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As the use of the JavaTM language and virtual
machines proliferates beyond the sphere of
applets into the space of server programs,
developers are requiring better performance,
availability, and transactional and scalability
features. This paper describes the work done for
the Operating System/390 (OS/390®) Java
virtual machine to improve performance and
serviceability, to introduce security and
performance enhancements, and to redesign
parts of the virtual machine to enable it to run
server programs efficiently and safely. Although
OS/390 was the motivating platform for these
changes, Java server programs on any platform
can benefit from these features.

A new era in application programming using the
Java** language, virtual machine, and devel-

opment kit came to life as a technology for the em-
bedded devices market. The proliferation of embed-
ded computer chips in the consumer product market
begged for a new programming environment that was
portable across chips, small in footprint, easy to use,
and similar to programming languages used for bus-

iness computer systems.1 The Java language from
Sun Microsystems fit the requirements.

Not only did this new technology fit the requirements
for the embedded device market, but at about the
same time it was introduced, the Internet and, more
specifically, the browser market exploded on the
scene. Here again, a new use of computers begged
for a solution to a problem: the browser user inter-
face needed more capability to do graphics, auto-
mation, and data presentation. Some of the same
requirements existed for this market as for the em-
bedded device market: the programming environ-
ment needed a small footprint, and it needed to be
easy to use and portable across operating systems
(and browsers).

The next evolutionary step for the Java technology
came when many saw its potential for the server mar-
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ket. However, the big question was: would a tech-
nology that was originally targeted for the embed-
ded device and browser markets be applicable and
useful on a server? And, for the Operating
System/390 (OS/390*) market, would it be a viable
technology that would satisfy the quality of services
expected by customers using one of the most ma-
ture, comprehensive, and complex servers on the
market? After some intense analysis, it was con-
cluded that this technology, with some reasonable
modifications and additions, could be applied to the
server set of business application problems. If suc-
cessful, one could then make the case for retraining
a programming staff in one technology base that
could be used for all business applications in an en-
terprise. Additionally, an enterprise staff could then
build or buy applications for all aspects of the bus-
iness—client, middle tier, and server—using the
same technology. The potential for significant finan-
cial savings to our customers justified moving for-
ward.

When we were faced with assessing this new tech-
nology for its applicability to OS/390 and the tradi-
tional OS/390 market, we were at first very skeptical,
and so were several experts we consulted. But in spite
of the initial negative reaction, we decided to pro-
ceed with a feasibility study. This prototype showed
us the challenges we faced if we decided to go fur-
ther. These challenges, and how we addressed them,
are the subject of this paper.

The prototype showed that the base technology that
we received from Sun Microsystems as a reference
implementation for UNIX** systems suffered 60–100
times performance degradation when ported to
OS/390. Moreover, the initial prototype did not scale
up when run on machines with more processors avail-
able—in fact, performance degraded further. This
was measured by using standard benchmarks2 and
by one of our early customers working with us on
the feasibility study. Of course, this version of the
prototype did not have a just-in-time compiler, it ran
in “debug” mode, and had no C language optimi-
zations applied to it, so good results were not ex-
pected. Admittedly, this was a crude prototype, built
to prove feasibility, not to show good performance.
But it did identify the magnitude of the job we would
have in converting from this level of the code to a
usable product for OS/390 customers. It also pointed
out the need for reliable, useful benchmarks that
could easily produce repeatable runs and reliable
data for performance analysis. This requirement was
addressed, and by our first release we had such a

benchmark. We used this to establish a point of ref-
erence with the first release and then to measure our
progress for all follow-on releases.

In addition to the poor performance, there were sev-
eral functional deficiencies that would limit the use
of this technology in a traditional OS/390 customer
environment. Such functional deficiencies were:

support for EBCDIC (extended binary-coded decimal
interchange code) data, access to our transactional
subsystems, access to our “legacy” data, and national
language support (NLS).

When we examined the results of the feasibility study,
it was clear that for this technology to be useful in
the OS/390 marketplace, our first priority was to fix
the performance problems. We asked ourselves (the
key technical leadership community): can these prob-
lems be solved? We looked at past experiences with
similar “ports” and decided that the problems could
be fixed; we had done it before. So we decided that
we would use the reference implementation as the
base and fix the problems—this would be less expen-
sive than attempting to build a Java-compliant
virtual machine “from scratch” as the Operating
System/400* (OS/400*) team had done.

The problems centered around initialization, lock-
ing techniques, memory management, excessive path
lengths to execute service calls, inefficient coding
techniques, excessive requests for system informa-
tion, and inefficient handling of data types. Once the
up-front analysis was completed, we put the teams
in place to address these problems. In the next sec-
tion we describe problems in two areas—perfor-
mance and functional capabilities—and the solutions
that we applied. Next we discuss the tools that were
used to analyze the path length of the virtual ma-
chine functions. We then describe how we increased
performance in the just-in-time compiler. The fol-
lowing section delineates fundamental design lim-
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itations of the Java virtual machine that needed to
be overcome to allow server transactions to run ef-
ficiently. We then outline a solution to allow the vir-
tual machine to run server transactions. Finally, we
summarize the work that has been done and discuss
additional problems to be addressed.

The Java virtual machine on OS/390:
Overcoming weaknesses

As originally ported to the OS/390 environment, the
Java reference implementation (Java Development
Kit 1.0.2) had a number of limitations in the general
categories of efficiency, capability, and serviceabil-
ity. In the first category are the areas of locking, mem-
ory management, and use of system services.3 Each
of these implementation-dependent areas may de-
crease the potential performance characteristics of
the Java environment.

Examining the functional characteristics of Java and
OS/390 exposes differences in what each environment
expects. For example, the Java floating point data
type was not natively available on OS/390 when Java
was first ported. Not only did this impose a devel-
opment cost to provide equivalent software emula-
tion, but it also imposed a performance penalty for
use of this data type prior to the introduction of na-
tive machine support.

