
Technical reference
architectures

by P. T. L. Lloyd
G. M. Galambos

Today’s approaches to solution development are
still primarily based on “handcrafting” and bear
little relationship to the asset-based engineering
methods so successfully used in other
disciplines. In this paper we argue that these
handcrafting approaches have passed their
“sell-by’J dates, and a more disciplined and
constrained method of system development is
needed. We focus particularly on the definition
of technical architectures as the basis for
constructing applications. We argue that a
constrained set of reference architectures for a
given set of problem domains is not only feasible,
but mandatory for large-scale enterprise
development, and we provide some example
fragments of reference architectures for the
administrative systems domain. These reference
architectures and their successors, harvested
and continually refreshed from successful
consulting engagements, will form the basis of
lBMJs asset-based approach to solutions
development in the future.

I n this paper we focus on enterprise-scale solutions.
When we refer to enterprises we are thinking of

large businesses, typically with thousands of employ-
ees and, in many cases, thousands to millions of cus-
tomers. The information technology (IT) systems be-
ing developed may be laid out over wide geographic
areas, transaction rates may be tens or hundreds per
second, and the company’s corporate databases may
be many thousands of gigabytes in size. Service to
these companies forms the bedrock of IBM’s (and
many IT companies’) business, and is key to IBM’s fu-
ture success.

Although we approach the subject from an IBM per-
spective, we believe that our comments apply widely
to the IT industry in the context of enterprise-scale
development.

An asset-based approach to solution
development

Today’s approaches to solution development are still
primarily based on “handcrafting” and bear little re-
lationship to the asset-based engineering methods
so successfully used in other disciplines. We believe
that handcrafting approaches are obsolete and a
more disciplined and constrained method is needed
for solution development.

Problems with the current approach. Today, the
most common model for solution development is

Wopyright 1999 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 0018-8670/99/55.00 0 1999 IBM LLOYD AND GALAMBOS 51

based on an approach that we call “heroic.” A highly
skilled, energetic team studies and refines the stated
requirements, defines the architecture for a solution
to meet those requirements, carries out a detailed
design, and builds the system. Assets brought to the
table are primarily the skills and experience of the
individuals who make up the team.

Size, complexity, and risk. Whereas in the 1970s and
to some extent the 1980s the heroic approach seemed
reasonably effective, it is clear that for enterprise-
scale systems it is no longer adequate. In 1996 sur-

It is not surprising
that enterprises are seeking

to mitigate risk by taking
an asset-based approach.

veys of 20 major enterprise solution development
projects in North America and Europe showed that
solution development project risk increased rapidly
with project size. For projects requiring more than
100 person years, the risk of project delay or failure
was very high.

Moreover, for various reasons, the amount of proj-
ect resources needed to replace existing business sys-
tems is rising rapidly. In the 1960s, utility billing sys-
tems could be developed in 50 person years using
batch technology; in the 1970s, the first-generation
on-line systems (which provided the genesis for I E ”
CICS* [Customer Information Control System] trans-
action monitor) were needing 100 person years or
so; in the 1980s, the figure was up to 150 person
years with more sophisticated personal computer
(PC)-based interfaces. However, by the mid-l990s,
with the advent of object-oriented front ends and dis-
tributed logic clientiserver and other technologies,
several projects were up to 500 person years with an
elapsed time of four to five years. A considerable
part of this effort, perhaps one-third, was spent on
integrating new function with existing (legacy) IT sys-
tems and handling data migration to new database
designs. These figures are not unique to the utilities
industry-the same trends are apparent in the in-
surance industry. Specifically, the replacement of ex-
isting contract management systems in a large insur-

52 LLOYD AND GALAMBOS

ance company in France was recently reported as
consuming 500 person years over an elapsed time of
six years or more.

It goes without saying that any project of 500 person
years is exposed to considerable risk-not only the
risk of technical failure, but also the risk that upon
final delivery, the business requirements will have
changed beyond recognition and the delivered so-
lution may no longer meet business needs. When we
combine this risk with the likely development costs
of $50 million or more, it is apparent that our in-
dustry is facing a crisis.

