A universal information
appliance

The consumer’s view of a universal information
appliance (UIA) is a personal device, such as a
PDA (personal digital assistant) or a wearable
computer that can interact with any application,
access any information store, or remotely
operate any electronic device. The technologist’s
view of the UIA is a portable computer,
communicating over a bi-directional wireless link
to an elaborate software system through which
all programs, information stores, and electronic
devices can export their interfaces to the UIA.
Using an exported interface, the UIA can
interoperate with the exporting entity, whether a
home security system, a video cassette recorder,
corporate application, or an automobile
navigation system. Furthermore, interfaces
presented by the UIA can be tailored to the
user’s context, such as the user’s preferences,
behavior, and current surroundings. The UIA
programming model supports dynamic interface
style and content triggered on activity detected
from the user’s real-world and software context.
In this paper we describe the design and first
implementation of a UIA, a PDA that, through a
wireless link, can interact with any program,
access any database, or direct most electronic
devices through a remote interface. The UIA
model uses IBM’s TSpaces software package as
the interface delivery mechanism and resource
database, and as the network communication
glue. TSpaces supports communication between
the UIA and any peer over a dual-mode wireless
link. Using a popular application example, we
present a generalized architecture in which the
UIA is the mobile user’s software portal for
interoperating with any peer: another UIA, a
common network service, a legacy application, or
an electronic device.

People are accustomed to static interfaces. The
refrigerator, television, coffeemaker, and ther-
mostat show the same appearance to us day after

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

0018-8670/99/$5.00 © 1999 IBM

by K. F. Eustice
T. J. Lehman
A. Morales
M. C. Munson
S. Edlund
M. Guillen

day. We would be quite surprised if those interfaces
changed without warning. Perhaps because of our
experience with the physical world, we tend to de-
sign our software with the same static model. More-
over, the tendency is reinforced by typical program-
ming environments. Interfaces that vary dynamically
(during one run-time instance) are not common, and
context-sensitive interfaces (interfaces that change
according to one’s experience, abilities, or current
surroundings) are quite rare.

However, the electronic world does not need to share
the physical limitations of coffeemakers and toaster
ovens. A single device with a flexible interface could
represent an unbounded number of electronic de-
vices and software systems. What if a mechanism
were to exist that promoted such dynamic person-
alizable interfaces? What if each person could have
his or her own personalized interface to an ATM (au-
tomatic teller machine), a television and a videocas-
sette recorder, a personal stereo system, or the con-
trol panel of a home security system? The goal of
the universal information appliance (U1A) effort' is
to create an environment in which a single device
can serve as a person’s portal into the digital and
electronic domain. The UIA effort is composed of sev-
eral parts that can be broadly categorized into three
areas:

©Copyright 1999 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

EUSTICE ET AL. §75

1. Auser’sinterface to the digital domain—The us-
er’sinterface is presented by a wearable computer,
which the user presumably carries whenever he
or she desires to be part of the electronic network.
For their choice of wearable hardware, users will
select from many different user devices. Further-
more, it is assumed that what is the standard wear-
able computer today will likely be replaced by new
hardware and operating system implementations
in the future. In place of a platform-specific user-
interface (UI) rendering, the UIA effort focuses
on building virtual machinery capable of render-
ing user interfaces on any device by translating
a common expression for user interfaces into a
platform-specific implementation.

2. A wireless infrastructure, keeping the UIA con-
nected to the network—To access the digital do-
main in any user situation, the UIA requires a link
to the network that is independent of physical lo-
cation. The UIA effort includes a wireless infra-
structure designed to support both continuous
and intermittent modes of operation. The wire-
less link provides high-speed, continuous commu-
nication for use in a fixed or nearly fixed location,
such as an office, home, or store. The link also
provides good capacity for intermittent connec-
tivity at longer distances, such as when a user is
traveling in a campus, downtown area, or airport
terminal.

3. Communication middleware connecting the UIA
to services and information—The UIA provides
access to whatever service or device interface the
user requires in a particular situation—this is its
major advantage. The flexible functionality the
user perceives is achieved through network
middleware that allows the UIA to interact with
services in the network as if the UIA were designed
to be a client of the particular service. The com-
munication middleware provides a uniform mech-
anism for accessing devices or services across het-
erogeneous platforms that is open to application
and language-specific data types and allows the
UIA both to trigger and to be triggered by events
in other entities.

In this paper, we discuss our approach to these three
areas of design for the UIA. In the next section, we
describe the overall vision of the UIA and the niche
it fills in the consumer electronics space. In the sub-
sequent section, we describe the challenges we en-
countered in designing the UIA. Thereafter we de-
scribe our first implementation of a UIA system,

B76 EUSTICE ET AL.

detailing the hand-held consumer device and the net-
work middleware. In the fifth section, we describe
one of the popular applications that we envision for
the UIA. We then go on to discuss our current re-
search in enabling the UIA to universally interoper-
ate with network services. In the seventh section, we
present related research and draw comparisons with
the UIA approach. Finally, we conclude the paper
and discuss some future work.

The vision

Although we live in a physical world, in our daily lives
we are called upon to interact with both physical and
electronic systems.? The physical systems have hu-
man interfaces for their use: doors have doorknobs,
drawers have handles, sinks have faucets. Similarly,
elements of the electronic world present physical in-
terfaces (e.g., the knobs on the stereo system, the
buttons on the television, and the keyboard and
mouse on the computer) that trigger events or in-
dicate events in the electronic universe. In physical
systems, the “better” interfaces—those that make use
easier—are intuitive; the user-interface functions di-
rectly relate to what the device actually does. For
example, the interface to turn on water (usually) in-
volves the manipulation of a valve that releases the
flow, such as turning a knob or raising a lever. How-
ever, in electronic systems, there is a disconnection
between the user interface and the actual function
of the electronic entity. How does one decide the
“best” interface for repartitioning the resources of
a Web farm, redirecting a particular query to a dif-
ferent information source, or reprioritizing a set of
system processes? Creating an interface for a new
electronic function that is intuitive to everyone is ar-
guably difficult, if not impossible. Consequently, most
physical user interfaces to electronic systems are tai-
lored to the greatest common denominator of human
experience, rather than a multiplicity of human expe-
rience, and few interfaces, if any, are dynamically tai-
lored to an individual person’s needs.

Most people have become resigned to this reality,
and, as a result, there has been little hope for a vi-
able solution to the general interface problem. Fur-
thermore, as the number of electronic systems with
which we interact increases, we are presented with
(and increasingly overwhelmed by) a growing num-
ber of untailored, incompatible, and inconsistent in-
terfaces. We develop large collections of remote con-
trols, personal data assistants, hand-held computers,
notebook computers, and countless other electronic
“interfaces.” This multiplicity has led to the devel-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

opment of “universal remote controls”?® and other

such devices* to interact with limited combinations
of electronic devices, to reduce the “remote bloat.”
The universal information appliance transcends this
notion by extending the concept of remote interac-
tion beyond direct control of televisions and video
cassette recorders (VCRs) to dynamic interaction with
all electronic entities and digital information sources
in one’s environment. Furthermore, the UIA model
tailors that interaction to the specific user’s context.

The universal information appliance is intended to
be the average person’s device for hosting tailored
interfaces to the entire electronic universe—inter-
faces to virtually any device or software program
(Figure 1). Figure 1 shows two possible variations
of a UIA interface in a telephone-type application.
The user on the left calls a variety of numbers, some-
times calling the same number several times in a day.
This user has customized the interface on the UlA
to display a keypad for dialing new numbers, as well
as a list of most recently dialed numbers. The user
also prefers a list of most frequently dialed numbers.
The user on the right has opted for a simple inter-
face with buttons to call one of two numbers. This
user often receives calls on the device, but only makes
calls home or to the office. Either user can decide
to make further changes to the interface whenever
necessary without losing the core functionality (in-
terfacing to a network telephone service). Although
the two UIA interfaces have a completely different
“look and feel” (which can be changed dynamical-
ly), both are suitable clients for the same telephone
service.

However, the UIA does more than just display a set
of interfaces. It is a companion that stores the user’s
profile information, performs local computation,
maintains the soft state for the user’s current appli-
cations, and holds a cache of knowledge to which
the user wants immediate access.

Consider the following scenario:

“BLARP, BLARP,BLARP . .. ” Youwake up with a start
to the loud ringing of your universal information ap-
pliance in your apartment. During the night, the
overseas sales office scheduled an emergency meet-
ing first thing in the morning. They checked your
schedule and found that you had an open slot. (You
gave them authorization to do this.) By scheduling
the early slot in your day, your UIA subsequently
changed your wake-up time appropriately (but within
the permitted boundaries). Glancing at the time, you

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure1 An example of the UIA vision for personalized
interfaces
123
888
4 5 6 [
7 8 9 HOME
OFFICE
* 0 #
Speed Dial

Tom 123 123-1234

Dick 111 222-3333

Harry 987 654-3210

Public, Joe 321 123-4567

Doe, Jane 123 321-1234

Doe John 000 000-0000

Simpson, H. 111 DOH-1111

pick up your UIA, turn off its alarm, and place the
UIA in your pocket. While grabbing a quick break-
fast in your kitchen, you remember that you want to
set the VCR to record a program in the evening, so
you take a quick jaunt into the living room. As you
retrieve your UIA from your pocket, you realize that
the “top level” kitchen applications have been re-
placed with living room and entertainment applica-
tions. As you select VCR, the UIA quickly retrieves
your saved preferences. You add the program that
interests you to the list of programs to record, and
then submit your new settings. As you leave the
apartment building, the household applications dis-
appear from the set of active applications on the UIA,
and new applications appear. You click on the trans-
portation application and find that your bus will be
late (a flat tire has been reported). You open the
alternatives menu and find that you can still catch
a taxi to the subway stop. Selecting “taxi” in the
menu, you get instant confirmation that the taxi will
arrive in two minutes at your location, determined
by a quick location fix courtesy of the built-in Global
Positioning System (GPS).

EUSTICE ET AL. §77

Implementation challenges

The challenges to achieving this vision are in three
areas: (1) the user device with virtual machinery pro-
viding the UIA functionality, (2) the communication
software infrastructure, and (3) the wireless commu-
nication link between the UIA and the infrastructure.
Our initial implementation addresses these areas.
For future implementations, we are focused on the
complex and multifaceted problem of integrating the
UIA into the mobile user’s daily life. Our aim is to
enable end-to-end flows of information, from the UIA
to an arbitrary endpoint of communication, whether
that endpoint is a peer UIA, a legacy data service,
another application, or an electronic device. We also
intend the UIA to be cross-platform; to this end, we
are researching a range of wearable user devices to
which to “port” the UIA capability. We discuss the
core requirements of the user device and the infra-
structure challenges in the two subsections that fol-
low. We introduce the issues framing our current re-
search in end-to-end data flow and alternative user
devices in the third subsection.

Device requirements. The first requirement for the
UIA vision is the user’s portal, the device itself. Should
the device have one common design, or should the
UIA intelligence be integrated in all consumer items,
from pendants and watches to wearable computers
and PDAs? We assume that users will want to use a
range of devices, and with decreasing hardware costs,
users will eventually use computers as disposable
commodities, assembling their machines from the
most readily accessible components in a given sit-
uation. The safe assumption is that one device will
not fit everyone’s needs. As long as users expect flex-
ibility among many devices, the best approach is to
define the common elements that are needed in a
UIA device—in other words, a reference platform.
Then, regardless of the size and capabilities of a par-
ticular platform, any device that implements the re-
quired set of UIA functions will be a valid UIA. The
required functions are as follows:

1. An output mechanism, most likely some sort of
display—The display may be visual, tactile, or au-
dio.” Ideally, a fully loaded UIA will have multi-
ple output channels (visual, audio, and tactile) for
more convenient (and natural) interaction.

