The evolution
of a high-performing
Java virtual machine

Early Java™ virtual machines (Jvms) possessed
several significant performance bottlenecks that
inhibited the speed of Java workloads. This
paper presents the methodology that was used
by IBM to identify and eliminate these
bottlenecks for improving the performance of
Java applications running on several operating
system platforms. In addition, several of the key
performance problems that were common to all
early Java virtual machine implementations and
how they were solved for IBM enhanced Jvms
are described in detail. The issues discussed in
this paper are focused on problems found

in core Jvm components, such as object
synchronization, object allocation, heap
management, text rendering, run-time resolution,
and Java class library methods. The results
obtained from applying the described
methodology and eliminating the identified
performance bottlenecks increased the
performance of IBM Java virtual machines by as
much as four times on some workloads. The
technology discussed in this paper is applicable
to other Jvm implementations.

he Java** programming language spread rap-

idly in the computing industry after it was cre-
ated by Sun Microsystems, Inc., in 1995. Its ease-of-
use and “write once, run anywhere”** capability
fascinated many software developers craving a truly
portable language and a run-time application exe-
cution environment. Since the Java language' was
initially designed as an interpreted language, pro-
grams written in it were translated into platform-in-
dependent bytecode, and then they were interpreted
at run time according to the Java Virtual Machine?
(7vM) Specification. Consequently, applications run-
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ning on the first Jyms were slow. Java performance
was substantially improved when just-in-time (JIT)
compilers® were introduced into Jvms. With a JIT
compiler, the bytecode of Java applications is com-
piled into machine code “on the fly,” and then the
generated machine code is executed, resulting in bet-
ter performance. But several significant bottlenecks
remained.

The promise of Java to write once, run anywhere fits
particularly well with the overall strategy of IBM,
which manufactures and supports heterogeneous
hardware and software platforms. As early as 1996,
IBM shipped a Jvm implementation as part of Op-
erating System/2* (0s/2*) Warp 4. Unfortunately, the
decisions to enable quick porting and ensure 100 per-
cent compatibility with the Java specification caused
IBM’s Java performance to initially lag behind that
of other Jvm vendors as measured by emerging in-
dustry standard benchmarks. In early 1997, after the
1BM Developer Kit (DK) for 0s/2 Warp, Java Tech-
nology Edition, Version 1.0.2, was shipped, a team
was formed in the IBM Austin facility to identify and
eliminate performance problems of Jvm implemen-
tations on 0S/2 platforms, with the objective of de-
livering industry-leading Java performance by year
end and to narrow performance gaps with other ob-
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ject-oriented programming languages such as C+ +.
The results of that work were delivered on IBM Java
platforms beginning in 1997.

The remainder of the paper discusses how perfor-
mance problems were identified and how they were
solved. The next section describes the methodology
we developed to identify and isolate performance
bottlenecks in Jvms. In the subsequent section, we
describe in detail solutions for some of the identi-

Performance is a function
of the workload being executed
on a particular system.

fied performance bottlenecks we eliminated in core
Jvm components, such as synchronization, object al-
location, heap management, text rendering, run-time
resolution, and Java class library methods. Some con-
clusions of our Jvm performance work are discussed
in the last section.

Identifying performance bottlenecks

To improve the performance of a Java virtual ma-
chine, we developed a simple but effective method-
ology. The methodology uses a “divide-and-conquer”
technique to isolate and then pinpoint the most
pressing performance issues in the current imple-
mentation of the Java virtual machine. First, we se-
lect aworkload that requires improvement. Next, we
use a variety of performance tools to analyze the run-
time behavior of the workload under study. By pe-
riodically sampling the execution® of the workload,
we get a high-level profile of where time is spent dur-
ing the workload execution. Then we generate a run-
time call graph” to understand the flow of the pro-
gram execution. For a detailed understanding of a
“hot” routine, instruction-level traces might be gen-
erated to drive reduction in the path length of the
routine. This analysis allows us to identify and eval-
uate performance bottlenecks in the Jvm implemen-
tation. Once isolated, these bottlenecks are elimi-
nated by iteratively prototyping solutions and re-
evaluating the solution.
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Selecting a workload to improve. Performance is a
function of the workload being executed on a par-
ticular system. In order to improve performance, a
target workload must be identified for systematic im-
provement. For improving the performance of the
Java virtual machine, that workload may be an in-
dustry standard benchmark, such as Caffeine-
Mark** 3 JMark**,° SPECjvm98,"” and Volano-
Mark**. ' It could be an application scenario based
on a real-world application, such as Lotus eSuite**
or the Web-serving application used at the Olym-
pics in Nagano. In some cases, it might even be a
specifically designed microbenchmark to exercise a
specific Jym component or function, such as thread-
ing, object allocation, or text drawing.

The primary requirements for the workload are that
it must be automated, measurable, and repeatable.
Automation is necessary so that there will be no vari-
able idle time while waiting for user interaction. The
workload must be measurable, and the results from
the measurement should converge within a pre-
defined confidence level. Thus, before and after
results can be compared to see whether any improve-
ment has been made. For many aspects of perfor-
mance analysis, it is also beneficial to have a work-
load that is CPU-intensive instead of 1/0- or network-
intensive, so that there will be little wait or idle time.

Profiling execution time. When a workload is CPU
bound, it is useful to understand what modules and
which functions in those modules are executing the
most number of instructions. For this we use a sam-
pling-based program profiling technique.® The op-
erating system kernel is instrumented with hooks to
capture execution information periodically.” This in-
formation includes the addresses of the instructions
being executed at all sampling points, and these ad-
dresses are mapped to specific modules and func-
tions when the sampled trace is postprocessed. Ex-
tracts of one sample profile of a Java workload
running on IBM DK for 0S/2, v 1.0.2 are listed in Fig-
ure 1. The workload is a microbenchmark designed
to exercise the object allocation and garbage collec-
tion facilities of Java. According to the information,
you will see that while the Applet process (process
ID = 83) was executing, the instructions that were
executed came from one of six different modules.

