
A unifying approach to
performance analysis in
the Java environment

by W. P. Alexander
R. F. Berry
F. E. Levine
R. J. Urquhart

In general, performance analysis tools deal with
large volumes of highly complex data of varying
types and at varying levels of granularity. The
result is that it is common for there to be many
different tools and components that implement
performance data collection, recording, and
reporting in an analysis environment. This variety
complicates communication within a group and
makes cross-group communication about
specific performance findings even more difficult.
The analysis of the performance of JavaTM virtual
machines and Java applications introduces
additional complexity. We describe an approach
that unifies the recording and reporting
components of performance analysis into a
single data model and standard set of reports.
We have employed this model with significant
success in the analysis of IBM’s Developer Kits
for the Java virtual machine.

The performance analyst’s job is straightforward:
measure performance, find constraints to the

level of performance achieved, eliminate or reduce
their effects, and then start again; stop when mea-
sured performance achieves a previously agreed-to
target. The challenges are enormous. Software per-
formance can be degraded by many factors, e.g., by
a particular hardware configuration, by the way the
hardware is used by the software, by poor program-
ming practices in the underlying operating system,
by unexpected interactions between software mod-
ules, by inappropriate use of system resources by ap-
plication or middleware software, and by poor
programming or data-structuring technique in the
application. The analyst’s objective is to isolate the

primary cause and deal with it as quickly as possi-
ble. Even for small software applications it can be
difficult; for highly complex environments it can be
daunting.

The Java** virtual machine (Jvm)1 presents an even
more complex challenge to the performance analyst.
In many cases, the Jvm operates as a process in a
traditional operating system (OS) environment.
(Even when more tightly embedded, there is a small
but significant microkernel below the Jvm layer that
provides basic OS functionality.) Java applications run
within the Jvm process. The Java programming lan-
guage is an object-oriented environment affording
a very rich library of classes on which programmers
can base their applications. The net result is that ap-
plications, and the Jvm itself, consist of an assembly
of many relatively small pieces of software organized
in a highly layered structure. Jvm code is reused ex-
tensively, so that the same functions are called from
many places. The environment can be very dynam-
ic; classes can be loaded at run time; the user can
modify the function of many system classes through
extension. Add to this the multitude of operating
modes for Jvm and application code: interpreted
Java bytecode, just-in-time (JIT) compiled code, na-
tive Jvm library code, native user code, and core Jvm

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

ALEXANDER ET AL. 0018-8670/00/$5.00 © 2000 IBM IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000118

internal code, and the analysis alternatives are sig-
nificant.

Many tools have been developed to assist analysts
in dealing with these challenges. These tools include
system and application profilers, e.g., AIX* (Ad-
vanced Interactive Executive) tprof,2 gprof,3 Intel’s
VTune**,4 application and system tracing facilities,
e.g., AIX Trace,2 application and system memory use
profilers, e.g., svmon,2 and system performance mon-
itors, e.g., Windows NT** Performance Monitor.5

Implementations of these and similar tools exist on
many (though not all) platforms. Unfortunately, their
implementations are not consistent, their output for-
mats not readily comparable, and their models for
computation and resource consumption not equiv-
alent. We view the benefits of a unifying approach
for performance measurement, reporting, and anal-
ysis as profound: analysts working on a single sys-
tem could readily switch from one type of analysis
to another (e.g., from memory analysis to delay anal-
ysis); analysts working on quite distinct systems could
more readily share performance data and results
(e.g., path length analysis comparisons for a key op-
eration between the OS/2* [Operating System/2*] Jvm
and AIX Jvm implementations).

In this paper we describe our efforts toward devel-
oping a unifying, general model for recording and
reporting resource consumption that supports a
broad range of performance data and a broad range
of analysis questions. In the next section, we provide
motivation for the model. We then describe the tech-
nique, which we call “arcflow,” in more detail, and
we present a detailed example. The model is similar
to work described by Hall et al.6 and Ammons et
al.7 In the fourth section, we discuss how this tech-
nology fits into the context of an instrumented Jvm.
Also, natural extensions to Jvm and system instru-
mentation that derive from the adoption of this ap-
proach are introduced in that section. We conclude
with a discussion of further work.

Motivation and contribution

Computer operating systems (e.g., Microsoft’s Win-
dows NT, IBM’s AIX and OS/390*, or Operating
System/390) are resource managers: they remove the
burden of correct, efficient, and fair resource allo-
cation and management from the application pro-
grammer’s concern. The scope of the resource al-
location function begins at a very low level with the
allocation of the CPU instruction and data fetch and
execution units. It extends through system layers to

include the allocation of physical and virtual mem-
ory, the creation and assignment of system buffers,
the realization of files or blocks or pages in a file sys-
tem, and the creation and life cycle of data struc-
tures representing threads of execution. Middleware,
such as Netscape Application Server**, the IBM
WebSphere*, Sapphire/Web** from Bluestone Soft-
ware Inc., and application programming frameworks
such as the IBM SanFrancisco* project, build on the
system foundation and present layer upon layer of
further resource concepts (e.g., socket, connection)
to the programmer. The Jvm introduces additional
key resource types, including interpreter cycles (e.g.,
as consumed in interpreting bytecode), heap objects
allocated, heap bytes allocated, “JITed” code instruc-
tions executed, and objects of different classes.

These resources are then consumed by various ac-
tors, or agents, in the process of achieving some de-
sirable programming objective. A thread allocates
a buffer and passes control to a function to fill that
buffer with data from a file. A process creates a pool
of threads, each of which opens a socket to commu-
nicate work to a corresponding thread within another
process. Program X executes 1000 instructions, calls
program Y 100 times, which subsequently executes
1000 instructions before returning to program X. A
list of key consumers for the Jvm and Java applica-
tion environment would include functions, basic
blocks, threads, objects, transactions, interpreted
methods, system calls, and JITed methods.

