~Gi 3 «@Ii, j1 ; j2#! 4 ~Gi 3 h@Ii, j1 ; j2#! (9)

Matrix multiplication can be implemented more ef-
ficiently than matrix-vector multiplication. This is
particularly true on cache-based RISC (reduced in-
struction set computing) microprocessors, since ma-
trix multiplication can be organized through block-
ing to better exploit the memory hierarchy.

In our experiments, the affinity matrix A is stored as
a set of 93 dense blocks, each block representing a
distinct group. The S matrix is stored in compressed
rows. Finally, the F matrix, because of its relatively
large number of nonzeros, is stored in expanded
form. We used the problem parameters shown in
Table 1.

Appendix B: The MICROSTRIP computation

In a shielded microstrip structure (see Figure 23A),
n parallel microstrips run inside a homogeneous in-
sulator. A conducting shield, at a reference poten-
tial V shield 5 0, completely encloses the structure.
Each microstrip k is at a voltage Vk with respect to
the shield. We want to compute the value of the po-
tential field F(x, y) in each point of the structure.
The potential field F(x, y) is described by a partial
differential equation.

The first step in computing a numerical solution for
the field F(x, y) is to discretize the problem domain
through a rectangular grid of evenly spaced points.
Figure 23B illustrates this discretization. The grid
has shape (w 1 1) 3 (h 1 1), and s is the grid step,
or space between consecutive grid points. Points in
the structure can be identified by their coordinates
in the grid. We use the notation F i, j to denote the
value of the potential field in point (i, j) of the grid.
Using the discretization, and applying several sim-
plifications to the physics of the problem, we arrive
at the following equation for the potential field:

Fi11, j 1 Fi21, j 1 Fi, j11 1 Fi, j21 2 4Fi, j 5 0 (10)

for all points (i, j) of the insulator. This, in fact, cor-
responds to a system of equations in the unknown
F i, j for all i and j. One approach to solving such a

Table 1 Problem parameters for our data mining
application

Matrix Size
(Rows 3
Columns)

Number
of

Nonzeros

Fraction
of

Nonzeros

A 10 350 3 2103 397559 1.83%
S 4 800 3 2103 231194 2.29%
F 10 350 3 4800 20759569 41.79%

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200052

system is through an iterative method called Jacobi
relaxation. We start with some arbitrary initial ap-
proximation of the potential field, F i, j

0 , for all points
(i, j). (The values on the microstrips and the shield
are fixed by the problem boundary conditions.) Then,
for each point (i, j), we compute a better approx-
imation of the solution through the expression

F i, j
1 5

1
4 ~F i11, j

0 1 F i21, j
0 1 F i, j11

0 1 F i, j21
0 ! (11)

In the next iteration of the method we compute an
even better approximation:

F i, j
2 5

1
4 ~F i11, j

1 1 F i21, j
1 1 F i, j11

1 1 F i, j21
1 ! (12)

We continue this process until we converge to some
satisfactory solution. (A typical condition is that we
want the difference between F k and F k11 to be very
small.) From a programming point of view, we repre-
sent the field by two arrays, a and b, of size (w 1 1) 3
(h 1 1). We can then write the relaxation step as

for i 5 1, 2, . . . , w 2 1
for j 5 1, 2, . . . , h 2 1

b(i, j) 5 1
4 (a(i 1 1, j) 1 a(i 2 1, j)

1 a(i, j 1 1) 1 a(i, j 2 1)) (13)
end

end

where a is used to represent the current value of the
potential field F and b its next value. We are inter-
ested in the case where F is a complex-valued func-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 53

tion. We can measure progress in our iterative solver
by computing the error between the previous and
current approximation for F as follows:

error 5 0
for i 5 0, 1, . . . , w

for j 5 0, 1, . . . , h
error 5 error 1 abs(b(i, j) 2 a(i, j)) (14)

end
end
error 5 error/((w 1 1) 3 (h 1 1))

The entire iterative solver is a combination of re-
laxation steps and error computation, as shown in
Figure 24. For clarity, we omit the code that han-
dles the boundary conditions at the microstrips. Al-
though important, that code represents only a small
fraction of the computation. The interested reader
can obtain more detailed information from Refer-
ence 21. For the particular problem computed in the

MICROSTRIP benchmark, the grid size is 1000 3 1000
and there are four microstrips, each of cross section
100 3 10 grid steps, running through the insulator.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references

1. “Java Grande Forum Report: Making Java Work for High-
End Computing,” Java Grande Forum Panel, SC98, Orlando,
FL (November 1998), http://www.javagrande.org/reports.htm.