2. Aninput mechanism—The input may be a touch
screen (or something related to tactile input), a
speech recognition unit, or even a visual sensor®
(motion detector/gesture interpreter). Again, it

B78 EUSTICE ET AL.

is advantageous to have multiple input channels
available.

3. Local data storage—There must be sufficient stor-
age for the UIA engine, some number of cached
interfaces, and some amount of data. It is a joint
requirement that the UIA engine and the inter-
face description language must be sufficiently
compact, and the device must have sufficient stor-
age. In our current implementation, the memory
requirement of the UIA is 80 kilobytes. However,
since even small devices, such as the Rex** Pro
PDA,” have 500 kilobytes of memory, most plat-
forms will have no trouble providing sufficient
storage.

4. Network communication—The UIA must be able
to externalize its actions in a generalizable way.
The UIA can control a remote device, or be a cli-
ent to a network service to the extent that the Uia
can trigger activity in these remote entities, or be
triggered by them. In order to “externalize” its
activity, the UIA requires network communication
that will relay data and event messages between
the UIA and the devices and services with which
it interacts. Additionally, the data types that the
UIA exchanges may change with each new appli-
cation scenario, so the network communication
should be flexible to dynamic schema.

Another challenge is one of perceived function. Al-
though a UIA will likely be turned off 99 percent of
the time (actually a requirement from a power man-
agement standpoint), the UIA must appear up-to-
date and ready with negligible startup time. When
the UIA is powered on, it may be intermittently dis-
connected from the network. To remain always up-
to-date, the UIA must periodically, and asynchro-
nously, either contact a server for updates or have
an alert capability by which the server can asynchro-
nously establish a channel for pushing new informa-
tion.

Communication infrastructure. In addition to the
challenges of building the physical UIA device, there
are challenges of building an infrastructure with
which the UIA can communicate. The infrastructure
includes communication middleware that connects
the UIA to the various information, interface, and
application servers. In addition, the communication
middleware must possess a discovery capability to
automatically connect the UIA to new domains when
the user enters a new context (logical or physical),
and numerous capabilities for the UIA to receive in-
formation relevant to the user’s current context. The
infrastructure must support query capability for the

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

UIA to look up information buffered by the infrastruc-
ture, a publish or subscribe capability for the UIA to
receive information pushed from the infrastructure
asynchronously, and an alert capability for the in-
frastructure to wake up the UIA when establishing
a communication channel.

For user mobility, it is important that the UIA not
be tethered; thus, the UIA must have a wireless link
to the network. The wireless link can be infrared (IR)
light transmission or radio frequency (RF) transmis-
sion. In the RF category, there are several options,®
from the slower (6.4 KB/s [kilobytes per second] to
28.8 KB/s) 900 MHz (megahertz) paging and cellu-
lar voice systems, to the faster (nearly one MB/s) 2.4
GHz local area wireless networks.® The greater the
variety of wireless modes by which the UIA can com-
municate with the network infrastructure, the bet-
ter. For example, short-range IR, short-range RF, and
long-range RF are all useful possibilities. In evalu-
ating a wireless link technology for the UIA, it is im-
portant to consider the nature of the network com-
munication of the UIA. The communication will
consist of downloading new application interfaces
and sending events and data packets (only a few
bytes) during an application run time, in both wide-
area and local-area scenarios. In the local area, the
user may sometimes expect a connection-oriented
session for continuous interaction with services and
for media streaming, as well as short startup times.
Thus, the short-range wireless link should provide
adequate throughput to support a high message fre-
quency and negligible application download times.
In the wide area, the user’s network computing will
be more intermittent, so some message latency is tol-
erable, and application download times of a few sec-
onds are probably adequate.

Seamless integration. The final, and possibly the
largest, challenge is integrating the UIA seamlessly
into the lives of the public. Rather than teach the
public how to use the UIA, we aim to build a device
that is a person’s ready assistant, directing the elec-
tronic world on the user’s behalf. In many cases, the
UIA should appear to the user as simply a universal
translator allowing the user to interact with intelli-
gent devices. “TV, turn on,” “VCR, record all show-
ings of ‘X-Files’ this week,” or “Radio, please remove
any radio stations from the predefined list that fea-
ture overly conservative political hosts,” are all ex-
amples of commands that a user could potentially
generate. Though not part of our initial prototype,
we believe that, eventually, the speech interface will
become the predominant input mechanism. User de-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

vices will have other novel input and output modes
such as tactile 1/0, relative motion sensors, and pro-
jected displays. The UIA vision relies on users hav-
ing the freedom to select from a range of user de-
vices and to perhaps use different devices from one
situation to another, while being guaranteed the
same UIA functionality. Heterogeneity implies vir-
tual machinery that will interpret platform-indepen-
dent UIA interface descriptions into specific imple-
mentations. (Although our initial prototype of the
UIA includes virtual machinery for only one PDA plat-
form, the IBM WorkPad*, we are researching com-
parable virtual machinery for other user devices, such
as badge and laptop computers.)

In some situations, the UIA will act as the user’s ex-
tended self, gathering and presenting just the right
information to augment the user in his or her cur-
rent activity. A classic example is a weather beacon
(suggested in a recent article in the popular press'’):
When the weather brings rain, the UIA suggests shops
in the user’s current proximity that sell umbrellas.
The user perceives that the UIA is doing a great deal
of helpful work on his or her behalf, as if the user
were the one assessing the situation and gathering
the needed information. In actuality, the “work” is
the outcome of the UIA programming model. For
example, when weather events are posted to the com-
munication middleware, the middleware invokes a
service for gathering information on retail in the us-
er’s location (using the user’s real-time location, also
posted to the middleware). When the information
service returns with suggested stores, the middleware
alerts the user’s UIA and “pushes” the suggestions
over the wireless link to the user’s UlA interface. The
end-to-end data flow between the application on the
UIA and the data server, in response to the user’s
context, requires the capability to exchange messages
containing data and state information through the
infrastructure. However, this alone is not enough.
The data flow requires intelligence to route the mes-
sages through the middleware asynchronously and
through intermediaries that transcode between in-
compatible data formats, event models, and proto-
cols at any point in the path.

Our first implementation of a universal
information appliance

To implement our first UIA, it is necessary to develop
a design and architecture for the implementation.

Summary of requirements. The UIA product that we
envision in the mainstream (as suggested earlier) is

EUSTICE ET AL. §79

not quite the same device that we are implementing
now, but it is similar in its basic function. Summa-
rizing from the previous section, a universal infor-
mation appliance must be able to receive device and
program interfaces dynamically, render them, and
react in the appropriate manner. (For example, send
network message to invoke printer, send IR signal
to TV, compute a value, or store a value in the da-
tabase.) The UIA must also be able to store program
and user data in a local database. Additionally, the
UIA must be able to communicate with network
middleware that passes requests through to appro-
priate applications, and buffers data intended for the
UIA. The communication mechanism should allow
the user to roam transparently between computing
contexts. Thus, the UIA must support a wireless link,
and the wireless infrastructure should support seam-
less roaming between short- and long-range connec-
tions.

Implementation architecture. In this subsection, we
describe the UIA device and communication infra-
structure that we have designed in phase one of our
project in view of the stated requirements. For the
UIA device, we have developed a platform-indepen-
dent application and interface language and a local
storage system. These are implemented on a stan-
dard PDA (the 1BM WorkPad, also made as the 3Com
PalmPilot**). For the wireless connection, we use
an existing wireless messaging infrastructure to de-
liver information over long distances, and IR and
high-frequency RF for short-range communication.
For the communication middleware we use TSpaces*
(formerly written as “T Spaces™), middleware devel-
oped at IBM, that “glues” system components to-
gether by combining data management, computa-
tion, and communication. Although this initial
implementation uses a specific hardware platform,
the solution is intended to be hardware-independent.

UIA device architecture: Building the UIA using the
IBM WorkPad. From a software perspective, the UIA
requires three major components:

1. Aplatform-independent application and interface
language that can be efficiently retrieved dynam-
ically over a wireless connection

2. Alocal on-board database that stores application
data

3. A network interface to communicate with the
electronic universe and a local cache mechanism
that can be used to store application data intended
for the network when the device is disconnected

B80 EUSTICE ET AL.

MoDAL language. Since binary representations of
applications vary with differing hardware platforms,
the design of the UIA calls for a platform-indepen-
dent representation of applications and interfaces.
Interfaces, as highly structured entities, are well-
suited for encoding in a description language. We
have chosen the current standard language in indus-
try for structured document description,’ the
eXtensible Markup Language (XML), * to represent
UIA applications and interfaces. Since the applica-
tion descriptions are relatively high level, this ap-
proach gains a level of abstraction that makes UIA
applications and interfaces sufficiently compact to
be retrieved dynamically over the network without
bloating limited network resources. To illustrate this
point, consider the simple “Credit Me” application
shown in Figure 2. This application, written in 20
lines of MoDAL, requires over a thousand lines in a
traditional imperative approach, such as the C pro-
gramming language. Our interface and application
language, defined in XML, which we have named the
Mobile Document Application Language (MoDAL), al-
lows the application designer to create highly com-
plex applications.

MoDAL offers extensions to support dynamic user in-
terface creation, network service access, and local
database access, as well as flow control structures
and local variable assignment. The result is that
MoDAL interface content and style are dynamically
configurable as a function of data received from the
network middleware, and the user’s interaction with
interface resources (widgets) can asynchronously
communicate data and application state to the
middleware. Additionally, the MoDAL language is de-
signed to allow mobile clients to easily and efficiently
retrieve updates to applications without having to
retrieve a full copy of the updated application. Thus
MoDAL applications—very small, powerful docu-
ment-based applications—serve as dynamic inter-
faces to the electronic universe, exchanging data and
events between the UIA and any peer, and being up-
dated with new interfaces as the mobile user moves
contexts.

Local database. To extend the notion of the UIA be-
yond a glorified remote control, the UIA must be
equipped with a local database. This local database
allows the user to configure and personalize inter-
faces, along with defining certain behaviors, which
are uploaded to the intelligent middleware (e.g., “al-
ways turn on the lights when I enter the house”). Ad-
ditionally, personal heuristics such as voiceprint, en-
crypted passwords, etc., can be stored in the UIA for

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

security and verification purposes. In the soda ma-
chine example of the “Credit Me” application in Fig-
ure 2, we can transmit information identifying our-
selves to the soda machine, which can then charge
us for the soda, retrieving our billing information
from a network database. It is a very simple appli-
cation written in MoDAL as an application interface
to a soda machine. This application consists of a sin-
gle “form” or user interface that displays a simple
button with the text “Credit Me.” Pushing the “Cred-
it Me” button sends a message to the soda machine
that causes the machine to give the user a free soda.
How does the system know whom to charge for the
soda? The answer lies in stored user profiles—both
on the UIA and in the network. The MoDAL code for
this application is shown in Appendix A.

Equipped with a MoDAL engine, a local database, and
a wireless network connection, the UIA paradigm is
very appealing. Moving from location to location,
the UIA retrieves a list of available interfaces for the
current location. Data and control messages are
passed wirelessly to the various devices, enabling the
user to interact with his or her environment.

