
Technical note
A proposal to simplify data flow
diagrams

by I. Millet

This technical note presents an adaptation of the
data flow diagram (DFD) technique whereby each
data store symbol represents a database rather
than a single table. It is conjectured that this
modification makes DFDs easier to create,
understand, and maintain. It also reduces an
overlap with the entity-relationship diagram
technique by curtailing graphical manifestations
of the data model in the DFD.

S ince the data flow diagram (DFD) technique was
introduced in the late 1970s, it has become the

main process modeling tool for information systems.
Recent research has shown that DFDs are the most
popular tool taught in systems analysis and design
courses: 597 out of 647 schools (92 percent) indi-
cated that they teach DFDS in that course.’

Although recent object-oriented design methodol-
ogies such as the Unified Method by Booch and
Rumbaugh4 may attempt to replace functional mod-
eling,’ DFDs seem to have certain advantages. Em-
pirical research by Vessey and Conger‘ shows that
DFDs are easier to learn and to use, at least by nov-
ice users. Similarly, Aganval et al. showed that DFDs
produce higher-quality solutions in process-oriented
tasks and are not inferior to object-oriented meth-
odologies even in object-oriented tasks.7

If DFDs are so easy to use, one may ask, where is the
problem? Why bother making DFDS even easier and
more flexible? There are several reasons for adopt-
ing the modification proposed in this note. First, since
the DFD is a popular tool, it is easy to justify the ef-
fort to improve it. Making DFDs simpler and more
flexible may help us to also reduce the tension be-

tween discipline and creativity in the practice of sys-
tems development. ‘z9 Finally, by removing the data
modeling aspect of DFDS we can avoid redundancy
and conflict with the popular entity-relationship di-
agram (ERD) methodology.

The overlap with ERDs

According to Whitten and Bentley, lo process mod-
eling is a “technique for organizing and document-
ing the structure and flow of data through a system’s
Processes and/or the logic, policies, and procedures
to be implemented by a system’s Processes.” The
problem is that ERDS” already model data structures.
As shown below, asking DFDS to depict which tables
are required by the system causes duplication of ef-
fort, clutter, and inflexibility.

Figure 1 depicts a simple DFD, adapted from Fer-
tuck.I2 According to the Gane and Sarson2 notation
used here, the rounded boxes represent processes,
such as “enroll students,” which transform incom-
ing data flows, represented by arrows, into outgoing
data flows. An open-ended rectangle represents a
data store, typically a database table such as “stu-
dents,” which stores data for use at a later time. A
plain rectangle represents a terminator or external en-
tity, such as “student,” which is an external source
or destination for information.

Topyright 1999 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royaltyprovided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

118 MILLET 0018-8670/99/$5.00 0 1999 IBM IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 1 A DFD with data stores for each table

Figure 2 Adding two data stores and a process to Figure 1 leads to a cluttered DFD

This is a rather simple case and it is further simpli-
fied by the omission of other necessary data stores
such as “teachers” and “courses.” Still, this approach
of assigning data store symbols to every table makes
this diagram more complex and less flexible than it
should be.

If the analyst realizes that certain tables should be
added to the system, the change will not be limited
to the ERD; this DFD would also have to be redrawn
and would become even busier. Similar changes will
have to be made throughout all levels of the DFD
hierarchy. After one or two cycles of such changes,
the analyst will probably be less inclined to use DFDS
in future assignments.

Furthermore, consider adding a third process to this
diagram, say “generate reports.” Since this third pro-

cess may require access to many tables, we imme-
diately have either data flows crossing one another
or data store replicas cluttering the diagram. Figure
2 demonstrates how the addition of two more data
stores and one more process causes a rapid deteri-
oration in the visual appeal of the DFD. Things can
become much uglier when designing DFDs for more
complex situations.

These limitations are self-imposed due to the insis-
tence on using DFDs to model not only processes, but
also data structures.

Proposed adaptation. The solution to these prob-
lems is to let DFDS and ERDS serve different purposes.
Allow ERDs to focus on modeling data, and let DFDs
focus on modeling processes. If we adopt a guide-
line whereby each data store can represent a whole

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 MILLET 119

Figure 3 DFD obtained when Figure 1 is modified such that there is one data store for a whole database

Figure 4 The DFD of Figure 3 remains simple when adding tables and processes

database, then we can model the original system (Fig-
ure 1) using the DFD depicted by Figure 3.

This small change has reduced the number of data
stores from three to one, and the number of data
flows from twelve to eight. As one more example,
Figure 4 shows how the DFD in Figure 2 becomes
much simpler when we apply the new guideline.

By comparing the DFD in Figure 4 to the one in Fig-
ure 2 we can see that using a single data store to de-
pict the whole database allows us to add more pro-
cesses without resorting to spaghetti data flows or
to data store replicas. We reduced five data stores
to one, and 23 data flows to 11. The new process can
find easy access to the single data store symbol since
the database is not surrounded by other data store
symbols.

