Intermediaries:

An approach

to manipulating
information streams

Information flows all around us all the time.
Whether on computer networks, on telephone
lines, or within the wiring of everyday devices
such as coffeemakers or gas pumps, data are
constantly being transmitted from one place to
another. Much of the time, such data flow
directly between information producers and
information consumers. Sometimes, however,
intermediary processes stand in the way of a
simple data flow, for instance, to monitor traffic,
to bridge between incompatible communication
streams, or to customize or extend the functions
that are natively available on a stream.
Intermediaries can turn ordinary information
streams into smart streams that enhance the
quality of communication. Because information
flows are now everywhere, there is a new
opportunity for taking advantage of intermediary
computation, but general principles and
approaches have not yet been developed.

This paper provides an introduction to the
intermediary approach, describes an
implemented Web intermediary framework and
applications, and proposes extending
intermediaries to other information streams.

As information becomes ever more pervasive and
important, people increasingly rely on a vari-
ety of information streams to meet their informa-
tion needs. Rather than one stream replacing an-
other in this economy of information, each stream
has developed its own niche. Thus, newspapers did
not disappear when radio was developed, radio re-
mains after the advent of television, and the tele-
phone did not obviate the need for postal mail. More

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

0018-8670/99/$5.00 © 1999 IBM

by R. Barrett
P. P. Maglio

recently, e-mail, news groups, chat rooms, push tech-
nologies, pagers, cellular phones, personal digital as-
sistants, and the World Wide Web (WWW, or Web)
have greatly expanded the set of information streams
to which we all have access. Importantly, being con-
nected to many streams is very nearly a necessity of
the modern world.

An information stream conveys data from an infor-
mation provider to an information consumer. For
instance, on the WwWw, servers generally provide in-
formation, and browsers generally consume infor-
mation. Of course, streams can be bidirectional, so
that the same endpoint might be both a provider and
a consumer at different times. A telephone is just
this kind of stream, enabling two (or more) parties
to freely exchange information in any direction. Of-
ten, the stream simply conveys the information with-
out additional processing, as the telephone does, but
sometimes information can be usefully injected or
modified along the stream. For instance, some tele-
phone companies provide real-time language trans-
lation, or some Web communication passes from one
network to another through a firewall.

We define intermediaries as computational entities
that operate on information as it flows along a stream

©Copyright 1999 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

BARRETT AND MAGLIO 629

Figure 1 An intermediary is a computational element
that lies between an information producer and
an information consumer on an information

stream.

INFORMATION
CONSUMER

INFORMATION

PRODUCER N

INTERMEDIARY

Figure 2 A Web proxy is an intermediary that tunnels
requests and responses between two disjoint
networks.

PROXY

LOCAL NETWORK INTERNET

(see Figure 1). Because of the tremendous number
and kind of information streams that are now avail-
able, there is a new opportunity to take advantage
of intermediary computation. We believe interme-
diaries can add value in several different ways.
Namely, an intermediary can (1) produce new in-
formation by injecting it into the stream, (2) enhance
the information that is flowing along a stream, and
(3) connect different streams, possibly translating
communication protocols in the process. Note that
intermediaries do not create new information devices
(such as telephones or Web browsers) but increase
the value of existing devices by improving the streams
upon which the devices operate. Likewise, interme-
diaries do not create new information streams but
enhance existing streams.

Many information streams operate properly without
intermediaries. An information device connects to
awire that then connects to another information de-
vice. A Web browser connects through the Internet
to a Web server. A telephone connects through a
telephone line to another telephone. For these, in-

630 BARRETT AND MAGLIO

termediaries are not strictly necessary but can be
added to improve the existing system in some way.
For example, in the case of the Web, it is often de-
sirable to protect the internal network of a corpo-
ration from the Internet at large. A firewall can block
unauthorized external access to the internal network,
but this changes the network topology so that the
browser can no longer reach external Web servers.
To solve this problem, firewalls often contain a Web
proxy' that conveys Web traffic from internal Web
browsers to external Web servers (see Figure 2). This
Web proxy is an intermediary that selectively con-
nects two networks, thus adding value to the Web
stream. Web proxies often add other features too.
For instance, a proxy may cache Web pages that have
been viewed by users within the firewall (as an ex-
ample, see Yu and MacNair?). Subsequent requests
for those Web pages can then be satisfied by the
proxy, rather than requiring additional Internet traf-
fic. This caching function is another case of an in-
termediary adding value to an information stream.

Intermediaries can do more than simple network
translation and caching. For example, a Web inter-
mediary can compress large images before sending
them across a slow network link such as a telephone
line. Or it can lay out a Web page for the limited
display of a PalmPilot** before sending the page
along to the device.? A telephone intermediary can
take speech input and automatically translate spo-
ken names into dialing tones—effectively dialing the
phone when the person picks up the receiver and
says, “Call Aunt Marion.” This action suggests one
key advantage of using intermediaries over simply
computerizing existing devices. Systems already ex-
ist for connecting a telephone to a computer and then
using voice recognition on the computer to dial the
telephone.* But an intermediary hides the computer
inside the telephone line so that the user need not
learn how to manipulate a new device. This inter-
mediary gives the conventional telephone the abil-
ity to understand and act on a human voice.

The utility and power of an information stream de-
pends on many factors, including its (1) quality of
information, (2) availability when information is
needed, (3) breadth of information, (4) ease-of-use,
(5) reliability, and (6) relevance of information. The
telephone is an important stream because it connects
one person directly to another, which implies high-
quality information. The breadth of available infor-
mation is vast because a large fraction of the world’s
population is reachable by telephone, and ease-of-
use is high because dialing about 15 digits can con-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

nect one person to another anywhere in the world.
Availability is also increasing as people use mobile
phones more, enabling others to contact them any-
time and anywhere. Of course, with increased phone
usage (e.g., unsolicited sales calls), the amount of
unwanted or irrelevant information increases and
causes people to limit distribution of phone num-
bers and to not respond to all calls. In any event,
improving performance in these six areas can in-
crease the value of an information stream.