In these circumstances, it is not surprising that en-
terprises are seeking to mitigate risk by taking an
asset-based approach. Whereas ten years ago, an en-
terprise would likely have seen advantages in under-
taking a custom development, today the inclination
would be to look for a suitable packaged solution
and customize it as needed. In other words, in try-
ing to gain business advantage, the focus has changed
from the development of specific applications to the
specific tailoring of generic applications.

“Silo”or “stovepipe”soZutions. Older, or “legacy” sys-
tems frequently seem to the end user to be discon-
nected, with independently operating “silos.”’ For
example, in an insurance company, one IT system
may deal with life insurance business, and another
with general business such as car insurance. More
likely, the life insurance business itself will run mul-
tiple systems to handle various products such as unit
business, group products, and so on. With today’s
focus on customer service, it is increasingly unaccept-
able for an enterprise to communicate with its cus-
tomers separately from each system. Put more pos-
itively, a more coherent view of a customer that
considers all products held by that customer provides
excellent marketing opportunities and improved cus-
tomer retention. So the existence of silos, manifested
typically both through incompatible hardware and
incompatible or segregated software, is a serious is-
sue.

Many solutions developed in the last five years have
unfortunately become “instant legacy” solutions.
Rather than solving the silo problem, they have con-
tributed to it, through inappropriate distribution of
data or function to fat clients,’ or incompatible
middleware or databases, for example.

So both clients and vendors, such as service provid-
ers or packaged solution suppliers, need some kind

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

of mechanism to stop the growth of silos, which are
almost as damaging to the vendors as to the enter-
prise clients they serve. We view an asset-based ap-
proach to architecture as a primary mechanism to
address this problem.

Lack of a standard programming model or strategy. In
the early 1980s, for the enterprise-scale administra-
tive systems that are the focus of this paper, most
large customers had settled on an architecture in-
volving IBM 3270 displays linked by wide area net-
work to an IBM System/37O* or IBM-compatible main-
frame running MVS (Multiple Virtual Storage), CICS,
and a relational database management system
(DBMS) from IBM or one of the other large DBMS ven-
dors. The programming model was basically CICS and
SQL (Structured Query Language).

Today, there is no such agreement on a program-
ming model across the large enterprise IT depart-
ments. Fat-client approaches have had some success,
but rarely at enterprise scale, and consulting orga-
nizations such as Gartner Group’ are recommend-
ing a more sophisticated model with distributed logic
and multiple tiers. Unfortunately, there is as yet no
pervasive, standard approach to constructing such
systems. As a result, development projects are fre-
quently creating “one-off’ middleware to hide com-
plexity from the application developers. Such middle-
ware can consume hundreds of person years and (as
importantly) can cause unpredictable delays in the
project schedule.

The world has changed a great deal since the early
1980s, when the IBM strategy for IT development was
an essential part of every enterprise IT vice presi-
dent’s knowledge set. The advent of PCS, TCP/IP
(Transmission Control Protocol/Internet Protocol)
and the Internet, object-oriented technology, and
open systems has set the IT industry free, but at what
cost? Today, each enterprise is free to define its own
strategy-but this is proving a costly form of free-
dom and could be considered a distraction from the
IT department’s real goal of providing cost-effective
solutions to business problems and opportunities.

Jacobson et al.‘ state that first-generation attempts
at software component reuse have largely failed.
Many companies, including IBM, have tried to estab-
lish a practice of reuse without the necessary pro-
cesses and disciplines to provide the required sup-
port, and in too many cases disillusionment has set
in. Based on considerable experience, Jacobson et al.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

state that architecture is a key to reuse. This is also
supported by Bass et al.’

The “heroic” model of development We mentioned
earlier the heroic style, characterized by skilled, en-
thusiastic development teams employing no system-
atic reuse of assets other than their own experience,
and some of the problems it has faced. There are
other problems involved with this approach.