The UIA engine architecture. As shown in Figure 3, the
UIA engine consists of the interface manager, the
MoDAL interpreter, an XML parser, and associated
databases. The interface manager is responsible for
retrieving new MoDAL interface descriptions and pre-
senting the user with a list of available interfaces
(label 1). When a new interface is discovered (down-
loaded to the UIA), the MoDAL description is passed
to an XML parser that generates the elements (local
variables, event handlers, etc., label 2) and user in-
terface components necessary for the MoDAL appli-
cation (label 3). When a MoDAL application is
“launched” from the interface manager (label 4), the
MoDAL interpreter performs a lookup on the refer-
enced application and proceeds to load and create
the corresponding user interface. Additionally, the
UIA engine creates the corresponding event handlers
from the information stored in the interface elements
database. While running an application, the MoDAL
interpreter may make calls to the PDA operating sys-
tem (0s) database application programming inter-
face (API) or networking API (label 5), or both.

The two data resources (the interface elements and
the resource database) created by the parser serve
as the core of the MoDAL engine. The resource da-
tabase is a compiled version of the user interface (UI)
elements included in the MoDAL description (label
6). Available Ul elements include forms, buttons, text

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 2 An example of the "Credit Me" application

Palm 0% Emulator

fields, menus, labels, lists, tables, and help strings.
The parser builds the compiled resource by dynam-
ically creating the UI element data structures, ® and
then copying the data structure into a resource that
is accessible by the PDA 0S Form API.

The second data resource is a list of interface ele-
ments. This resource represents the kernel of the
MoDAL interface; it stores names, values, and rela-
tionships between elements. The members of this re-
source, resourcelD, token, valueType, value, next, and
attr, are described in more detail in Appendix B.

Defining the MoDAL language. MoDAL allows the IBM
WorkPad to perform four main actions: present a
graphical user interface, perform local computation,
read or write local database data, and send or re-
ceive messages to the communication component
(TSpaces). The user interface is generated dynam-

EUSTICE ET AL. 581

Figure 3 The UIA engine with a description of run-time functions

1. At startup the manager controls the main
event loop. The manager presents a menu of
MoDAL applications stored in the local
database and inTSpaces. When the user
selects a new application for interpretation,
the manager passes the interface description
to the parser. If the interface was previously
parsed, the manager copies its MoDAL
resources into the resource database.

2. The parser analyzes each element in the
MoDAL description and creates a node in an
element list. Each node points to the
element’s value, attributes, and children.

Interpreting an Application in the MoDAL Engine

3. For each Ul element recognized, the
parser calls the Ul classes to build the
GUI object to be displayed by the

PDA OS. Each GUI object is a record
in a resource database, including the
object’s variables, event handlers, and
a unique ID.

4. On launching the new application,
the manager gives the engine control
of the event loop by setting a pointer
to the start of the application’s element
list, and loading the main MoDAL form.

5. At run time, the event loop continues to receive
events, although now events generated by GUI
elements will be sent to the engine for processing.
For each event, the engine calls the handler routine
assigned to the source element. The handler may
invoke OS APIs to do any combination of the
following: set or get data from the GUI, read/write
the database records, or send to or query TSpaces.

6. Through the communications layer, the

engine receives MoDAL descriptions from TSpaces,
and sends or receives messages from TSpaces.

All communication with TSpaces goes through

a proxy, which translates MoDAL TCP/IP data
streams to tuples, and vice versa.

EVENT EVENTS %Z
Loop /ﬂ PARSER
EVENTS: MANAGER
EVENTS
% EVENTS || ENGINE

P
ELEMENT LIST II

SEND OR RECEIVE DATA

h%?

Ul CLASSES

/

RESOURCE DATABASE

COMMUNICATIONS

3%

A

SEND OR RECEIVE TUPLES

A

MoDAL PROXY

SEND OR RECEIVE TUPLES

ically by the MoDAL interpreter, instead of being cre-
ated externally to the device by a resource compiler.
A complete description of the MoDAL language can
be found in a separate document.™

The current implementation focuses directly on the
WorkPad. Consequently, the MoDAL description con-
tains WorkPad-specific values (i.e., a 160 X 160 pixel-
display, and the Palm 0s** widget set). However,

B82 EUSTICE ET AL.

we plan to change this focus in upcoming versions,
that is, we aim to make the MoDAL language plat-
form-neutral. To this end, we are considering the in-
corporation of Extensible Style Sheet Language
(XSL) support into the MoDAL specification. The XSL
will define how a particular MoDAL description
should be mapped to a particular device, and thus,
allow the MoDAL language to remain device-inde-
pendent.

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 4 is a simple “Hello World” application writ-
ten in MoDAL. The running application displays a sin-
gle button labeled “Say Hello”; when the user clicks
on the button, the WorkPad responds with “Hello
World.” The example source starts by defining an
application named “Hello.” Inside the application,
one form—“MainForm”—uses the entire 160 X 160
pixel screen of the WorkPad. Within the form is one
textfield, which is used by the application to display
its message. The definition of the textfield includes
the name of the textfield, its dimensions, and place-
ment. Additionally, the textfield definition sets the
character length of the textfield and defines the num-
ber of lines of text to be displayed—one or more.
The next element is a button. The button definition
has a name, a text label to be displayed in the but-
ton, dimensions, and position coordinates (that set
its position to the top left corner). Additionally, the
button has an associated action. Actions are event-
handlers that respond to events originating from the
parent UI element. The handler in this example is-
sues a SET command, setting the value of the text-
field to the appropriate string when the button gen-
erates an event (is clicked).

As a slightly more complex example, Figure 5 shows
aMoDAL application that interacts with TSpaces, the
underlying communication layer. This example will
send and receive text messages to and from TSpaces.
Each message is composed of a username and an
associated text message. Upon execution, the MoDAL
interpreter displays a form with four textfields, a
label, and two buttons. The first pair of textfield el-
ements are for the user to enter a user name and a
text message to send; the second pair are for display-
ing an incoming message’s user name and text, re-
spectively. When the user clicks on the “Bsend” but-
ton, the action associated with the button generates
a tuple composed of the strings in the “TFuser” text-
field and the “TFmsgToSend” textfield. Clicking on
the button “BRcv” will generate a TQUERY that que-
ries TSpaces for a tuple with two fields, each con-
taining data of type string (STRING=STRING), and sets
the text fields “TFfrom” and “TFmsgRcvd” with the
data returned. The user sees the sender’s name dis-
played in a textfield labeled “From” and the chat
message displayed in a textfield below.

TSpaces: The delivery mechanism. We use TSpaces
as the communication middleware between the UIA
and the network applications that house the major-
ity of the user’s data. TSpaces is particularly suited
to this task. TSpaces is a network communication
buffer with database capabilities that enables com-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 4 A simple MoDAL application

Palm OS% Emulator

munication between applications and devices in a
network of heterogeneous computers and operating
systems. That is, TSpaces allows any program or de-
vice to locate and communicate with any other pro-
gram or device, regardless of hardware, computing
platform, or location (Figure 6). TSpaces provides
group communication services, database services,
URL-based file transfer services, and event-notifica-
tion services.

TSpaces background. Structurally, TSpaces is a light-
weight database system '° coupled with a tuplespace 7
communication system, written in the Java** lan-
guage. TSpaces, like all tuplespace systems, uses a
shared whiteboard model (all clients can see the same
global message board, as opposed to multiple point-
to-point communication). Clients can see tuples,
posted by others, by issuing queries containing cer-

EUSTICE ET AL.

583

Figure 5 A simple chat client application in MoDAL with Tspaces interaction

Palm 05 Emulator

tain filters; for example, read “all of Harry’s posts”
or consume “all posts related to printing.” Because
TSpaces is implemented in Java and uses protocols
with standard TCP/IP, TSpaces is an ideal middleware
component for making network-oriented services
available to any client, regardless of the computing
platform. For example, a network service such as
printing, e-mail, network fax service, remote device
control, or program translation can be implemented
using TSpaces in the following way. A client in need
of a service, such as a PDA e-mail client, simply sends
a message in the form of a tuple' to the TSpaces
server. The tuple specifies the service needed (e.g.,
e-mail), the data to be processed (e.g., the header
and body of an e-mail note), and any essential ap-
plication state (e.g., the timestamp of the message).
A service provider application (e.g., an e-mail gate-
way) registers an interest with the TSpaces server

B84 EUSTICE ET AL.

Palm OS5 Emulator

for all tuples, mentioning that particular service class
(e.g., e-mail). When a tuple mentioning that service
class appears, the TSpaces server notifies the ser-
vice provider, whereupon the service provider re-
moves the tuple and processes it (e.g., packages the
e-mail and routes it to the designated recipient).

The rewards for this simple model are many. First,
this model uses the existing computing infrastruc-
ture—there is no need to change hardware, and only
minor, one-time software modifications in the form
of client interfaces are required. Second, the model
standardizes the interfaces to all services for all plat-
forms—it creates a uniform layer on top of the var-
ious heterogeneous platforms. Third, new services
(or new clients, for that matter) can be added dynam-
ically without reconfiguration (or recompilation) of
the servers or clients. Finally, and perhaps most im-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 6 TSpaces, the communication middleware for the UIA

O o=
0otooo
DDDDDDI
oooooo
."

)

%

==

==

I@

=] \=

portantly, TSpaces, being a database system, can
maintain and publish the active set of resources or
services so that clients may discover them automat-
ically. For example, by making a standard directory
service, a client of TSpaces, such as Lightweight Di-
rectory Access Protocol (LDAP)," Service Location
Protocol (SLP),” or Domain Name Service (DNS),
and by storing the contents of the directory in
TSpaces, an application can ask TSpaces for a re-
source reference using the standardized (well-
known) protocol. We plan to have future versions
of TSpaces include interfaces for well-known direc-
tory service protocols, as well as the capability for
the user to customize an interface.

Though very much like a relational database in func-
tion, TSpaces has a much simpler data model and
query language. Thus, clients can easily store and
retrieve data without having to first define any ta-
bles, normalize any data, or learn any complicated
query languages. However, though simple and easy
to use, TSpaces does have a rich feature set. TSpaces

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

has update and query operations, administrative con-
trol, transactions, application isolation, and direct
support for UIA-like devices. Details on the TSpaces
system can be found in a recent IBM Systems Jour-
nal paper.®

TSpaces as messenger, database, and file system. For
the UIA, TSpaces performs several services. First,
TSpaces is a messenger service, connecting the UIA
to any service it might need, such as printing, faxing,
e-mail, search services, Web proxy services, remote
device control, remote (legacy) application invoca-
tion, or program translation. In addition, TSpaces
manages the connection of the UIA to other UlAs
(PDAs) when a direct peer-to-peer link is not pos-
sible, either because the peer is remote or has an
incompatible underlying platform that requires an
intermediary for communication. Second, TSpaces
is a file system for the UIA—TSpaces is the base with
which the UIA synchronizes its data for backup and
from which the UIA downloads and launches inter-
faces for mobile applications. In our implementa-

EUSTICE ET AL. 585

tion, TSpaces augments the native communication
and application storage models of the UIA, requir-
ing only a lightweight proxy to transcode messages
from the UIA implementation language to TSpaces.
Third, TSpaces is a resource directory service and

The wireless infrastructure and
two-way wireless communication
link are essential in the
overall UIA architecture.

database for the UIA, serving names and resources
for people and services. Finally, TSpaces acts as an
intermediate database system, caching data from net-
work and mainframe database systems and legacy
applications.