In this paper, we take the first steps toward outlin-
ing general principles for intermediary computation
and discuss ways to improve a variety of informa-
tion streams through the use of intermediaries. The
paper is organized in six parts. First, we describe what
an intermediary is in detail through a series of ex-
amples. Second, we unpack the notion of interme-
diary in an attempt to more precisely formalize it.
Third, we describe a general architecture for adding
intermediary computation to the Web. Fourth, we
sketch several scenarios for using intermediaries to
coordinate functions among several different
streams. Fifth, we discuss the role of intermediary
computation in pervasive computing devices. And
finally, we outline future directions of this work.

Intermediaries are everywhere

The concept of an intermediary is not a new one. In
fact, intermediaries are so commonplace that it is
sometimes difficult even to notice them. For instance,
human intermediaries abound. Travel agents trans-
late customer requests into data entered into airline
reservation computers. In this way, a travel agent acts
as a protocol-translating intermediary, effectively
connecting a customer on the telephone to a main-
frame computer running the airline reservation sys-
tem. Of course, human travel agents provide all man-
ner of additional functions, such as suggesting ways
to lower costs, explaining the results of computer
queries, faxing itineraries, and so on. But the main
work of a travel agent is to intelligently connect the
information streams of telephone, fax, mainframe
computer, printer, mail, and e-mail. Because many
of these tasks can be handled without human intel-
ligence, several automated Web-based travel agents
now translate Web-based forms into airline reser-
vation requests and then translate the responses back
into Web pages for the customer.® Similarly, just a
few years ago, human gas station attendants func-
tioned as intermediaries who controlled gas pumps
for customers in exchange for cash. Now, comput-
erized intermediaries within gas pumps handle finan-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

cial transactions. Nevertheless, many other roles of
human intermediaries are not so easily replaced, such
as librarians, secretaries, or any other role requiring
intelligent interaction.®

Scientific journal editors comprise another interme-
diary-based system. Journal editors receive submis-
sions from authors, send manuscripts to reviewers,
forward reviews back to authors, receive corrections
from authors, and deliver final copy to printers. All
these activities are designed to add value to the in-
formation stream that results from authors writing
down their findings. The journal editor enhances the
value of this information stream by providing com-
petent reviewing, ensuring anonymity of reviews, or-
ganizing and indexing articles, and editing completed
manuscripts. With so much publishing now moving
to the Internet, it is important that journals identify
these (and other) contributions to the publishing pro-
cess to maintain their business and their valuable ser-
vice to the scientific community.

Not only are journal editors intermediaries, but so
are the paper copies of the journals themselves. Jour-
nals are tangible representations of the information
contributed by authors and therefore enhance the
information stream coming from these authors by
providing archival forms of their findings and tar-
geting interested readers. Of course, one could con-
ceivably do without journals; scientists might tele-
phone one another with their findings, but this is
obviously inefficient. Journals are intermediaries that
enhance an information stream that connects scien-
tific communities.

Intermediaries are common in many other kinds of
information streams as well. In fact, e-mail depends
on intermediaries to hold messages after they have
been sent and before they have been received. The
POP3 protocol’ explicitly defines how such an e-mail
intermediary works. Many other e-mail intermedi-
ary functions can be envisioned. For instance, e-mail
intermediaries might provide: (1) local replicas of
remote e-mail repositories so that e-mail can be han-
dled off line, (2) automatic summarization of long
e-mail messages, (3) intelligent e-mail routing to cor-
rect e-mail addressing errors, and (4) services that
log and index e-mail for later retrieval.

The World Wide Web is another, and immensely
popular, information stream that is managed by com-
putational processes.® Because the stream between
browser and server is completely automated, it is an
obvious place to find computational intermediaries.

BARRETT AND MAGLIO 631

Figure 3 The basic elements of Web use

T - -
USER WEB BROWSER CLIENT INTERNET WEB SERVER DATABASE
For example, MetaCrawler**? is a search service that stream itself, and various intermediaries that are lo-

provides a single user interface for queries to mul-
tiple Web search services, combining results to pro-
duce a single list of documents. As an intermediary,
MetaCrawler enhances the query-result information
stream. The collection of Web directories in Ya-
hoo!**!%is another example of a Web intermediary.
These directories do not themselves contain topical
information but provide an intermediary service for
connecting Web users to information. In a similar
way, all Web search engines provide a sort of inter-
mediary service with the same purpose. One search
engine, AltaVista**,!! has recently added a language
translation intermediary service that reads its input
from the original Web page and performs machine
translation to produce a version of the page in an-
other language. This service adds value to the infor-
mation stream for readers who cannot understand
the original language of the page.

Analyzing such commonplace and complex systems
of information flow in terms of information origin,
destination, and intermediaries illuminates design
principles for computational intermediary systems.

Anatomy of an intermediary

Though intermediaries on information streams are
ubiquitous in both human and computational sys-
tems, a thorough and systematic study of their prop-
erties has not been undertaken. In this section, we
begin such a study by considering carefully what parts
are needed to make up an intermediary process, and
we then provide a classification of types of informa-
tion streams and the sorts of intermediaries appro-
priate for each.

