REPRINTED FROM IBM SYSTEMS JOURNAL, VOL19, NO 4, 1980; © 1980, 1999

Saftware engineering may be defined as the systematic design
and development of saoftware products and the management of
the software process.

The general principles of software engineering are set forth in
Part I, in which the author relates software engineering to the
whole field of the system development process—system engineer-
ing, hardware engineering, software engineering, and system in-
tegration. Presented briefly are overviews of the major aspects of
software engineering —design, development, and management.

The management of software engineering
Part |: Principles of software engineering

by H. D. Mills

In the past 20 years, the Federal Systems Division of the 1BM
Corporation has been involved with some of the nation’s most
complex and demanding software developments. These include
the ground support software for the NASA Manned Space Series
of the Mercury, Gemini, Apollo, and Skylab Programs (reaching
the moon with Apollo), and both the ground and space software
for the NASA Space Shuttle Program. FSD has also developed soft-
ware for the Safeguard Anti-Ballistic Missile System, for the En-
route Traffic Control System for the FAA, and many other major
civil and defense systems.

Software engineering began to emerge in FSD some ten years ago
in a continuing evolution that is still underway. Ten years ago
general management expected the worst from software projects—
cost overruns, late deliveries, unreliable and incomplete soft-
ware. Today, management has learned to expect on-time, within-
budget deliveries of high-quality software. A Navy helicopter/
ship system, called LAMPS, provides a recent example. LAMPS
software was a four-year project of over 200 person-years of ef-
fort, developing over three million and integrating over seven mil-
lion words of program and data for eight different processors dis-
tributed between a helicopter and a ship, in 45 incremental deliv-
eries. Every one of those deliveries was on time and under
budget. A more extended example can be found in the NASA
space program, where in the past ten years, FSD has managed
some 7000 person-years of software development, developing
and integrating over a hundred million bytes of program and data
for ground and space processors in over a dozen projects. There
were few late or overrun deliveries in that decade, and none at all
in the past four years.

There have been two evolutions in FSD: first, an evolution in

ideas, leading to a growing discipline in both the management and
technical sides of software engineering, and second, an evolution

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 0018-8670/99/$5.00 © 1999 IBM

miLLs 289

290 wmiLLs

in the number and skill of people using the discipline. This evolu-
tion has not been without pain and attrition. Software is a new
subject of human endeavor. Just as programming has evolved
from a cut and try individual activity to a precision design process
in structured programming, software engineering has evolved
from an undependable group activity to an orderly and manage-
able activity for meeting schedules and budgets with high-quality
products.

It is one thing to talk about orderly software development, and
quite another to achieve it. The basis for this orderly control is
mathematical discipline, even though the problem being solved
by the software may not be mathematical. The key management
standards of software engineering in FSD are based on mathemati-
cal theorems about how programs can be structured, docu-
mented, and organized into larger systems, because without theo-
rems for bedrock, choices reduce to matters of management style
and individual experience.

The FSD Software Engineering Education which supports the
Program is highly mathematical for both managers and program-
mers. Set theory, logic, mathematical functions, and state ma-
chines play key roles in education, not for the sake of mathemat-
ics itself, but because practical experience has shown that that
level of precision is required in order to do more than talk about
orderly software development.

What is software?

Software began as a synonym for computer programs, but the
term has taken on a much more extensive meaning. The effective
use of computer hardware requires more than programs. It re-
quires well-informed users and human procedures for computer
operations, data entry, and program execution. These require-
ments call for instructions for humans of no less precision and
completeness than programs for the computers. Thus, operators’
guides, users’ guides, etc. become as important to a system oper-
ation as programs. Further, the users must understand well
enough what the computers do to correctly interpret their outputs
and intelligently prepare their inputs to meet operational objec-
tives. Thus, requirements and specifications of computer pro-
grams and systems are of vital importance to the users as well.