The wireless connection. The UIA vision for context-
aware interfaces depends on mobility for the UIA and
the ability for the UIA to discover devices and ser-
vices in its physical proximity. Thus, the wireless in-
frastructure and the two-way wireless communica-
tion link for the UIA are essential in the overall UlA
architecture. The wireless link for the UIA has two
modes: high-speed, short-range mode and low-speed,
long-range mode. An important use of the high-
speed short-range mode is device discovery. For ex-
ample, using a discovery protocol, such as Service
Location Protocol,? Salutation,?! or Jini**,?* when
a user with a UIA enters a “smart” room, the UIA
picks up a broadcast signal declaring services are
available. The UIA responds with its ID and queries
the room for applications that it might download in
order to interact with the appliances or media ser-
vices of the room.

When operating in “high-speed mode,” the UIA is
able to function as a network computer. That is, it
has real-time access to the available network services
(printing, e-mail, fax services, remote device control,
program translation, etc.). The network services
download their interfaces over the wireless connec-
tion, whereupon the UIA can use them to execute
the various services. Two possible wireless technol-
ogies for the high-speed mode are an infrared link,
such as that used on the IBM WorkPad model 8602-
20x°, or a radio frequency link transmitting at fre-

B86 EUSTICE ET AL.

quencies in the upper RF band (1-2 GHz), such as
the proposed Bluetooth technology’ (Figure 7).
However, both technologies have limited range—on
the order of 10 meters. Infrared (IR) has a range of
1-10 meters and Bluetooth (BT) has a range of 10—
100 meters.’ Because of this distance restriction,
“corridors” for high-speed access are essential in
well-populated areas where service offerings are
dense, such as places of work or university campuses.

At times, a user will travel outside the range of all
high-speed corridors. Even so, the user can still con-
nect to the network through a “low-speed mode,”
which exchanges data throughput for range. The low-
speed mode is implemented using TCP/IP over, for
example, a two-way messaging system, such as the
reFLEX protocol from Motorola,® for data rates
around 14.4 KB/s (though current data rates for re-
FLEX are slower—9.6 KB/s for the uplink and 6.4
KB/s for the downlink). Alternate wireless data tech-
nologies include data over voice cellular solutions,
such as Cellular Digital Packet Data (CDPD, wire-
less IP), Code Division Multiple Access (CDMA), and
Time Division Multiple Access (TDMA) (both dig-
ital cellular), and Global System for Mobile commu-
nications (GSM, the standard for wireless voice and
data in Europe and Japan), as well as radio modems
(e.g., Ricochet) (Figure 8). However, we are focus-
ing on the two-way pager infrastructure as a cost-
effective near-term solution. The reFLEX pager in-
frastructure can potentially support almost complete
coverage for connectivity, as most areas of the United
States are already covered by a combination of pager
networks.*

The intentions of having the high-speed and the low-
speed wireless modes for the UIA are based on what
the user is likely to require in short-range and long-
range situations, respectively. To make a compar-
ison, whereas the high-speed link is the “interface
connection” for the UIA acting as a network com-
puter, the low-speed link is the “data connection.”
The low-speed link is the channel by which the user
receives information updates to programs, such as
e-mail, messages, calendar updates, and other asyn-
chronous, application-specific updates. It is possible
to download applications over the low-speed link.
For example, a simple MoDAL application (a few
frames and 1015 actions) is only a few lines of code,
on the order of 1-5 KB. Over a high-speed connec-
tion, the application download is practically instan-
taneous; over a low-speed connection, the download
time is only a few seconds. A complex MoDAL ap-
plication (50 frames, 200-300 actions), for example,

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 7 The short-range wireless connection—PDA interacts with entertainment center, having received interfaces

from local interface server

P

INTERFACE SERVER

BLUETOOTH TRANSCEIVER

could be on the order of 100 KB. Over the high-speed
link, the application download time is still negligi-
ble. Over the low-speed link, assuming an average
data rate of 20 KB/s, the download time is 40 sec-
onds—some latency but still tolerable. However, the
absence of a specific context (such as the proximity
of a device) and the latency make the slower link
impractical for applications with strict real-time re-
quirements, such as interfaces for fine-grained re-
mote control.

A popular application—The active calendar

One of the most popular applications for the PDA,
and consequently, a useful application for the UIA,
is the calendar. The typical PDA calendar provides
the user daily reminders of planned activities; how-
ever, the information provided is static, consisting
of facts the user has entered and of which the user
is already aware. The active calendar application®
aims to change this by combining vast available in-
formation with specific personal needs in a new con-
venient way. In addition to storing the information
the user inputs, active calendar automatically uses
that information to predict what additional informa-
tion may be needed. The system is able to search and

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

retrieve information from a multitude of sources
(e.g., a local disk, an organization’s intranet, or the
Web), organize the information, and bring it to the
user. A user can customize the information to be re-
trieved and the actions to be taken in response.

For example, assume a user enters “meet with John
D at Xyz-Soft about Project-X.” When the entry is
stored, the active calendar service collects informa-
tion about XYZ-Soft (an up-to-date stock quote, com-
pany news, etc.), information about John D (e.g.,
telephone number, e-mail address), and about Proj-
ect-X (e.g., project home page and general Web
search results). Then active calendar links this in-
formation to the calendar entry.

We envision future PDA calendar applications being
extended with the “active” features in this example,
relying on the UIA and its communications infrastruc-
ture as enabling technologies. An active calendar ser-
vice (see the next subsection) simply registers itself
as a service provider application in a TSpaces da-
tabase system, and exposes its interface by register-
ing its interface methods with a directory service in-
tegrated with TSpaces. A UlA-enabled PDA calendar
application can now be extended to take advantage

EUSTICE ET AL. 587

Figure 8 The long-range wireless connection

ISP

of this new service and automatically augment the
calendar entries with helpful “just-in-time” informa-
tion (see the next section). A final but nontrivial
point: because active calendars “predict” and auto-
matically collect information that the user might need
in the future, waiting to download the information
when a user connects, active calendars are ideally
suited to work in disconnected mode.

Active calendar implementation. The current imple-
mentation of an active calendar service at the IBM
Almaden Research Center is operational. The sys-
tem is capable of automatically searching and col-
lecting information for the Lotus Notes** calendar
system, which is being used by most of IBM’s employ-
ees worldwide. To maximize portability, the active
calendar code (approximately 22000 lines) is writ-
ten in Java. The active calendar service currently runs
on a single server and automatically accesses and
augments calendar entries for one dozen test users.
The current implementation focuses on automatic
retrieval of information typically needed by IBM Al-
maden employees.

We have compiled a list of more than 30 events com-
monly used by employees at Almaden. These include
various kinds of meetings (e.g., department meet-
ings, round-table meetings, invention meetings, etc.),
events that involve travel, such as attending a con-

B88 EUSTICE ET AL.

ference, and private events, such as birthdays and
vacations. For each event, we have defined a set of
default actions that satisfy the information needs of
typical Almaden users. As an example, an Almaden
project meeting has the following information: peo-
ple attending the meeting, the subject of the meet-
ing, and the location (e.g., conference room) where
the meeting takes place. The active calendar auto-
matically collects the following information:

* Contact information, such as telephone number,
e-mail address, office location, and job responsi-
bilities, for each person attending the meeting

* Project home pages and a brief project descrip-
tion, obtained by querying a project database for
the subject(s) of the meeting

» Allthe reservations of the conference room where
the meeting takes place on the day of the event,
retrieved from a Lotus Notes database that stores
conference room reservations at the Almaden Re-
search Center

Another example is a business trip, where the user
provides information on the destination of the trip
(city, state, and possibly an address) and, if neces-
sary, a preferred airport. The active calendar returns
the following information:

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

* Atimetable listing all flights from the user’s home
city to the destination on the particular dates of
the event

* Driving directions from the airport to the desti-
nation

* Hotels and restaurants in the neighborhood of the
destination

¢ Any events in the destination city occurring dur-
ing the visit

* A weather forecast for the destination, updated
daily and starting five days before the actual event

We are at the initial stage of deploying the active
calendar at the Almaden Research Center. Many
challenging problems remain to be solved, among
which are usability issues and how to improve the
quality of the information collected. However, we
are convinced that the calendar is truly the right
channel for pushing information to people who typ-
ically are too busy to track down the information
themselves. Currently we are improving the user in-
terface on the Lotus Notes and Microsoft Outlook™**
calendar systems, which ultimately will provide us
with an application that is easier to use and custom-
ize and that is able to collect more accurate infor-
mation.

Integrating the UIA and active calendar—
Extending the UIA for “push”

Upcoming versions of active calendar will be inte-
grated with the UIA, so that PDA calendar applica-
tions written in MoDAL, or augmented by MoDAL
helpers, can interact with the active calendar service
through TSpaces. Integrating the active calendar ser-
vice and UIA to deliver tailored information repre-
sents a central theme in our present research: ex-
tending the UIA for information “push.”

We consider the first version of the UIA—a MoDAL
engine executing on an IBM WorkPad—as a glimpse
into the next generation of computing. The popular
media is abuzz with projections of a fundamentally
new computing experience characterized by a per-
vasive “push” of information to the chameleon-like
user interface, ever adjusting itself to the push
stream. '° In the envisioned scenarios, the interface
style and content are always tailored to the user’s
context, for example, the user may step into a new
place and download just the right interface to reach
out to the available devices and services. Such sce-
narios require MoDAL capability to build soft appli-
cation interfaces on the fly. We realize, though, that
soft interfaces are only the first step. In order to push

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

the right information to the user when the user needs
it (“justin time”), the present UIA architecture must
be extended such that MoDAL applications openly in-
teroperate with other applications and services in the
network.

The present implementation of MoDAL employs a
“pull” model in which the MoDAL client can query
TSpaces for events sent to TSpaces by other active
clients. In order to realize the UIA vision, the MoDAL
architecture must be extended for “push” of events.
This extension requires opening the MoDAL and
TSpaces event model to events detected by, or in-
ternal to, other active components in the network.
In this section, we illustrate this and discuss our cur-
rent research in using events as the basis for com-
posing UIA applications. First, in the following sub-
section we explain why “pushing” information and
interface style to the UIA based on the user’s context
relies on the capability to exchange events among
the UIA and other active networked components
through the middleware (TSpaces). We show this
with the example of a remote control application for
the UIA. Then, in the subsequent subsection we ex-
plain how we are building on the event exchange
model to create an architecture for UIA applications
in which MoDAL clients universally interoperate with
peer applications and devices through TSpaces. Fi-
nally, in the last subsection we outline the design for
the UIA active calendar application that we are cur-
rently building, using the event exchange approach.

Achieving context-aware push with event exchange.
In traditional, sequentially programmed applications,
software components can only “listen” for and re-
spond to events within the specific event model of
the application, that is, events that are of a compat-
ible type and which are generated by well-known ob-
jects, internal to the application. “Pushing” context-
dependent state and data to the UIA requires an open
event model. UIA applications must be able to trig-
ger off events generated externally by other active
components. Similarly, in order for the UIA to in-
teroperate with a remote component, such as a de-
vice or application service, the events generated in
a UIA application must be externalized to trigger be-
haviors in the remote component. Assuming a dy-
namic user-context, the event types that the UIA ap-
plication will encounter are unpredictable, so UIA
applications must be designed to incorporate new
event types at run time. Finally, to tailor UIA appli-
cation content and style to the user’s context, the pro-
gramming model for UIA applications must allow the
programmer to translate events inferring the user’s

EUSTICE ET AL. 589

context into meaningful application behaviors (con-
tent and style updates). The range of event types this
programming model must encompass is broad and
extensible. In fact, any instance of activity, which can
be digitized and communicated as a typed bit stream
(message) is potentially an “event.” For example,
events may include the user’s interactions with an

We assume events are
the glue for composing
distributed applications.

application, or activity detected by the many sensors
deployed in the physical world giving hints about the
user’s location, proximity to equipment or people,
and current behavior. To meet these requirements,
we are taking a new approach to building distributed
applications for the UIA that relies on the middle-
ware (TSpaces) to communicate events between the
UIA and peers with which it interoperates.