Endpoints and middle points. Information streams
consist of origin and destination endpoints, the

632 BARRETT AND MAGLIO

cated at middle points and that operate upon the
stream. A serious complication in analyzing such sys-
tems is that they may be decomposed into these con-
stituent elements in many ways and at many differ-
ent levels. Consider the case of a person browsing
a database using the Web. The basic elements (de-
picted in Figure 3) include the user, a Web browser,
the Internet, the Web server, and a database. In one
decomposition of the system, the database is the or-
igin endpoint, the Web browser is the destination
endpoint, and the Internet and Web server are in-
termediaries. However, Web servers are often re-
garded as the information origin, even if they actu-
ally use a database to find the data that they serve.
In that case, the Internet is the only intermediary.
But a networking engineer may choose to look more
deeply at the Internet element, breaking it down into
a collection of intermediaries that includes Ether-
nets, token rings, routers, gateways, name Servers,
hubs, and so on. An electrical engineer may choose
to go even further, considering line drivers, laser di-
odes, and optical fibers as essential intermediaries
in the information stream. In the other direction, a
sociologist may abstract away all of the details of the
computer systems and focus on the origin endpoint
as the person who produced the information that re-
sides in the database. In this case, the destination
endpoint would be the Web-browsing user—or pos-
sibly the person that will receive the report that user
writes. Thus, the Web browser, Internet, Web server,
and database are all lumped together as a single
seamless intermediary that connects user with infor-
mation producer.

Partitioning an information stream into origin end-
point, destination endpoint, and intermediaries in-
volves selecting several division points: everything
beyond the chosen origin point is the origin; every-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

thing beyond the chosen destination point is the des-
tination; and various points in between are chosen
as breaks between intermediaries. Many decompo-
sitions are possible, but the most suitable one
matches the analyst’s needs. Designing an interme-
diary information stream is analogous to building a
complex UNIX** command by piping data from an
information origin (e.g., stdin) through any number
of intermediaries (e.g., grep, more) and to an infor-
mation destination (e.g., stdout).

Now consider the functions of the three basic en-
tities: origin endpoint, destination endpoint, and in-
termediary (see Figure 4). The origin endpoint has
one connection point and transmits information to
it. It may also receive requests for information, or
it may transmit proactively. The destination endpoint
also has one connection point and receives informa-
tion from it. It may also transmit requests for infor-
mation, but it is not required to do so. An interme-
diary is most easily conceptualized by considering
everything on one side of it to be an origin endpoint
and everything on the other side to be a destination
endpoint. The intermediary has two connection
points: one connecting to an origin and the other to
a destination. The side connecting to the origin be-
haves like a destination: receiving information from
the stream (and possibly transmitting requests for
information). The other end of the intermediary con-
nects to the destination and behaves like an origin:
transmitting information to the stream (and possi-
bly receiving requests for information).

From this decomposition, an endpoint is simply an-
other kind of intermediary. Whether origin or des-
tination, an endpoint can be realized as an interme-
diary that ignores one of its connections. An origin
endpoint is an intermediary that ignores its destina-
tion-like connection; a destination endpoint is an in-
termediary that ignores its origin-like connection. Put
differently, endpoints do not have any additional ca-
pabilities beyond those of intermediaries: they are
simply intermediaries that speak to a vacuum on one
side.

We now turn to our classification of information
streams to explore the implications of various struc-
tures on the endpoints and intermediaries in the
stream.

Message streams. Information streams vary widely
in complexity, which affects the roles of the processes
involved in information transfer. The simplest infor-
mation stream consists of a unidirectional flow from

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 4 An intermediary lies between an origin
endpoint and a destination endpoint

_>©

(O—

ORIGIN INTERMEDIARY

DESTINATION

origin to destination. An example of such a flow is
a telemetry system where the origin endpoint trans-
mits status information to a destination endpoint.
Intermediaries on such streams have one connection
that acts as a destination and one that acts as an or-
igin. Because the data on the stream consist of dis-
crete messages in most such systems, we refer to this
system as a unidirectional message stream.

The next level of complexity occurs when the origin
and destination endpoints are allowed to play both
roles; that is, the destination can transmit messages
back to the origin. If the endpoints can act in either
role arbitrarily, the system is a bidirectional message
stream. One example of such a system is a simple
two-party chat because either party can chat at any
time. Another example is the conventional telephone
because either party can talk at any time.

Transaction streams. A more structured bidirectional
system results if the endpoints reverse roles in a reg-
ular way. The most common example is when the des-
tination sends a request message to the origin, and then
the origin sends a response message to the destination
(see Figure 5). The terms origin and destination are cho-
sen in this way because the request normally includes
a description of some desired information and the re-
sponse contains that information. The desired infor-
mation flows from origin to destination; the request is
simply a mechanism for accessing the desired infor-
mation. An example of this system is the HyperText
Transfer Protocol (HTTP) that is used on the World
Wide Web. A browser sends a request message to a
server with a uniform resource locator (URL) that de-
scribes the desired information. The server then sends
a response message that contains the information re-
ferred to by the URL. We refer to this system as a uni-
directional transaction stream. A transaction is defined
as a single request-response pair.

BARRETT AND MAGLIO 633

Figure 5 In a request-response type of information
stream, the destination actually requests
specific information from the origin, which
in turn sends it along the stream.

REQUEST

O/\O

ORIGIN \/ DESTINATION

RESPONSE

The final structure we consider is the bidirectional
transaction stream, an extension of the previous case
in which origin and destination can reverse roles ar-
bitrarily. It is a special case of the bidirectional mes-
sage stream because each request requires a re-
sponse, rather than simple message transmission.
Note that many real-world implementations of trans-
action streams allow for a transaction to be aborted
before completion. Such an abortive action seems
to change a transaction stream into a message
stream, but the key difference is that aborts are not
part of the usual operation of the stream.