Peeling back one more layer of detail of the above
sample output in Figure 1, the performance analyst
can determine which routines within the modules of
interest to him or her were consuming the most ex-
ecution time in the sampled workload. The listing
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Figure 1

Sample profile of Java workload running on IBM DK for 0S/2 1.0.2

PID 83, 436 ticks (23.945823 seconds, 73.6%), process name: APPLET
File: E:\JAVAOS2\DLL\JAVAI, 338 ticks (18.563505 seconds)
File: JIT compiled code, 77 ticks (4.228964 seconds)
File: E:\JAVAOS2\DLL\JAVAX, 15 ticks (0.823824 seconds)
File: DOSCALLS, 4 ticks (0.219686 seconds)
File: E:\OS2\DLL\PMMERGE, 1 ticks (0.054921 seconds)
File: E:\OS2\DLL\IBMS332, 1 ticks (0.054921 seconds)

Figure 2

Detailed information captured for DLL module JAVAI

File: E:\JAVAOS2\DLL\JAVAI, 338 ticks (18.563505 seconds)
Segment: CODE32, 338 ticks (18.563505 seconds)

Subroutine: sysMonitorEnter, 45 ticks (2.471472 seconds)
Subroutine: WinMtxRequest, 45 ticks (2.471472 seconds)
Subroutine: AllocHandle, 38 ticks (2.087021 seconds)
Subroutine: gc0_locked, 34 ticks (1.867334 seconds)
Subroutine: mutexLock, 31 ticks (1.702569 seconds)
Subroutine: WinMixRelease, 27 ticks (1.482883 seconds)
Subroutine: sysMonitorExit, 24 ticks (1.318118 seconds)

in Figure 2 shows more detailed information cap-
tured for the DLL (dynamic link library) module
JAVALI in the Applet process.

On the basis of the profile results, we divide the ap-
plication and the run-time system into five catego-
ries: the operating system kernel, the operating sys-
tem graphics subsystem, the Java virtual machine,
the application code (including JIT compiled code),
and the Abstract Window Toolkit (AWT). Depend-
ing on where the majority of time is spent, different
performance and development skills and expertise
are used to tackle the problems. For example, the
pie charts shown in Figures 3, 4, and 5 demonstrate
three different types of problems in three different
workloads.
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Figure 3 shows a workload in which most of the ex-
ecution time was spent in the graphics engine. The
workload was an automated test of drawing graphic
shapes of different sizes and different colors on the
display screen, including items such as lines, rect-
angles, ovals, arcs, and text strings. Note that in this
particular workload, most of the execution time (83.0
percent) was spent in the 0S/2 graphics subsystem,
denoted by the largest (red) slice of the chart,
whereas the time spent in the Java code of the AWT,
denoted by the light purple pie slice, is only a very
small fraction of the total time (2.0 percent). A later
subsection entitled “Graphics” describes the meth-
odology and optimizations for improving such func-
tions.
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Figure 3 Workload predominantly running graphics
code of the operating system
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Figure 4 Workload predominantly executing
application code (JIT compiler output)
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Figure 4 shows a workload in which most of the ex-
ecution time was spent in the JIT compiled methods.
This particular workload implements a bubble sort
algorithm for a given set of data items. Intuitively,
improvements to such workloads must come from
generating more efficient code by the JIT compiler
because of the dominance of the total execution time.

Interestingly, changing the workload described above
by replacing the bubble sort with a quick sort changes
the profile of the new workload dramatically, as
shown in Figure 5. Instead of the majority of time
being spent in the native code generated by the JIT
compiler, most of the time is spent in the Jvm mod-
ules: javai.dll (the core Jvm, including object allo-
cation, synchronization, garbage collection, etc.), ja-
var.dll (C run time supporting the rest of the Jvm),
and javax.dll (the JIT module that produces the na-
tive machine code and provides run-time linkage be-
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tween the Jvm and the JIT compiler). As a result,
attention should be focused on these modules when
trying to improve the performance of this new work-
load. The next section addresses the changes made
to improve these Jvm modules and workloads with
profiles similar to this workload.

To further isolate problem areas in the Jvm, a more
detailed breakdown is required. Look, for example,
at the allocation and garbage collection micro bench-
mark, shown in Figure 6, that tests the efficiency of
memory allocation and garbage collection. Profile
output, like that listed above, can tell us exactly which
routines in the Jvm modules are being executed most
frequently. When similar routines are coalesced into
common functions, the dominant Jvm modules can
be categorized into how much time is spent compil-
ing the Java application bytecode into native code
(JIT compiler), synchronizing methods and objects
(synchronization), resolving object ownership and in-
stances (run-time resolution), allocating objects (ob-
ject creation), and garbage collection. Notice that
almost 57 percent of the time spent in Jvm routines
was spent executing synchronization routines (syn-
chronization).

Generating call graphs for understanding calling se-
quences. Knowing the amount of time spent in a rou-
tine is not enough to be able to significantly improve
performance. It is necessary to understand the pro-
gram flow as well. If there are many small subrou-
tines in a program, as is often the case in an object-
oriented design, no single routine may consume a
large percentage of the total time, but when coa-
lesced with calling routines and other routines it
calls,” the combined time can be a significant bot-
tleneck.

For this type of analysis, we added instrumentation
to the Jvm and the JIT compiler to generate infor-
mation about method entries and exits. During the
execution of a workload, this information is captured
and later postprocessed. The results of the postpro-
cessing show the dynamic call-graph structure of the
traced program. It shows how much time was con-
sumed by a particular routine, who was calling that
routine at that particular instance, and what other
routines were called from the routine under study.
For more detailed information about this tool, we
refer readers to Reference 7. This tool was used ex-
tensively in our performance work for the Java class
libraries, as described later in this paper.
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Understanding instruction-level path lengths. Con-
versely, if a particular routine consumes a large por-
tion of the CPU time, a more detailed view of what
is happening during the execution of a program is
required. At times it is desirable to actually trace the
instructions that an application or a portion of an
application executes. Tracing is particularly valuable
in assessing path length problems of frequently called
functions and opportunities for their optimization.
For this type of analysis, we developed a tool to ex-
ploit the single-stepping capability of the Intel ar-
chitecture. During execution of a workload, all ma-
chine instructions that a selected portion of an
application executes are captured and recorded.