Measured performance is a combination of the ef-
ficiency with which the system and middleware lay-
ers provide resources to consumers and the manner
in which these resources are consumed. In general,
system and application performance problems are
most quickly identified by viewing the relationship
between resources and consumers of those resources.
Most performance tools report data that reflect and
quantify this basic relationship. For example, con-
sider the simple report obtained from the execution
of a simple program shown in Figure 1.

Of the total 10 seconds, eight were consumed by
Thread 3. If it is assumed that a reduction in the to-
tal time spent is the appropriate objective, this re-
port suggests that it would be sensible to concentrate
future tuning efforts on Thread 3 and what it is do-
ing with 80 percent of the total CPU time.

Thus, the universe of system concepts is organized
along two somewhat natural and mostly orthogonal
dimensions: resources and consumers of resources.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALEXANDER ET AL. 119

As suggested above, this is the classic, traditional or-
ganization that is reflected in most performance tools
today. As noted in Reference 6, this organization is
inadequate. It is useful for answering simple “what
or which” questions, e.g., which function consumes
the most CPU time? However, deeper analysis ques-
tions, e.g., the “where” and “why” questions, require
additional context.

A unifying approach to data recording and
reporting

Table 1 lists in very general terms the basic steps of
performance analysis. First, performance data are
collected. The data could be event data, sampled
data, counter data, or some combination of these dif-
ferent types. The data are then recorded in some
form (e.g., a trace file). Finally, reports are produced
that are made available to analysts for their use in
identifying problems and discovering opportunities
for improvement.

The contribution of the present paper is depicted by
the steps in Table 2. We introduce a generic model
that allows this activity to be automated in a manner
that is largely independent of the actual data being
collected. This model is employed primarily at Steps

2 and 3 of the process—at data recording and at re-
port generation time.

The model is open in that it embraces data collected
in a wide manner of ways. The model also admits
different implementations, enabling steps to be per-
formed in either real time or postprocessing modes.
What these implementations mean is that data can
be collected and analyzed off line, or collected and
analyzed (reported on) live. In both cases the model
is the same, and the reports are the same. (We mo-
tivate and discuss live recording of data later in the
paper.)

We now describe the arcflow model in detail.

The arcflow model. In order to capture the key re-
lationships between consumers and resources nec-
essary to help analysts answer performance analysis
“what,” “where,” and “why” questions, we provide
the three definitions that are described next.

Definition of consumer context: A consumer con-
text is an abstraction of the state of a consumer at
the point of resource consumption. This mapping re-
flects the state of the consumer at the time we record
the consumption of the resource in question.

We define a consumer context as a set of consumer
identifiers and an optional time stamp:

$c1 , c2 , . . . cn , t%

where ci , 1 # i # n, is the ID (identifier) of the ith
consumer and t is the time stamp. There is an ex-
plicit hierarchy, i.e., ci is the parent of ci11 . Each ci

corresponds to a consumer, with cn being the con-
sumer most immediately responsible for the resource
consumption, cn21 is the consumer responsible for
the actions of cn , and so on. This hierarchy reflects
the desired context in the level of detail appropriate
for the analysis, e.g., one natural consumer context
hierarchy is a consumer calling sequence.

The rationale behind this definition is that resource
consumption occurs in context, and it is important
to understand that context when exploring perfor-
mance improvements.

For example, a “callstack” A-B-C, reflecting that
function A called function B called function C, is a
valid consumer context. Any resources consumed
by C when B and A are on its invocation stack are

Table 1 Performance analysis steps

Step 1 Step 2 Step 3

Collect data Record data Generate report

Table 2 Performance analysis steps

Step 1 Step 2 Step 3

Collect data Record into
standard
model

Generate standard
reports from the
standard model

ALEXANDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000120

considered distinct from resources consumed under
a different invocation stack, even if consumed by
(within) C. A more detailed variant on the above
might record the callstack in more detail, e.g.,
A:F0001330-B:F0002992-C:F0010122, where the hex
addresses following the function name indicate the
actual virtual address of the invocation. (The value
lies in discriminating between multiple call sites in
a function.) Another valid consumer context would
record both the callstack and time stamp at the time
of the resource consumption.

Although the most common consumer context re-
flects a function/method invocation hierarchy, it need
not. Other variants include:

● Object containment hierarchy (where each con-
sumer ID, ci , represents a unique object). The hi-
erarchy reflects that object ci contains ci11 .

● Object allocation/creation hierarchy (where each
ci again represents a unique object). The hierar-
chy reflects that object ci created ci11 .

● Module invocation hierarchy (where each ci in-
dicates a module). This hierarchy is equivalent to
the calling sequence hierarchy but with a different
level of granularity for the consumer identifiers.

● Basic block invocation hierarchy (where each ci

indicates an instruction-level basic block). Again,
this is an invocation hierarchy but, in this case, one
that employs a finer granularity.

Definition of resource consumption list: A resource
consumption list is a list of resources and an indi-
cation of the total amount of resources consumed.
When coupled with a consumer context, this rep-
resents the total amount of each resource consumed
within a specific context.

For example, ,“object allocations” 100, “heap bytes
allocated” 12450. is a resource consumption list
indicating that a total of 100 object allocations have
been made and that 12450 bytes have been allocated
from the heap.

Definition of arcflow model: The arcflow model
couples consumer context data and re-
source consumption list data in order to provide a
useful indication of resources used in some context.
Thus, our general model of resource consumption
consists of a set of triples and a descriptive vector:

AF0 ; $~X, n, Y! such that

X is a consumer context,
n is the number of times this consumer context has

been encountered, and
Y is a resource consumption list}

and

Z, a vector of descriptive bindings

where Z provides:

● A label describing the consumer identifiers (ci) in
X (e.g., “functions”)

● A label describing the units employed in the
resource consumption list (e.g., “CPU time,” “in-
structions”)

● A label describing the meaning of n—the number
of times a consumer context is encountered (e.g.,
“calls,” “entries”)

Note that, depending on the granularity of the ab-
straction employed, this definition allows us to dis-
criminate between executions of consumer A result-
ing from being called by consumer B and those
resulting from being called by consumer C. Note that
if the consumer context includes a time stamp, the
model can record an explicit log of all events, in ef-
fect a trace of system behavior with respect to all in-
teresting consumer states and resources they have
consumed.