To see this classification scheme in action, consider
the standard telephone system, which consists of
three parts: an origin telephone, a destination tele-
phone, and a telephone central office intermediary.
When the system is in its quiescent state, both tele-
phones are “on-hook” and idle. One party lifts the
receiver, which sends an “off-hook” request down
the stream. This request is intercepted by the tele-
phone central office intermediary, which sends a “dial
tone” response back to the telephone, completing
the first transaction. The originating party then di-
als a destination phone number (which could be bro-
ken down into a series of requests, but we consider
it to be a single request in this example), such as “555-
1212.” The central office intermediary intercepts this
request, sends a “ring” request to the destination
telephone, and sends a “ringing tone” response back
to the origin telephone. The second transaction is
now complete, and the third transaction has begun.
When the destination phone is answered, it sends
an “off-hook” response to the central office inter-
mediary, which completes the third transaction. The
central office now connects the two telephones to-
gether and begins acting as a transparent interme-
diary, simply passing audio messages back and forth

634 BARRETT AND MAGLIO

between the two telephones. The system has switched
modes: from a unidirectional transaction system to
a bidirectional message system.

In summary, we have defined four types of informa-
tion streams along two dimensions: (1) whether in-
formation flow is unidirectional or bidirectional, and
(2) whether communications are message- or trans-
action-based. In unidirectional streams, information
flows from origin to destination, whereas in bidirec-
tional streams, information can flow in either direc-
tion. Arbitrary messages can flow along message
streams, whereas only well-defined request-response
message pairs can flow along transaction streams.

Building intermediaries

Many intermediary applications, sometimes termed
“agents,” have been built, such as Letizia'* and
WebWatcher " in the Web domain, Oval** and Re-
membrance Agent' in the e-mail domain, and
NewsWeeder ' in the Usenet news domain. These
intermediary applications and many others can be
much more easily constructed with appropriate
frameworks and toolkits. To simplify and systematize
the development of Web intermediaries, we have im-
plemented WeB Intermediaries (WBI),'”'® an infra-
structure for designing and building Web-based in-
termediaries. As noted, the Web is a unidirectional
transaction stream, and therefore we believe the WBI
approach is applicable to other systems with the same
sort of data flow.

WBI architecture. The Web is an attractive system
for applying intermediary technology because it is
both popular and simple. The Web is unidirectional
(only the browser initiates transactions) and trans-
actional (every browser request produces exactly one
server response). It is also stateless, which means that
each transaction is handled independently without
reference to any history of transactions. Of course,
browser, server, and intermediaries can all maintain
their own internal state, but there is no inherent no-
tion of state on the stream itself. These three char-
acteristics make the framework for Web intermedi-
aries particularly straightforward.

As an intermediary, WBI connects to both browser
and server during a Web transaction. But because
the browser initiates all transactions, WBI need only
listen to the browser connection to start. Connec-
tions to the server are initiated by WBI as needed.
Thus, WBI need not wait for server connections or
initiate connections to the browser. These simplifi-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

cations result from the unidirectional quality of the
Web. Because the Web is transaction-based and
stateless, each transaction can be treated indepen-
dently, since it involves exactly one request and its
associated response.

From the perspective of a Web browser, WBI acts as
an HTTP request processor, receiving a request and
sending a response. The processing that happens in
between is completely controlled by the functions
WHBI is set up to provide. WBI might operate like a
conventional Web server—using the request to ac-
cess an internal document and sending it back to the
browser. It might operate like a programmable Web
server— using the request to execute a program that
produces the resulting page. It might operate like a
transparent Web proxy—forwarding the request to
the appropriate Web server and then forwarding the
result back to the client. Or WBI could perform any
of a range of intermediary functions, such as per-
sonalizing contents,'™" transcoding one represen-
tation to another,® or caching results to be sent back
directly the next time a page is accessed, and so on.
The WBI architecture provides a simple and power-
ful programming framework for developing any such
Web applications.

A WBI transaction flows through three basic stages
(see Figure 6): request editors, generators, and ed-
itors (which might be more appropriately called doc-
ument editors). Request editors receive a request and
may modify it before passing it along. Generators re-
ceive a request and produce a corresponding re-
sponse (i.e., a document). Editors receive a response
and may modify it before passing it along. When all
steps are completed, the response is sent to the orig-
inating client. A fourth type of processing element,
the monitor, can be designated to receive a copy of
the request and response but cannot otherwise mod-
ify the data flow. Collectively, we refer to monitors,
editors, and generators as MEGs (see Table 1).

WBI dynamically constructs a data path through var-
ious MEGs for each transaction. To configure the
route for a particular request, WBI has a rule with
a priority number associated with each MEG. The rule
specifies a Boolean condition that indicates whether
the MEG should be involved in a transaction. This
condition may test any aspect of the request header
or response header, including the URL, content type,
client address, server name, and so on. Priority num-
bers are used to order the MEGs whose rules are sat-
isfied by a given request or response. More precisely,
when WBI receives a request, it follows these steps:

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 6 A transaction (request/response) flows
through a series of WBI MEGs.

<%>

1. The original request is compared with the rules
for all request editors. All request editors whose
rule conditions are satisfied by the request are al-
lowed to edit the request in priority order.

2. The request that results from this request editor
chain is compared with the rules for all genera-
tors. The request is sent to the highest-priority
generator whose rule is satisfied. If that gener-
ator rejects the request, subsequent valid gener-
ators are called in priority order until one pro-
duces a document.

3. Bothrequest and response are used to determine
which editors and monitors should see the doc-
ument on its way back to the client. Each editor
whose rule condition is satisfied modifies the doc-
ument in priority order. Monitors are also con-
figured to monitor the document either (a) as it
is produced from the generator, (b) as it is de-
livered back to the client, or (c) after a particular
editor.