First, it is extremely difficult to estimate the cost of
development in such an environment. Because there
is no yardstick (other than the personal experiences
of the team) to assess the scope of the proposed so-
lution, the scope may well be incorrectly assessed,
leading to estimating errors in the cost of develop-
ment, and “scope creep” later, as the true impact of
the requirement is recognized. Every project be-
comes an adventure, with middleware invented as
the project proceeds.

Second, with no pervasive standards for methods,
work products, and other assets, it is very difficult to
assemble teams efficiently. New staff need to be
trained on the particular methods used on an en-
gagement, and “crash” training is unlikely to be fully
effective.

Third, there are typically no rigorous standards for
documentation of the finished system that would al-
low easy reuse of it or its components. So there is
no easy way to improve next time around. The he-
roic approach is illustrated in Figure 1.

Development starts “from scratch,” and architectural
components are integrated to create a custom ar-
chitecture without use of a template or blueprint.
Frequently, the project creates extensive custom
middleware, which might not have been needed if
a blueprint-driven approach had been taken. The se-
lection of products from vendors is left to the skill
of one or a few key architects. As a consequence,
the solution takes longer to develop and deliver, and
the costs and risks are higher. Along the way, the
opportunity to leverage existing products, services,
and prior integration of components, and the oppor-
tunity to acquire knowledge for subsequent reuse
have been lost.

The ESS asset-based approach. In mid-1996 IBM’S
Global Industries business unit, which has the mis-
sion of developing and supporting packaged indus-
try solutions, set up the Enterprise Solutions Struc-
ture (ESS) initiative as a way to bring an improved,

LLOYD AND GALAMBOS 53

Figure 1 The heroic approach to solution development can be slow, expensive, and risky.

asset-based approach to its solution development.
The objectives of ESS were stated in an internal doc-
ument as follows:

The Enterprise Solutions Structure (EsS) estab-
lishes a standard architectural framework for IBM
architects and designers to construct enterprise so-
lutions based on the reuse of proven architectur-
ally conformant assets. Specifically, this architec-
ture provides a common, consistent approach for
understanding and documenting business require-
ments via a business model, designing a logical ar-
chitecture of key components and services, and
finally, implementing a physical architecture based
on actual products, platforms, and services.

. . . For technical architecture, ESS establishes a
specific set of predefined reference architec-
tures. . . with conformant components and pro-
gramming models that isolate business systems and
applications from underlying operating systems,
languages, and hardware platforms. The ESS com-
ponents are cataloged in a consistent, extensible

framework that encourages their use at the appro-
priate time in the design process.

The background to the ESS project is described by
Plachy and Hausler. In this paper we focus on the
part of ESS that covers the selection and construc-
tion of technical reference architectures.

The role of architecture. The following quotation from
Barry Boehm states the role of architecture well: “If
a project has not achieved a system architecture, in-
cluding its rationale, the project should not proceed
to full-scale system development. Specifying the ar-
chitecture as a deliverable enables its use through-
out the development and maintenance process.”’ We
define system architecture as the structure or struc-
tures of the system, which comprise software and
hardware components, the externally visible prop-
erties of those components, and the relationships
among them.

This definition is similar to that for software archi-
tecture found in the works of Bass et al.s and Shaw

54 LLOYD AND GALAMBOS IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

and Garlan,’ but adds hardware components and the
relationships between hardware and software to the
definition. We believe that this is critical for success-
ful development and deployment of IT solutions, for
reasons that will be explored. We define a compo-
nent as a modular unit of functionality, accessed
through one or more interfaces. Components nor-
mally represent software (including operating sys-
tems), but can also represent firmware (e& PC BIOS
[Basic Input/Output System]) or hardware (e.g., en-
cryption devices, or interactive voice response
units).’