Finally, the Java and OS/390 environments provide
different techniques and assumptions for problem
determination. As an environment that has provided
industrial-strength availability and reliability for over
a quarter century, OS/390 has developed technology
that supports the capture of problem-related data,
recovery, and problem determination while the ex-
isting workload continues to run. In order for the
Java environment to be an effective server on OS/390,
a number of enhancements were necessary, as sum-
marized in Table 1.

Locking and serialization. Serialization within the
Java environment for both applications and a num-
ber of run-time environment control structures is
provided by a construct called a monitor. Monitors
support only exclusive ownership. Since there is no
shared serialization mechanism available in the Java
environment, functions that access a number of struc-
tures in read-only mode are forced to obtain exclu-
sive ownership of a monitor. This overserialization
within the Java run-time environment (and applica-
tions) inhibits throughput and scalability due to in-

creased contention, and increases overhead due to
the cost of extra services being invoked.

Two of the most frequently obtained system mon-
itors, i.e., the NameAndTypeHash lock and the
LoadClass lock, were effectively eliminated by intro-
ducing read-only functions for the NameAndType-
Hash table and by searching the BinClass table at
first under only the BinClass lock (and without hold-
ing the LoadClass lock) when determining whether
a class was already loaded or not (along with some
other minor supporting changes).

In the Java reference implementation, the monitor
obtain and release functions use the object handle
address as a key into a table of system-specific mon-
itors. Each monitor use requires a hash table search
for the key prior to the monitor call. Not only is this
preliminary hash table lookup costly, but the mon-
itor functions themselves are also expensive. For ex-
ample, the monitor mutex4 must be obtained before
any attempt is made to update the monitor owner
field, so there are two serialization entities to be ob-
tained for each monitor obtain request.

In the IBM Developer Kit for OS/390, Java Technol-
ogy Edition, v 1.1.4, we introduced a locking scheme
where a compare-and-swap technique was used to
verify that no other thread currently held a monitor
and that the monitor had not been inflated5 in the
past. If both these conditions were met, the thread
obtained ownership of the monitor without other
costs normally involved in obtaining a monitor. In
the Developer Kit (DK) v 1.1.6, support was added
to allow monitors that did not meet the conditions
for “compare and swap” to be obtained in some cases
without obtaining and releasing a mutex.

Compounding the problems described above, the ref-
erence monitor implementation contains a “spin
loop” when there is contention for a monitor. This
means that in contention environments application
programs are spinning, consuming precious proces-
sor cycles, while other threads hold the mutex. In
DK v 1.1.8, the OS/390 Java virtual machine has greatly
reduced the number of iterations in this spin loop.

The thread queue (TQ) single lock is a synchroni-
zation mechanism used in garbage collection (GC)
to coordinate the various garbage collection phases
with all other threads. Originally, it was used in the
“wait handshake” between GC and any thread going
into or coming out of a wait; i.e., the TQ single lock
was originally obtained and released by a thread both
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before and after going into a wait in order to know
what phase GC was in. In DK for OS/390, v 1.1.8,
threads use a compare-and-swap technique to co-
ordinate with the GC thread, and the TQ single lock
is primarily used only by the GC thread. This means
that threads going into a wait will no longer cause
contention on the TQ single lock.

Garbage collection and memory management. The
Java reference implementation allocates objects with
an associated, but discontiguous handle. This makes
references and updates to the object slower, since
it involves a level of indirection to first go through
the handle. The use of handles facilitates garbage
collection, but poses problems for memory manage-
ment. For example, how should the heap be subdi-
vided between space for objects and space for han-
dles? Object allocation, which is a high-frequency
event, is also slower since it involves two distinct al-

locations. Since the handle and the object may well
be in distinct pages, increased paging may result; cer-
tainly the size of the working set will increase. Ob-
jects with handles are a disadvantage for the just-
in-time compiler. According to estimates, avoiding
handles will result in a 10 percent speedup in allo-
cation,6 and Java HotSpot**, Sun’s new implemen-
tation of the Java virtual machine, does not use han-
dles.

Since the Java language does not provide an explicit
mechanism to free objects, it is dependent on the
Java run-time environment to reclaim storage when
needed. While there are many garbage collection al-
gorithms, the Java reference implementation uses a
“stop-the-world” technique—the garbage collection
thread stops all other threads before it proceeds.
While this avoids most serialization issues and is con-
ceptually simple, it imposes a severe limitation on

Table 1 Java virtual machine improvements

Problem Category Problem in Prototype
Implementation

OS/390 Solution IBM DK for
OS/390

Locking/serialization Unnecessary serialization Some locks removed v 1.1.1
Excessive cost to obtain

monitor/mutex
Compare-and-swap technique v 1.1.4
Mutex not always obtained v 1.1.6
Spin loop interactions decreased v 1.1.8

Garbage collection/
memory
management

Objects with handles JIT compiler generated objects
without handles

v 1.1.1

Stop-the-world garbage
collection

Used OS/390 concurrent garbage
collection

v 1.1.4

Used OS/390 generational
garbage collection

v 1.1.6

Use of system
services

More function in OS/390
services than Java needs

Interfaces added to low-level
OS/390 functions

v 1.1.4

Threading Extra overhead for thread
support

Added function saves/restores
thread pointer

v 1.1.4

EBCDIC/ASCII Incompatible formats
between Java and OS/390

ASCII converted to EBCDIC
only as required outside JVM

v 1.1.1

Java data types Floating point not compatible
with OS/390, S/390
hardware

S/390 hardware changed, support
added to OS/390

v 1.1.6

Security Layers of defense vs
principal-based access
control

Added interfaces support
principal-based access control

v 1.1.8

Performance
management

No support for performance
objectives

Added interfaces support
performance objectives

v 1.1.8

Serviceability Missing diagnostic
information

JIT compiler changed to save
diagnostic information

v 1.1.8
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scalability in a multithreaded environment, which the
Java language supports. Starting with DK v 1.1.4,
OS/390 provided a concurrent garbage collector. The
garbage collector allows worker threads to continue
processing while garbage collection is being done.
Starting with DK v 1.1.6, the OS/390 garbage collector
has also been generational, frequently cleaning up
objects that were allocated recently and only occa-
sionally doing cleanup for all objects. A large num-
ber of other improvements in garbage collection and
object allocation have been made throughout the DK
for OS/390, v 1.1 releases. For more information on
these changes, please see the sections on garbage col-
lection in other papers in this issue.7,8