4. Finally, the response is delivered to the client.

A WBI application is usually composed of a number
of MEGs that operate in concert to produce a new
function. Such a group of MEGs forms a plug-in, which
is the basic unit of granularity of WBI for installation
and configuration. Each MEG is associated with a par-
ticular plug-in. When loaded, a plug-in creates and
registers its MEGs with WBI, which maintains a pool
of available MEGs. This arrangement allows several
Web applications to work together simultaneously.
Figure 7 illustrates three plug-ins that provide MEGs
to WBI. WBI instantiates registered plug-ins at start-
up. These plug-ins then register MEGs with WBI, along
with their conditions for firing. When a request
comes into WBI, it routes the request through the
various MEGs, according to the conditions. The final

BARRETT AND MAGLIO 635

Table 1 The basic MEG building blocks used to build intermediary applications

MEG Type Input Output Action Examples
Request editor Request Request Modify request Redirect request to new URL,
modify header, insert form
information, add or remove
cookies
Generator Request Response Produce response or Read response from local file,
reject request forward request, dynamically
compute response (as CGI),
compose response from
database, produce control page,
such as “document moved”
Response editor Request and Response Modify response Add annotations, highlight links,
response add toolbars, translate response,
change form data, add scripts
Monitor Request and None Receive request and Gather usage statistics, record
response response, perform user trail, store documents in a
computation cache, record filled-out forms

result is returned to the client. When WBI handles
a transaction, MEGs are selected according to their
conditions. WBI only considers the pool of MEGs and
is unconcerned with which plug-ins created them.

The WBI architecture can be used to build many dif-
ferent applications. Here, we sketch three: a Web
server, a caching proxy, and document transcoder.

Web server. A Web server is an intermediary that
takes a request from a client and produces a doc-
ument in response. More precisely, an HTTP request
is made of a server by connecting to the HTTP port
(typically port 80) of the server and issuing a com-
mand to GET a specific file. From the point of view
of WBI, this amounts to a request whose URL does
not specify a host from which to obtain the file (as
in an ordinary proxy request). Thus, a WBI plug-in
can implement a simple server by attaching a gen-
erator to a rule that checks the URL of the request
for a host. If no host is specified, the generator can
use the path name of the URL as the name of a file
in the local file system, returning the file if it is avail-
able or returning an error code if it is not. If a host
is specified, WBI can invoke the default generator to
pass the request along to that host.

Caching proxy. A caching proxy is also easy to im-
plement as a WBI plug-in. In this case, several MEGs
must work together to monitor transactions to store
retrieved documents and to generate documents

636 BARRETT AND MAGLIO

from a local store if available. More precisely, the
monitor maintains a database of document contents
(the cache) that is indexed by URL. To create this
cache, the monitor triggers on an essentially empty
(i.e., always true) rule, storing data whenever a doc-
ument is retrieved. Of course, if the content of the
URL is already stored in the cache (with the same
meta-information, such as date and expiration), the
monitor simply does nothing. The generator triggers
on an empty rule as well, checking the requested URL
against the URLs contained in the cache. If none is
found, the generator rejects the request, and WBI
chooses the next highest-priority generator from the
list of matching generators (possibly invoking the de-
fault generator to retrieve the document from the
Web). If the requested URL is found in the cache,
the generator can simply send the stored data back
to the client.

Transcoder. Transcoding might seem more compli-
cated but is nonetheless straightforward to imple-
ment in WBI. Recall that transcoding is the process
of converting one type of document into another type
of document. For instance, it might be convenient
to convert Microsoft Word** documents to Hyper-
Text Markup Language (HTML) documents so that
Web browsers can display them, or to convert im-
ages containing millions of colors to images contain-
ing four bits of gray scale to save network bandwidth.
The trick is to use a WBI document editor to read
from the original information stream and to write

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

to the new converted information stream. To con-
vert a Microsoft Word document to HTML, the ed-
itor would trigger on a rule that matches either the
content-type of the response (e.g., “x-application/ms-
word”) or the file extension of the URL (e.g., “*.doc”).
This editor can then use whatever software is nec-
essary to effect the conversion, such as invoking the
proper transformations using OLE (object linking and
embedding) objects built into Microsoft Word. The
WBI infrastructure handles all the plumbing, allow-
ing the application writer to concentrate on appli-
cation details rather than on HTTP.

Generalized intermediary architecture. The WBI
framework can be used to build intermediaries for
any unidirectional transaction stream. To demon-
strate this, we are currently developing a general-
ized version of WBI for streams other than HTTP. To
handle other protocols, this version of WBI has a mod-
ular connection component and a modular protocol
component. The connection component accepts con-
nections from the client, whether they are on a Trans-
mission Control Protocol/Internet Protocol (TCP/IP)
socket, an RS-232 port, or even a telephone line. The
protocol component interprets the signals that come
across the connection, parsing them into requests.
The request is then parameterized into a set of at-
tribute-value pairs that describe the request. These
attribute-value pairs are fed into the rule engine that
determines how the MEGs are interconnected to pro-
cess the request and produce a response. For exam-
ple, an HTTP request has attributes such as Method
(e.g., GET, POST), URL, User-Agent, Client IPAd-
dress, and so on. A telephone request might have
attributes such as Action (e.g., Off-Hook, KeyPress)
and Value (e.g., “#”).

Although the WBI architecture seems a reasonable
model for handling unidirectional transaction
streams, it is not obvious how to extend it to handle
all other sorts of streams. Bidirectional transaction
streams might be a straightforward extension of WBI.
In this case, because both endpoints can initiate
transactions, an intermediary process must listen for
requests on both sides. A request handler can then
process each type of request. One difficulty is con-
currency control between transactions on each side—
the intermediary framework might need to provide
mechanisms for maintaining a consistent state so that
transactions do not interfere. This is a problem for
the unidirectional case, but it is amplified in the bi-
directional case.