This information is postprocessed to sum the num-
ber of instructions executed between branches or
function calls. It can also show the actual instruc-
tions executed for each branch or function. This in-
formation is useful for understanding the most fre-
quently used paths through the code and which
branches are most often executed in real workloads.
This knowledge enabled us to streamline the paths
through the Java synchronization code and the run-
time resolution code, as described in the next sec-
tion.

Eliminating performance bottlenecks

Using the methodology discussed in the previous sec-
tion, performance problems were identified in core
Jvm components, including object synchronization,
object allocation and heap management, the Jvm
run-time system, Java class libraries, and the AWT
graphics. In this section, we describe in detail some
of the identified performance bottlenecks and how
they were eliminated in Jvm implementations for 0s/2
systems. Note that the methodology and techniques
discussed in this paper were refined and applied to
the latest releases of 1BM Jvms, such as IBM DK for
0s/2v 1.1.8 and 1BM Developer Kit for Windows**,
Java Technology Edition, Version 1.1.8, and to up-
coming IBM enhanced Java 2 Jvms. Also note that
Java performance has been the focus of numerous
research and development projects in the past few
years. As we were attempting to provide solutions
for the identified performance problems in IBM Jvm
implementations, others were drawing similar con-
clusions about these Java performance problems and
offering solutions for them,*>1>15

Object synchronization. With use of the performance

analysis methodology discussed previously, a serious
performance bottleneck was quickly identified in the

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000

Figure 5 Workload predominantly executing Jvm code

QUICK SORT

JiTed BYTECODE
32.0%

GRAPHICS ENGINE
1.0%

0S/2 KERNEL
1.0%

JAVA VIRTUAL MACHINE
66.0%

Figure 6 TPROF breakout for an allocation and
garbage collection microbenchmark
(running with DK for 0S/2 1.0.2)
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virtual machine implementation of IBM DK for 0S/2
v 1.0.2. Analysis of TPROF (timing-based profiler)
output for a microbenchmark test (shown as a pie
chart in Figure 6) clearly indicates that a significant
portion of Jvm execution time is spent in monitor
operations. Java supports thread synchronization by
means of monitor primitives.'® More specifically,
Java monitors implement the Mesa style'” of wait
and signal. By definition, each Java object has a mon-
itor logically associated with it. The lock mechanism
of the monitor is used to synchronize object data ac-
cesses. More specifically, monitor enter and exit op-
erations are used to implement the synchronized
methods and synchronized blocks of Java code that
are used frequently by Java applications and Java
class libraries. Therefore, the performance bottle-
neck is the lock mechanism of the monitor. In the
subsequent discussion, we focus on the performance
problems found in the implementation of monitor
enter and exit operations.
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Figure 7 Object header layout of the new monitor

design in DK for 0S/2 1.1.1
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Sun’s original implementation. A more detailed look
at how monitors are implemented in the Java vir-
tual machine in the IBM DK for 0s/2 v 1.0.2 helps to
explain the cause of the problem. Note that the im-
plementation is based on Sun’s original monitor de-
sign in their reference implementation for Windows
32-bit platforms. Therefore, this monitor implemen-
tation is also referred to as Sun’s monitor implemen-
tation in the rest of this section. Also note that the
monitor implementation is improved in Sun’s more
recent Jvm releases.

In Sun’s original implementation, a system-wide pool
of monitors is used. On entering an object monitor,
the thread locks the system-wide monitor pool. Next,
a hash algorithm is used, with object handles as the
key, to look up and then associate one of the mon-
itors from the monitor pool to the object. The thread
then acquires the lock associated with the monitor.
The system-wide monitor pool is then unlocked. Ex-
iting an object monitor is similarly cuambersome. The
owner thread again needs to lock the system-wide
monitor pool and use the same hash algorithm to
look up the monitor associated with the object. The
thread then releases the lock associated with the
monitor. Finally, the system-wide monitor pool is un-
locked.

Although this monitor design is rather straightfor-
ward to implement and does not require a large num-
ber of system monitors (only a system-wide pool of
monitors is needed), the approach has several draw-
backs. First, it is slow because of the lengthy path
required to perform monitor entries and exits. A
matching pair of monitor enter and exit operations
requires at least 730 Intel instructions in IBM DK for
0s/2 v 1.0.2. Second, the single lock to the shared
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system-wide pool of monitors can quickly become
a contended resource. Any thread performing any
monitor operation needs to lock and unlock it. Third,
the locking mechanism of the original monitor is ef-
fectively a wrapper around an operating system
semaphore. The use of an operating system sema-
phore requires calls to the operating system kernel
on 0S/2, which is very expensive.

The improved monitor implementation. For better
performance, a monitor needs to be directly asso-
ciated with each Java object involved in any mon-
itor operation. In the absence of contention, mon-
itor entries and exits should be shallow operations
without calling kernel-level semaphores. The new
monitor design in IBM DK for 0S/2 v 1.1.1 and be-
yond was based on these principles. Briefly, the new
mechanism binds a monitor to an object when syn-
chronization is first requested for the object. As a
result of this change, an additional word, called the
lock word, is needed for each Java object to store
the monitor pointer—the binding between the Java
object and its monitor. A new object model is used
in IBM DK for 0S8/2 v 1.1.1 with the object header at-
tached directly to the object body, freeing a word in
the object header that was used for linking the ob-
ject header to the object structure.