To illustrate, consider a UIA application for control-
ling a factory floor machine from the UIA. First, upon
entering the factory floor, an employee is presented
with the opportunity to download the MoDAL appli-
cation for the machine. This action requires the net-
work middleware (a TSpaces server), on behalf of
the UIA, to interact with a user location service for
the factory area. Depending on the accuracy of the
location required by the application, the location ser-
vice may comprise any number of technologies: a
wireless network gateway, an electronic badging sys-
tem, or a system collecting signals from passive RF
receivers ubiquitously deployed around the factory.
The TSpaces (TS) server has registered for events
indicating the presence of this particular user. When
the user enters the environment, the location ser-
vice sends an event identifying this user to TSpaces.
In turn, the TS server signals the user’s UIA to launch
a MoDAL application appropriate to the circum-
stance, for example, an application for download-
ing machine controls.

The application presents the user with the MoDAL
interfaces for the local domain (the factory floor)
stored in TSpaces. (Alternately, the interfaces may
be stored by an interface server connected to
TSpaces.) When the user selects the machine con-

B9(EUSTICE ET AL.

trol application, his or her UIA connects to TSpaces
and downloads the MoDAL description from TSpaces
over the wireless link. Concurrently, the TS server
registers the UI objects on the UIA with the corre-
sponding objects in the software controls for the ma-
chine, and with databases or message services pro-
viding information about the machine. For example,
the TS server registers the MoDAL UI elements for
events from the corresponding software controls of
the factory machine, and vice versa. Thus, the user
can activate the machine from the UI controls on his
or her UIA and receive feedback in the form of text
in dialog boxes on the UIA, as if he or she were ac-
tually using the control panel of the machine. Sim-
ilarly, the TS server registers a MoDAL dialog box for
messages about the factory machine from a mail
gateway or an inventory database. This allows mes-
sages pertaining to the machine to be pushed to the
MoDAL dialog box.

In these examples, the TS server makes event reg-
istrations on behalf of clients, e.g., the MoDAL ap-
plication and the other agents with which MoDAL will
interoperate. When events matching these registra-
tions occur, the TS server is notified by the event-
notification mechanism built into TSpaces. It is then
up to the TS server to communicate these events to
the MoDAL client as if the events happened internally
to the client. This approach bypasses the process of
translating remote events into local events. Instead,
the TS server simply invokes appropriate actions de-
fined by the MoDAL client in a generic interface, pass-
ing parameters from the notified event. The TS server
translates the notified event into the appropriate ac-
tion by dynamically interpreting stored event rules.
We describe an event-processing engine in TSpaces
that performs this function in the next subsection;
also see Munson.?’

In the factory floor example, when an e-mail gate-
way receives a message pertaining to the factory ma-
chine, the gateway sends an event to TSpaces. Hav-
ing registered for e-mail events pertaining to the
machine, the TS server is notified. The TS server pro-
cesses the event, selects the appropriate client (the
user’s MoDAL application), and assembles the appro-
priate action object. In turn, the TS server performs
a lookup of the action interface for the client and
invokes the corresponding action method. The im-
plementation of the action displays the e-mail on the
UIA by, for example, setting the value of a textfield
object. The result is that the user sees the e-mail text
on his or her UIA.

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

The same concepts apply for a MoDAL active calen-
dar. The TSpaces middleware registers the MoDAL
objects in a PDA calendar application for pertinent
data located by the active calendar service. Regis-
tration takes place in real time so that the informa-
tion pushed is always tailored to the user’s most cur-
rent situation. For example, by monitoring real-time
location events such as those received from a GPS
receiver, the active calendar service can push driv-
ing directions turn by turn as the user travels to a
meeting.

Our current work focuses on how the TSpaces
middleware can exchange events between a MoDAL
application and distributed services and devices, even
when the event models of the interacting components
are not compatible. We intend TSpaces to be the
pervasive event listener for any client, such that
TSpaces is programmed to listen for events from ex-
ternal components and invoke the appropriate cli-
ent actions when external events occur. Thus, events
(in TSpaces) are the basis for composing distributed
applications in which MoDAL clients interoperate with
any other component.

An architecture for building UIA applications us-
ing event exchange in TSpaces. Our approach to
achieve universal interoperability for UIA applica-
tions assumes that events are the glue for compos-
ing distributed applications. We use a broad defi-
nition of “event”: An event is simply a unit of activity,
either internal to or detected by an application com-
ponent, that can be expressed as a parameterized
message (tuple). UIA applications composed from
distributed components interoperate by exchanging
events through TSpaces. The event exchange be-
tween MoDAL clients and other components, such as
databases, remote devices, and application servers,
is programmed with a generalized grammar of event-
triggers-action rules. “An event in entity A triggers
an action in entity B.” The basic expression in our
rule grammar is:

Rule = TSClient.EventClass(parameters)
— TSClient.ActionClass(parameters)

The TSpaces engine manages the event exchange ac-
cording to these rules, at run time. Upon interpret-
ing a new event rule, the TSpaces engine registers
for the specified event on behalf of the TSpaces cli-
ent. When the engine receives a notification that an
event matching its registration has occurred, the en-
gine searches its store for rule(s) matching the no-
tified event. When it finds a match, the engine fol-
lows the rule and injects the specified actions in the

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

appropriate receiving clients through generalized ac-
tion interfaces.

In addition to the event-rule processing in the
TSpaces engine, this model relies on four require-
ments: (1) a universal syntax for event and action
classes, (2) action interfaces, opening clients for ac-
tion invocation in response to external events, (3)
an appropriate event model within TSpaces, includ-
ing published interfaces for event registration and
notification, and (4) transcoding proxies, to allow het-
erogeneous (non-Java) clients to notify TSpaces of
events and to be invoked by TSpaces. These require-
ments are now described in more detail.

1. Universal event syntax—MoDAL, and the services
and devices with which MoDAL applications inter-
operate, have internal representations of events.
To mask incompatibilities, we are designing a uni-
versal object syntax for expressing events in XML.
The extensibility of XML is convenient for design-
ing hierarchical classifications of event types.
For example, a general location event class repre-
senting location fixes for people or things,
Location(entity, domain), can be subclassed for fine-
grained location fixes, such as GPS(entity,
latitude, Tlongitude, altitude) and
Bluetooth(entity, domain, picocell).Inad-
dition, XML is becoming a popular metadata lan-
guage for exchanging information between appli-
cation domains, so an XML syntax for events
increases the opportunity for interoperability.

2. Action interfaces—In order to “open” TSpaces
clients for triggers from external events, active cli-
ents implement generic interfaces for action in-
jection. For example, the actions in a MoDAL ap-
plication to be triggered by external events are
exposed through a generic object interface, pub-
lished to a well-known directory service.

3. TSpaces event model—The event model within
the TSpaces engine uses a publish-register-notify
approach.? Each tuple space publishes an inter-
face exposing the event classes contained. As the
TSpaces engine interprets a new event rule, the
engine performs a lookup of tuple spaces for
events of that class and registers with those
space(s). In registering with a space, the engine
passes a tuple template specifying the event pa-
rameters (a variable or an exact value) to be
matched. When an event matching the registra-
tion template is written to the space, the engine
is called back (notified) and passed the matching

EUSTICE ET AL. 501

event. The matching of events to registration tem-
plates builds on the current TSpaces capability
to match a tuple field on an exact value or any
value of the field’s type. We are adding registra-
tion interfaces for discovery of event classes by
tuple space.

4. Transcoding proxies—A new generation of flex-
ible proxies is required to interface TSpaces with
the variety of potential MoDAL-like interpreters
possible for mobile or wearable platforms. We are
exploring IBM’s Web browser intelligence (WBI)*
technology for flexible proxy building. For exam-
ple, future versions of the UIA may communicate
with TSpaces over HyperText Transmission Pro-
tocol (HTTP), via a Web server, using a transcod-
ing proxy such as WBL.

An example—the UIA active calendar. The princi-
ples outlined in the previous subsection are our
framework for building pervasive “push” applications
of many varieties. For example, consider an active
calendar application extended for the UIA. The ap-
plication includes a UIA calendar application (UIA),
written in MoDAL, interoperating with the active cal-
endar service (ACS) through TSpaces. When the user
records a new calendar entry, the active calendar ser-
vice sets out to find the pertinent information and
downloads it to the client to display in the calendar
application. For example, the UIA user might record
an entry for a meeting with “John D” at company
“XYZ-Soft” about “Project X”; the user prefers to
fly into “LAX” airport. The ACS collects information
for the meeting—the contact information for John
D (e-mail address, cellular phone number, and job
responsibilities) and the latest news on XYZ-Soft. The
ACS also collects local information, including driv-
ing directions from LAX and local restaurants for a
business lunch. The collected information is then
downloaded through the TSpaces network and over
the wireless link, to be displayed in the user’s UIA
calendar application.

Because the attributes of MoDAL elements are in-
terpreted dynamically, both the style and the con-
tent of the UIA calendar interface can vary in real
time. Thus, views can be tailored to the user’s present
needs (“Load driving directions when I am driving”)
and to the user’s preferences (“Show Michelle a full
company news report but omit news for Toby”). The
interface can also be tailored to the hardware de-
vice capabilities. For example, on the PDA display
only thumbnail images, “snippets” of local restau-
rant information, and text reminders appear, but the

B92 EUSTICE ET AL.

mobile PC, or the embedded auto-PC, display a full
map, and play reminders as speech.

Active calendar components. The proposed active cal-
endar system for the UIA would consist of the fol-
lowing components identified by the corresponding
letters in Figure 9.

A. UIA client with MoDAL calendar application—The
client publishes a generic action interface defin-
ing the MoDAL actions to be invoked in response
to events in TSpaces. For example, an interface
may declare a method that displays in a MoDAL Ul
object the contents of a tuple retrieved from
TSpaces. The action interface is published to a
well-known directory service.

B. Active calendar service—The ACS, also a client
of TSpaces, publishes a generic action interface
in XML. The interface defines action methods, ex-
posing the internal ACS methods to TSpaces.

C. Directory service—The directory service is well-
known and is used by the TS engine to locate ap-
propriate action interfaces and by TSpaces cli-
ents (the UIA client and the ACS) to locate proxies
for connecting to TSpaces. The contents of the
directory service are stored in TSpaces, so that
the directory service can be queried using a stan-
dard protocol to look up interface or proxy ref-
erences by attribute.

D. Universal communication protocol—The UIA
and application services, like active calendar, re-
quire a universal protocol to communicate with
TSpaces. HTTP is a possible choice for several rea-
sons. Most TSpaces clients can conveniently ex-
ecute a Web server, URL-based locators provide
a natural global naming scheme, and HTTP is a
simple and widely used protocol for markup-lan-
guage communications, such as MoDAL programs
and XML action interfaces.