Use of system services. One of the challenges in port-
ing the Java environment to any platform is to im-
plement Java application programming interfaces
(APIs) in terms of native interfaces to actual system
interfaces. In some cases, the existing system inter-
faces may provide much more function (and path
length) than is actually needed (or desired) for the
Java environment. To cite a concrete example, the
identity and state of a Java thread must be main-
tained independently of any underlying system
thread construct. One frequently executed service
is sysThreadSelf, which returns the address of the
Java control block for the currently executing
thread. A standard UNIX API, pthread getspecific,
may be used to extract a value previously saved via
pthread setspecific. One of the changes to DK for
OS/390, v 1.1.4 was to create an assembler interface
to save and restore the Java thread pointer in a
UNIX-related thread control block, resulting in about
a 10 percent performance improvement.

Threading. The Java language supports a multi-
threaded environment, so it is important for each
platform to provide an efficient mapping of the Java
thread construct to the underlying system thread con-
struct. Thread support traverses many layers: from
the application, through various Java classes (e.g.,
Thread and ThreadGroup), then through the plat-
form-independent layer, the platform-specific layer,
and finally to the operating system itself. While this
layering provides a clean separation of responsibil-
ities and allows many platforms to “plug in” their
support, it can also contribute to extra overhead.
Since the Java run-time environment has its own view
of a Java thread, which is independent of the oper-
ating system view, there are some redundancies in
control information and some cross communication
for coordination. This causes the performance prob-

lem described earlier relative to saving and restor-
ing the Java thread pointer.

EBCDIC code page used by OS/390. An area of con-
sideration when porting any C code from another
platform to OS/390 is the difference in the encoding
of character data. Many platforms support charac-
ter strings in ASCII, in fact most Transmission Con-
trol Protocol/Internet Protocol- (TCP/IP-) based ser-
vices, including the Internet, and most other
platforms that the Java environment has been ported
to are ASCII-based. The ASCII format9 is so perva-
sive it is almost considered to be platform-indepen-
dent.

The OS/390 platform uses the EBCDIC format, and this
presented one of the biggest challenges in porting
the C portion of the Java reference implementation
to the OS/390 platform. We decided to encode char-
acter strings in the C code in ASCII, rather than
EBCDIC format. This approach involved drawing a
virtual boundary around our Java virtual machine
(Jvm); all characters within the virtual machine were
in ASCII and were only converted to EBCDIC when
they needed to be, such as when printing to the
screen. This enabled the Jvm to operate as though
it were running on an ASCII-based platform and cir-
cumvented any assumptions within the code that
characters were in any particular format. This also
benefits Java programmers, since the Jvm handles
the differences between ASCII and EBCDIC formats.

Character strings in Java code are not in either ASCII
or EBCDIC format, but in a platform-independent
character encoding called Unicode**. The Java pro-
gramming language is unique in having chosen this
encoding. Since most platforms do not support Uni-
code, data passed into and out of a Java application
must be translated between the local machine en-
coding and Unicode.

In the Sun Java Development Kit (JDK**), v 1.0,
streams were available to read in or write out data,
but they handled only binary data that required no
translation. They could be used to read in ASCII char-
acters, because ASCII and Unicode are for the most
part very similar and therefore translation was of-
ten not necessary. They did not provide the means
to read in EBCDIC data.

JDK v 1.1 introduced the internationalization feature,
which provides national language support (NLS). This
is ideal for OS/390, since this feature provides the
mechanisms to translate between a whole range of
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different encodings and Unicode, thus allowing Java
applications to access EBCDIC data. These data could
be in existing OS/390 subsystems, such as DATABASE 2*
(DB2*).

Support for Java data types. Another platform char-
acteristic that we had to deal with was the different
way that the OS/390 platform represents various types,
specifically single- and double-precision floating-
point values. The Jvm requires that floating-point

numbers conform to the IEEE (Institute of Electri-
cal and Electronics Engineers) Standard for Binary
Floating-Point Arithmetic (ANSI [American National
Standards Institute] IEEE Standard 754-1985), which
defines the format of 32-bit and 64-bit floating-point
numbers and the operations on those numbers. Na-
tive OS/390 floating-point numbers are different from
this standard.

Our solution was to provide emulation for these nu-
merical types in the OS/390 version of the Jvm. This
meant writing code to create and manipulate our own
versions of these numerical types that conform to
the IEEE standard. As with our ASCII emulation, the
Jvm implementation operates internally with these
emulated types, only converting between one type
and another when needed.

Java developers only need to be aware of this if they
are coding native methods, that is, they need to be
aware that these types are different and convert be-
tween the two types as appropriate. For a user run-
ning a Java application, this emulation of floating-
point numbers is transparent. However, there is the
consideration of performance. It is undoubtedly
slower to perform manipulation of floating-point
numbers in software rather than hardware. With the
System/390* (S/390*) Generation 5 (G5) hardware,
in conjunction with OS/390 Version 2 Release 6, sup-
port for these numerical types has been provided,
removing the need for our emulation. This native

support for IEEE floating-point operations resulted
in a huge performance improvement for floating-
point-intensive Java applications.

Security. The Java security model differs from that
of the OS/390 environment in a number of significant
aspects. Java security is based on several layers of
defense. First, there are the restrictions in the lan-
guage itself. For example, pointers are not allowed,
which implies that memory cannot be directly ac-
cessed, and array limit checking is enforced so that
programs cannot go outside the true range of the
array. Second, there is byte-code verification of class
files during class loading. This verification ensures
that the program cannot branch outside its current
method except via a formal method call, cannot over-
flow (or underflow) the stack, and must pass correct
data types on method calls. The third mechanism in-
volves the use of a different name space for each class
loaded by a different class loader. The fourth line of
defense lies in the SecurityManager class, which en-
forces access permissions. A security policy may be
created that keys off the class loader or that keys off
certain class file attributes, such as where the class
came from.