Figure 7 shows the new object header layout. The
first word is used for storing the class pointer for non-
array objects or the array size for arrays. The sec-
ond word, the lock word, is also overloaded. Bit A
of the lock word indicates whether the object is an
array or a normal Java object. Bit H indicates
whether the lock word contains a hash value or a
pointer to the monitor structure of the object. Ini-
tially, the lock word contains the hash value of the
object, which is calculated at creation time of the ob-
ject. When the object is synchronized for the first
time, a monitor structure is allocated and initialized
on behalf of the object. The pointer to this monitor
structure is then stored in the lock word of the ob-
ject, replacing the hash word originally stored there.
Note that the hash value is saved in the new monitor
structure as part of monitor initialization.

The actual monitor data structure contains the fol-
lowing fields: (1) Serma4—a semaphore identifier (ID)
field containing the system ID of an operating sys-
tem semaphore associated with this monitor. Note
that this field is needed only if contention for access-
ing the monitor occurs, or blocking on the monitor
is requested. (2) TakeLock—a field used for locking
and unlocking the monitor structure. It is used for
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threads entering and exiting the monitor. (3) Own-
er—an owner field indicating the current thread
working with the locked data. Owner is set to null
if no thread has entered the monitor of the object.
(4) EntryCount—a count indicating how many times
the current owner thread enters the monitor recur-
sively. (5) HashValue—a field for storing the hash
value of the object.

In this new monitor implementation, monitor_enter
is implemented as follows. Bit H of the lock word
is first tested. If the monitor of the object is accessed
for the first time, a monitor structure is allocated and
initialized, and then the lock word is updated to point
to the new monitor structure. Otherwise, the mon-
itor structure is fetched through the lock word. The
next step is to check whether the current thread al-
ready owns the monitor. If it does, EntryCount is
incremented by one, and then the monitor_enter op-
eration is done. Otherwise, the monitor is either free
or owned by another thread. For either case, Take-
Lock is atomically incremented by 1. Since TakeLock
contains value —1 when the monitor is free, the first
thread that turns the value of the field to 0 obtains
ownership of the monitor. The ID of the owner thread
is then written to the Owner field of the monitor
structure. If the monitor is already owned or con-
tention occurs on entering the monitor, TakeLock
contains a positive number. For such cases, the ker-
nel semaphore stored in Sema4 is invoked to force
the requester thread to wait on the monitor. Note
that atomically incrementing TakeLock is a tech-
nique to acquire a lock quickly, with costs as low as
one clock cycle on uniprocessor Intel machines.

Monitor_exit is implemented in a similarly efficient
way in this new monitor design. The monitor data
structure is first fetched through the lock word. The
next step is to decrement the recursion count field
EntryCount. If the count is not zero after the dec-
rement, then the lock is still held by the current
thread, and no further action is needed for the cur-
rent monitor exit operation. Otherwise, the current
thread releases ownership of the lock by clearing the
Owner field of the monitor. It then atomically dec-
rements the TakeLock field and checks whether it
goes to —1. If not, contention on entering the mon-
itor occurs. The associated kernel semaphore is in-
voked to wake up one of the threads waiting to en-
ter the monitor. Otherwise, no further action is
needed. Note that H-bit is not tested at the begin-
ning of the monitor exit operation, because any mon-
itor exit must follow a monitor entry. Therefore, the
lock structure of the object must have already been
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allocated and initialized, and the lock word contains
the pointer to the lock structure.

Evaluation of the new monitor implementation. The
new monitor implementation is efficient. It elimi-
nates several time-consuming steps found in the orig-
inal mechanism. The locking mechanism is bound
to each object by defining a memory area within the
header of the object that contains a pointer to a mon-
itor structure. The monitor structures are not shared,
thus eliminating the need to lock and unlock a sys-
tem-wide monitor pool. Once created, a monitor re-
mains bound to the object for the life of the object.
Further efficiency is gained by limiting the use of op-
erating system kernel semaphores. In the absence
of contention on monitor operations, operating sys-
tem semaphores are not used. Rather, the lightweight
locking mechanism bound to the object is used dur-
ing nonblocking situations. On such fast paths with-
out any contention, the path length of entering and
then exiting a monitor is reduced from 730 Intel in-
structions in DK for 0S/2v 1.0.2 to around 30 instruc-
tions for later versions of DK for 0S/2. Additional
efficiency is also achieved by not assigning or initial-
izing the locking mechanism of an object until the
first synchronization request is received for the ob-
ject.

As a result of significantly improved monitor per-
formance, the cost of object synchronization no
longer shows up prominently in TPROF output for
the allocation and garbage collection benchmark test
(see Figure 6) when the workload runs on later ver-
sions of DK for 0S/2.

The new monitor design in DK for 0S/2 v 1.1.1 still
has some shortcomings, however. A monitor struc-
ture is needed as soon as an object is first involved
in any synchronization operation, and it is kept in
the Jvm throughout the lifetime of the object. For
Java programs containing many objects with synchro-
nization operations, the number of live monitor
structures may consume a significant number of sys-
tem resources. Therefore, a finite number of mon-
itors were made available to be dedicated to Java
objects. When this finite supply of monitors is ex-
hausted, the Jvm falls back to the original Sun im-
plementation.

Note that the shortcomings discussed above were
partly a result of our initial focus on client-based Jvm
performance. The problems were, however, ad-
dressed in subsequent releases of the IBM DK for 0S/2
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Figure 8 Heap management with multiple free lists
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and Windows. Details of those implementations can
be found in References 14 and 15.

Object allocation and heap management. In typical
Java applications, as with any object-oriented pro-
gram, large numbers of objects are created and used.
Therefore, an important objective of any Java heap
management mechanism is to allow efficient, high-
performing object allocation. Note that dynamic al-
location is a well-addressed research topic.'® The
techniques discussed here only attempt to address
specific performance requirements of IBM Jvm im-
plementations.