Our focus is on the development of IT solutions for
enterprises. A sound architecture is an essential pre-
requisite for the successful development of an en-
terprise-scale IT solution. Bass et al.’ list three key
reasons why this is so:

1. It aids communication among stakeholders. The
architecture is a basis for ensuring mutual under-
standing.

2. It represents the earliest design decisions about
a system. These decisions are absolutely critical
in terms of development, deployment, and future
maintenance cost. For example, in development
they play a crucial role in team organization, and
this reflects back later into the organization of the
company for which the solution is being devel-
oped. In maintenance, the flexibility qualities built
into the architecture will be key to the ability of
the solution to respond to business and technol-
ogy change.

3. It provides a compact and understandable abstrac-
tion of a system and hence is a mandatory pre-
requisite for the reuse of software assets. (See also
Jacobson et aL4)

At the beginning of a specific solution development
project, the architecture team has the option of cre-
ating the architecture in a number of ways. It could
develop the architecture “from scratch,” or it could
pick from a library of architectural styles, or it could
reuse and build upon a reference architecture.

We define these terms as follows:

An architectural ~tyle~3’9~~’ (or architectural pattern)
is an idiomatic pattern of system structure, expressed
as a description of component types and a pattern
of their run-time control and data transfer. Exam-
ples include well-known styles such as layering, pipe-
and-filter, hub-and-spoke, clienthewer, and topol-
ogypatterns such as three-tier. These of course form

IBM SYSTEMS JOURNAL, VOL 38, NO 1 , 1999

part of the toolkit of every experienced IT architect.
They are the architectural analogue of the design
patterns used by experienced object designers,”
building on the pioneering concepts of Alexander
et al.” in the field of structural architecture. Like
design patterns, architectural styles provide a con-
venient and compact way to describe complex struc-
tures. They represent real architectural experience,
but are not yet codified as precisely as design pat-
terns-for example, the link between architectural
styles and the qualities they support (such as per-
formance, security, reusability) is usually implicit
rather than explicit.

A reference architecture8 is an architecture that has
already been created for a particular area of inter-
est. It typically includes many different architectural
styles, applied in different parts of its structure.

A technical reference architecture is a type of refer-
ence architecture that does not directly include struc-
tures of application (business) behavior. In other
words, it can be used as a base architecture or tem-
plate for several different application types. It nev-
ertheless still applies only to a specific technical do-
main. For example, technical reference architectures
or fragments of technical reference architectures ex-
ist today in the domains of distributed object systems
(e.g., CORBA** [Common Object Request Broker
Architecture**]), compiler development, and Inter-
net (Web browsers and servers). We will see other
examples later in this paper for the domain of ad-
ministrative systems.

In our definition, a reference architecture includes
bothfunctional and operational aspects of an IT sys-
tem. The functional aspect is concerned with the
functionality of collaborating software components;
the operational aspect is concerned with the distri-
bution of components across the organization’s geog-
raphy, in order to achieve the required service level
characteristics.’ A reference architecture is not only
a software architecture; it also provides predefined
structures for the placement of software on hard-
ware nodes, and structures for hardware connectivity.
It is our experience that this linkage is key to keep-
ing the architecture “honest” and grounded. The ef-
fects of distributing software components across a
network are far-reaching, and the network config-
uration must be allowed to influence the software
architecture (for example, in terms of component
granularity) if enterprise-scale solution development
is to be successful.

LLOYD AND GALAMBOS 55

Figure 2 Proven, reusable architectural patterns are a key step in the evolution of asset-based solution building.

The technical reference architecture supports and
constrains the application reference architecture. The
latter (business- and industry-specific) part of the ar-
chitecture uses the structures provided by the tech-
nical reference architecture, which establishes (part
of) the programming model for the application: the
set of application programming interfaces that de-
fine all services that a middleware component offers
to an application.

The contribution of technical reference architec-
tures. During 1996 and 1997, a subproject of ESS car-
ried out project surveys to check the feasibility of
the technical reference architecture approach, iden-
tified and prioritized the technical reference archi-
tectures to be harvested, and set about the popula-
tion of these reference architectures. A key principle
was to avoid theoretical solutions, avoid invention,
and instead concentrate on harvesting “best-of-
breed” architectures or fragments from enterprise-
scale projects that had demonstrated success.