Security in an OS/390 environment depends heavily
on the concept of principal-based access control, i.e.,
the association of an identity or “userid” with a re-
quest to access resources. Despite the existence of
the SecurityManager class, the base Java environ-
ment does not provide APIs to native security inter-
faces that implement principal-based access control.
There is no Java API to extract the userid in effect
for the currently running thread or to check that the
userid has access authority to a given resource.10

When a Java application creates other threads in
OS/390 environments prior to Release 8, there is also
no way for the principal userid of the parent thread
to be propagated to new threads that are created,
even though these threads are all processing against
a single work request on behalf of the same userid.
Instead, these new threads will have the security per-
missions of the server address space in which they
are running, which is generally different from the per-
missions accorded the userid associated with the par-
ent thread.

The IBM Developer Kit for OS/390 has been enhanced
in the area of security, both in respect to how the
Jvm itself operates and with the provision of Java
APIs to allow Java programmers to provide security

The Java security model
differs from that of the OS/390

environment in a number
of significant aspects.
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functionality within their Java applications. A num-
ber of UNIX services and the Java Event Handler was
provided in DK v 1.1.8 to allow the security identity
of the primordial thread to be propagated to new
Java threads. This even allows the primordial thread
to create the new threads for a given work request
to be completed asynchronously, so the primordial
thread could pick up a second work request (with
a new security identity) and create new threads for
the second work request with the second identity.

We also provided two sets of Java APIs. The first is
the security migration aid, which allows users to ex-
ploit the security enhancements provided by the Java
2 Software Development Kit, Standard Edition, from
within the Java Development Kit (JDK) 1.1 imple-
mentation. This feature assists users who wish to mi-
grate from the relatively simple JDK 1.1 security
model to the finer-grained Java 2 model. Also avail-
able is a set of Java APIs called “Java for OS/390 Se-
curity Services.” Initially these APIs provided access
to a basic set of existing OS/390 UNIX APIs that are
required to implement principal-based access con-
trol in a Java application, for example, an applica-
tion that implements a Java SecurityManager class.
These APIs have been enhanced to provide user au-
thentication functions, and further additions and im-
provements are expected.

Performance management. One of the strengths of
OS/390 is its ability to manage and balance the use
of system resources toward a set of installation-de-
fined performance goals for the entire workload that
happens to be present at any given time. This man-
agement applies to all work requests in the system.
However, within the original ported Java environ-
ment running in OS/390 environments prior to Re-
lease 8, there is no way for the performance objec-
tives for one thread to be propagated to new threads
that are created, even though these threads are all
processing against a single work request. Such prop-
agation is standard for existing transaction manag-
ers, such as CICS* (Customer Information Control
System), IMS* (Information Management System),
and DB2, batch environments, and interactive envi-
ronments such as TSO/E (Time Sharing Option Ex-
tensions), UNIX/390 processes, and Web servers.
While this may not be an issue for a Java client envi-
ronment running on a workstation, it is a critical at-
tribute for a server environment such as OS/390.

The support described in the subsection on secur-
ity—new OS propagation services and the Java Event
Handler—allows the performance goals of the pri-

mordial thread to be propagated to new Java threads,
with the same ability to support asynchronous work.

Serviceability. As OS/390 provides the stability, avail-
ability, and reliability required by corporate business
environments, it is critical that a variety of workloads
be able to coexist without compromising these at-
tributes. It is not acceptable for the introduction of
a new Web page, accessed by tens of thousands of
Internet users, to affect corporate applications run-
ning on the same machine. It is furthermore neces-
sary that problems that arise in a Java server envi-
ronment be capable of having sufficient diagnostic
information captured to allow meaningful problem
analysis to be performed.

A number of problems did arise from the introduc-
tion of the early Java environments into existing
OS/390 environments. Several of these relate to Jvm
messages and other diagnostic information, which
are more oriented toward a client workstation than
a high-volume server environment.

The first problem is that Jvm messages, which have
no unique identification such as message numbers,
intermingle with messages produced by other appli-
cations and the operating system. This may not be
a problem in a Java client environment running on
a workstation, but it is definitely a problem in a server
environment where thousands of messages are pro-
duced each second. OS/390 provides a message au-
tomation facility that depends on message identifi-
ers to filter and then act on messages so that they
need not be presented to a human operator. The ab-
sence of message identifiers impedes message au-
tomation and unattended operations.

One of the key serviceability tools available in the
OS/390 environment provides the ability to look up
known and ongoing problems to determine dupli-
cate problem conditions, to learn the status of fixes,
bypasses, available and target fix dates, and so forth.
However, Jvm messages are too generic to use as a
search argument, which renders the problem data-
base essentially useless for this purpose.

Finally, Jvm messages are not NLS-enabled. One of
the tools in the OS/390 environment allows message
text replacement in alternative languages, which fa-
cilitates the use of programming products outside
the English-speaking community. Lack of this capa-
bility for Jvm messages increases the difficulty for
the non-English-speaking community to fully and ef-
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fectively attain the benefits available to the Java com-
munity.

A further problem is that Jvm return codes are not
unique. For example “out of memory” can repre-
sent any one of 27 different problems, including “out
of threads.” Further effort is required to find the ex-
act cause of failure. More granularity is needed so
that problem recreation is less likely to be needed
for problem determination.

The original Java reference implementation, JDK
1.0.2, did not have complete information about the
build level. For the person trying to analyze a prob-
lem, the difficulty is compounded because several
versions may be running concurrently on a single sys-
tem. When the build level is unknown the code base
is unknown, making it much more difficult to find
duplicate problems in the problem database and im-
possible to know what Developer Kit source code
to scan for potential new problems.