2. V. Seshadri, “IBM High-Performance Compiler for Java,”
AIXpert Magazine (September 1997), http://www.
developer.ibm.com/library/aixpert.

3. S. P. Midkiff, J. E. Moreira, and M. Snir, “Optimizing Array
Reference Checking in Java Programs,” IBM Systems Jour-
nal 37, No. 3, 409–453 (1998).

4. V. Sarkar, “Automatic Selection of High-Order Transforma-
tions in the IBM XL FORTRAN Compilers,” IBM Journal
of Research and Development 41, No. 3, 233–264 (May 1997).

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200054

5. S. Muchnick, Advanced Compiler Design and Implementation,
Morgan Kaufman Publishers, San Francisco, CA (1997).

6. F. G. Gustavson, “Recursion Leads to Automatic Variable
Blocking for Dense Linear-Algebra Algorithms,” IBM Jour-
nal of Research and Development 41, No. 6, 737–755 (Novem-
ber 1997).

7. M. Kandemir, A. Choudhary, J. Ramanujam, and P. Ban-
erjee, “A Matrix-Based Approach to the Global Locality Op-
timization Problem,” Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques
(PACT’98), Paris (October 1998), pp. 306–313.

8. M. Kandemir, A. Choudhary, J. Ramanujam, N. Shenoy, and
P. Banerjee, “Enhancing Spatial Locality via Data Layout Op-
timizations,” Proceedings of Euro-Par’98, Southampton, UK,
Lecture Notes in Computer Science, Springer-Verlag, Inc.,
1470, 422–434 (September 1998).

9. G. Rivera and C.-W. Tseng, “Data Transformations for Elim-
inating Conflict Misses,” Proceedings of the ACM SIGPLAN’98
Conference on Programming Language Design and Implemen-
tation, Montreal (June 1998), pp. 38–49.

10. P. Wu, S. P. Midkiff, J. E. Moreira, and M. Gupta, “Efficient
Support for Complex Numbers in Java,” Proceedings of the
ACM 1999 Java Grande Conference (1999), pp. 109–118.

11. J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and
J. L. Wagener, Fortran 90 Handbook: Complete ANSI/ISO Ref-
erence, McGraw-Hill Book Co., Inc., New York (1992).

12. R. Parsons and D. Quinlan, “Run Time Recognition of Task
Parallelism within the P11 Parallel Array Class Library,”
Proceedings of the Scalable Parallel Libraries Conference (Oc-
tober 1993), pp. 77–86.

13. Parallel Programming Using C11, G. V. Wilson and P. Lu,
Editors, MIT Press, Cambridge, MA (1996).

14. U. Banerjee, Dependence Analysis, in the book series Loop
Transformations for Restructuring Compilers, Kluwer Ac-
ademic Publishers, Boston, MA (1996).

15. J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der
Vorst,SolvingLinearSystemsonVectorandSharedMemoryCom-
puters, Society for Industrial and Applied Mathematics, Phil-
adelphia, PA (1991).

16. P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira,
“High-Performance Numerical Computing in Java: Language
and Compiler Issues,” Ferrante et al., Editors, 12th Interna-
tional Workshop on Languages and Compilers for Parallel Com-
puting, Springer-Verlag, Inc., New York (August 1999).

17. J. E. Moreira, S. P. Midkiff, and M. Gupta, “From Flop to
Megaflops: Java for Technical Computing,” Proceedings of
the 11th International Workshop on Languages and Compilers
for Parallel Computing, LCPC’98 (1998), pp. 1–17.

18. E. Simoudis, “Reality Check for Data Mining,” IEEE Expert:
Intelligent Systems and Their Applications 11, No. 5, 26–33 (Oc-
tober 1996).

19. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, and D. Sorensen, LAPACK User’s Guide, So-
ciety for Industrial and Applied Mathematics, Philadelphia,
PA (1995).

20. IBM Engineering and Scientific Subroutine Library for AIX—
Guide and Reference, IBM Corporation (December 1997).

21. J. E. Moreira and S. P. Midkiff, “Fortran 90 in CSE: A Case
Study,” IEEE Computational Science and Engineering 5, No.
2, 39–49 (April–June 1998).