In late 1997, additional sponsorship was obtained
from IBM’S Global Services business unit, which had
independently concluded that IBM’S customers, and
IBM’S service professionals worldwide, would achieve
great benefit from an asset-based approach to so-
lution development. The proposed business model
can be expressed in a layered structure, as shown in
Figure 2.

The technical reference architectures are seen as a
set of technology templates, on which solutions (ei-

56 LLOYD AND GALAMBOS

ther specific solutions being developed in an engage-
ment for a particular customer, or packaged solu-
tions being developed by IBM Global Industries for
sale to multiple customers) are based. The descrip-
tion of reference architectures is based on a com-
mon set of concepts (an “architecture description
language” or ADL), shared between all the profes-
sionals involved.

In the next section, we describe the specific techni-
cal reference architectures that have been harvested,
and review some of the challenges and experiences
we met as this work proceeded.

ESS technical reference architectures

The ESS technical architecture team included sen-
ior architects representing the requirements of three
industries-banking, finance, and securities; insur-
ance; and utilities. These industry representatives
provided the following guidelines:

Concentrate on enterprise-scale (rather than de-
partmental) solutions. The team believed that
many of today’s small solutions were not adequate
for large-scale, mission-critical environments.
Focus on “administrative systems” applications in
the chosen industry segments. This would include
most customer service applications, but exclude,
for example, real-time control applications. . E-business, call center, and business intelligence
solutions should get particular attention. All in-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

dustry segments saw great interest in these sub-
ject areas.
Concentrate on the following technologies and
computing styles: Internet access, transactional
processing, collaborative processing, and mobile
technologies
Pay particular attention to integration with legacy
systems, and avoid further development of silo so-
lutions

We carried out architectural surveys of around 20
enterprise-scale solution development projects from
North America and Europe. These projects were us-
ing a mix of technologies, from fully object-oriented,
through object-based, to procedural, and included
examples (some successful, others less so) of imple-
mentations of most of the subject areas and tech-
nologies recommended by the technical architecture
team’s industry representatives. Most of these
projects used a heroic style of development, but we
examined some projects in which an asset-based ap-
proach had been used.

At the same time we carried out a survey of the ar-
chitectural approaches used by other vendors (for
example, SAP AG and Forti Systems, Inc.) and key
architecture developments within IBM (including
work in progress on San Francisco* l3 and on Com-
ponent Broker Ser ie~’~) .

Although the languages used to describe these ar-
chitectures differed greatly, we were able to discover
large areas of commonality in approach. For exam-
ple, in transactional processing we saw a general
move away from fat clients toward a three-tier, dis-
tributed-logic model, which was designed to answer
the key requirements of enterprises for “single view
of the customer” (i.e., silo avoidance), legacy inte-
gration, and improved systems management.

We concluded that it was feasible for IBM to define
a relatively small number of technical reference ar-
chitectures, based on harvesting the best practices
from successful implementations. The harvesting
process itself was not straightforward, and we fore-
saw that there would be particular challenges in keep-
ing these reference architectures up to date as tech-
nology advanced. Key to meeting these challenges
was to harvest from all appropriate engagements;
then, the scale and scope of IBM’s services and so-
lutions businesses would keep the architectural as-
set base refreshed and at the forefront of industry
practice. This process is illustrated in Figure 3.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

In this approach, the appropriate technical reference
architecture is selected from a constrained set, pro-
vided it is a reasonable fit to the requirement. The
models are then customized, but because there is a
standard approach, middleware designs and prod-
uct code will be reused from previous engagements
or industry sources. Only if a design or a product
does not already exist to meet the required custom-
ized architecture will a new component be specified
and built. Finally and importantly, aspects of the so-
lution are harvested for subsequent reuse. The ex-
pected benefits from this approach include lower risk
and cost, faster time to market, and an improved
knowledge base for reuse in subsequent projects.