Another problem concerns application debugging.
The just-in-time compiler does not keep line num-
bers. Thus, even if the Java source code is available,
all that can be seen is the compiled code. In the base
Java environment, JNI PANIC may be issued as a
result of errors in the user’s Java Native Interface
(JNI) code, but this does not cause the environment
to be captured in a dump.

Once a dump is taken in an OS/390 environment, IPCS
(Interactive Problem Control System) is used to
browse it on line. However, in versions of OS/390 prior
to Release 5, IPCS assumed that it was interpreting
either hexadecimal or EBCDIC data. When the Java
reference implementation was first ported to the
OS/390 environment, there was no way to format ASCII
data (e.g., control blocks) within IPCS.

OS/390 system dumps are viewed using IPCS. IPCS pro-
vides a set of standard formatters to analyze system
data structures, such as stack and heap control blocks,
and to format the data for easier display. IPCS also
supports custom formatters for user data. In earlier
versions of OS/390, there were no formatters for Java
data structures to aid in debugging Java problems
through an OS/390 dump.

To improve serviceability for Java problems on
OS/390, a series of features were added. Traces pro-
duced by the just-in-time compiler are now held in
memory buffers for improved efficiency, and for ease
of problem determination, trace output from differ-

ent threads is written to separate files. Additional
options can now be specified to generate more in-
formation in dumps. Dumps can show all active
threads as opposed to just the current thread. User
ability to generate an abnormal termination and pro-
duce a dump has been also provided. Further im-
provements will continue to be added, including im-
proving messages issued from within the Jvm, and
providing greater granularity to common messages,
for example, OutOfMemory exceptions.

Use of OS/390 facilities to improve Java for
the OS/390 platform

To address the performance problems discussed in
the previous section, we needed to find the areas
where the OS/390 Jvm was spending most of its time.
This section describes the strategies and path-length
tools used to determine the areas on which to con-
centrate. Since the OS/390 Jvm is implemented pri-
marily in C, we can use OS/390 tools to investigate
and improve Java performance on the OS/390 plat-
form. We followed a simple but effective method-
ology to identify areas of potential improvement.
First, we identified benchmarks and microbench-
marks that were appropriate to our platform. For
example, we focused on benchmarks that were serv-
er-based rather than presentation-based, since we
expect presentation to be done in a client environ-
ment rather than on the server host. We were aided
in this by IBM’s cross-platform Java Performance
Team.

We next fixed the OS/390 platform as a baseline to
understand our starting point and to serve as a basis
for determining the effect of any improvements. We
then looked at general platform facilities, such as ad-
vanced code generator optimization and “inlining,”
as a first step to performance improvements. Next
we looked for code “hot spots” of CPU usage and
“cold spots” where code was waiting for locks or
other synchronization. The goal was to identify can-
didate changes where we could move frequently
called routines in line, eliminate the calls completely,
or speed up the routines by improved algorithms,
such as substituting hashing for linear searches, elim-
inating unneeded locks, and generally reducing CPU
time spent in the locking process.

Once candidate changes were identified, alternative
solutions were proposed. For larger changes ex-
pected gains were estimated, and the most promis-
ing were modeled and introduced into the product
through the development process. Estimating gains
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was a challenge because of the many interacting ef-
fects of the changes under investigation.

Our primary benchmark for DK v 1.1.x performance
investigations models the internal scalability aspects
of a warehousing application, without doing real da-
tabase I/O or having real terminal interactions. The
OS/390 C/C11 Performance Analyzer, currently
available in a beta version, was important to our anal-
ysis of benchmark behavior. This tool supports both
function profiling and interval sampling. Function
profiling was very helpful in determining how often
routines were invoked, how much CPU time was spent
in each, and how long the routine was on the call
stack. The output from the performance analyzer was
useful as input to spreadsheet models that we used
to estimate the effect of improvements on through-
put. Interval sampling was also helpful in finding hot
spots and cold spots in execution and is generally
less intrusive than profiling, which requires modifi-
cation of the executable code. We also used propri-
etary, confidential tools that duplicate the function
of profiling and tracing but are even less intrusive.
One set of proprietary tools allowed us to determine,
on a system-wide basis, what modules, control sec-
tions, C functions, and methods compiled “just in
time” consumed the most CPU time. We examined
these functions first to search for performance im-
provements. Another set of proprietary tools allowed
us to monitor the instruction paths taken to perform
a specific Java function. Instruction trace data gen-
erated by these tools made it much easier to locate
and correct specific performance problems. For cer-
tain types of high activity we also generated our own
instrumentation in the Jvm. One such special Jvm
allowed us to collect information about the activity
of various Java monitors during benchmark runs.

An example of the kind of improvement opportu-
nities we found was in looking up thread identifiers.
We noticed a relatively high percentage of CPU time
spent in calls to a routine that extracts the Java thread
identifier, which on OS/390 is the TCB (task control
block), to an index into an internal Java thread ta-
ble. The search for the thread identifier was linear.
Once the area was identified, we were able to take
advantage of OS/390 facilities to provide the Java
thread identifier after a number of “fetches” an-
chored by a pointer in the TCB, rather than by search-
ing. So the call and the search were both eliminated,
for a significant performance gain.

Our use of these tools has allowed us to find signif-
icant throughput improvements in the OS/390 Jvm and

to identify improvements in the underlying OS/390 op-
erating system as well.

The Java for OS/390 just-in-time compiler

A just-in-time (JIT) compiler is a code generator that
converts Java bytecode into machine language in-
structions.

Within the Jvm (Figure 1), two different techniques
exist for executing programs in Java bytecode form.
The first and most basic alternative is bytecode in-
terpretation based on a rote implementation of be-
havior as defined by the Java Virtual Machine Spec-
ification. With an interpreter, bytecode instructions
are fetched and then executed sequentially, one at
a time. This is generally an expensive approach. A
just-in-time compiler provides a higher performance
alternative.

With JIT compilation, a two-phase approach is used.
First the program’s bytecode, or a subset of it, is com-
piled into machine language instructions, then the
newly generated instructions are executed. The JIT
compilation applies many of the same optimization
techniques used by standard compilers, including the
elimination of redundant code. Often the generated
results are cached for subsequent reuse.