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Figure 7 Three plug-ins provide MEGs to WBI

WBI

@

PLUG-

PLUG- | | PLU
2 IN 3

IN

IN 1

_®
Bl

®
®

ms)

REQUEST)
> P RE1 »(G3A)
O

A
m

F 3

RESPONSE

Message-based information streams are more dif-
ficult to handle within a general framework because
there are fewer constraints on the possible sequence
of messages. The transaction case provides a con-
strained type of message in which requests and re-
sponses can be easily identified. But many information
streams are more open-ended than simple request-re-
sponse pairs. One unsatisfying workaround is to con-
sider nontransactional messages to be requests that
have a null response. In fact, the WBI framework does
not require that a response be generated for each
request; the transaction can simply be terminated
with no response sent back to the client.

Message streams. Although considering messages to
be transactions with null responses is in theory com-
plete, there are better ways to think about message-
based streams. An intermediary connected to such
astream can: (1) pass a message through unchanged,
(2) block a message from being passed through, (3)
send one or more new messages back to the orig-
inator of the message, or (4) send one or more new
messages along to the destination. These basic func-
tions can be combined to achieve any result. The cen-
tral problem is to design the state machine to con-
trol the selection of operations.

We envision a framework built out of message han-
dlers (MHs), which correspond to MEGs in WBI. Like
MEGs, each MH has a rule that determines when it
is to be involved in the information stream. This rule
can depend on characteristics of the message as well
as the state of the intermediary. Such state variables
might have different scopes, such as global and

BARRETT AND MAGLIO 6§37

stream, so that the state of the entire intermediary
and the state of the current information stream can
be handled independently. They will also need to be
scoped by plug-in to avoid interference between mul-
tiple applications that are sharing the same interme-
diary. Finally, messages typically have different lev-
els of granularity. Some MHs will wish to operate on
messages at a fine granularity and others at a coarse
granularity. For example, a log-in may correspond
to three messages: (1) client gives user identifica-
tion to server, (2) client gives password to server, and
(3) server confirms or denies log-in. Some MHs may
wish to operate on these messages individually, oth-
ers may wish to aggregate the user identification and
password messages together, and still others may
wish to aggregate all three messages together into
one log-in transaction. It would be helpful for the
intermediary framework to offer mechanisms for MHs
to identify useful aggregations and mechanisms for MHs
to trigger on and operate on aggregated messages.

In summary, the WBI architecture provides a basis
for modeling intermediary computation more gen-
erally. Though WBI was originally created to handle
HTTP streams, it is a straightforward extension to
handle other transaction streams. Message-based
streams, however, require many more modifications
to the WBI model.

Intermediary-rich information streams

Intermediaries can play a substantial role in coor-
dinating multiple information streams. By integrat-
ing a variety of functions into intermediary processes,
systems become more modular, more extendible, and
more interoperable. For instance, suppose a user
named Susan has a telephone intermediary that com-
municates with her PalmPilot synchronization inter-
mediary. The PalmPilot intermediary monitors mod-
ifications made to Susan’s address book, which
contains the names and phone numbers of her main
contacts. These names and phone numbers are com-
municated to the telephone intermediary, which
stores them. When Susan picks up her telephone,
rather than being connected directly to the telephone
line, her telephone intermediary sends a distinctive
dial tone. Rather than looking up a number or start-
ing up a computerized dialer, Susan simply says,
“Dial Bob Smith.” The telephone intermediary per-
forms a speech recognition transformation, effec-
tively translating Susan’s audio information stream
into a text stream. The text stream is taken as a re-
quest, which a request editor in turn transforms into
“Dial 555-1212.” A generator then forwards that re-

638 BARRETT AND MAGLIO

quest to the telephone line, transparently connect-
ing Susan’s audio stream to the audio stream of the
telephone line. If the number is found to be out-of-
date, Susan presses the “#” key to gain the atten-
tion of her phone intermediary, and says, “Bob
Smith’s new number is 555-2121.” This request is
translated to text and then routed to a generator that
communicates the change to Susan’s PalmPilot in-
termediary, which in turn sends back a text response
that is translated into audio by a speech synthesizer:
“I will remember that Bob Smith’s new number is
555-2121.” The next time Susan synchronizes her
PalmPilot, her intermediary will inject the correc-
tion into the information stream so that her system
is kept up-to-date.

When Susan is away from her telephone, she can sim-
ply call her telephone to gain access to this function-
ality. Her intermediary answers (it also acts as her
answering machine), allows Susan to authenticate
herself, and then provides her access to all of her
familiar features through a second phone line.

Suppose further that Susan’s telephone intermedi-
ary is connected to her Web browser intermediary.
When Susan calls various people, her telephone in-
termediary identifies the phone numbers dialed by
observing her dialing and by looking up the num-
bers in her company’s on-line directory. It also re-
cords spectral analyses of the peoples’ voices so that
it can identify them by their speech patterns. Now
when Susan is on a conference call, she can view a
“current phone call” Web page that is produced by
her Web intermediary. This dynamically generated
page receives its information from her telephone in-
termediary, showing the directory information for
each person on the call and highlighting each per-
son when they speak so she can keep up with the
conversation.

Finally, suppose Susan’s telephone intermediary can
also communicate with her e-mail intermediary. Now
when she picks up her telephone (or calls her tele-
phone from another location), she is greeted by a
“You’ve got mail” message rather than her normal
dial tone. Susan’s e-mail intermediary keeps her tele-
phone intermediary up-to-date on her e-mail inbox.
It can now retrieve her messages and read them to
her over the phone.