Choice and prioritization. Based on our analysis and
the guidelines provided by our industry representa-
tives, we selected the following five technical refer-
ence architectures:

Thin-client transactional
Collaboration
Business intelligence
Call center
Mobile computing

Thin-client transactional. This technical architecture
addresses the need to do enterprise-scale adminis-
trative business, for example:

Customer sales and service
Order processing
Claims processing, loan origination, etc.

It does not support, for example, solutions requir-
ing real-time control of equipment. Its purpose is to
support the business need of doing enterprise-scale
commerce (as contrasted with business intelligence
or collaboration) over the Web or via network-con-
nected workstations. The essence of this category is
the need to use highly secure, highly scalable trans-
action processing via this new channel.

Collaboration. The purpose of this architecture is to
support the business need for collaboration. Collab-
oration occurs when two or more people participate
in a task or interaction that relies on the use of com-
mon information. Asynchronous and synchronous
collaboration services provide, to a dispersed set of
participants, an effective means of working together
and communicating with one another on topics of
joint interest.

LLOYD AND GALAMBOS 57

Figure 3 The solution development process based on reference architectures provides a fast start. The feedback from
the harvesting process is essential in keeping the assets fresh.

Business intelligence. The name implies the exploi-
tation of corporate data assets for competitive ad-
vantage. Business intelligence applications include
executive information systems, decision support sys-
tems, and data mining applications. Operational sys-
tems collect transactional data in the course of day-
to-day running of the business. Business intelligence
users query and analyze data derived from these col-
lected data and make decisions on how to improve
business results based on these analyses. They may
also make business decisions based on the discovery
of previously unsuspected patterns of activity (data
mining). Business intelligence applications are as-
sociated with “data marts” and “data warehouses.”

Call center. The call center technical architecture sup-
plements the transactional and collaboration archi-
tectures, and describes the overall pattern for
implementing a “best-of-breed” call center that pro-

58 LLOYD AND GALAMBOS

vides telephone access for customers to do business,
accesses existing operational systems in the process
of serving the client, and allows for the processing
of transactions. It may provide fully automated ac-
cess, e.g., via an interactive voice response (IVR) unit;
it may provide a human interface in the form of a
customer service representative (CSR), and it pro-
vides the infrastructure to merge the telephony and
data processing worlds. An alternative name for the
type of call center covered by this reference archi-
tecture is the “customer relationship management
center.”

Mobile computing. Mobile computing is a supplemen-
tary architecture to the transactional and collabo-
ration architectures. Mobility is a term used by bus-
inesses to describe an environment that allows a
worker to access information and perform his or her
work “anywhere, anytime.” A mobile user typically

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

utilizes various technologies, such as a laptop com-
puter, a pager, and a cellular phone. Operation
within the mobile environment may be connected
to the network or disconnected from the network at
least part of the time, and often most of the time.
The mobile environment requires the development
of applications that support the specific business
needs of the mobile user.

Last, but by no means least, in order to avoid silos
we defined an integrating architecture.

Enterprise technical reference architecture. This pro-
vides the “big picture” view where all subsidiary ar-
chitectures are shown in an integrated manner. While
it is unlikely that any of our enterprise customers will
wish to implement such an all-embracing infrastruc-
ture, they will be reassured that the overarching ar-
chitecture is consistent, so that new solutions can be
added incrementally rather than producing more and
more stovepipe systems.

The importance of legacy integration. Right from
the start, it was clear that effective integration with
legacy systems was critical for our work. Big as some
of today’s development projects are, 500 person-year
systems are still small in relation to the huge invest-
ment that enterprise customers have made in their
existing systems; for a large bank, these can be well
in excess of 20 000 person years, quite apart from
vendor-supplied operating systems or middleware.
Furthermore, these legacy systems are typically mis-
sion critical, high volume, and in fact keep the enter-
prise running. There is no point in designing technical
reference architectures for electronic commerce or
business intelligence that do not take into account
the importance of legacy systems.