JIT compiler structure. The JIT compiler for OS/390
(Figure 2) is structured in the same way as many tra-
ditional compilers supplied by IBM. There is a com-
mon front end that applies platform-independent op-
timizations, such as code motion, loop optimization,
and “inlining” analysis. Its output, in an internal for-
mat, is input to the JIT back end. The JIT back end
is specific to each platform. It translates the internal
format into executable S/390 machine instructions.
These machine instructions are saved. Methods that
are re-executed use the saved code.

For S/390 the specific instructions generated in the
back-end translation are machine-dependent. The
S/390 JIT compiler is common to all levels of the OS/390
operating system. It supports any of the machine fam-
ilies where OS/390 can run. Differences in machine
designs and available instruction sets are recognized.
These are reflected in the generated machine code,
through adaptations in instruction choice and in-
struction ordering. Instruction choice and ordering
are based on machine design, taking into account
characteristics such as pipelining effects, cache be-
havior, and relative instruction execution speed. An
additional factor in instruction choice is the avail-
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ability of specific instructions within each machine
family. Over time the S/390 architecture has grown.

During its initialization the OS/390 JIT compiler tests
for the availability of instructions like the relative
branches and immediate operations first available
on the Generation 2 processors, or the IEEE floating
point standard instructions added with Generation
5 processors. In the first case, the result will be
changes to register assignments done in the back end,
which effectively expand the register set, and in the
second case, the emulation routines are replaced by
native instructions.

Design trade-offs. Space and time design trade-offs
within the JIT compiler for S/390 have been made
based on the normal expected usage profile, for
OS/390, of the Java language. The expectation is that
it will typically be used for relatively long-running
applications, often in conjunction with a Web server
as, for example, a Java servlet. There is an emerging
demand, as well, to run more traditional batch-like
OS/390 applications in the background, such as report
generators, which are often batch-like. In these cases
heavy code reuse is common. Given this, the empha-
sis is on generating high-performance machine code
that is cached for re-execution. This higher up-front
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cost in code generation results in lower execution
time.

For example, in the front end, loop versioning and
inlining are commonly done at the expense of in-
creased memory use. As method inlining is done
more aggressively, the scope of data flow analysis can
become larger, potentially crossing multiple meth-
ods. Endleaf routine11 analysis for stack and link-
age optimization is another front-end technique that
trades compile time for execution time.

In the back end, code is ordered to optimize branch
behavior, code and data are separated, additional
inlining including monitors, object allocation, and
other system methods is done, and the back end now
includes a multipass code generation and compres-
sion algorithm based on optimizations on a linked
list of pregenerated instructions that are copied to
the execution buffer.

These optimizing techniques can lead to both a rel-
atively long compilation time and a relatively large
memory footprint. The approach begins at Jvm start-
up, at which time all methods are loaded and com-
piled. Virtual memory consumption is traded off in
anticipation of reuse. These are not the correct trade-
offs for applications with limited reuse; consequently
applications with limited reuse get little benefit from
the extensive improvements made since the JIT com-
piler’s inception. Common cases where there is lim-
ited reuse are (1) source code compilation, (2) Jvm
initialization, (3) applications with short duration,
and (4) parts of applications that may be executed
infrequently, such as prologue and initialization code,
administration code, methods used by exception han-
dling, and termination code.

The addition of a mixed mode interpreter (MMI) with
the DK v 1.1.8 level is intended to improve perfor-
mance by as much as a factor of two for typical Java
applications, expanding the set of well-performing
Java applications on OS/390. MMI keeps a history of
methods executed, and until a threshold value is
reached, methods are interpreted. For methods that
are executed a small number of times, the cost of
compilation can outweigh the benefit of limited (or
no) reuse. After reaching the execution threshold,
the method is compiled and cached. Before the in-
troduction of MMI, because all methods were com-
piled before first use, interpreter performance was
largely irrelevant. With MMI, the interpreter will be
used until the threshold is reached. Consequently,

the interpreter was rewritten in assembler code to
optimize its performance.

OS/390 JIT compiler chronology. There have been
extensive improvements over time throughout the
development of the JIT compiler. Their net cumu-
lative effect is a typical performance improvement
for compiled code vs interpreted code. The basis for
OS/390-specific items is described in other sections
of this paper. General optimization techniques are
described by Suganuma et al.12 Table 2 gives a chro-
nology of the changes to the JIT compiler since its
inception. The OS/390 optimizations concentrate on
key themes: to minimize linkage costs, to optimize
code generated against the S/390 hardware, and to
use the lowest cost options for system or library ser-
vices. There have been iterative improvements in all
these areas, and for this reason some items in the
table occur multiple times.

JIT compiler future. We anticipate making further
enhancements.

On the immediate horizon are:

● The use of an expanded intermediate language
similar to conventional IBM optimizing compilers.
This will increase the scope of optimization pos-
sible in generating machine instructions in the JIT
compiler back end.

● Continued refinements to instruction-level opti-
mization, in particular to support the machine or-
ganization and execution characteristics of new
processor families. These will include: code sched-
uling to include cache line size recognition and AGI
(address generation interlock) avoidance, branch
optimization, and register usage optimization.

In the longer term there will be continued refine-
ments in support of our design goals. New enhance-
ments may result from current research. These may
include:

● Profile-directed translation that will apply compi-
lation to areas where greatest benefit is expected.
This might be accompanied by multilevel dynamic
compilation based on a dynamic cross-system cost/
benefit estimation.

● Background compilation using dedicated Java ac-
celerators (additional hardware dedicated to back-
ground JIT translation).

● “Persistent” code, with additional compile-time op-
timizations borrowing from conventional compiler
technology applied. The goal is to retain optimized
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translated code for reuse across multiple execu-
tion instances. This is motivated by server work-
load characteristics, where there is repeated ex-
ecution of self-contained application code. This is
particularly applicable for transactional content
where relatively small pieces of application code
can be frequently executed by, or across, multiple
Jvm instantiations. For such applications, the in-
creased processor time investment at translation
time will be returned in good measure by the high
frequency of execution of the translated and stored
application code.