E. TS engine with event exchange capability—The
TS engine manages all event communication be-
tween the UIA client and the ACS according to
event rules, which are parsed and executed
dynamically. On interpreting each new rule, the
TS engine registers with the appropriate tuple
spaces. When notified of a new event, the TS en-
gine searches the rule store to match the notified
event. If a match is found, the TS engine performs
a lookup in the directory service for the action in-
terface method named in the rule. The TS engine
connects to client(s) implementing the interface and
invokes the designated action, or alternately, writes
a tuple to the local tuple space of the client, which
triggers the client to do the action.

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 9 UIA active calendar system components

(D) TS ENGINE + EVENT EXCHANGE

<APPLICATION
Name="“Calendar”

MoDAL
ENGINE

ACTIVE
CALENDAR
ENGINE

(F) PROXY INTERFACES

(E) UNIVERSAL COMMS

(A) UIA WITH MoDAL CALENDAR

(E) UNIVERSAL COMMS

(B) ACTIVE CALENDAR SERVICE

N

(C) DIRECTORY SERVICE IN TS

ELEMENT

REFERENCE

PROXY

ACTION INTERFACE

URL
URL

F. Flexible proxy interface to TSpaces—If HTTP is
assumed to be the universal communication pro-
tocol, a transcoding proxy, such as IBM’s WBI tech-
nology, translates between the client’s HTTP re-
quest and TSpaces. On the upstream (client to
TSpaces) connection, the proxy converts a client’s
HTTP post of a tuple space command (TSWrite,
TSRead) to the corresponding TSpaces proto-
col. On the downstream (TSpaces to client), the
proxy allows the TS engine to select the action
interface of the client.

Active calendar architecture. Our approach for build-
ing an active calendar application for the UIA is sum-
marized as follows:

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

We open the UIA client (UIA) and the active cal-
endar service (ACS) to exchange events over the
network through TSpaces. The UIA and the ACS
write events as tuples into TSpaces. Both expose
their internal event-handling methods to events in
TSpaces by publishing interfaces for “action injec-
tion.”

The “action injection” interface for the UIA cal-
endar describes how the attributes and values of
MoDAL elements, such as text displayed in text-
fields, will be set by events in TSpaces. For exam-
ple, the calendar will implement an action method
to display information written to TSpaces (by the
ACS) in the relevant calendar entry.

EUSTICE ET AL. 5§93

* TSpaces manages the event communication be-
tween the UIA and the ACS, according to event
rules as introduced above: Rule = TSClient.Event-
Class(parameters) — TSClient.ActionClass(param-
eters). When the TS engine interprets a new rule,
it registers for the designated event with the ap-
propriate tuple space on behalf of the client ob-
ject, i.e., the UIA calendar or the active calendar
service. When an event for which the TS engine
has registered arrives in TSpaces, the TS engine is
triggered to check its stored rules for a matching
event template. If a match is found, the TS engine
follows the rule and invokes the appropriate ac-
tion interface of the client to be triggered. The
event rules are object-oriented, which allows event
parameters to be readily passed into the action in-
vocations. Because interpretation is at run time,
clients can be registered for new event classes with-
out recompiling.

To illustrate these principles, let us consider the ex-
ample active calendar scenario introduced previ-
ously. Step-by-step illustrations of the run-time flow
are shown in Figures 10 and 11. You, an active cal-
endar user, have an upcoming meeting with “John
D” at company “XYZ-Soft” about “Project X.” You
will be flying via “LAX” airport and wish to have both
driving directions to the meeting from the airport
and suggestions of nearby restaurants for a business
lunch. You have recorded these preferences in your
UIA calendar application, which has uploaded cor-
responding event rules to the TSpaces engine. Now,
when you store the new calendar entry (by, for ex-
ample, pressing a “store” button in your UIA calen-
dar application), the TSpaces middleware goes into
motion on your behalf.

(Referring to Figure 10, we continue with the illus-
tration.) Your entry is packaged into a tuple, which
is sent over the wireless link to TSpaces (Step 1).
The event management within TSpaces (Step 2) in
turn invokes the active calendar service, also a cli-
ent of TSpaces, to find a pertinent meeting and lo-
cation information on your behalf (Step 3). (Refer-
ring to Figure 11, we see the remaining steps.) The
active calendar service returns the pertinent infor-
mation to TSpaces (Step 4). Again, the event man-
agement in TSpaces passes the information back to
your calendar application (Step 5) and invokes the
appropriate MoDAL action defined in the application
interface to display the information in your UIA cal-
endar in real time (Step 6).

B94 EUSTICE ET AL.

Note that in this scenario, neither the UIA client nor
the active calendar service needs to be known to each
other, nor must they be in a single administrative do-
main or use the same TS server. Furthermore, be-
cause MoDAL interfaces are dynamically interpreted,
the same active calendar service can be offered on
the user’s desktop PC, or in an auto-PC, or any plat-
form with a MoDAL interpreter, for example. Because
the interaction of the ACS and the UIA calendar ap-
plication is decoupled from either client’s internal
event model and is wholly asynchronous, the same
service can be offered to many heterogeneous cal-
endar applications with information sent on an as-
needed basis. For example, capability exists such that
auser can make calendar entries on any MoDAL cal-
endar application (independent of hardware and in-
terface configuration) and receive the helpful infor-
mation when appropriate to his or her context. For
example, driving directions can be downloaded to
the user as he or she is stepping out of a plane by
accounting for the flight time, or even for the real-
time location coordinates, in the TSpaces event man-
agement.

Related work

Several other projects have looked at various com-
ponents of the system we have outlined here. None
have focused on the system that we have presented
here, namely XML application description and gen-
eration for wireless interaction with heterogeneous
mobile devices.

The most pertinent of the related projects are the
BARWAN and Ninja projects at the University of Cal-
ifornia, Berkeley. Hodes and Katz describe a system
of static interface description and generation based
on XML descriptions of device interfaces.*® The fo-
cus of this work is to investigate interface genera-
tion and the customization of interfaces, both inter-
esting and applicable to our work on the UIA, but
not overlapping with our current UIA design of dy-
namic application-based interfaces.

Another related research project is the Rover proj-
ect at the Massachusetts Institute of Technology.*!
The Rover project investigated queued remote pro-
cedure calls and relocatable dynamic objects, spe-
cifically focusing on the unique requirements of mo-
bile environments. One aspect of the Rover project
involved dynamic invocation of mobile applications.
The Rover toolkit supports the retrieval and execu-
tion of static applications. The UIA differs from this
by supporting dynamic application updates via the

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 10 Run-time flow for the UIA active calendar: invoking the ACS from the UIA

When the user makes a new calendar entry, the entry information is packaged into a tuple and sent over the
wireless link to TSpaces. The event management in TSpaces translates the event into an invocation of the active
calendar service methods to retrieve information pertinent to the calendar entry. TSpaces processes the event

according to a stored rule:

e Rule getCalEntry = UIA.Calendar.Entry(Date, Person, Subject, Place, Airport) —
ACS.getMeetingNotes(Date, Person, Subject, Place) ; ACS.getLocationHints(Airport)

In TSpaces, the calendar entry data are passed from the event tuple to action tuples, which name the ACS action

methods to be invoked and their parameter values:

. <"Calendar","Entry","02-15-2000", "JohnD", "ProjectX", "XYZ-Soft", "LA-X" > —
<"getMeetingNotes", "02-15-2000", "JohnD", "ProjectX", "XYZ-Soft'> ; <"getLocationHints", "LA-X">.

ACTIVE CALENDAR SR E
Monday
Feb 15, 2000
....Meeting
....John D EVENT
....XYZ-Soft STEP 1 RULES
....Project X S E
TS ENGINE \
. o o . ACTIVE
<"Calendar", "Entry", "02-15-2000", <"getMeetingNotes","02-15- CALENDAR
MoDAL “JohnD", "ProjectX", "XYZ- 2000", "JohnD", "ProjectX", ENGINE
ENGINE Soft', "LAX"> "XYZ-Soft'>
<"getLocationHints", "LA-X">

http://UIA_TSServer/UIA_WBI/["TSWrite" ["Calendar", "Entry", "02-15-2000", "ProjectX", "XYZ-Soft","LA-X"]]

CONTENTS OF DIRECTORY SERVICE (IN TSPACES)

ELEMENT NAME REFERENCE

ACTION getMeetingNotes http://ACS-TSServer/ACS-WBI
getLocationHints

EVENT Entry http://UIA-TSServer/UIA-WBI/Calendar

MoDAL interpreter and by utilizing a high-level in-
terface language (XML), as well as extending the fo-
cus to remote device control.

Although the UIA model includes database support
on the device and in the middleware, the dynamic
nature of the MoDAL engine results from its com-
bination of features (dynamic compilation, wireless

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

communication to network middleware, local com-
putation, and on-board cache). Thus, the few data-
base platforms now available for PDAs do not com-
pete. Sybase’s SQL-Anywhere** product?® is a fully
functional SOL (structured query language) database
system that runs on multiple PDA platforms. How-
ever, it is only a database system. Applications that
use SQL-Anywhere are statically compiled, loaded,

EUSTICE ET AL. 50§

Figure 11 Run-time flow for the UIA active calendar: pushing information to the UIA

When the active calendar service has located helpful information for the calendar entry, it packages the information in
a tuple and writes the tuple to a local (well-known) tuple space. The event management in TSpaces translates this “event”

into the injection of a MoDAL action, according to stored event rules:

e Rule setMeetingNotes = ACS.Meeting(Date, Person, Email, Cell, Position, News)
—> (UIA.Calendar.getEntryforDate(Date)).setNotes(Person, Email, Cell, Job, News)

® Rule setLocationHints = ACS.Location (Airport, Directions, Restaurants)
—> (UIA.Calendar.getEntryforAirport(Airport)).setLocationHints(Directions, Restaurants)

The user sees the information gathered by ACS displayed in his or her UIA calandar.

The event management in TSpaces causes the ACS information to be passed from event tuples to action tuples, which name the MoDAL
actions to be injected, including parameter values. When the action tuples are written to a tuple space local (well-known) to the proxy

of the UIA, the proxy is notified and “pushes” the actions to the UIA calandar. Alternatively, in a pull approach, the action tuples persist in
the space until the UIA queries for new actions.

Example event and action tuples for the user situation shown in Figure 10 are given below:

® <"Meeting", "02-15-2000", "JohnD", "johnd@xyz-soft.com", "408.927.1416", "Pointy-hair Boss", "XYZ-Soft stock at record high...">
— <<"Calendar", "getEntryforDate", <"02-15-2000">>,"setNotes", <"JohnD", "johnd@xyz-soft.com", "408.927.1416", "Pointy-hair
Boss", "XYZ-Soft stock at record high...">>

o <'"Location", "LA-X", "N from LAX on HW 101...", "Kim’s Sushi, 409 West 7...">
—> < <"Calendar", "getEntryforAirport", <"LA-X">>, "setLocationHints", <"N from LAX on HW 101...", "Kim’s Sushi, 409 West 7 ...">>

STEP 5

STEP 6

(_TsENaNE))

STEP 4

) ACTIVE
<"setNotes", "JohnD", <"Meeting", "02-15-2000", CALENDAR
MoDAL "johnd@xyz-soft.com", "JohnD", "johnd@xyz- \ENEU
ENGINE '408.927.1416", "Pointy-hair soft.com', "408.927.1416",
Boss", "XYZ-Soft stock at "Pointy-hair Boss", "XYZ-Soft
record..."> stock at...">
<"setLocationHints", "N from <"Location", "N from LAX on
LA-X on HW 101...", "Kim’s HW 101", "Kim’s Sushi, 409
ACTIVE CALENDAR Sushi, 409 West 77..."> West 7..">
Feb 15, 2000

MEETING NOTES
Meeting with: John D

Email: john

soft.com LOCATION HINTS

Cell Phone Directi ;

Job Respo A;rrsgffns o http ://ACS_TSServer/ACS_WBI/[['TSWrite" ["Meeting", "JohnD", "johnd@xyz-
o | soft.com?, "408.927.1416", "Pointy-hair Boss", "XYZ-Soft stock at record high..."],

N from LA-X on 101

Restaurants in Area:
Kim’s Sushi, 409...

