
Preface 

The creation of software from existing resources is 
a well-established part of programming and software 
engineering for reasons of quality, productivity, and 
rapid development and deployment. Progress on this 
broad approach to reuse began at the lowest levels 
of programming, such as code, and has slowly 
reached toward the highest levels of software, such 
as architecture. The ability to reuse architectural as- 
sets is a vital step in the effective, efficient develop- 
ment of new systems and solutions from all the work 
that has gone before. 

This issue presents the current work of the Enter- 
prise Solutions Structure (ESS) project, a major IBM 
initiative focusing on the reuse of high-level software 
components, assets, and solutions in the large and 
complex systems environments of major customers. 
The assets being reused include architectures, meth- 
ods, business patterns, and technology templates, 
among others. There is also a technical note on sim- 
plification of data flow diagrams. We are indebted 
to P. T. L. Lloyd of the IBM Object Technology Prac- 
tice in Wanvick, England, for his planning and co- 
ordination of this issue. 

Plachy and Hausler introduce ESS through their pa- 
per on the motivation, purpose, architectural frame- 
work, development model, architectural contents, 
and advantages of ESS. They present the subject of 
high-level software reuse of solution assets, and in- 
troduce the other papers on ESS in this issue. 

McDavid takes a high-level view of systems as a set 
of interconnected, business-oriented architectures 
and resulting software solutions. This leads to the 
description of a business systems architecture for ESS 
that uses key business concepts in the style of other 
architectures as a means for understanding and cod- 
ifying systems aspects such as business requirements, 
boundaries of the business, and the delivery of bus- 
iness value. 

The ESS model for reuse depends on the ability to 
express, in terminology and notation, the architec- 
tural aspects of existing reusable assets. The form of 
that expression is called the Architecture Descrip- 
tion Standard (ADS). With ADS, assets that have been 
collected for reuse, or “harvested,” can be system- 
atically found and properly reused. The authors, 
Youngs et al., show that common descriptions of ar- 
chitectures in an operational model, and of compo- 
nents in a functional model, set the stage for active 
reuse. 

Given the philosophy of standardization and descrip- 
tion for reuse that surrounds ESS, Lloyd and Galam- 
bos take the next step by describing five standard- 
ized reference architectures, which are meant to 
cover the administrative systems needs of large bus- 
inesses across the entire enterprise. These five have 
been carefully gleaned and abstracted from success- 
ful enterprise systems implementations. 

Leishman moves beyond the basic ESS approach to 
describe her on-going research on solution customi- 
zation. Two properties are found to be fundamen- 
tal-commonality and variability-and the author 
describes how these properties have been applied 
in six examples of customizable systems. She also ex- 
plains mechanisms for introducing commonality and 
variability, and shows in which phases of the customi- 
zation life cycle the mechanisms can be applied. 

Previous experience with enterprise-wide reuse has 
not been generally favorable. So, practical experi- 
ence with such high-level and broad reuse is a nec- 
essary part of explaining the value of ESS. Harris, 
Rothwell, and Lloyd present the results of a num- 
ber of uses of ESS in actual business situations. The 
conclusion is positive: ESS made it easier to rapidly 
and effectively provide work products that address 
business needs, and to support those work products 
later on. The authors also present the challenges they 

2 PREFACE IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



found in further sophistication of ESS and the ESS 
approach. 

In a technical note, Millet presents a modification 
to usual data flow diagram notation and use in which 
each data store symbol represents a whole database 
instead of a table. The claim is that such a modifi- 
cation makes it easier to create, understand, and 
maintain data flow diagrams. 

As the Journal begins its 38th year, we would like to 
acknowledge the support of readers, authors, and 
referees that makes such a long history possible. We 
thank you and encourage you to continue your in- 
terest and participation in this publication. It also 
seems appropriate at such a time to state a few facts 
that sometimes escape us as we focus on a single pa- 
per, theme, or special issue. First, this quarterly pub- 
lication is a refereed technical journal, which means 
that the integrity of each paper is ensured by a pro- 
cess that depends upon peer reviews of content, cur- 
rency, and value by recognized experts within and 
outside IBM. Second, it is intended for the software 
and systems professional and applied research com- 
munity worldwide. The papers are written for a tech- 
nically aware readership, and we welcome submis- 
sions by knowledgeable authors around the globe, 
within and outside IBM. Third, the Journal has over 
50 000 subscribers worldwide. Of those, approxi- 
mately two-thirds are technical professionals and re- 
searchers outside IBM and one-third are IBM employ- 
ees; two-thirds are in the United States and one-third 
are outside the United States. 

The next issue of the Journal will be a unique, ret- 
rospective issue on some of the key turning points 
in the evolution of computing during the twentieth 
century, as reflected in the pages of the Journal since 
1962. There will also be commentary on the impor- 
tance of those turning points and the related papers 
by key individuals who saw it happen, written from 
their perspective at the close of the century. 

Gene F. Hoffnagle 
Editor 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 PREFACE 3 