Note further that the model is unitless; this charac-
teristic is a powerful abstraction that allows it to be
employed in a broad range of analyses. Indeed, it is
the key to the success of the model in unifying data
recording and reporting. However, unitless reports
are not very helpful, so Z is introduced to allow for
the labeling of fields produced by the tools that im-
plement the model and derivative reports.

Although the above is quite general, we have found
that a relatively storage- and computationally-effi-
cient choice for the consumer context is to elimi-
nate the explicit time stamp. Similarly, we have found
that restricting the resource consumption list to a
single resource (thus providing only a univariate view
of resource consumption) is highly effective for fo-
cused analysis where the key resource of interest is
known in advance. Therefore, for the remainder of
the paper the term arcflow refers to the restricted
arcflow model:

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALEXANDER ET AL. 121

AF1 [{(X, n, Y) such that
X is a consumer context having no time stamp,

n is the number of times this consumer context has
been encountered, and

Y is a resource consumption list consisting of a sin-
gle resource}

and

Z, a vector of descriptive bindings

The model described in the foregoing, AF1, forms
the basis for a powerful set of standard performance
reports. It is these reports that analysts use to an-
swer the questions above. We first introduce an ex-
ample. This example is used first to illustrate the data
model and then to introduce the core reports, or
views, that the arcflow model facilitates.

Suppose we have collected the raw trace data in Fig-
ure 2 indicating resource acquisition and release
events during the execution of a sample application,
AC test. Two types of records exist in the example.
The first, and first record in the example, indicates
a process/thread switch. In this case, it indicates that
all subsequent records (up to the next process/thread
switch) reflect activity performed by the pro-
cess/thread: AC test. (The name is only illustrative.
In general, process/thread identifiers have a differ-
ent appearance.) The next type of record indicates
either the start of a resource use (“.”) or the end
of a resource use (“,”). The name of the consumer
is also indicated (in this case, the name of a method
in the Java program). Each record is marked with
a resource consumption level. As with Reference 6,
we focus on resources whose consumption is mea-
sured against a monotonically increasing metric (e.g.,
system CPU time, wall clock time, and instructions
executed). In this example, the metric is CPU time
in seconds, and each trace record begins with a CPU
time stamp.

When recorded into the arcflow model, the result-
ing representation for the performance data in Fig-
ure 2 is shown in Table 3.

The differences in the time stamps of successive trace
records have been used to compute the total
resource consumption for each consumer context,
and the time stamps themselves are no longer
needed.

Note the explicit representation of the consumer
context, in this case, the callstack. It is these con-
textual data that provide the additional information
required to gain insight into the “where” and “why”

Table 3 Arcflow model data for AC_test.java

X
consumer context
“Method names”

n
number of
occurrences
“Number
of calls”

Y
resource
consumption
“cpu-seconds”

Main 1 0
Main A 1 1
Main A B 2 2

Main A B C 1 1
Main B 1 1
Main B A 1 1

Main B A C 1 1
Main B A X 1 0
Main B A X E 1 1

Main B A X F 1 1
Main B A X G 1 1

ALEXANDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000122

analysis questions. In particular, the context provides
more information about application structure, and
explicitly surfaces leverage points for performance
improvement.

The reader will notice significant redundancy in the
model shown in Table 3. In particular, many of the
consumer context entries share common prefixes
(e.g., “Main B A”). Fortunately, the structure and
semantics of the consumer context allow for very ef-
ficient storage of the arcflow model. Recall that the
consumer context represents a hierarchy, with each
consumer identifier in a superior position to its im-
mediate successor. This hierarchy has many possi-
ble interpretations; the specific interpretation de-
pends on the particular bindings associated with a
specific application of the model (i.e., a specific set
of data collected and recorded in the model). The
most common interpretation is that of a callstack,
e.g., for consumer context {c1 c2 c3}, the interpre-
tation is that c1 called c2 and c2 then called c3 . An-
other interpretation is containment, e.g., object c1

contains c2 and c2 contains c3 .

We employ a tree structure for recording the arc-
flow model. This tree structure (which we have
named the call-tree, in deference to the most frequent
use of this methodology) consists of a set of nodes,
with each node containing the following information:

{
parent consumer ID,
consumer ID,
number of occurrences,
total resource consumption,
list of children consumer IDs
}

There is a single root node having no parent.

This approach reduces the storage costs of the model
to being roughly proportional to the total number
of unique contexts in which consumer IDs are encoun-
tered in the measured data. In the case of the present
example, there are 11 such unique contexts. Thus,
the call-tree contains 11 nodes. The call-tree for our
example is shown graphically in Figure 3. Each node
is shown with the consumer ID, number of occur-
rences, and total resource consumption. The parents
and children are indicated graphically. (In fact,
there is one more node corresponding to the
process/thread consumer under which the methods
Main, A, B, C, X, E, F, and G consumed the CPU

resource. We have left this out of Table 3 and Fig-
ure 3 as a simplification.)

As noted in Reference 7, the storage cost reduction
in employing this technique is very significant. For
example, when the application method entries and
exits for the portable business object benchmark
(pBOB)8 were instrumented and a two-minute event
trace for the single-threaded case was collected, it
resulted in the generation of approximately 2.8 mil-
lion entry-exit and thread switch events, requiring
approximately 40 MB of disk (or memory) storage.
Transforming the raw event stream into the call-tree
form of the arcflow model reduced the storage re-
quirement by approximately 200-fold to 200 KB,
while retaining the important resource consumption
information. The reduction has broader implications
than simply saving space and speeding data analy-
sis. Since many applications typically reach steady
state behavior with respect to program flow (that is,
after a relatively short number of entry-exit events,
most common call-stacks and consumer contexts are
realized as elements in a call-tree), it becomes fea-
sible to consider building the call-tree live, as re-
source consumption events are recorded. This way
obviates the need to write the events at all, saving
both storage and a significant number of processor
cycles. Indeed, we have adopted this approach in
some cases. We discuss these in the fourth section.