In our reference architectures, we make use of a
number of architecture styles that have been dem-
onstrated to help with legacy integration. The styles
are used in various combinations within the refer-
ence architectures. They include wrapping, ’ ’ hub and
spoke’ (associated here with a three-tier pattern), and
back-end scripting. I 5 Wrapping in this context refers
to the practice of hiding the existing legacy appli-
cation interfaces behind an abstraction layer repre-
senting the programming model. Changes over time
to the legacy system (for example, as it is replaced)
can be made transparent to existing users. This wrap-
ping will generally be done on a mid-tier server, with
the legacy accesses “fanned out” to the third tier via
appropriate adapters. To ease development of these
adapters, which need to be specialized individually

IBM SYSTEMS JOURNAL, VOL 38. NO 1. 1999

for each customer situation and need highly special-
ized knowledge of the back-end middleware, such
as IMS* (Information Management System) or CICS,
software providers such as Early, Cloud and Co. ’”
with their MDph (Message Driven processor) prod-
uct have proved the effectiveness of back-end script-
ing as a boost to development productivity.

Quality standards. Our stated strategy is to harvest
structures that have been successfully deployed at
least three times in real engagements. This begs the
question of what is meant by successful deployment,
especially in those cases where no code has been de-

In our reference architectures
we make use of

architectural styles that
help with legacy integration.

livered to demonstrate accurate functioning. For ar-
chitecture engagements, we stretch a point and al-
low our criteria to be satisfied if the engagement has
been completed to the satisfaction of both client and
engagement manager, even if no executable code has
been produced. This allows us to capture commonly
recurring designs.

During the early stages, our team used subject-mat-
ter experts known to us to provide “certification” of
the content of the assets that were abstracted and
codified. To provide immediate benefits to our en-
gagement teams, we have not always insisted on con-
sistent notation. This is a pragmatic approach, but
a more formal approach is required.

We have now defined explicit quality standards for
each architectural object in our repository, and are
in the process of setting up an architecture board.
Board members are formally responsible for certain
subject areas in the architecture-for example, se-
curity or workflow. Each architectural object will
have a nominated “steward” from the board. At the
same time, we are updating the content of the re-
pository to conform to the standard semantics and
notations defined by the IBM Architecture Descrip-
tion Standard.

LLOYD AND GALAMBOS 59

Describing the technical reference architectures. A
common standard is needed to describe these archi-
tectures. As stated by Shaw and Garlan, “It is now
common practice to draw box-and-line diagrams that
depict the architecture of a system, but no uniform
meaning is yet associated with these diagrams.”’

The need for a common standard. When we started
to examine and then harvest technical reference ar-
chitectures in 1996 and 1997, a fairly obvious but in-
tractable stumbling block emerged-there was no
commonly agreed upon standard for describing ar-
chitectures. There certainly were effective architec-
ture and infrastructure design methods in IBM (for
example, the Enterprise Technical Architecture
method, and the infrastructure design (ISD) method
known by its acronym WSDDM [worldwide solution
design and delivery method]-ISD), but the terminol-
ogy was not common between these methods, and
semantics and notations were not always precise. This
affected us in two ways: first, it made existing archi-
tectures hard to understand, and second, we needed
to describe our new technical reference architectures
so that they could be reused by IBM practitioners.

Fortunately, at the same time that we were wrestling
with this problem, our colleagues in the IBM Glo-
bal Services North American WAD (Systems
Integration/Application Development) practice be-
gan an initiative to converge several existing meth-
ods, including the object technology method (known
by its acronym WSDDM-OT), WSDDM-ISD, and others.
The new converged methods needed common se-
mantics and, most important from our point of view,
they were based on work products. In other words,
their primary focus is on the artifacts to be produced
during the development process (for example, op-
erational architecture models), rather than the step-
by-step processes to create the artifacts. From their
point of view, a technical reference architecture is
simply an instantiated, linked set of architecture work
products that is appropriate for a particular purpose.
From an asset-based point of view, this new con-
verged method can be considered as a key part of
the common formal methods layer in Figure 2.