Heap management for IBM DKs was improved incre-
mentally. The implementation in IBM DK 1.0.2 was
inherited from Sun’s Java Development Kit (JDK**),
which organizes the free heap space as a linked list
of free blocks. For each object allocation, the list is
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linearly searched for a free heap block of appropri-
ate size. As a result, the time spent in object allo-
cation is a significant portion of some workload, as
illustrated in Figure 6. An improved scheme was im-
plemented in IBM DK for 0S/2 1.1.1. The 1BM algo-
rithm uses multiple buckets of memory blocks (con-
nected through linked lists) of different sizes to
manage the free heap space. There is one free list
for every size of free heap block from 8 bytes to 512
bytes with an increment of 8 bytes. All free heap
blocks larger than 512 bytes are maintained by a spe-
cial free list of large blocks (see Figure 8A). Note
that in IBM heap management schemes, objects and
free blocks are always aligned on 8-byte boundaries.
This heap management scheme uses a best fit algo-
rithm to minimize fragmentation of the heap space.

Using the methodology discussed in the last section,
we determined that the sluggish performance of ob-
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ject allocation is caused by a flaw in the allocation
algorithm used in DK for 08/2 1.1.1. For example, con-
sider the state of free lists as depicted in Figure 8A:
All free lists are empty except the free list for large
objects. If a 16-byte object is allocated, the free list
for 16-byte free heap blocks is searched first. Since
it is empty, the algorithm moves on to the next free
list for 24-byte free heap blocks and finds that it is
also empty. In the same manner, all the free lists af-
ter that of 16-byte objects are searched before the
algorithm determines that there is no free space
available in these free lists. It then goes to the free
list for large chunks and finds that it is not empty.
Alarge block, say of size 4096 bytes, is removed from
the free list and is split into a 16-byte object and a
free block of size 4080 bytes. The 16-byte part is re-
turned to the requester, while the rest is returned
as a new free block to the free list of large free ob-
jects since it is still larger than 512 bytes. The result-
ing free lists after the object allocation turn into the
state as depicted in Figure 8B.

Note that the above process is slow because all free
lists are linearly searched. Also note that all the free
lists except the top one are still empty after the ob-
ject allocation of a 16-byte object. If there is another
request for a 16-byte object, the same process re-
peats.

Once the problem was identified, it was not difficult
to fix. The improved algorithm incorporated into
IBM DK for 0s/2 1.1.1 is described as follows:

Step 1. If the free list of size n is not empty, remove
a memory block from the head of this free list and
return it to the requester. Algorithm done.

Step 2. Go to the free list for large heap blocks (i.e.,
sizes greater than 512 bytes). If the free list is not
empty, remove a free memory block from the list and
go to Step 4.

Step 3. Trigger the garbage collection of the entire
heap in order to free some heap memory space by
reclaiming “dead” objects. Go back to Step 1.

Step 4. If the free block is less than some fixed size,
say 2048 bytes, go to Step 5. Otherwise, break the
free block into a 2048-byte part and a remaining part.
Return the remaining part to the proper free list,
and then go to Step 5.

Step 5. Break the free block (2048 bytes or less) into
several parts of the requested object size of n bytes.
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The first part of n bytes is returned to the requester,
and the rest are put back to the free list of the re-
quested object size. Note that there might be a left-
over block smaller than the requested size, and it
needs to be returned to the appropriate free list. Al-
gorithm done.

The difference between the improved and the orig-

inal object allocation algorithm is dramatic when the
corresponding free list of the requested object size

An important objective of any
Java heap management mechanism
is to allow efficient, high-performing

object allocation.

is found empty. Instead of stepping through all the
free lists for blocks larger than the requested one,
the improved object allocation method directly goes
to the free list for large objects and allocates a large
chunk (not larger than 2048 bytes). It then breaks
the large chunk into a number of memory blocks of
the requested object size, returns one of them to the
requester, and adds the rest to the free list of the
requested object size. Therefore, subsequent re-
quests for objects of the same size will be found in
the free list. Many programs will allocate multiple
objects of the same size (such as Java String and
StringBuffer objects, for example); this algorithm op-
timizes those object allocations. This technique also
avoids scanning the free list of large-size objects,
which can take a significant amount of time.

Consider the example of allocating a 16-byte object,
using the improved object allocation; the free list
turns into the state as depicted in Figure 8C. Note
that after the allocation, 127 objects still populate
the free list of 16-byte objects. The next request for
another 16-byte object can quickly obtain it from this
free list.

An advantage of the algorithm is that the object al-
location process can be broken into a frequent case
and an infrequent case. In most cases, a free mem-
ory block can be found in the free list of the requested
object size. Allocation can be done quickly, and
hence called the fast path. Periodically, a slower path
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Figure 9 A trimmed TPROF output from a benchmark test using vector class

PID 83, 534 ticks (29.332153 seconds, 95.4%), process name: APPLET
File: E:\JAVAOS2\DLL\JAVAI, 325 ticks (17.851965 seconds)
Segment: CODES32, 325 ticks (17.851965 seconds)

Subroutine: EE, 46 ticks (2.526739 seconds)
Subroutine: is_subclass_of, 42 ticks (2.307023 seconds)
Subroutine: threadSelf, 37 ticks (2.032377 seconds)
Subroutine: sysThreadSelf, 37 ticks (2.032377 seconds)
Subroutine: mutexLock, 24 ticks (1.318299 seconds)
Subroutine: sysMonitorEnter, 22 ticks (1.208440 seconds)
Subroutine: is_instance_of, 21 ticks (1.153511 seconds)
Subroutine: WinMitxRequest, 21 ticks (1.153511 seconds)

may be taken. Optimization can be focused on the
fast path to improve the overall performance of ob-
ject allocations. For example, an assembly language
implementation may be written if high-level language
compilers cannot generate the best machine code
for the fast path. Moreover, the fast path of object
allocation can be “inlined” in the JIT compiler gen-
erated code. In fact, the idea of inlining the fast path
of object allocation is adopted by all JIT compilers
in IBM enhanced DKs.