Arcflow reports. Several standard reports form the
basis of the arcflow methodology.

The xarc report. This report is the one from which
the methodology derives its name. Analysts are in-
terested in the consumption of resources, but they
are generally more interested in why they are con-
sumed. The xarc report helps to answer these ques-
tions. This report, although textual in format, is ac-
tually a graphical rendition of application structure.
Individual consumers (e.g., methods in our running
example) are presented along with their resource
(e.g., CPU time) usage, but the context for the con-
sumption is made explicit by linking the consumer
with its parents (e.g., its callers) and its children (e.g.,
the methods it calls). In this way it is possible to dis-
cern the magnitude of the resource usage of one
method, the drivers of that use, and the implications
of changing the behavior of this method.

The xarc report is organized in paragraphs, or stan-
zas. Stanzas are separated by dashed (55) lines. Each
stanza includes a record for “self,” a set of “parent”
records, and a set of “child” records. Every unique

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALEXANDER ET AL. 123

consumer is represented by a stanza in which the self
record identifies that consumer by name in the “func-
tion” column. Three key types of metrics are reported
for each consumer: “calls,” “base,” and “cum” (short
for cumulative). Calls indicates the number of times
that a consumption event (e.g., a function call) has
been recorded on behalf of this consumer. Base and
cum both pertain to the quantity of resource con-
sumed. Base indicates the amount consumed directly
by this consumer in the context defined by its set of
parents. Cum indicates the amount consumed both
by the consumer directly and all of its children. (The
examples illustrate a variant of the arcflow reports
that normalize the resource consumption to percent-
ages rather than show the absolute counts.) Also,
there is special treatment of recursion, which will not
be discussed here.

Each stanza focuses an analyst’s attention on re-
source consumption from the perspective of a sin-
gle consumer (the one named in the self record for

that stanza). We refer to this consumer in the fol-
lowing discussion as the self-consumer. Within each
stanza, the interpretation of base and cum depends
on which records are being considered. For the self
record, base and cum apply directly to all resource
consumption associated with that function, irrespec-
tive of context. For the parent records, the base value
reports resources consumed by the self-consumer in
the context of (e.g., as a result of) the indicated par-
ent. For the parent records, the cum value indicates
the resources consumed directly by the self-consumer
and any of its children.

These relationships are formalized in a set of invari-
ants. Understanding these invariants is important to
navigating the report:

● Sum(parent(calls)) 5 self(calls): The total num-
ber of calls recorded for the self-consumer are bro-
ken out by which parent made the calls.

● Sum(parent(base)) 5 self(base): The total re-

ALEXANDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000124

source directly consumed by the self-consumer can
be decomposed into resource consumed on behalf
of each of the parents of the self-consumer.

● Sum(parent(cum)) 5 self(cum): The total resource
consumed by the self-consumer (which includes all
of its children’s consumption) can be decomposed
into total resources consumed on behalf of each
of the parents of the self-consumer.

● Sum(child(cum)) 5 self(cum) 2 self(base): The
resources consumed by the self-consumer can be
decomposed into those directly consumed by the
self-consumer and those consumed by its children.

As an illustration, Figure 4 shows the complete set
of xarc report stanzas for our running example. If
we locate the stanza for method main, main is shown
as having one parent, named AC test pidtid. (All
methods are executed on some thread of control; the
instrumentation in our implementations associates
activity with the thread that executes it. In effect, the
thread becomes the highest-level consumer or driver
of work.) Main is responsible for 100 percent of CPU
time consumed (although none of that is within the
body of method main; the children, B and A, are
wholly responsible). The children of main are shown
as B and A. B is responsible for 60 percent of the
total CPU time consumption, whereas A is shown as
being responsible for 40 percent.

A benefit of the xarc report is in reflecting the per-
formance impacts of concepts such as reuse. The an-
alyst can immediately see the relationships between
key methods and thus can immediately begin to posit
more interesting questions, such as, “What if X were
eliminated or improved substantially?”

The xtree report. The xtree report most closely reflects
the contents of the underlying model. Indeed, it is
produced by navigating the call-tree directly. The
value of the xtree report lies in the completeness of
its depiction of application structure coupled with
measured performance data. It communicates more
information about program structure than the xarc
report (e.g., discriminating between all unique call-
ing sequences, whereas xarc will aggregate across
calling sequences from the perspective of a single
method). For example, consider the xarc stanza for
method A and compare it with the xtree informa-
tion reported below that includes A in the calling
sequences. The xarc report is unable to discriminate
between execution paths through A, e.g., A is called
by main; A calls B, C, and X. But do all calls from
main to A result in a call to C? Indeed no. Only the
xtree report retains that level of structure. The xtree

report for the running example is shown in Figure
5.

In Figure 5 we see that A calls B, which then calls
C only one time. The other call from A to B does
not result in subsequent calls to C or to any other
(instrumented) method. Only the xtree report retains
this level of detail regarding application structure.

The xprof report. The xprof report is the report with
the least structural information retained, but it is also
the report most closely associated with classic per-
formance profiling. It provides a nearly flat profile
of resource consumption from a consumer (e.g.,
method) perspective. Structural relationships are not
reflected. Only the base and cum times indicate that
one particular consumer may drive more consump-
tion than is actually reflected in the direct actions
of that consumer. (For example, consider the entry
for X shown in Figure 6. Base time of 0 percent in-
dicates no work done in this method, whereas cum
time of 30 percent suggests that X is central to the
performance of the application.)

The common structure revealed in the xarc report
is not present here. Note in Figure 6 that although
we can see the role that X plays in overall perfor-
mance, we cannot determine which methods X calls.
Even more telling, the complex interactions between
B and A are not reflected at all. Nevertheless, this
report has value; it is concise and provides a first-
order assessment of performance improvement op-
portunity.