Although computers began as single units serving a single user at
a time, the rapid growth of multi/distributed processing systems
to serve multi/distributed users has greatly expanded the role of
software. Software is the logical glue that can hold many comput-
ers and digital devices of all kinds together in a coherent system,
which in turn interacts with many kinds of people—clerical, pro-

VOL19, NO 4, 1980, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

fessional, staff specialists, and management—in the operation of
an enterprise.

As aresult of the pervasive role of software in a multi/distributed
processing system, it seems proper to redefine the term software
from its usual meaning of single programs to mean logical doc-
trine for the harmonious cooperation of a system of people and
machines—usually many kinds of people and many kinds of ma-
chines. In such a system, the agents of action are people and ma-
chines, with the blueprints for their action supplied by software.
A human procedure is as important to the system as a machine
procedure. People have radically different instruction sets than
machines, including an operation called ‘‘use your common
sense,”’ but they have instruction sets just the same. The synchro-
nization of two people or a person and a machine is as important
as the synchronization of two machines, but people often supply
self-synchronization capabilities. Even ‘‘off the shelf machines’’
have an analog in ‘‘people with presently available skills.”’

Thus, software consists of operational requirements for a system,
its specifications, design, and programs, all its user manuals and
guides, and its maintenance documentation. Further, this whole
software complex needs to evolve as a consistent whole as the
operation evolves, as new hardware is added, and as new people
are added. That is, software is typically a set of logical blueprints
for the operation and use of a multi/distributed processing system
by an organization of people in its natural evolution over time.

What is software engineering?

Software engineering is a growing set of disciplines and proce-
dures for the dependable development and maintenance of soft-
ware, as embodied in the FSD Software Engineering Practices,
and discussed in Reference 1. For a wider perspective, we can
identify the following four definite functions in an overall system
development process, the relationships among which are illus-
trated in Figure 1.

Software engineering stands between system engineering and
system integration, accepting from system engineering the sys-
tem software requirements and resources, and providing system
integration with the software for meeting those requirements with
those resources. Thus the total software of a system is a joint
product of system engineering and software engineering, which
begins with a defined system purpose and a defined configuration
of hardware.

Of course, operating systems, compilers, and programming sup-
port systems all represent special and specialized software sys-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL19, NO 4, 1980, REPRINT

Figure 1

System development

SYSTEM
ENGINEER
ING

¥

]

1

HARDWARE
ENGINEER-
ING

lt— — — — e

SOFTWARE
ENGINEER
ING

1

¥

[

SYSTEM
INTEGRA
TION

miLLs 291

292 wmiLLs

tem developments, and the disciplines and procedures of soft-
ware engineering apply fully to them. But we are usually more
preoccupied with application systems, which make use of such
support systems as extensions of the hardware.

The FSD practices classify the disciplines of Software Engineering
into the following three categories:

e Design—system design, module design, program design, and
data design, all of which culminate in source code in one or
more compilable programming languages, as well as in linkage
editor, loader, and job control languages.

e Development —organization of design activities into sustained
software development, selection, and control of design sup-
port facilities, code management, test, and software in-
tegration planning and control.

® Management—work breakdown and organization proce-
dures, estimation, and scheduling of personnel and computer
resources required for software design and development,
measurement and control of software design and develop-
ment.

Software engineering design

Attention to the principles of software design has focused on
three distinct areas during the past decade and has resulted in an
abundance of useful and well-tested material on the following
subjects:

e Sequential process control—characterized by structured pro-
gramming and program correctness ideas of Dahl, Dijkstra,
and Hoare,” Hoare,® Linger, Mills, and Witt,* and Wirth.*®

e System and data structuring—characterized by modular de-
composition ideas of Dahl, Dijkstra, and Hoare,? Ferrentino
and Mills,”® and Parnas.’.

e Real-time and multiple/distributed processing control—char-
acterized by concurrent processing and process synchro-
nization ideas of Brinch Hansen,'® Hoare," and Wirth."