"TSWrite" ["Location", "N from LA-X on HW 101...", "Kim’s Sushi..."]]]

B96 EUSTICE ET AL.

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

and run, in the same manner as in any other static-
programming environment.

There are also several projects relating to our ac-
tual implementation of the UIA on the 3Com PalmPi-
lot (or IBM WorkPad). The first project is Gary Des-
rosiers’ dynamic user interface creation on the
PalmPilot." Desrosiers showed how to create a li-
brary of user interface routines that could be called
to invoke user interface components dynamically. We
extended that notion with a full language descrip-
tion (MoDAL) and a run-time interpreter for MoDAL
that reads the MoDAL language, builds the user in-
terface, and integrates local database support and
a TSpaces network interface. A competing project
at the IBM Almaden Research Center tried to achieve
similar dynamic UI functionality. Daniel Kellem de-
termined the in-memory structures that are created
by the Palm OS when it transverses the data structure
for the forms resources and wrote several routines to
construct those resources via API calls. Kellem’s ap-
proach is somewhat more dynamic and finer-grained
than Desrosiers’; for example, Kellem’s approach
makes it possible to add a button to a form already
displayed. However, this simple Ul work became
mostly obsolete with release of Palm 0s 3.0, which
provides an API for dynamically generating forms.

Also related to our implementation are a number
of forms building tools, of which Softmagic’s Satel-
lite Forms*** is an example. Satellite Forms is a soft-
ware product for developing user interfaces. It al-
lows application developers to use their UI-based tool
to create static applications for the IBM WorkPad.
In addition, these programs can interact with back-
end programs, such as Oracle databases and Lotus
Notes.

The forms building tools have not evolved beyond
pure user interface functions. These tools do not em-
ploy techniques for dynamic interface description,
nor do they incorporate an integrated client data-
base function, nor do they feature a connection to
a general-purpose software switchboard, such as
TSpaces. The current method for creating PDA ap-
plications is based on the old development cycle of
edit, compile, and test run. The compile step is the
one that, for all practical purposes, prevents the cur-
rent generation of PDA user interface tools from gen-
erating dynamic interfaces—the descriptions simply
cannot be changed “on the fly.”

Numerous tools are available for generating dynamic
HTML (HyperText Markup Language) documents,

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

documents in which style and content can be adjusted
“on the fly.” However, none of these tools is a sub-
stitute for MoDAL or the MoDAL engine. We will ex-
plain why by first explaining what Dynamic HTML is
and then explaining how it differs from the MoDAL
programming model.

Dynamic HTML is an amalgam of proprietary and
standardized technologies for adding dynamic be-
havior to HTML documents, driven mainly by Mi-
crosoft’s Internet Explorer** Web browser and
Netscape’s Navigator®*.** Dynamic HTML technol-
ogies include scripting languages, a document ob-
ject model (DOM) that allows scripts to be applied
to document objects, and style sheets. Within these
three broad areas are numerous competing technol-
ogies. For example, scripting languages include
Netscape’s JavaScript**, Microsoft’s VBScript**
(derived from Visual Basic**) and JScript** (com-
patible with Netscape’s JavaScript), and the polit-
ically neutral script ECMAScript, which unifies
JavaScript and JScript (as of version 4.0 of both
Netscape Navigator and Internet Explorer).

As of version 4.0, both Navigator and Internet Ex-
plorer allow HTML document content, attributes of
tags and styles, and document object position to be
dynamically set when a new document loads, through
executable script, which triggers on the load event.
Internet Explorer 4.0 goes a step further, in that doc-
ument content for a loaded page can be dynamic,
triggering in response to data transfer to the client
or user events. (Valid events are, for example, a
mouse click, selection or focus on a document el-
ement, a window resizing, a keyboard press, or the
interruption of a document load). For example, con-
sider a news article filter script, which searches for
and prioritizes stories containing keywords selected
by the user. When the user selects a new keyword
by, for example, clicking on a checkbox in a browser
window, the script is launched. The script clears the
current articles, searches and prioritizes articles con-
taining the keyword, and finally reloads the page dis-
playing the new digest of matching articles.

An important distinction between the dynamic con-
tent provided by Dynamic HTML and the MoDAL pro-
gramming model is the connection to general-pur-
pose middleware (TSpaces). As shown previously in
the active calendar example, MoDAL document con-
tent and element attributes are dynamic to events
and data in TSpaces. In principle, any TSpaces cli-
ent—any application service, database, context-sen-
sor, or device that implements the simple TSpaces

EUSTICE ET AL. §97

client API or sends messages to a proxy—can trigger
the content or style of a MoDAL application. This is
significantly more powerful than the Dynamic HTML
model where the dynamic behavior of document ob-
jects is limited to events internal to the browser cli-
ent, or generated by the Web server. For example,
Internet Explorer does include event handlers that
pertain to form elements bound to server database
sources. Java servlets® allow client-side applets to
execute code on the Web server, such as code to
query an SQL database, to access file service, news,
or chat services over HTTP, or to submit form infor-
mation to the server and receive dynamically gen-
erated HTML. However, the Web server is not gen-
eral-purpose middleware, implicitly open to any data
or event source in the network. The Web server in-
teracts only with known services that implement spe-
cific interfaces and comply with a specific event
model. Because TSpaces supports asynchronous,
anonymous communication and has an event engine
to bridge between specific event models, TSpaces al-
lows the MoDAL client to be a generic network client
to potentially any service.

We do believe that the various Dynamic HTML spec-
ifications are a useful starting point for extending
Web browsers with MoDAL-style connectivity to
TSpaces. We envision a world in which every user
device has the capability to dynamically generate ap-
plication interfaces, which have generalized commu-
nication with the network infrastructure. The cur-
rent generation of Web browsers could be extended,
for example, with event handlers that are called as
a result of events in TSpaces or with primitives to
send messages to and query TSpaces. Our first step
toward unifying MoDAL and Dynamic HTML is de-
veloping an applet that communicates with TSpaces.
A next step may be to drop the functionality of the
applet into the Web browser itself, for example, with
a MoDAL plug-in. On the MoDAL side, we plan to re-
search how the MoDAL language can be made com-
patible with Dynamic HTML. Although there are
no browsers for the 1BM WorkPad, Microsoft’s
WinCE** operating system does run a limited ver-
sion of Internet Explorer. Thus, to avoid duplication,
it will be important to understand how MoDAL ca-
pabilities can be integrated with the browser.

Concluding remarks

The end goal of the UIA project is to create a device
sufficiently flexible to incorporate any new client ap-
plication or interface that is exported by a server ap-
plication or electronic device. Furthermore, through

598 EUSTICE ET AL.

a connection to TSpaces, wireless or otherwise, the
UIA has enormous power for triggering external
events, as virtually any service can be brokered by
TSpaces. We have created the MoDAL language, a
high-level XML-based description language that can
represent the application user interface, local script-
ing-like computation, local database actions, and re-
mote network messages to TSpaces. With MoDAL,
applications and devices can create relatively ad-
vanced client programs with which a user can inter-
act. With this as a platform, we can raise the level
of human-machine interaction. By exploiting the dy-
namic interface capability, applications (both new
and legacy) can tailor the user interface to fit the us-
er’s context, background, experience, and immedi-
ate needs. Furthermore, the current trend of mul-
tiple remote controls and extremely complex controls
will eventually give way to single universal soft re-
mote control devices.

By achieving our goal, we not only advance the sci-
ence of human-machine interaction, but we change
the way in which we are able to look at the world
of information. By having a constant connection to
any data desired, the number of mistakes the aver-
age person makes in a day will decrease (lost names,
lost phone numbers, lost directions, missed appoint-
ments, missed events). More fundamentally, a us-
er’s opportunity to simultaneously experience many
different contexts of life is extended because the UlA
augments one’s senses, hands, and “curiosity.” The
UIA enables us as users to engage in real-world pur-
suits—to discover information, manipulate devices,
and collaborate with other people—as if we were not
bounded by real-world realities, such as separations
in geography, time, or context. Although this achieve-
ment does increase our dependence upon the world’s
information servers, it also potentially enhances our
quality of life.

The TSpaces project released version 2.0 to the pub-
lic via the 1BM alphaWorks* channel*® on October
30, 1998. The release contained the full TSpaces sys-
tem and the beginnings of the PDA support, though
the generalized MoDAL engine and the wireless sup-
port are still under development. The MoDAL lan-
guage is undergoing its first revision, because sev-
eral other internal IBM groups have come forward,
expressing the desire to merge their XML-based func-
tions with MoDAL to create a unified and more ex-
pressive language that can serve many purposes.

In addition to opening the MoDAL/TSpaces event
model, we plan to involve the MoDAL specification

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 12 Code for "Credit Me" application

<APPLICATION name="PilotPop">

<ACTION>

B2_253Machine

<AND>CREDIT</AND>
<VAL>0<VAL>
</AND>
<TUPLE>
<ACTION>
<BUTTON>
</FORM>
</APPLICATION>

<FORM name="Main" titte="PilotPop" x="0" y="0" width="160" height="160">
<BUTTON name="credit" label="Credit Me!" X="65" y="20" width="30" height="15">

<TUPLE space="POPcommand" server="TSpaces">

in standardizing the next-generation UI languages.
MoDAL is well-positioned to influence standards for
the semantic representation of data and events for
sharing among heterogeneous clients. For example,
the current implementation of the active calendar
taps various information sources to generate stan-
dardized XML metadata descriptions; these descrip-
tions coincide with calendar entries to select the in-
formation to be pulled by the calendar client. We
plan to explore how such metadata descriptions can
be unified with the syntax for describing MoDAL el-
ements. For example, when an upcoming meeting
event at the Almaden Research Center is recorded in
an active calendar client, TSpaces might match up
MoDAL elements tagged with <LOCATION = “IBM
Almaden Research Center”></LOCATION> to
metadata about the Almaden Research Center pub-
lished on its Web server, in order to deliver driving
directions to the traveler en route.

The MoDAL engine for the IBM WorkPad is one of
what we expect to be many implementation flavors
of the UIA. The next version of the UIA may be a re-
placement for the present Web browser, which will
allow the mobile ThinkPad*, for example, to have
soft interfaces. One use of this general-purpose in-
formation presentation is the “world board” con-
cept,”” whereby mobile users are continuously pre-
sented new information and new interfaces that are
associated with the user’s physical locations. We ex-
pect that subsequent versions of the UIA will be
driven by the development of a demonstration in-
tegrating all of the UIA components—the MoDAL en-
gine, the short-range (Bluetooth) and campus-range
RF wireless connection, the TSpaces engine with a
lightweight event-processing service, and existing

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

pervasive “push” applications, such as the active cal-
endar. By building a set of pervasive applications us-
ing MoDAL as the application scripting language,
TSpaces as the middleware, and wirelessly connected
mobile user devices as the hardware platform, we
aim to better understand and address the practical
obstacles to the UIA vision.