22. G. H. Golub and C. F. van Loan, Matrix Computations, Johns
Hopkins Series in Mathematical Sciences, The Johns Hop-
kins University Press, Baltimore, MD (1989).

23. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes in Fortran: The Art of Scientific Com-
puting, Cambridge University Press, UK (1992).

24. B. Blount and S. Chatterjee, “An Evaluation of Java for Nu-
merical Computing,” Proceedings of ISCOPE’98, Lecture Notes
in Computer Science, Springer-Verlag, Inc. 1505, 35–46 (1998).

25. R. F. Boisvert, J. J. Dongarra, R. Pozo, K. A. Remington,
and G. W. Stewart, “Developing Numerical Libraries in Java,”
ACM 1998 Workshop on Java for High-Performance Network
Computing, ACM SIGPLAN (1998), http://www.cs.ucsb.
edu/conferences/java98.

26. M. Schwab and J. Schroeder, “Algebraic Java Classes for Nu-
merical Optimization,” ACM 1998 Workshop on Java for High-
Performance Network Computing, ACM SIGPLAN (1998),
http://www.cs.ucsb.edu/conferences/java98.

27. A. J. C. Bik and D. B. Gannon, “A Note on Native Level 1
BLAS in Java,” Concurrency, Practical Experience (UK) 9, No.
11, 1091–1099 (November 1997), presented at Workshop on
Java for Computational Science and Engineering—Simulation
and Modeling II (June 21, 1997).

28. H. Casanova, J. Dongarra, and D. M. Doolin, “Java Access
to Numerical Libraries,” Concurrency, Practical Experience
(UK) 9, No. 11, 1279–1291 (November 1997), presented at
Workshop on Java for Computational Science and Engineer-
ing—Simulation and Modeling II, Las Vegas, NV (June 21,
1997).

29. V. Getov, S. Flynn-Hummel, and S. Mintchev, “High-Per-
formance Parallel Programming in Java: Exploiting Native
Libraries,” ACM 1998 Workshop in Java for High-Performance
Network Computing, ACM SIGPLAN (1998), http://
www.cs.ucsb.edu/conferences/java98.

30. M. Cierniak and W. Li, “Just-in-Time Optimization for High-
Performance Java Programs,” Concurrency, Practical Expe-
rience (UK) 9, No. 11, 1063–1073 (November 1997), presented
at Workshop for Java Computational Science and Engineering—
Simulation and Modeling II, Las Vegas, NV (June 21, 1997).

31. P. Wu and D. Padua, “Beyond Arrays—A Container-Cen-
tric Approach for Parallelization of Real-World Symbolic Ap-
plications,” Proceedings of the 11th International Workshop on
Languages and Compilers for Parallel Computing, LCPC’98
(1998), pp. 197–212.

32. W.-M. Ching and D. Ju, “Execution of Automatically Par-
allelized APL Programs on RP3,” IBM Journal of Research
and Development 35, Nos. 5/6, 767–777 (1991).

33. R. G. Willhoft, “Parallel Expression in the APL2 Language,”
IBM Systems Journal 30, No. 4, 498–512 (1991).

34. F. Bodin, P. Beckmann, D. Gannon, S. Narayana, and S. X.
Yang, “Distributed pC11: Basic Ideas for an Object Par-
allel Language,” Scientific Programming 2, No. 3, 7–22 (1993).

35. IBM Parallel Engineering and Scientific Subroutine Library for
AIX—Guide and Reference, IBM Corporation (December
1997).

36. J. V. W. Reynders, J. C. Cummings, M. Tholburn, P. J. Hinker,
S. R. Atlas, S. Banerjee, M. Srikant, W. F. Humphrey, S. R.
Karmesin, and K. Keahey, “POOMA: A Framework for Sci-
entific Simulation on Parallel Architectures,” Proceedings of
First International Workshop on High Level Programming Mod-
els and Supportive Environments, Honolulu, HI (April 16,
1996), pp. 41–49. Technical report is available at http://
www.acl.lanl.gov/PoomaFramework/papers/papers.html.

37. R. Agrawal, T. Imielinski, and A. Swami, “Mining Associ-
ation Rules Between Sets of Items in Large Databases,” Pro-
ceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, Washington (May 1993), pp. 207–
216.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 MOREIRA ET AL. 55

Accepted for publication September 1, 1999.