Note that the improvement of the heap management
in DK for 0S/2 1.1.4 was focused on reduced path
lengths of the object allocation, in particular its fast
path. Since then, IBM DK heap management has con-
tinued to improve. For example, in IBM DK 1.1.6 each
thread is allowed to have its own small area in the
heap, called thread-local-heap, from which it can al-
locate small objects without grabbing the heap lock.
The reduced contention on a global resource, the
heap lock, helps to improve scalability of IBM Jvms
running on multiprocessor servers. In IBM DK 1.1.8,
the heap management mechanism is again improved
by reducing the need for expensive heap compac-
tion. '

Jvm run-time system. The analysis of earlier versions
of the Jvm revealed that a significant amount of time
is spent in the run-time system of the virtual ma-
chine. " In addition to functions related to object syn-
chronization, object allocation, and garbage collec-
tion, several other frequently called Jvm functions
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were identified, including EE, is_instance_of, and
is_subclass_of, as shown in the TPROF output in Fig-
ure 9. EE is a Jvm function that obtains the execu-
tion environment of the current thread. Since the
execution environment of a thread contains such im-
portant information as stack pointers (for both the
JIT compiler and the interpreter), current method
frame, exception-handling object, etc., EE is under-
standably a “hot” function that is called frequently
from other parts of the Jvm and the JIT compiler.
The function is_instance_of is used to determine
whether an object is an instance of a given class. Be-
cause of the object-oriented nature of the Java lan-
guage and the prevalent use of “virtual” functions
in Java programs, is_instance_of is called frequently
to determine the actual type of an object at run time.
Is_instance_of almost always calls is_subclass_of,
making it another “hot” Jvm function.

We developed several methods of improving the per-
formance of “hot” functions. The first is to reduce
the path lengths of the concerned functions. This ap-
proach emphasizes reducing the number of instruc-
tions that are executed every time a routine is called.
It might mean streamlining code paths for the most
frequently executed cases, using more efficient data
structures, or simply eliminating unnecessary instruc-
tions. The second method is to avoid or delay call-
ing these functions if possible. Some results can be
cached to avoid calling the same functions again later
in the execution. Some function calls can be delayed
until the results are absolutely needed. The third
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method is to redesign the algorithm that implements
the functions. That is, the performance problems
found in the old algorithm are avoided in the new
design.

For each specific problem, a combination of the
above approaches may be used. For example, the im-
pact of EE on performance is reduced by enhancing
its implementation as well as by not calling the func-
tion. In its original implementation, EE in turn called
several other functions. All of the overhead of call-
ing or returning from a function can be avoided by
using macros. In IBM DK for 0s/2 1.1.4, we reduced
the cost of calling EE to as low as 10 Intel instruc-
tions. We also reduced the number of times EE is
called by revising some key Jvm functions to include
the pointer to the execution environment of the
thread as one of their arguments. In addition, EE can
also be cached in the JIT compiler environment to
further reduce the number of calls to the function.

It is more difficult to avoid calling is_instance_of and
is_subclass_of in the Jvm. It is also not straightfor-
ward to improve their C code implementations. How-
ever, we observed that these two functions are very
generic; they handle all kinds of instance type check-
ing and subclass checking. No knowledge is assumed
of objects or classes involved. Therefore, they need
to check whether an object or class pointer is null,
whether an object is an array or a “normal” object
instance, and whether a class is an interface or a reg-
ular Java class. It is difficult for even the best C com-
piler to optimize each execution path of the gener-
ated code when there are as many cases as these.
We noticed, however, that typically a specific exe-
cution path, that we call the “fast” path, is taken by
is_instance_of and is_subclass_of. In the majority of
cases, an object is a normal object, i.e., not an array,
and the object is an instance of the given class. In
order to “force” the best optimization on the fast
path of execution, we chose to implement the two
small functions in Intel assembly language in DK for
0s/2 1.1.4. In particular, register usage is fully
optimized for the fast path, and a call from
is_instance_of to is_subclass_of is avoided by jump-
ing directly from the caller’s context to the callee’s
context because of the smart allocation of registers
and similarity of the arguments of the two functions.
As aresult, the length of the fast path is significantly
reduced, and the overall performance is improved.

The effect of improving the frequently called Jvm

functions listed above is significant to the overall per-
formance of the Jvm, as demonstrated by the re-
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Table 1 Results for benchmark tests using Vector,
Hashtable, and Stack of Java

JDK Improved Improvement

1.0.2 Jvm (percent)
Vector 1172 1608 37
Hashtable 3624 4447 23
Stack 1068 1422 33

sults'® shown in Table 1 for several micro Jvm bench-
mark tests. These benchmarks exercise several key
Java class libraries. As another indication of im-
proved performance, these Jvm functions no longer
show up prominently on the TPROF output, which
means they no longer take a significant amount of
time to execute.

Itis important to note that the specific functions dis-
cussed in this section are not the only hot functions
in all Jvms. Instead, they are used to exemplify how
hot Jvm functions are identified and improved. Dif-
ferent hot functions may be identified and improved
in other Jvm implementations by using similar ap-
proaches.

Java class libraries. The class libraries are another
part of the Java virtual machine where performance
problems exist. > We used the same methodology to
identify performance bottlenecks in the class librar-
ies of the Jvm as we did for other areas of the Jvm.
However, in this area, the arcflow analysis tool’ is
more effective, because it provides richer run-time
information for each method and class. For exam-
ple, it keeps track of how much time, in terms of ex-
ecuted bytecode or actual CPU time, is spent execut-
ing each method and the methods it invokes. The
tool presents results in different views (Figure 10
shows an intuitive tree view), which helped us to iden-
tify heavily used classes or methods in the class li-
braries. Such insightful run-time information directs
attention to those paths in the class libraries where
performance is critical for most Java applications and
applets. It also helps us to decide whether improve-
ment is needed for the identified heavily used classes
and methods.