JIT compilation. JIT compiler performance is cen-
tral to Jvm performance on OS/390. Since its incep-
tion in late 1997, there has been a multifold improve-

ment in execution time for JIT-generated code. We
expect to continue making progress based on the
goals that have driven the improvements so far.
These will be integrated with technology derived
from current IBM research efforts focused on im-
provements common across IBM JIT compilers and
specific to S/390.

A Jvm for server applications

We looked at the characteristics of existing trans-
actional programs in OS/390 environments (CICS, DB2,
IMS) to drive the requirements for a server Jvm. The
requirements of reliability, security, clean Java heaps,
and reinitialized writable static areas drove the need
for a Jvm that can span multiple processes with a

Table 2 JIT compiler improvements. The initial version, available 9/97, included a tightly connected front and back
end with basic code generation and caching ability.

IBM DK
for

OS/390

Date
Available

Cumulative Front-End
Improvements

Cumulative Back-End Improvements

v 1.1.1 02/98 Bytecode translation by idiom
Common subexpression

elimination
Loop detection

Use of handleless object model, eliminating one
level of indirection for object access, and
optimizing array checks (Note: This was done in
conformance to the object model then in use
within all IBM Jvms.)

Locking improvements
Method call improvements
Array handling improvements
Register assignment for loop handling

v 1.1.4 05/98 Flow analysis to remove Class unloading
redundant null pointer
checking

Improved instruction choice and branch
optimization to fit machine design

Monitor inlining

v 1.1.6 12/98 Limited static and virtual
function inlining

Use of immediate/relative instructions for G2 and
above machines

Increased data flow analysis Use of native IEEE floating point instructions
Optimized linkage for JIT-compiled method calls
Code and data separation
Further register use optimization
Extraneous instruction elimination
Tailored instruction sequence to pipeline behavior

of G5 machine family

04/99 Frequently used functions built in
Use of native libraries for function calls
Caching of method results

v 1.1.8 07/99 Extensive inlining for static and Extensive linkage generation refinements
virtual functions Multipass code generation optimization with

Endleaf routines in stack extraneous instruction removal
Data flow analysis including Exception handling with native services

array bounds check Object allocation inlined
Mixed mode interpreter with converged stack use
“Peephole” analysis
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transaction running in its own process. The require-
ment for transaction-level throughput, not wasting
CPU cycles reloading, relinking, recompiling, rever-
ifying, and reinitializing hundreds of static variables
and Java classes over and over again, drove the in-
vention of a shared heap that worker Jvms could ini-
tialize from and execute out of. The demand for
transaction-level isolation, and the need to quickly
clear the working heap of a worker Jvm, motivated
the design for a private heap that could instantly be
cleared to save the cost of garbage collection. These
requirements from commercial transactional mon-
itors remain the same for Enterprise JavaBeans**
workloads and indeed benefit Java server applica-
tions on all platforms.

Sun’s Java virtual machine is created within a pro-
cess to load and run an application. At the end of
the application the entire process and run-time envi-
ronment is torn down. As more transactions in Java
are written, it is desirable to have the virtual machine
stay up to execute the next application. This would
save the cost of tearing down and starting up the pro-
cess, which is expensive. Having a long-running, re-
usable virtual machine would also help save the cost
of class linking, loading, and initialization, which are
also expensive. Not having to create the virtual ma-
chine environment for every application means that
a system can manage more volume and throughput
of applications. Currently, the Java virtual machine
is used for a single process; it begins when the ap-
plication begins and ends when the application com-
pletes. Earlier ideas for keeping the state of a vir-
tual machine are: maintaining a pool of virtual
machine processes,13 checkpointing a virtual ma-
chine’s state,14 reusing the same virtual machine pro-
cess for multiple applications, and maintaining a pool
of virtual machines and sending objects created in
one machine to the heap of another machine.15

Maintaining a pool of virtual machines does not di-
minish the initialization path length of a virtual ma-
chine. Scheduling applications in a previously cre-
ated virtual machine hides the path length from a
client request, but does not reduce class linking, load-
ing, or initialization requirements, nor does it ob-
viate the need to bring up and tear down a process
for each application.

Checkpointing a virtual machine’s state and apply-
ing the state to new processes require pointer and
offset readjustments that are extremely costly in path
length and may not be possible in systems where the

range of addresses a process will command cannot
be guaranteed.

Reusing the same virtual machine process for mul-
tiple applications does not guarantee a clean heap
or writable static area for each application that runs
consecutively in the virtual machine. An erase-mem-
ory mechanism that tracks all variables or objects that
were changed, created, or deleted in the Jvm with
the goal of restoring them to their original values
would involve intervention on every “putxxx” oper-
ation code in the Jvm. This would degrade perfor-
mance.

Maintaining a pool of virtual machines and shipping
the application to the correct virtual machine, or
sending the correct object to the virtual machine
where the application is running, requires a cache
coherency scheme and incurs extra overhead and
possibly network flows to pass the application or ob-
ject. Moreover, this scheme does not guarantee that
the memory space in each virtual machine is free of
values left by previous applications.

An implementation that can keep Jvm initialization
state across invocations, amortize class loading, link-
ing, and initialization cost, avoid garbage collection
and process termination, and provide greater appli-
cation security, isolation, and availability is described
in the next section.

A scalable Java virtual machine
implementation

Execution of a Java application involves creation and
initialization of a new instance of the Java virtual
machine and execution of the application class file
within the Jvm’s context (see Figure 3). The Jvm
thread bootstraps itself with the callee process (e.g.,
a JNI application) and loads various Java system
classes to set up the context. Studies of Java appli-
cations running under OS/390 UNIX have revealed that
Jvm initialization loads and resolves 60 system
classes, allocates over 1000 objects that are not ar-
rays and uses over 700 array objects. The Jvm ini-
tialization contributes significantly to the overall ex-
ecution cost of the Java application. Further, the Jvm
initialization process is the same regardless of the
Java application being executed, and the majority
of classes used in the Jvm initialization are not used
by the target application.