Software design requires the integration of these three areas into
a systematic process, as discussed in Reference 13. These design
principles provide increased discipline and repeatability for the
design process. Designers can understand, evaluate, and criticize
each other’s work in a common, objective framework. As pointed
out by Weinberg," people can better practice egoless software
design by focusing criticisms on the design and not on the author.
These design principles also establish the criteria for more for-
malized design inspection procedures that permit designers, in-

VOL19, NO 4, 1980, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

spectors, and management to better prepare, conduct, and inter-
pret the results of periodic design inspections.

Software engineering development

Although the primary thrust of software engineering is embodied
in design, the organization and support of design activities into
sustained software development is an equally important activity,
as discussed in References 1, 15, and 16. The selection of design
and programming languages and their support tools, the use of
library support systems to maintain and monitor a design under
development, and the implementation of a test and integration
strategy will all affect the design process in major ways. The dis-
ciplines and procedures needed to sustain software development
must be scrutinized and chosen as carefully as design principles.

Intellectual control is the key to orderly software development. It
is made possible by a sequence of logically equivalent software
descriptions, beginning with high-level specifications and pro-
ceeding through successively lower-level specification refine-
ments until the level of source code is reached. Successive de-
scriptions can be baselined and validated to milestones, so that
the intermediate progress of software development is more vis-
ible to management. This activity of creating a sequence of more
and more detailed specification refinements of an initial specifica-
tion is the process of top-down development.

The intellectual control and management of design abstractions
and details is the basis for the development discipline. Design and
programming languages are required that can deal with procedure
abstractions and data abstractions, with system structure, and
with the harmonious cooperation of multi/distributed processes.
Library support systems are required that can handle the conve-
nient creation, storage, retrieval, and correction of design units,
and provide the overall assessment of design status and progress
against objectives.

The first guarantee of quality in design is in well-informed, well-
educated, and well-motivated designers. Quality must be built
into designs, and cannot be inspected in or tested in. Never-
theless, any prudent development process verifies quality
through inspection and testing. Inspection by peers in design, by
users or surrogates, by other financial specialists concerned with
cost, reliability, or maintainability not only increases confidence
in the design at hand, but also provides designers with valuable
lessons and insights to be applied to future designs. The very fact
that designs face inspections motivates even the most con-
scientious designers to greater care, deeper simplicities, and
more precision in their work.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL19, NO 4, 1980, REPRINT

miLLs 293

294 wmiLLs

Software engineering management

Management from a software engineering viewpoint is primarily
the management of a design process, and represents an equally
difficult intellectual activity. While the process is highly creative,
it must still be estimated and scheduled, so that the various parts
of the design activity can be coordinated and integrated into a
harmonious result, and so that users and other functions of sys-
tem development can plan on this result. The intellectual control
that comes from well-conceived design and development dis-
ciplines and procedures is invaluable in this process. Without that
intellectual control, even the best managers face hopeless odds in
trying to see the work through.

To meet cost/schedule commitments based on imperfect estima-
tion techniques, a software engineering manager must adopt a
manage-and-design-to-cost/schedule process. That process re-
quires a continuous and relentless rectification of design objec-
tives with the cost/schedule needed to achieve those objectives.
Occasionally, a brilliant new approach or technique which in-
creases productivity and shortens time in the development pro-
cess may simplify this. But usually, the best possible approaches
and techniques have already been planned, and a shortfall or
windfall in achievable software requires consultation with the
user to make the best choices among function, performance, cost,
and schedule. The intellectual control of software design not only
allows better choices in a current development, but also stimu-
lates subsequent improvements in function or performance for a
well-designed baseline system resulting from the current develop-
ment.

In software engineering, there are two parts to an estimate—mak-
ing a good estimate and making the estimate good. The software
engineering manager must see that both parts are right in addition
to ensuring the right function and performance. That is not an
easy task and never will be, but there is help on the way, as de-
scribed in the companion articles and in the references.