Building the arcflow model. Data for the model can
come from a variety of sources. Most typically, and
perhaps most naturally, the data result from instru-
mentation placed at the start and end of the con-
sumption of a resource, e.g., at the entry and exit of
a method, at the beginning and end of a basic block,
and at the entry to a function and exit from that func-
tion. Other types of instrumentation data include an
object containment hierarchy extracted from a de-
tailed dump of the Java heap (e.g., such data are valu-
able for discerning heap-residency causation for a
particular set of objects). Another example is call-
stack data obtained from C-heap memory allocation
instrumentation (i.e., the callstack provides insights
into which parts of the environment made the calls
to malloc() and free(), and therefore may be useful
in diagnosing memory leaks). All of these data have
direct representation in the arcflow model.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALEXANDER ET AL. 125

ALEXANDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000126

For maximum flexibility, we have designed a basic
set of input representations from which the arcflow
model can be readily constructed:

● Start and end events—These events explicitly in-
dicate the beginning and ending of a resource con-
sumption by a consumer. They are typically asso-
ciated with individual event-trace collection.

● Stack-based events—The events record the full con-
sumer_context of a resource consumption. They
are typically associated with sampling.

● Complete call-trees—The entire call-tree, as defined
above, is input, and the arcflow model is con-

structed directly from the call-tree. (The arcflow
model and the call-tree representation are isomor-
phic; the net result is that once a call-tree is pro-
vided, all other arcflow reports can be quickly gen-
erated.)

Depending on the application, data conforming to
one of these input types are passed from the collec-
tion step (see Table 2) into the recording step, and
the recording step constructs the arcflow model. As
an illustration of model construction, the Appendix
provides a listing of a Java implementation of a mech-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALEXANDER ET AL. 127

anism to build the model from a raw trace of start
and end events.

The arcflow model implementation issues
and experience

We collect many types of data in our analysis of the
Java virtual machine. The most common type of data
is event-oriented, collected at method entry and exit.
However, many other types of data are collected to
satisfy different analysis needs. Table 4 contains a
summary of the most common.

We were motivated to develop this model by the need
to contain the number of reports and reporting tools
for Jvm analysis. We were further motivated by a de-
sire to develop a methodology and language that
would apply across IBM platforms, thus enhancing
internal communications about Jvm performance
and reducing overall development costs.

Our primary development platform for this effort has
been the IBM Developer Kit for Windows**, Java
Technology Edition, Version 1.1.7. The IBM Devel-
oper Kit includes an implementation of a subset

of the Java Virtual Machine Profiler Interface9

(JVMPI). This interface provides a standard means
for reporting events from the Jvm and its compo-
nents, including the JIT compiler. With the JVMPI in-
frastructure in place, and with a fully instrumented
Jvm for reporting method entries and exits, we have
a very powerful demonstration vehicle for the value
of this approach.

Figure 7 illustrates some key elements of our deploy-
ment of this technology for Jvm and Java applica-
tion performance analysis. Depicted are several in-
dependent applications of the arcflow methodology
here described. These implementations have been
employed at various times in the effort to enhance
various aspects of the performance of the IBM Jvms.
Although not an exhaustive depiction, the variety of
uses indicated in this figure provides compelling ev-
idence of the power and success of the model in ad-
dressing our requirements.

In the first case, note that the Jvm and JIT compiler
have been instrumented with events (represented by
“*” in the figure). These events correspond directly
with JVMPI events to support method entry and exit

Table 4 Jvm metrics of interest

Where Collected Data Collected Type of
Data

How Used

At method entry/exit Method name, count of
interpreted bytecodes

Event 1
counter

To identify methods with heavy bytecode
content

At method entry/exit Method name, CPU time Event 1
counter

To identify methods consuming most
CPU time

At method entry/exit Method name, instructions
executed (hardware
counter)

Event 1
counter

To profile the JIT compiler for path
length of generated code

At method entry/exit Method name, other
hardware counters, e.g.,
pipeline stalls, etc.

Event 1
counter

To identify methods responsible for
hardware-related performance
problems

At monitor request, acquire, release Monitor identification, CPU
time

Event 1
counter

To quantify lock use and contention

Periodically (e.g., every 0.01 secs) Program counter Sample To identify methods consuming most
CPU time

At C function (e.g., in the Jvm)
entry/exit

Function address or name,
CPU time

Event 1
counter

To identify run-time functions
consuming most CPU time

At method entry/exit Method name, count of
objects allocated

Event 1
counter

To identify those methods most
responsible for heap pressure (object
allocation)

At completion of a garbage collection
cycle

Object identification, object
containment hierarchy for
all live objects

Sample To identify those objects responsible for
heap utilization

Periodically (e.g., every second) A trace of method
entry/exits with CPU time

Sample 1
event

To identify the methods consuming most
CPU time together with the added
benefit of obtaining application
structure

ALEXANDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000128

notification to a profiler implemented as a dynam-
ically loaded library (in the figure, jprof). The jprof
library receives notifications of each method entry
and exit (among other events). Each event is time-
stamped, and the event is recorded dynamically into
an arcflow model. Note that a different time-stamp-
ing mechanism can be employed in the profiler to
effect quite different views of Jvm performance. For
example, if the time stamp is CPU time, then the
mechanism measures CPU time by method. If the
time stamp is configured to be a count of hardware
instructions completed (available to programmers
on many platforms, including Intel as a feature on
Pentium** and follow-on hardware), then instruc-
tions executed in a method forms the metric recorded
and reported by the infrastructure. Using hardware
instruction counts as a time-stamping mechanism is
useful as a measure of JIT compiler effectiveness and
may facilitate meaningful cross-platform JIT compiler
comparisons. In contrast, to obtain a meaningful
measure of overall performance, the preferred time-
stamp metric is CPU time. As indicated in Table 4,
other metrics are available—each providing a new,
unique insight into Jvm and application behavior.