José E. Moreira IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: jmoreira@us.ibm.com). Dr. Moreira received B.S.
degrees in physics and electrical engineering in 1987 and an M.S.
degree in electrical engineering in 1990, all from the University
of São Paulo, Brazil. He received his Ph.D. degree in electrical
engineering from the University of Illinois at Urbana-Champaign
in 1995. Dr. Moreira is a research staff member in the Scalable
Parallel Systems Department at the Watson Research Center.
Since joining IBM at the Research Center in 1995, he has worked
on various topics related to the design and execution of parallel
applications. His current research activities include performance
evaluation and optimization of Java programs and scheduling
mechanisms for the ASCI Blue-Pacific project.

Samuel P. Midkiff IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: smidkiff@us.ibm.com). Dr. Midkiff received a B.S.
degree in computer science in 1983 from the University of Ken-
tucky, and M.S. and Ph.D. degrees in computer science from the
University of Illinois at Urbana-Champaign in 1986 and 1992,
respectively. Dr. Midkiff is a research staff member in the Scal-
able Parallel Systems Department at the Watson Research Cen-
ter, and an adjunct assistant professor at the University of Illi-
nois, Urbana-Champaign. Since joining the Research Center in
1992, Dr. Midkiff has worked on the design and development of
the IBM XL HPF compiler and projects related to the compi-
lation of numerical programs. His current research areas are op-
timizing computationally intensive Java programs, static compi-
lation of Java for shared memory multiprocessors, and the analysis
of explicitly parallel programs.

Manish Gupta IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: mgupta@us.ibm.com). Dr. Gupta is a research
staff member and manager, High Performance Programming
Environments, at the Watson Research Center. He received a
B.Tech. degree in computer science from the Indian Institute of
Technology, Delhi, in 1987, an M.S. from Ohio State University
in 1988, and a Ph.D. in computer science from the University of
Illinois in 1992. He has worked on the development of the IBM
HPF compiler for the SPTM machines, parallelizing FORTRAN
90 and C compilers on shared memory machines, and more re-
cently, on optimizing Java compilers. His research interests in-
clude high-performance compilers, programming environments,
and parallel architectures.

Pedro V. Artigas IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: artigas@us.ibm.com). Mr. Artigas received a B.S.
degree in electrical engineering in 1996 from the University of
São Paulo, Brazil. He is currently working on his master’s degree
thesis and will soon obtain an M.S. degree from the same uni-
versity (expected at the beginning of year 2000). Mr. Artigas is
currently a cooperative fellowship student at the Watson Research
Center. His research activities include performance evaluation
and optimization of Java programs and the development of a pro-
totype high-performance static Java compiler. His research in-
terests include high-performance compilers and computer archi-
tectures, parallel architectures, processor micro-architectures, and
operating systems.

Marc Snir IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598 (elec-
tronic mail: snir@us.ibm.com). Dr. Snir is a senior manager at
the Watson Research Center, where he leads research on scal-
able parallel systems. He and his group developed many of the
technologies that led to the IBM SP product, and they continue
to work on future SP generations. Dr. Snir received a Ph.D. in
mathematics from the Hebrew University of Jerusalem in 1979.
He worked at New York University on the NYU Ultracomputer
project from 1980 to 1982, and worked at the Hebrew University
of Jerusalem from 1982 to 1986, when he joined the Watson Re-
search Center. He has published close to 100 journal and con-
ference papers on computational complexity, parallel algorithms,
parallel architectures, and parallel programming. He has recently
coauthored the High Performance FORTRAN and the Message
Passing Interface standards. He is on the editorial board of Trans-
actions on Computer Systems and Parallel Processing Letters. He
is a member of the IBM Academy of Technology, an ACM Fel-
low, and an IEEE Fellow.

Richard D. Lawrence IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: ricklawr@us.ibm.com). Dr. Lawrence is a research
staff member and manager, Deep Computing Applications, at the
Watson Research Center. He received the B.S. degree from Stan-
ford University in chemical engineering, and the Ph.D. degree
from the University of Illinois in nuclear engineering. Prior to
joining IBM Research in 1990, he held research positions in the
Applied Physics Division at Argonne National Laboratory and
at Schlumberger-Doll Research. His current work is in the de-
velopment of high-performance data mining applications in the
areas of financial analysis and personal recommender systems.
He has received IBM Outstanding Innovation Awards for his work
in scalable data mining and scalable parallel processing.

Reprint Order No. G321-5715.

MOREIRA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200056