ACKNOWLEDGMENTS

The authors thank FSD President John B. Jackson for giving them
as well as other developers and students of the software engineer-
ing program the leadership and means to implement this program.
We also thank James A. Bitonti for setting for us the goal of de-
veloping a written base of procedures for the educational program
and project compliance accountability.

The author is located at the IBM Federal Systems Division, 10215
Fernwood Road, Bethesda, MD 20034.

VOL19, NO 4, 1980, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

CITED REFERENCES

1. H. D. Mills, ‘‘Software development,”” IEEE Transactions on Software Engi-
neering SE-2, No. 4, 265-273 (December 1976).

2. 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming,
Academic Press, Inc., New York (1972).

3. C. A. R. Hoare, ‘‘An axiomatic basis for computer programming,’’ Communi-
cations of the ACM 12, No. 10, 576-583 (October 1969).

4. R. C. Linger, H. D. Mills, and B. L. Witt, Structured Programming: Theory
and Practice, Addison-Wesley Publishing Co., Inc., Reading, MA (1979).

5. N. Wirth, Systematic Programming: An Introduction, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1976).

6. N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1973).

7. A. B. Ferrentino and H. D. Mills, **State machines and their semantics in
software engineering,”’ Proceedings of IEEE Comsac '77, IEEE Catalog No.
77Ch1291-4C, 242-251, IEEE Service Center, 445 Hoes Lane, Piscataway,
N7 08854 (1977).

8. H. D. Mills, On the development of systems of people and machines,
Springer-Verlag, New York (1975).

9. D. L. Parnas, ‘“‘The use of precise specifications in the development of soft-
ware,” Proceedings of IFIP Congress 77, Toronto, August 8-12, 1977, B.
Gilchrest, Editor, North-Holland Publishing Co., New York (1977), pp. 861-
867.

10. P. Brinch Hansen, The Architecture of Concurrent Programs, Prentice-Hall,
Inc., Englewood Cliffs, NJ (1977).

11. C. A. R. Hoare, ‘‘Monitors: An operating system structure concept,”’ Com-
munications of the ACM 17, No. 10, 549-557 (October 1974); ‘‘Corrigen-
dum,”” Communications of the ACM 18, No. 2, 95 (February 1975).

12. N. Wirth, ‘‘Toward a discipline of real-time programming,’’ Communications
of the ACM 20, No. 8, 577-583 (August 1977).

13. H. D. Mills, “‘Software engineering,”” Science 195, No. 4283, 1149-1205
(March 18, 1977).

14. G. M. Weinberg, The Psychology of Computer Programming, Van Nostrand
Reinhold Co., New York (1971).

15. F. T. Baker, ‘‘Chief programmer team management of production program-
ming,”” IBM Systems Journal 11, No. 1, 56-73 (1972).

16. M. A. Jackson, Principles of Program Design, Academic Press, Inc., New
York (1975).

Harlan D. Mills
Federal Systems Division, Bethesda, Maryland

Dr. Mills has been employed by the IBM Corporation since 1964. He received an
Outstanding Contribution Award in 1973 for new programming methodologies,
including top-down program design, techniques used for structured programming,
and the Chief Programmer Team concept. Dr. Mills was named an IBM Fellow at
that time. He served on the Corporate Technical Committee in 1973-74. He was
director of software engineering and technology in the Federal Systems Division.
Dr. Mills received a Ph.D. in mathematics in 1952 from Iowa State University. He
was named an Honorary Fellow by Wesleyan University in 1962, and a Fellow of
the Association of Computer Programmers and Analysts in 1975. He has served
on faculties of the Iowa State University, Princeton University, New York Uni-
versity, and The Johns Hopkins University. Dr. Mills has been Adjunct Professor
of Computer Science at the University of Maryland since 1975.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL19, NO 4, 1980, REPRINT

miLLs 295