Figure 7 also indicates that for method entry and exit
profiling, the profiler builds the model dynamically
as the profiled Java application is executing. This im-

plementation choice is a direct consequence of the
storage and execution improvements that the call-
tree affords. When the application completes, or on
some other trigger, the call-tree form of the model
is output, and then the standard arcflow reports are
generated.

Other applications are illustrated in the figure. A
classic profiling technique based on program counter
sampling is available on many platforms. (We have
developed this technique for AIX, OS/2, and Windows
NT. The AIX version, called tprof, is described in Ref-
erence 2.) Each data item recorded by this instru-
mentation technique corresponds to a program
counter value (a virtual address). This classic ap-
proach typically obtains a sample of the program
counter every 0.01 second or so. Thus, hundreds of
samples are obtained when an application is exe-
cuted. Note that such program counter samples fit
directly into the arcflow model. The consumer con-
text recorded at each sample is simply the program
counter. The data recorded is a unit of one (to re-
flect one sample). The result is a relatively flat arc-
flow model, but one that presents samples organized
by the program counter address in the xprof report.
(Postprocessing is required to resolve these addresses
into function names.)

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALEXANDER ET AL. 129

A simple extension to the above profiling approach
produces profound results and serves to reinforce
the unifying power of this methodology. Motivation
for this approach derives from examination of the
arcflow model, AF1 (or AF0). Each entry in the
model consists of a consumer context and a resource
accounting. In the case of profiling function/method
calls, the desired consumer context is precisely the
callstack. Rather than obtain the callstack through
explicit entry and exit instrumentation, we can ob-
tain it by navigating the stack frames that exist in
the environment. In the case of the program counter
sampling profiling technique described in the pre-
vious paragraph, the natural extension is to record
the callstack of the interrupted thread at the time
of the interrupt in addition to its current program
counter value. Note that many operating systems and
application programming environments employ well-
defined linkage conventions resulting in readily nav-
igable stack frames. (Indeed, they must do so in or-
der to function correctly and to support system and
application debuggers.) This extends Table 4 with
a new kind of data that uses sampling to achieve in-
depth visibility to application structure; see Table 5.
The net result is a quantified understanding of the
call structure of the Jvm (and of the application)
without the overhead of instrumenting every
method/function entry and exit. Both collection time
and storage costs are reduced dramatically. In a
sense, it is an ideal approach in that it couples the
low overhead of sampling with the high information
content of a complete view of the context in which
resources are consumed. Thus the consumer con-
text is realized in this application as a full (or even
partial, depending on environmental limitations10)
callstack. This approach is similar to the stack sam-
pling described in Reference 6.

The entire range of arcflow reports now has direct
and valid interpretation. This approach samples the
entire program structure—not just where time is
spent, but why it is spent there.

Yet another application is depicted in Figure 7. In-
struction tracing technology exists for many oper-
ating systems; this technology takes advantage of
hardware mechanisms to trace individual instructions
executed by the operating system and its hosted
middleware and applications. Such traces are ex-
tremely useful when analyzing the performance of
the Jvm, especially when the output of the JIT com-
piler is considered. An instruction trace provides di-
rect measurement of precisely the code that the JIT
compiler is producing. As JIT compilers become more

complex and more dynamic, the value of this instruc-
tion tracing technology increases (e.g., consider the
very dynamic nature of the compiler in Sun’s Java
2 HotSpot** technology;11 from one run to the next
the compiler might generate different code, alter-
nately making different inlining decisions based on
measured behavior). Although powerful, instruction
traces are very lengthy, and in many cases it is not
necessary to actually look at each and every instruc-
tion executed. It suffices to consider the trace at the
basic block level, for example, and just count the
number of instructions executed within the block.
Even with this simplification, the volumes of data
are very high. The arcflow model provides a means
to reduce these data in a common way and yet re-
tain the information that is most important.

Performance. The run-time cost of implementing
Step 1 of the arcflow model, collecting data, is di-
rectly proportional to the density of events recorded.
Generating an event and notifying the profiler con-
sume a significant number of processor cycles, so if
events occur frequently, the time to run the appli-
cation being analyzed can be greatly distorted. In our
experience, Java methods tend to be small, consum-
ing on average far fewer cycles than event genera-
tion and recording. Creating a method entry and exit
trace can dilate the run time of a Java program by
20 times or even more. We also have to keep in mind
that this distortion is not uniform. Because the cost
of each entry and exit event is approximately the
same, the apparent increase in time spent in small
methods is greater than the increase in large meth-
ods. We can partially compensate for this dilation
by measuring the average time required for each
event and by subtracting this time from the appar-
ent time between each method entry and matching
exit, but this compensation is inexact. However, even
with the worst distortion of time, the structure of the
call-tree is unaffected, and the frequency of events
is accurate. These alone are often of great value to
analysts.

Table 5 Callstack sampling

Where
Collected

Data
Collected

Type of
Data

How Used

Periodically
(e.g., every
.01 secs)

Complete
thread
callstack

Sampled To identify
methods
consuming
most CPU
time

ALEXANDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000130

Compensating for the dilation can be more accurate
if the metric of interest is machine instructions in-
stead of cycles, because the number of instructions
to generate and record an event is more nearly con-
stant than time. If the metric is Java bytecode in-
terpreted, no dilation occurs, and no compensation
is needed. The metric of time spent between events
represents a worst case for the accuracy of our im-
plementation.

Note that nearly all the run-time cost of our imple-
mentation is in Step 1, generating an event and no-
tifying the profiler. The cost of recording the event
in an in-memory call-tree is negligible in compar-
ison. The postprocessing step, generating the x-file
reports, usually takes a minute or less.

Scalability. Because all our experience so far is with
small- and medium-sized applications and bench-
marks, it is natural to ask if the arcflow model will
scale to very large programs. We are confident that
it will for several reasons.