These scenarios rely on straightforward combina-
tions of intermediaries and information streams. As
must be apparent, much value can be gained by in-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

terconnecting different information streams through
intermediaries.

We have been developing message-oriented black-
board systems? that can serve as the clearinghouse
for information to be shared among intermediaries
on different streams (see also Wyckoff et al.?"). Such
a blackboard system enables intermediaries to post
messages to be routed to interested parties without
requiring all interested parties to be available at the
same time.

Pervasive computing streams

As computers become more pervasive—embedded
in gas pumps, coffee machines, automobiles, televi-
sions, or other common everyday devices—interme-
diary computation will play an even larger role in
the design of future systems. For example, gas pumps
formerly simply delivered gasoline, but now they also
accept cash payments, perform electronic credit card
transactions, and print receipts. It is not practical to
replace a modern gas pump to add a new capability,
such as performing ATM (automatic teller machine)
transactions, automatically selecting the user’s pre-
ferred octane level, or providing selected gasoline
additives. Unless all possible uses have been antic-
ipated, an embedded device must be extended to take
advantage of new situations and new opportunities.
We believe that intermediaries provide the right
hooks to easily extend pervasive computers.

Note that the user interface of an embedded system
communicates with the physical device through mes-
sages that indicate the user’s commands, the state
of the device, and available options. To personalize
a gas pump by automatically selecting the user’s pre-
ferred octane rating, an intermediary must under-
stand how to modify the information stream between
user interface and physical pump to set the octane
rating. In a computerized coffeemaker, for instance,
data flows from the interface that the user interacts
with to control brewing temperature and starting
time to the machinery that actually brews the cof-
fee. For the coffeemaker, intermediaries along the
path from user interface to brewing machinery can
add functions not envisioned by the original design-
ers, such as the ability to brew half-decaffeinated and
half-regular coffee. All embedded computational de-
vices must be separable into at least user interface
and mechanical components, which correspond to
origin and destination endpoints. The key is to break
the single pervasive computing device into two end-
points and a data flow.

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

To examine the role of intermediaries in pervasive
computing devices, consider an automatic cappuc-
cino maker that is designed to offer the single-shot
or double-shot options, the more-or-less steamed
milk option, and the regular or decaffeinated option.
It cannot offer triple-shots or half-regular and half-
decaffeinated coffee, though the mechanics of the

We believe that intermediaries
provide the right hooks to
easily extend pervasive
computers.

machine are capable of such features. For the cap-
puccino machine, there is at least a data flow between
the user interface controls and displays and the con-
trol electronics that govern the functioning of the
machine. This flow consists of three layers: physical,
protocol, and data. The physical layer includes the
wires and associated electronics that convey digital
data between user interface and control electronics.
The protocol layer defines a mechanism by which
messages can be transferred between user interface
and control electronics. The data layer defines the
semantics of these messages, such as “grind coffee
beans,” “dispense an eight-ounce cup,” or “display
‘Please Wait’.” The data flow provides a place within
the device for modifying the operation of the device.

Given an information stream, intermediaries can be
introduced to add new functions to the system. Note
that even simple devices might have several differ-
ent data flows for a given transaction. For example,
pressing buttons on the cappuccino machine could
produce a series of messages that say, “button 01
pressed,” “button 23 pressed,” and “button 12
pressed.” When such a message is received, other
messages might be sent along another data flow that
says, “brew eight-ounce cappuccino with extra
steamed milk.” When this message is received, an-
other series of messages might be sent along yet an-
other data flow that say, “grind one shot of regular
coffee,” “tamp grounds,” “pressurize steam,” “turn
on steam feed,” and so on. Figure 8 shows informa-
tion flows inside a hypothetical cappucino machine.
The endpoints are the user controls and the coffee

BARRETT AND MAGLIO 639

Figure 8 Flows of information inside a hypothetical
cappuccino machine

[[— — ‘ USER-
display ‘Ready INTERFACE
CONTROL

(7]i8 |
aEaa
2] “button 02 pressed”
oEaA
o
[}
°
(o]
=}
(7]
(o]
Q
Q
=%
@
(D=
COFFEE
MACHINERY
— - SYSTEM
“Pressurize steam” CONTROL

“steam temp=250"

machinery. The user-interface controls and system
controls act as intermediaries.

Adding automatic payment to the cappuccino ma-
chine would be straightforward if the machine were
capable of having an intermediary added to it. When
the “brew eight-ounce cappuccino with extra
steamed milk” message came along, the intermedi-
ary would note the message but not forward it to the
control electronics. Instead, it would send a message
back to the display that said, “Display ‘Swipe card’.”
The card reader could simply be a peripheral device
connected to the intermediary. When the card had
been read, the intermediary could deduct the pay-
ment from the user’s account and then forward the
“brew” message along to the control electronics.

There are many other ways to extend the machine
through the use of intermediaries. For example,
many people always order the same drink from the
cappuccino machine. Instead of going through sev-
eral layers of menus to define the desired product,

640 BARRETT AND MAGLIO

the customer could simply swipe a card through the
card reader of the machine and press a button con-
firming that the regular order is desired. Interme-
diaries can bypass the normal user interface using
this shortcut by issuing the appropriate commands
to the control electronics.

Intermediaries effectively open up pervasive com-
puting devices, establishing new ways to manipulate
data within the data flows of the device. Thus, in-
termediaries can adapt such devices to particular
users and their needs and can enable functions that
were unanticipated when the device was built.