Figure 10 shows a visualized tree view from an arc-
flow analysis of an allocation and garbage collection
microbenchmark running on IBM DK for 0S/2 1.0.2. The
arrows represent method invocations, and line thick-
ness roughly indicates the relative amount of time
spent in that method. For example, method
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Figure 10 A visualized arcflow tree view of an allocation and garbage collection benchmark running on DK for

0S/2 1.0.2 (unessential details omitted)
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StringBuffer.reverse StringBuffer.toString

String.valueOf is invoked many times by this Java
benchmark test. A significant amount of time is spent
in this method and the methods it invokes, in-
cluding Integer.toString,  StringBuffer.append(C),
StringBuffer.reverse, etc. Therefore, attention should
be paid to the performance of String.valueOf(l) and
the methods it invokes.

A closer examination of the trace data and the
method invocation pattern reveals some inefficiency
in the String.valueOf(l) implementation. This method
converts a decimal integer number into a character
string representation. In the original implemen-
tation, this method simply invokes method
Integer.toString(ll) and relegates the task to the new
method. Note that the invoked method is a generic
implementation of converting an integer value into
any format of character string representation (e.g.,
binary, decimal, or hexadecimal). Therefore, the al-
gorithm requires quite a few expensive operations,
such as three object creations and 10 to 30 method
invocations, 2 to 12 of which are synchronized.

It is clear that String.valueOf is a “hot” method for
this workload. The method is also used to implement
concatenation of a string and an integer, such as
"a_string" + 100. Hence the method is used fre-
quently by typical Java applications or applets. In fact,
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AWT uses it to create default names (used internally
by AWT) for basic AWT objects, such as Label, But-
ton, and Panel. The following expression is used to
generate a unique name for each object

This.name = base + nameCounter+ +;

where the base name and nameCounter are asso-
ciated with each AWT class. For example, new AWT
label objects are named label0, labell, label2, and so
on, if not explicitly specified when they are created.

There are many different approaches for improving
the performance of the implementation of any given
class, but they are all restricted by the requirement
that Java compatibility cannot be broken by any
changes to the system class library of the Jvm. For
String.valueOf(l), one straightforward approach is to
improve the implementation of the method. A na-
tive C implementation was first tried, and good per-
formance was achieved through avoiding unneces-
sary object creations and method invocations. It was
later determined that similarly good performance
can be achieved through a Java implementation. Be-
cause of the portability of Java, the Java implemen-
tation was chosen so that other platforms would ben-
efit as well. The improvement was incorporated into
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DK for 0S/2 1.1.4 and later into the class libraries for
other platforms. In the improved implementation,
only two object creations (for the string to be re-
turned) are needed, and all method invocations are
avoided.

Another “fix” for some expensive methods in class
libraries is to avoid calling these methods, if possi-
ble. In the above example, String.valueOf(l) is invoked
to generate default names of new AWT objects at their
initialization time. However, the names of AWT ob-
jects are not always used by applications. Therefore,
creation of these names may be delayed until they
are actually used, saving time for applications that
do not make use of the names.

We explored the examples above in some detail to
illustrate the improvements we made in the class li-
braries. We also worked with Sun and Netscape
Communications Corporation to develop many other
enhancements to the system Java classes, including
String, StringBuffer, Vector, Hashtable, etc. These
enhancements were delivered as part of the Sun JDK
1.1.6 reference platform and were therefore made
available to all platforms that have incorporated this
release.

Graphics. Java graphics® is another important area
in early Jvms where performance enhancements
were needed. Using the tools and methodology dis-
cussed in the previous section, performance prob-
lems in the implementation of AWT were identified,
and extensive efforts were made to improve the over-
all graphics performance of IBM Jvm implementa-
tions. Areas that were significantly improved include
text drawing, AWT event handling, image conversion,
and basic graphics primitives such as lines, ovals, and
polygons. The performance work was carried out on
different operating system platforms, including 0S/2
and Windows systems. Limited by space, we only dis-
cuss in detail the work on text drawing where sig-
nificant performance improvements were achieved.
For brevity, discussions below assume a Windows 32-
bit, or Win32**, platform.

To facilitate the following discussions, let us use the
AWT Button class as an example to briefly explain
how the AWT components are implemented on
Win32 platforms. For each AWT component class like
Button, there is an associated class called a Peer class
that is designed to bridge the platform-independent
AWT class to the underlying native graphics sub-
system. Peer classes contain mostly native methods
that are implemented in C and C+ +. For instance,
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The interaction of Java Button class with its
peer class

Figure 11

PLATFORM-DEPENDENT
IMPLEMENTATION

PLATFORM-INDEPENDENT
IMPLEMENTATION

TOOLKIT ButtonPeer

(Java)
NATIVE METHODS

Win32Button
(C++)

WIN32 SYSTEM CALLS
‘ NATIVE GRAPHICS SUBSYSTEM ‘

as shown in Figure 11, a C++ class Win32Button
is used to implement the native methods of Button-
Peer. Figure 11 also shows interactions among AWT
Button, ButtonPeer, and Win32Button. Because of
this peer architecture, a number of objects (in both
Java and C+ +) are created for each AWT compo-
nent. Similar data structures are maintained in dif-
ferent locations. Events and messages are queued
and processed in both Java and the native graphics
subsystem. The complexity of this peer architecture
is responsible for many graphics performance prob-
lems.

We now discuss in more detail performance prob-
lems and fixes for text drawing. Text support is an
important aspect of Java graphics. Drawing a text
string seems simple: A font is first created and set
for the graphics context, and then the string is drawn
by calling the string drawing method. In early Jvm
implementations, however, these operations had
long path lengths. Although problems were found
in text rendering on some platforms, the major per-
formance problems were in the areas of font man-
agement and Unicode**?!' support on Windows plat-
forms.