As mentioned earlier, most programs reach a steady
state with respect to their call-tree in which they have
executed all or nearly all their distinct callstack con-
figurations and after which their call-tree grows
slowly if at all. If the call-tree of an application does
continue to grow, or is simply too large, we can re-
sort to sampling callstacks as described previously.
Sampling works best on long-running programs,
which is exactly the class for which scalability is most
likely to be an issue.

To make reading tree reports easier, we have de-
veloped and routinely use tools that prune trees and
other arcflow reports. By the definition of our cum
metric, all the nodes between a given node and the
root are guaranteed to have a cum value greater than
or equal to that of the given node. Therefore, elim-
inating all nodes with cum less than any value N will
trim only leaves and branches from a tree, leaving
a coherent well-structured tree. A performance an-
alyst can vary N until he or she has a tree small
enough to be tractable while retaining the interest-
ing, performance-intensive parts.

Future work

We are exploring many extensions. The current
model deals very well with a single process and its
(potentially) many threads. However, we are increas-
ingly interested in the analysis of distributed Java
applications (e.g., those that communicate with the

Java remote method interface, or RMI). Such appli-
cations require that instrumentation be applied in
multiple Jvms. See Reference 12 for recent work in
this area with RMI for client/server work. Given the
value of the arcflow model to single-system analysis,
we believe it will extend well into helping provide
organization and insight into the performance of
multiple distributed Jvms.

The general model introduced earlier in the paper
(AF0) provides for consumption data for multiple
resources to be recorded. At present, our implemen-
tations, based on AF1, do not explore this aspect of
the model; instead we conduct our measurements
with one metric enabled, then repeat with another
metric that may be of interest. Unfortunately, this
method loses any information about correlated be-
havior between consumers and multiple resources.
As the general model indicates, it need not be the
case. More work is required in developing simple,
yet effective, reporting extensions to deal with mul-
tivariate data from the arcflow model.

The current model deals cleanly with homogeneous
data, e.g., data collected from all entry and exit events
or data collected from samples. Because of the trade-
offs associated with different types of data, and be-
cause experience suggests that a middle ground is
sometimes the best approach, we feel it is important
to ensure that the arcflow model deals well with data
of mixed type. For example, a set of samples of
method entry and exit events, each one having, say,
10000 events would provide the benefits of deep in-
sight into program structure—yet not cost much
more than a flat sample providing no such structural
information. However, integrating such data into the
arcflow model will require care and some clever
searching and pattern matching.

Regular users of arcflow output soon become adept
at reading xtree and xarc files, especially pruned ones.
Still, there is no denying the value of graphical views
and navigational aids. We believe that interactive
graphical interfaces that allow users to view callstack
trees graphically, navigate them, and cross-reference
the various x-files would enhance the value of arc-
flow. We are considering various designs for such
tools.

Conclusion

We have presented arcflow, a general model for the
recording and reporting of performance data. This
model has proven extremely powerful in simplifying

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALEXANDER ET AL. 131

ALEXANDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000132

the way in which we look at the highly varied per-
formance data from the Java virtual machine imple-
mentations on several IBM platforms. Like many
good things, it is simple. It has served to extend our
vocabulary and enhance our internal communica-
tions about performance. Finally, it has served to fa-
cilitate cross-platform comparisons and leverage
cross-platform enhancements that heretofore would
not have been feasible. We believe that there are
many valuable applications of this approach. Al-
though we realize we are not unique in viewing data
in this way, we feel that the broad applicability with
which we have applied these techniques and the
broad benefits we have received from their applica-
tion are novel.

Acknowledgments

We are grateful to Honesty Young at the IBM Al-
maden Research Center for first introducing us to
the xarc report concept. Arcflow has been imple-
mented in many different contexts by many individ-
uals, including Will Cain and Ron Edmark. We wish
to express our thanks to all of our colleagues who
have contributed to the arcflow concept by using it
and providing feedback. We are particularly grate-
ful to P. J. Kilpatrick for providing us with a sup-
portive environment rich with challenges, exciting
ideas, superlative technical talent, and the resources
to make a difference.

Appendix: Constructing the arcflow model
from entry and exit event data

Assume that events are reported at the start and end
of a resource consumption. The implementation
shown in Figure 8 records these events directly into
a call-tree structure. This implementation is in Java,
though an actual implementation need not be. In this
implementation, there is a single class, Node. Ob-
jects of class Node are created for each unique con-
sumer ID in context. (To simplify the presentation,
the code is not thread-safe; our actual implemen-
tation runs correctly in a multithreaded environ-
ment.)

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Intel Corporation, Microsoft Corporation, Netscape Communi-
cations Corporation, or Bluestone Software, Inc.

Cited references and note

1. T. Lindholm and F. Yellin, The Java Virtual Machine Spec-
ification, Addison-Wesley Publishing Co., Reading, MA
(1997).

2. F. Waters, AIX Performance Tuning Guide, Prentice Hall PTR,
Upper Saddle River, NJ (1995), (c) 1995 IBM Corporation.

3. S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof:
A Call Graph Execution Profiler,” ACM SIGPLAN Notices
17, No. 6, 120–126 (June 1982).

4. VTune Performance Analyzer, Intel Corporation, Santa Clara,
CA, http://developer.intel.com/VTune/analyzer/index.htm.

5. Microsoft Windows NT Workstation Resource Kit, Microsoft
Corporation, Redmond, WA (October 1996).

6. R. J. Hall and A. J. Goldberg, “Call Path Profiling of Mono-
tonic Program Resources in UNIX,” 1993 Summer USENIX
(June 1993), pp. 1–13.

7. G. Ammons, T. Ball, and J. R. Larus, “Exploiting Hardware
Performance Counters with Flow and Context Sensitive Pro-
filing,” Proceedings of ACM SIGPLAN’97 Conference on Pro-
gramming Language Design and Implementation (PLDI), Las
Vegas, NV (June 15–18, 1997), pp. 85–96.

8. S. J. Baylor, M. Devarakonda, S. Fink, E. Gluzberg, M. Kalan-
tar, P. Muttineni, E. Barsness, R. Arora, R. Dimpsey, and
S. J. Munroe, “Java Server Benchmarks,” IBM Systems Jour-
nal 39, No. 1, 57–81 (2000, this issue).