One way of reducing the Jvm initialization cost is to
create new Jvm processes using already-resolved sys-
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tem classes. In this approach, only one Jvm process
will load and resolve the necessary system classes (re-
source-owning Jvm). Future Jvm processes (worker
Jvms) can reuse the resolved classes.

Multiple worker Jvms can now share system data
(e.g., classes, method tables, constant pools, field
blocks, etc.) using a shared memory region, called
the shared heap (see Figure 4). The shared heap is
designed to store system data; however, it can also
store application data that can be reused across mul-
tiple workers. In addition, individual worker Jvms
maintain local memory regions to store data private
to the Jvm process. These regions are called the lo-
cal heaps. For the initial scalable Jvm design, shared
heaps will not be subject to garbage collection or be
expanded at run time. When CICS or DB2 starts a re-
source-owning Jvm, the shared heap will be large
enough to hold the Java system and application
classes needed to run a CICS Java or DB2 SQLJ16 pro-
gram. CICS and DB2 SQLJ programs are expected to
run for short durations (seconds or milliseconds) and
not allocate thousands of objects. When the appli-
cation is finished, the local heap will be reinitialized.

The shared heap is partitioned into two regions: (1)
the data structure (DS) area stores static data struc-
tures and (2) the shared run-time (RS) area stores
the shared system and application classes and other
auxiliary data structures. The local heap contains
data private to an individual Jvm instance. The local
heap can be modified only by the threads created in
the process (worker Jvm) that created this local heap.

The modified Developer Kit supports three Java ex-
ecution modes: the traditional mode that bypasses
the modifications, the Java resource-owning mode,
and the Java worker mode. All three modes are en-
tire Jvms in themselves and are Java-compliant. The
resource-owning Jvm and worker Jvms can be se-
lected either at the UNIX/390 command line prompt,
e.g., Java -server or Java -client, or in the JNI mode,
by setting the appropriate JNI argument (i.e.,
is server or is client) in the native program. The re-
source-owning Jvm allocates the memory region that
serves as the shared heap and creates the data struc-
tures needed for locking, class location, and instan-
tiation. Worker Jvms can use a common class loader
to share name spaces across a set of Jvms.

A worker Jvm allocates a local heap for storing tem-
porary hash table entries, temporary strings, and data
associated with local objects. A worker Jvm uses the
shared heap to load, link, verify, and compile classes.

A worker Jvm need not load, link, and instantiate
any class that has already been loaded by another
worker Jvm. This includes the 60 system classes ev-
ery Jvm needs for initialization—these have already
been loaded by the resource-owning Jvm. Thus, all
worker Jvms are saved that costly initialization se-
quence.

To further reduce the path length of starting up a
worker Jvm, a “clean slate” design is used to ensure
a clean heap. Each worker task executes a large outer
loop where it creates the worker Jvm and its envi-
ronment. Within an inner loop, the worker Jvm will
execute a Java application, and then determine
whether that application was well-behaved. An ap-
plication is considered well-behaved if it has left no
residual resources behind (e.g., threads, open files,
storage, etc.).

If the application was well-behaved, then the Java
heap and other control variables will be reinitialized
to set up the correct environment for the next work
request. The Jvm worker process is not terminat-
ed—it is reused. This inner loop continues, reusing
the Jvm worker process until some ill-behaved ap-
plication runs that causes the inner loop to termi-
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nate. At this point the Jvm worker process will be
terminated in order to reclaim all related resources,
and a new Jvm worker process will be created. The
new Jvm worker process need not re-execute the mil-
lions of instructions to reload, link, and allocate the
60 system classes required for initialization.

In an ordinary Jvm, the static initializer for a given
class runs once. Since the static initializer represents
application code, it is capable of doing almost any-
thing a Java program can do. For example, it may
invoke methods in other classes, create objects, and
set static variables in its class (or other classes, if it
has proper access authority).

Once work requests start running, they may update
the static variables, or update object fields that are
anchored by static variables. Other Jvm instances
running Java code perceive that they are running in
their own dedicated Java virtual machine and are not
affected by other Jvm instances. In order to preserve
this illusion, each worker Jvm must be given its own
logical copy of the static variables to update as it sees
fit.

The scalable Jvm has the effect of a long-running,
reusable virtual machine because classes, once

loaded, need not be reloaded, relinked, recompiled,
or reinitialized. This Jvm structure has been run both
on AIX* (Advanced Interactive Executive) and
OS/390. Other platforms would also benefit from not
having to tear down and start up a Jvm for each ap-
plication, as well as from being able to share classes
that have already been loaded, linked, and initial-
ized.

Conclusions

In this paper we looked at functional and design
problems of a typical Java virtual machine and de-
scribed methods to reduce path length, eliminate un-
necessary synchronization, and generate more effi-
cient code. We looked at the requirements of server
programs (reliability, availability, security, start-up
costs below 50 000 instructions) and designed a Jvm
that is able to amortize class loading, linking, and
initialization, avoid garbage collection, and preserve
process isolation among Java applications while not
incurring process teardown for reinitialization.

As Jvm performance, availability, and scalability be-
come more suitable for server programs, problems
to address are serviceability, security, and perfor-
mance management. How can we provide data cap-

DILLENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000208



ture at first failure so that problems can be diagnosed
without having to be recreated? As dynamic com-
pilation methods become viable, what information
needs to be captured (dumped) from the Jvm at the
time of failure to be able to relate back to the com-
piled and Java language classes that caused the er-
ror? As stated earlier, security in OS/390 depends on
the concept of principal-based access controls. Java
APIs are needed to extract the principal in effect for
the current running thread to check that the prin-
cipal has access authority to a given resource. To
guarantee levels of service, performance manage-
ment contexts need to be associated with Java
threads. Work is being done to address these issues,
further facilitating the use of Java technology for
commercial applications.
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