Similar to Button, AWT Font also has its own peer
class called FontPeer, and a C+ + class called Awt-
Font. Whenever an AWT Font object is created at
the application level, an instance of FontPeer is cre-
ated as well. As identical font objects are created in
different parts of the applications, multiple instances
of its font peers are created accordingly. In other
words, Java peer fonts are not shared. For applica-
tions that create fonts frequently for large amounts
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Table 2 Improvement of font management and
Unicode support for font creation and text

drawing
Original Improved Improvement
Jvm Jvm (percent)
(sec.) (sec.)
Font creation 4.7 0.8 83
Text drawing 3.8 2.3 39

of text drawing, identical instances of peer fonts are
frequently created and then thrown away, causing
performance problems.

Two improvements to the font management were
implemented in IBM DK for Windows 1.1.7. Basically,
Java peer fonts are cached in a hash table and re-
used for font references as much as possible. That
is, many identical font instances at the application
level share one instance of the peer font. In addi-
tion, we also modified the implementation in the na-
tive code so that the creation of Windows fonts is
delayed until the fonts are actually needed. We no-
ticed that there are situations where font setting is
not immediately followed by text drawing, causing
unnecessary font creation. As a result of these
changes, the path length is shortened significantly
in most cases. Moreover, memory usage and garbage
collection activities are also reduced because fewer
peer objects and Windows fonts are being created.
The benefit from the font caching at the Java peer
level is demonstrated by improved results® of a font
creation microbenchmark shown in Table 2.

The next major performance problem of text draw-
ing was found in the handling of Unicode charac-
ters.?! Unicode uses a 16-bit character encoding sys-
tem designed to support text written in diverse
human languages. Currently, it is not common, how-
ever, to have font sets capable of displaying all Uni-
code characters. Most fonts for Indo-European lan-
guages display only the first 256 out of the total of
65535 Unicode characters. If an application wants
to use two languages in one sentence, or displays a
string that contains English text with mathematical
symbols, a font such as Times Roman could not dis-
play all characters by itself. To deal with such sit-
uations, Sun Microsystems, Inc., introduced the con-
cept of multiple host fonts* into Jvms starting from
JDK 1.1.5. Figure 12 uses a portion of a font prop-
erty file to illustrate how multiple host fonts are used.
In the font property file, Java Font Dialog is in fact
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mapped into a series of host fonts, namely Arial,
WingDings, and Symbol. For characters that cannot
be displayed by a particular font, exclusion ranges
of that font are specified. For example, the exclu-
sion ranges for Arial are 0X100-0x20ab and 0X
20ad-0xffff, and no exclusion ranges for WingDings
and Symbol are specified. In addition, each font is
associated with a converter that maps each Unicode
character into bytes understood by a certain under-
lying encoding scheme. The idea is that if a Unicode
character cannot be handled by the first host font,
the second one should be tried, or else the third one,
and so on. The goal is to cover as much of the Uni-
code character set as is desired.

The introduction of multiple host fonts caused sig-
nificant performance degradation for drawing text
strings. For every character in the string, two checks
must be performed: (1) Is the character an excluded
character for the given font? (2) Can this Unicode
character be mapped into the underlying encoding
scheme, such as 1SO (International Organization for
Standardization) Latin-1? These checks become an
expensive part of text drawing. However, they are
unnecessary for strings containing only ASCII char-
acters because usually only the first host font is in-
volved.

For better performance, a fast path is introduced into
IBM Jvms for drawing strings with single-byte char-
acters only. First, the string to be drawn is checked
quickly for the existence of excluded characters. If
it contains no excluded characters, the whole string
is passed to another routine to check whether all
characters in the string can be converted. The con-
verter used in this case specifies convertible char-
acters in ranges. If the maximum character and min-
imum character of the string fall into one of the
ranges, we can quickly conclude that all the char-
acters of the string can be converted. Thus, a sig-
nificant amount of time is saved by not checking in-
dividual characters, and the string can be passed to
the lower-level drawing routine right away. With the
fast checking routines, the performance of draw-
String for ASCII characters, e.g., English text, im-
proves significantly. The benefit from this improve-
ment is depicted by improved results (in Table 2)
for a microbenchmark of drawing English text. Note
that there is a slight path length increase for strings
containing double-byte characters, but the increase
is outweighed by the gains in the single-byte cases.
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Figure 12 A portion of a font property file illustrating how multiple host fonts are used

dialog.0=Arial, ANSI_CHARSET

# Exclusion Range info.
exclusion.dialog.0=0100-20ab,20ad—ffff

dialog.1=WingDings,SYMBOL_CHARSET,NEED_CONVERTED
dialog.2=Symbol,SYMBOL_CHARSET,NEED_CONVERTED

Conclusions

Our early efforts to improve performance of IBM Jvm
implementations on IBM Intel-based platforms led
us to develop techniques and methodologies to iden-
tify, isolate, and solve performance bottlenecks.
Among the first key performance issues critical to
the overall performance of Jvms we identified were
object synchronization, object allocation, heap man-
agement, run-time resolution, Java class libraries,
and AWT graphics. The enhancements we developed
helped 1BM deliver high-performing Java virtual ma-
chine implementations on all IBM platforms.

This methodology and process for identifying and
solving Jvm performance problems are applicable to
any Jvm implementation. In fact, the performance
of Jvms has been continuously improved by teams
across IBM using the same approach, including fur-
ther enhancements to parts of the Jvm addressed in
this paper, such as object synchronization, object al-
location, and AWT implementation. As a result, some
technologies discussed in the paper have evolved into
new schemes, and some others were replaced with
similar but more comprehensive technologies. For
example, the monitor implementation discussed in
this paper was implemented in IBM DK for 05/21.1.4,
but it was replaced on later IBM Jvms by a more scal-
able monitor design from 1BM Research,'® which is
also based on the idea of associating a monitor di-
rectly with each Java object. The improved object
allocation scheme was also implemented in DK for
0s/21.1.4. It was extended by the Thread-Local-Heap
design on more recent Jvym implementations. '
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