9. D. Viswanathan and S. Liang, “Java Virtual Machine Pro-
filer Interface,” IBM Systems Journal 39, No. 1, 82–95 (2000,
this issue).

10. In the Jvm environment there are some complexities in im-
plementing this approach. Callstacks are a combination of
native, JIT-compiled, and interpreted code. It is beyond the
scope of this paper to discuss resolution to this in detail. Note
that in general, sampling profilers operate on a system-wide
basis. It may not be possible for the interrupting thread to
interrogate the interrupted thread and obtain its complete
callstack without additional Jvm support.

11. The Java HotSpot Performance Engine Architecture, White Pa-
per, Sun Microsystems, Inc., Palo Alto, CA (April 1999),
http://java.sun.com/products/hotspot/whitepaper.html.

12. I. H. Kazi, D. P. Jose, B. Ben-Hamida, C. J. Hescott, C. Kwok,
J. Konstan, D. J. Lilja, and P.-C. Yew, “JaViz: A Client/Server
Java Profiling Tool,” IBM Systems Journal 39, No. 1, 96–117
(2000, this issue).

Accepted for publication September 20, 1999.

William P. Alexander IBM Network Computing Software Divi-
sion, 11400 Burnet Road, Austin, Texas 78758 (electronic mail:
balexand@us.ibm.com). Dr. Alexander has a B.A. in philosophy
from Rice University and a Ph.D. in computer science from the
University of Texas at Austin. He has taught computer science
at Boston University, worked as a performance analyst in the com-
puting center at Los Alamos National Laboratory, and helped
design parallel database and distributed transaction systems at
the Microelectronics and Computer Technology Corp. (MCC)
research consortium. He joined IBM in 1991 where he has worked
on the performance of numerous hardware and software plat-
forms.

Robert F. Berry IBM Network Computing Software Division,
11400 Burnet Road, Austin, Texas 78758 (electronic mail:
brobert@us.ibm.com). Dr. Berry joined IBM in the Research Di-
vision at the Thomas J. Watson Research Center in 1987 where

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALEXANDER ET AL. 133

he worked in the systems performance management area. In 1992
he transferred to the RS/6000 Division in Austin where he led
the team developing performance tools for the AIX operating
system. Subsequently, he joined the Personal Systems Products
Division and worked on performance instrumentation, tools, and
analysis for the OS/2 and Warp Server products. Most recently
he has led the team responsible for developing performance in-
strumentation and tools for the Intel platforms for IBM’s Java
Developer Kits, including OS/2, Windows NT, JavaOS, and Linux.
Dr. Berry received his Ph.D. in computer sciences from the Uni-
versity of Texas at Austin in 1983. He was elected to the IBM
Academy of Technology in 1999.

Frank E. Levine IBM Network Computing Software Division,
11400 Burnet Road, Austin, Texas 78758 (electronic mail:
levinef@us.ibm.com). Mr. Levine received a B.S. in mathematics
from Tufts University in 1970 and an M.S. in mathematics from
Purdue University in 1972. He continued taking graduate courses
in mathematics and computer science until 1974, when he joined
the former IBM Federal Systems Division where he was a pro-
grammer for various software components for the ground sup-
port system for the Space Shuttle at Cape Kennedy, Florida. In
1979, he moved to Austin, Texas, where he was a lead program-
mer on various software development projects, including IBM
DisplayWriter, DisplayWrite, and OS/2 EE Data Base Manager.
In 1989, Mr. Levine became a software development program
manager for AIX RS/6000w development projects. In 1992, he
joined the PowerPCTM System Architecture Department and co-
authored RISC System/6000 PowerPC System Architecture, pub-
lished by Morgan Kaufmann Publishers, Inc. In 1995, he devel-
oped the Performance Monitor application programming
interface, which was completed in 1997 and made available for
a short time to users outside of IBM. In 1997, he joined the Per-
formance Tools and Instrumentation team in NCSD, where he
is currently the lead member of a tools team for development of
performance tools for various hardware and software platforms
with an emphasis on Java.

Robert J. Urquhart IBM Network Computing Software
Division, 11400 Burnet Road, Austin, Texas 78758 (email:
urquhart@us.ibm.com). Dr. Urquhart joined IBM in the former
Federal Systems Division in 1956. In the 1950s he designed and
implemented the first real-time I/O processor used in FSD’s B58
Digital Navigation System. In the 1960s he was the lead program-
mer for the IBM Gemini Spacecraft Rendezvous and Reentry
Software and made key contributions to IBM’s first space appli-
cation, the Orbital Astronomical Observatory (OAO). In the 1970s
he was lead analyst on the U.S. Navy’s Verdin ULF & VLF Nu-
clear Submarine Communications System. His signal processing
tools package was used widely within IBM and the San Diego
Naval Lab. In the 1980s he was a lead programmer for the Dis-
playWriter Spelling Verification System and participated in de-
velopment of the Lexis Spelling Verification and Correction
technology used by PROFSw on the VM operating system. In
the 1990s he worked on performance and tools for the RS/6000
AIX system and invented the “tprof” profiler that is widely used
within IBM and by IBM customers. He also developed the AIX
mtrace postprocessor, another corporate wide-trace reduction
tool. Dr. Urquhart also developed a wide range of performance
tools for OS/2, Windows NT, and the Java language, receiving
an IBM Corporate Award for that work, which included several
versions of the arcflow tool. His degrees include a B.S. in elec-
trical engineering from Lawrence Institute of Technology, an M.S.
in electrical engineering from Syracuse University, an M.S. in
mathematics from the University of Michigan, a Ph.D. in elec-

trical engineering from the University of Michigan, and an
M.S.S.W. from the University of Texas. He has earned 12 inven-
tion levels and is currently developing Java memory analysis tools
as well as being a consultant in the performance area.

Reprint Order No. G321-5719.

ALEXANDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000134