Acknowledgments

The authors thank the TSpaces team, Dwayne Nel-
son, Keung Hae Lee, John Thomas, and Cal Leister
for their valuable comments and contributions. We
extend a special thanks to Dwayne for his artistic con-
tributions. We also thank Norm Pass for his enthu-
siastic support of our project and the reviewers for
their thoughtful comments and suggestions.

Appendix A

The MoDAL code for the “Credit Me!” (or “Pilot-
Pop”) application is shown in Figure 12.

Appendix B

The members of the interface elements resource are:

resourcelD: The resourcelD serves as an identifier
for graphical elements. Every graphical component
will have an identifier, unique to the interface.
Non-UI form components inherit the resourcelD
of their parent form, with the exception of ACTION
elements, which have a resourcelD of 0.

e token: This flag stores the element type, i.e.,
FORM, BUTTON, ACTION, etc., to allow the engine

EUSTICE ET AL. 5§99

to quickly determine if an element is a graphical
element, or an event-handler.

valueType: For components of type ELEMENT, this
can be any valid MoDAL type. For all other com-
ponents, this is 0.

value: For Ul components, this flag stores the name
of the associated UI element. If the component is
of type ELEMENT, data of the type valueType is
stored in value. Finally, if the component is an at-
tribute of a graphical component, or an action,
value refers to the component to be operated on,
i.e., where to retrieve data from, copy to, etc.
next: The various interface components can be
viewed as a linked list, created at parsing. This field
is a pointer to the next component in the inter-
face. This pointer can be used to poll the various
components for events.

attr: This field is a pointer to the next child com-
ponent, or attribute. The various interface com-
ponents contain attributes describing and modi-
fying their behavior. In lieu of an attribute, the
component may possess child components.

*Trademark or registered trademark of International Business

M

H ok

achines Corporation.

Trademark or registered trademark of Starfish Software, 3Com

Corporation, Sun Microsystems, Inc., Lotus Development Cor-
poration, Microsoft Corporation, Sybase Corp., Softmagic Corp.,

or

C

1.

2.

10.
11.

600 ev

Netscape Communications Corp.

ited references and notes

The universal information appliance effort is a part of the

TSpaces project.

We use the term “electronic systems” to mean anything elec-

tronic, including computers and the programs running in

them.

. The Pronto Universal Remote is listed at http:/
www.mmhometheatre.com/components/rvpronto.html, and
the Marantz Mark II Universal Remote is listed at http://
www.marantzamerica.com/rc-2000.htm.

. The Blue Mountain Network Computer running Aplix Jblend
is described at http://jblend.com/product/p_jblend.html.

. We considered an olfactory interface, but then gave up when
the thought became too unsavory.

. The IBM Blue Eyes Project is described at http:/
www.almaden.ibm.com/cs/blueeyes.

. The Rex Pro PDA, by Starfish Software, is found at http://
www.starfish.com/products/truetech/index.html.

. T. G. Zimmerman, “Wireless Networked Digital Devices: A
New Paradigm for Computing and Communication,” IBM
Systems Journal 38, No. 4, 566-574 (1999, this issue).

. Such as Bluetooth (http://www.bluetooth.com/) wireless links

or IEEE 802.11 wireless LAN systems.

“Push!,” Wired Magazine 5, No. 3, 12-23 (March 1997).

The word “document” refers not only to traditional docu-

ments, like this one, but also to innumerable other forms of

XML “data formats,” including mathematical equations, da-

tabase schema, client/server APIs, and vector graphics, as well

as many other forms of structured data.

STICE ET AL.

12.
13.

14.
15.

16.

17.

18.

19.

20.
21.
22.
. The IBM WorkPad specification is at http://www.pc.ibm.
24.
25.

26.

27.

28.

29.

30.

XML.COM at http://www.xml.com/xml/pub.

G. Desrosiers, “Dynamic User Interface,” http://www.
vermontlife.com/gary/DynamUILhtml.

A. Morales and M. Guillen, “The MoDAL Language Spec-
ification,” IBM Working Document.

P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford,
“T Spaces,” IBM Systems Journal 37, No. 3, 454-474 (1998).
The data management portion of TSpaces was modeled af-
ter the Starburst main memory data manager. See T. J. Leh-
man, E. J. Shekita, and L.-F. Cabrera. “An Evaluation of Star-
burst’s Memory Resident Storage Component,” Transactions
on Knowledge and Data Engineering 4, No. 6,555-566 (1992).
Tuplespace is a concept created by the Linda project at Yale
University. See: D. Gelernter and A. J. Bernstein, “Distrib-
uted Communication via Global Buffer,” Proceedings of the
ACM Principles of Distributed Computing Conference (1982),
pp. 10-18; D. Gelernter, “Generative Communication in
Linda,” TOPLAS 7, No. 1, 80-112 (1985); N. Carriero and
D. Gelernter, “Linda in Context,” Communications of the
ACM 32, No. 4 (April 1989).

A tuple is the basic carrier of data in a Tuplespace. A tuple
is merely a vector of typed values.

T. A. Howes and M. C. Smith, LDAP: Programming Directory-
Enabled Applications with Lightweight Directory Access Pro-
tocol, MacMillan Publishing, New York (1997).

Service Location Protocol is found at http://www.
swrloc.org/index.html.

Salutation is at http://www.salutation.org.

Jini specification is at http://www.java.sun.com/products/jini.

com/us/workpad.

Information about Motorola is at http://www.motorola.com.
Q. Lu, S. Edlund, D. Ford, and U. Manber, “Active Calen-
dars,” submitted for publication, IBM Almaden Research
Center (1998).

We call micro-sized RF transmitters broadcasting to passive
RF receivers, “RF Bugs.” The “Bug” technology is currently
under development at the IBM Almaden Research Center,
under the direction of Tom Zimmerman.

M. Munson, “System Support for Composing Distributed Ap-
plications Using Events,” dissertation for Diploma in Com-
puter Science, University of Cambridge, UK (August 1998).
J. Bates, M. Spiteri, J. Bacon, and D. Halls, “Integrating Real-
World and Computer-Supported Collaboration in the Pres-
ence of Mobility,” Proceedings of WETICE’98 (1998).
IBM Web Browser Intelligence (WBI) is at http://
www.almaden.ibm.com/cs/user/wbi/index.html.

T. D. Hodes and R. H. Katz, “Enabling ‘Smart Spaces’ En-
tity Description and User Interface Generation for a Het-
erogeneous Component-Based Distributed System,”
DARPMNLST Smart Spaces Workshop, Gaithersburg, MD
(July 1998), University of California, Berkeley Technical Re-
port CSD-98-1008.

. The Rover Web site is at http://www.pdos.lcs.mit.edu/rover/.
. Information about Sybase is at http://www.sybase.com.

. Information about Softmagic is at http://www.softmagic.com.
. D. Goodman, Dynamic HTML: The Definitive Reference,

O'Reilly & Associates, Sebastopol, CA (1998).

. Sun Microsystems, “Java Web Server” can be found at http://

www.sun.com/software/jwebserver/features/index.html.

. The URL for alphaWorks is http://www.alphaworks.ibm.com.
. J. Spohrer, “Information in Places,” IBM Systems Journal 38,

No. 4, 602-628 (1999, this issue).

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

General references

N. Carriero and D. Gelernter, “Linda in Context,” Communi-
cations of the ACM 32, No. 4, 444-458 (April 1989).

D. Gelernter, “Generative Communication in Linda,” TOPLAS
7, No. 1, 80-112 (1985).

D. Gelernter and A. J. Bernstein, “Distributed Communication
via Global Buffer,” Proceedings of the ACM Principles of Distrib-
uted Computing Conference (1982), pp. 10-18.

JavaSpace specification, http://www.java.sun.com/products/
javaspaces.

T. J. Lehman, E. J. Shekita, L.-F. Cabrera, “An Evaluation of
Starburst’s Memory Resident Storage Component,” Transactions
on Knowledge and Data Engineering 4, No. 6, 555-566 (1992).

Accepted for publication March 26, 1999.

Kevin F. Eustice 13768 Trost Trail, Savage, Minnesota 55378 (elec-
tronic mail: kfe@cs.hmc.edu). Mr. Eustice is pursuing a Ph.D. de-
gree at the University of California, Los Angeles. He graduated
in May 1999 with a B.S. degree in computer science from Harvey
Mudd College. He has been involved with the TSpaces project
at IBM Almaden since May 1998. His research interests include
mobile computing, distributed systems, and computer-human in-
teraction, as well as caching and replication in mobile databases.
His goal is to make the world fully connected and fully interop-
erable using mobile and distributed systems.

Tobin (Toby) J. Lehman IBM Research Division, Almaden Re-
search Center, 650 Harry Road, San Jose, California 95120-6099
(electronic mail: toby@almaden.ibm.com). Dr. Lehman joined the
IBM Almaden Research Center in 1986, shortly after finishing
his Ph.D. degree from the University of Wisconsin-Madison. He
is currently a member of the Computer Sciences Division. His
research interests include server-based backup systems, object-
relation database systems, large-object management, memory-res-
ident database systems, Tuplespace systems, and just about any-
thing written in Java. Dr. Lehman is the leader of the TSpaces
project, and he plans to use TSpaces to make the world a more
productive place.

Armando Morales G. IBM Mexico, Guadalajara Software Group,
Carretera el Castillo Km 2.2, El Salto, Jalisco, Mexico 45550 (elec-
tronic mail: armando@mx1.ibm.com). Mr. Morales graduated as
an electrical engineer in 1984. He joined IBM in 1985 as a prod-
uct engineer for the System/36™ and later for the AS/400%. In
1990 he finished an M.B.A. program, and in 1992 he joined the
Guadalajara Programming Laboratory, where he has been a team
leader for multiple software projects for the AS/400 and lately
for Netfinity servers. He is interested in new applications for
small devices such as the IBM WorkPad.

Michelle C. Munson IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120-6099 (electron-
ic mail: munsonm@almaden.ibm.com). Ms. Munson joined IBM
and the TSpaces project in 1998, after finishing a master’s degree
in computer science at the University of Cambridge in the United
Kingdom. Currently a member of the Computer Sciences Divi-
sion, her interests include all aspects of mobile computing and
distributed object systems. She is interested in technologies that
interact with the physical and electronic domains for context-aware
and augmented reality computing. She graduated with B.Sc. de-
grees in electrical engineering and physics from Kansas State Uni-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

versity in 1996. She enjoys running, meditation, and, most recently,
gambling.

Stefan Edlund IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120-6099 (electronic
mail: edlund@almaden. ibm.com). Mr. Edlund graduated with a
master’s degree in computer science from the Royal Institute of
Technology, Stockholm, in 1997. Since then, he has worked at
the IBM Almaden Research Center developing applications for
the DB2™ database system, and he has more recently done work
on various Web applications, among them the active calendar.
Currently a member of the Computer Sciences Division, his pri-
mary interests include the Web, Java, PDAs, data mining, and
playing music.

Miguel Guillen G. IBM Mexico, Guadalajara Software Group, Car-
retera el Castillo Km 2.2, El Salto, Jalisco, Mexico 45550 (electron-
ic mail: mkt@mx1.ibm.com). Mr. Guillen joined IBM in 1990,
after finishing his electrical engineering studies at the University
of Guadalajara. In 1992, he joined the Guadalajara Programming
Laboratory, where he has been developing software for different
projects including the AS/400, Netfinity, and the Advanced Sys-
tem Management Adapter. His main interests are little devices,
such as PDAs and microcontrollers, object-oriented design pat-
terns, teaching C+ +, using high-end audio, and cooking.

Reprint Order No. G321-5707.

EUSTICE ET AL. 601