Although the diagram in Figure 4 is simpler and eas-
ier to understand, the most important impact is the

120 MILLET

isolation from changes in the data model. Adding
or dropping tables would have no impact on the new
DFD, unless these changes also reflect changes in pro-
cess design. For example, adding a “classroom” ta-
ble to the database would require no changes to the
DFD in Figure 4. The single data store symbol en-
capsulates the database structure and shields the pro-
cess model from such changes.

Concluding remarks

At the lowest level of decomposed DFDs, primitive
process specifications (PPSS) identify records and data
elements used as input and output to processes. This
is a valid area of overlap between data models and
process models. Should DFDS then model data struc-
tures after all? The answer lies in the integration pro-
vided by modern CASE (computer-assisted software
engineering) tools. The same repository used by the
ERD tool to maintain information about tables and

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

record structures can be used by the DFD tool to spec-
ify records and data elements as input, output, and
data flow components. The key then is not the iso-
lation of DFDs from data aspects, but the isolation
of the graphical DFD representation from such is-
sues.

Although object-oriented analysis and design meth-
ods are adding useful techniques to our systems anal-
ysis toolbox, we still lack descriptive and prescrip-
tive research on the application of these tools. Such
research can increase the likelihood of teaching and
practicing effective systems analysis techniques.

For the last five years I have been teaching students
the DFD technique using this adaptation. The feed-
back has been very positive. I must concede, how-
ever that, while the examples above seem compel-
ling, the benefits of the proposed adaptation are
mere conjecture at this stage. I can only hope that
those who try this technique report that indeed it
makes DFDs easier to create, understand, and main-
tain.

Cited references

1. T. DeMarco, Structured Analysis and System Specification,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1978).

2. C. Gane and T. Sarson, Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Inc., Englewood Cliffs, NJ (1979).

3. R. McLeod, Jr., “Comparing Undergraduate Courses in Sys-
tems Analysis and Design,” Communications ofthe ACM 39,

4. G. Booch and J. Rumbaugh, Unified Method for Object-On”
ented Development, Technical Report, Rational Software Cor-
poration, Cupertino, CA (1995).

5. I. M. Holland and K. J. Lieberherr, “Object-Oriented De-
sign,” ACM Computing Surveys 28, No. 1, 273-275 (March
1996).

6. I. Vessey and S . A. Conger, “Requirements Specifications:
Learning Object, Process, and Data Methodologies,” Com-
munications ofthe ACM 37, No. 5, 102-113 (May 1994).

7. R. Aganval, S . P. Atish, and T. Mohan, “Cognitive Fit in Re-
quirements Modeling: A Study of Object and Process Meth-
odologies,” Journal of Management Information Systems 13,
No. 2, 137-162 (Fall 1996).

8. R. L. Glass, “The Faking of Software Design,”Journal ofSys-
tems and Software 26, 101-102 (1994).

9. R. L. Glass, “A Theory About Software’s Practice,” Journal
of Systems and Software 28, 187-1 88 (1995 j.

10. J. L. Whitten and L. D. Bentley, Systems Analysis and Design
Methods, McGraw-Hill, Inc., Boston (1998), p. 121.

11. P. Chen, “The Entity-Relationship Model-Towards a Uni-
fied View of Data,” ACM Transactions on Database Systems
1, No. 1, 9-36 (March 1976).

12. L. Fertuck, Systems Analysis and Design with Modern Meth-
ods, Wm. C. Brown Communications, Dubuque, IA (1995),

NO. 5, 113-121 (May 1996).

p. 358.

Accepted for publication September 16, 1998.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Ido Millet Penn State Eric, The Behrend College, School of Bus-
iness, Station Road, Erie, Pennsylvania 16563-1400 (electronic mail:
ixm7@psu.edu). Dr. Millet is Assistant Professor of Management
Information Systems at Penn State Erie, The Behrend College.
He received a B.S. in industrial engineering and management from
the Technion-Israel Institute of Technology, an M.B.A. from Tel-
Aviv University, and a Ph.D. in information systems from the
Wharton School, University of Pennsylvania. He has 12 years of
industrial experience, including systems analysis and project man-
agement for large-scale information systems, consulting, and de-
velopment of PC-based management information systems. He is
the author of articles in Systems, Objectives, Solutions, Informa-
tion and Management; Interfhces; Journal of Information Technol-
ogy Management; CIO; Journal of Multi-Criteria Decision Anal-
ysis; PowerBuilder Developers Journal; Journal of Systems and
Software; Journal ofBusiness Ethics; and the European Journal of
Operational Research. His research interests include management
reporting systems, issue management systems, and the analytic
hierarchy process.

Reprint Order No. G321-5700.

MILLET 121