Future work and summary

Our work with intermediaries has just begun. The
WBI architecture provides only a single model for in-
termediary computation on a single sort of informa-
tion stream. As mentioned, we are extending this
model to other streams, such as those that are mes-
sage-based, and to handle protocols other than HTTP.
Aswe continue to explore other information streams,
we will undoubtedly uncover additional assumptions
built into the preliminary analysis provided here. For
instance, the HTTP stream is both stateless and ses-
sionless, enabling WBI to use a simplified transac-
tion model. To create intermediaries for an infor-
mation stream such as net news (i.e., using NNTP*)
that requires session identifiers means building far
more machinery into the intermediary to manage this
state. The case of information streams that have
more than two endpoints, such as Internet Relay
Chat (IRC?), also complicates the issue.

In summary, intermediaries can turn ordinary infor-
mation streams into smart streams that enhance the
quality of available information and provide addi-
tional services. Because information flows every-
where today, there is a new opportunity for taking
advantage of intermediary computation. Until now,
however, general principles of intermediaries had not
been developed. In this paper, we have taken only
the first steps toward creating a general method for
injecting intermediary computation into information
streams. Much work remains to be done.

**Trademark or registered trademark of 3Com Corporation,
Go2Net, Inc., Yahoo! Inc., Compaq Computer Corporation,
X/Open Company, Ltd., or Microsoft Corporation.

Cited references

1. A. Luotonen, Web Proxy Servers, Prentice Hall, Englewood
Cliffs, NJ (1997).

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. P.S. Yu and E. A. MacNair, “Performance Study of a Col-
laborative Method for Hierarchical Caching in Proxy Serv-
ers,” Computer Networks and ISDN Systems 30, 215-224
(1998).

. A.Foxand E. Brewer, “Reducing WWW Latency and Band-
width Requirements by Real-Time Distillation,” Proceedings
of the 5th International World Wide Web Conference (1996).

. Portico: It’s magicTalk, General Magic, Inc., available as
http://www.generalmagic.com/portico/portico.html.

. Travelocity, Travelocity, Inc., available as http://www.
travelocity.com/.

. B. A. Nardi and V. O’Day, “Intelligent Agents: What We
Learned at the Library,” Libri 46, 59—88 (1996).

. J. Meyers and M. Rose, Post Office Protocol—Version 3, RFC-
1939, IETF Network Working Group (1996).

. T.Berners-Lee, R. Calliau, A. Luotonen, H. Frystyk-Neilsen,
and H. Secret, “The World Wide Web,” Communications of
the ACM 37, No. 8, 76-82 (1994).

. MetaCrawler, Go2Net, Inc., available as

metacrawler.com/.

Yahoo!, Yahoo! Inc., available as http://www.yahoo.com/.

AltaVista, Compaq Computer Corporation, available as

http://www.altavista.com/.

H. Lieberman, “Letizia: An Agent That Assists Web Brows-

ing,” International Joint Conference on Artificial Intelligence

(1995), pp. 924-929.

T. Joachims, D. Freitag, and T. Mitchell, “WebWatcher: A

Tour Guide for the World Wide Web,” Proceedings of the

International Joint Conference on Artificial Intelligence

(IJCAT'97) (1997).

T. W.Malone, K. Y. Lai, and C. Fry, “Experiments with Oval:

A Radically Tailorable Tool for Cooperative Work,” ACM

Transactions on Information Systems 13, 177-205 (1995).

B. Rhodes and T. Starner, “Remembrance Agent: A Con-

tinuously Running Automated Information Retrieval Sys-

tem,” Proceedings of the First International Conference on the

Practical Application of Intelligent Agents and Multi-Agent Tech-

nology (PAAM ’96) (1996), pp. 487-495.

K. Lang, “NewsWeeder: Learning to Filter Netnews,” Pro-

ceedings of Machine Learning (1995).

R. Barrett, P. P. Maglio, and D. C. Kellem, “How to Per-

sonalize the Web,” Proceedings of the Conference on Human

Factors in Computing Systems (CHI 97), ACM Press, New

York (1997).

R. Barrett and P. P. Maglio, “Intermediaries: New Places for

Producing and Manipulating Web Content,” Computer Net-

works and ISDN Systems 30, 509-518 (1998).

P. P. Maglio and R. Barrett, “How to Build Modeling Agents

to Support Web Searchers,” Proceedings of the Sixth Inter-

national Conference on User Modeling, Springer-Verlag, New

York (1997).

G. M. Underwood, P. P. Maglio, and R. Barrett, “User Cen-

tered Push for Timely Information Delivery,” Computer Net-

works and ISDN Systems 30, 33—41 (1998).

P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford,

“T Spaces,” IBM Systems Journal 37, No. 3, 454474 (1998).

M. Horton and R. Adams, Standard for Interchange of

USENET Messages, RFC-1036, IETF Network Working

Group (1987).

J. Oikarinen and D. Reed, Internet Relay Chat Protocol, RFC-

1459, IETF Network Working Group (1993).

http://www.

Accepted for publication April 21, 1999.

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1999

Rob Barrett IBM Research Division, Almaden Research Center,
650 Harry Road, San Jose, California 95120 (electronic mail:
barrett@almaden.ibm.com). Dr. Barrett holds B.S. degrees in phys-
ics and electrical engineering from Washington University in St.
Louis, and a Ph.D. in applied physics from Stanford University.
He joined IBM Research in 1991, where he has worked on mag-
netic data storage, pointing devices, and human-computer inter-
actions in large information systems.

Paul P. Maglio IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
pmaglio@almaden.ibm.com). Dr. Maglio holds an S.B. in com-
puter science and engineering from the Massachusetts Institute
of Technology and a Ph.D. in cognitive science from the Uni-
versity of California, San Diego. He joined IBM Research in 1995,
where he studies how people use information spaces, such as the
World Wide Web.

Reprint Order No. G321-5709.

BARRETT AND MAGLIO 641