In 1998 we started to work directly with the WAD
initiative to help define a new common architecture
description language. The first results of this work
are described in an accompanying paper,9 and have
been used to provide the basic architectural expres-
sions in this paper.

60 LLOYD AND GALAMBOS

Additional requirements for the asset-based approach.
Experience over the last few years, in IBM as else-
where, has shown that merely filing assets in a library
will not promote reuse. There is a real danger that
such libraries will become “junkyards.” Assets need
to be planned, managed, and supported, as Jacob-
son et al. point In the same way, architectures
stored for reuse need to be given additional attributes
that might not be needed for “from-scratch” devel-
opment.

In our work to date, we have identified the follow-
ing additional attributes as key to the asset-based ap-
proach: defined elaboration points, context defini-
tion, design guidance, and associated nonfunctional
requirements.

We observed in our surveys that when asked to de-
scribe their architectures, project architects often
showed us documents and diagrams with avery phys-
ical feel to them. Product names such as CICS, MQ-
Series*, Microsoft Windows**, and MDp were scat-
tered throughout the diagrams. Presumably, at some
earlier stage the logical architectures implemented
with the physical products had existed, but they had
somehow been lost. From the reuse point of view,
although it is excellent news if an existing physical
architecture (by which we mean one prepopulated
with vendor middleware and operating system prod-
ucts, laid out over specific hardware nodes) can be
directly reused, the chances of this happening are
not high, because the environment varies so much
from one enterprise to another.

So from a reuse perspective, it is vital that the tech-
nical reference architecture is described at several
linked levels of abstraction. In general, the chances
of reuse improve as the abstraction level increases,
although at the same time the value of the asset in
any individual engagement diminishes. We currently
envisage three levels of abstraction, which we call
elaboration point^.^ Among other advantages, this ap-
proach offers architecture teams several different po-
tential entry points for reuse. At the time of writing
we use the terms initial, logical, and physical to de-
scribe these different elaboration points, though this
terminology is not completely satisfactory and is sub-
ject to change. We use initial to describe the archi-
tectural elaboration point with minimal constraints,
logical for the set of designs that include network to-
pology, including the differentiation of clients and
servers, and physical for the stage where hardware
architectures and operating systems are defined,

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 4 We start with the contextual view to avoid the silo trap. Here we show retail customer access points for an
insurance company.

though not for example the number of hardware en-
gines required.

Each technical reference architecture is linked to a
context, which describes the purpose and require-
ments for which it is intended. Included with the con-
text information are a number of informal contex-
tual views, which represent different aspects of the
existing and to-be system. These have been shown
to be vital in communicating the essence of the pro-
posed solution to the customer management and fo-
cusing on appropriate aspects of the architecture.
Among other things, they are a key vehicle for help-
ing to shape the requirements toward a standard ap-
proach, because they present examples and rationale
from successful projects in similar customer environ-
ments. Contextual views currently cover the follow-
ing aspects:

Linkage between business model and IT architec-

Topology views
Access point views
User desktop views
Collaboration view

ture

Electronic mail view
Mobile computing views
Information system views

An example of an access point contextual view is
shown in Figure 4.

It frequently happens that the customer’s stated re-
quirements could lead accidentally but inexorably to
the development of yet another silo or stovepipe sys-
tem. By looking at the to-be solution at high levels
of abstraction, these dangers can be identified and
the requirements modified.

These contextual views, which are a key part of tech-
nical reference architecture selection, are of partic-
ular value when vendor and prospective client get
together at the proposal stage. Consider the follow-
ing dialog, which is adapted from Bass et al.5

CUSTOMER (pointing to a thick stack of paper):
“Here are my requirements. Can you meet them?”

IBM SALESPERSON (fondly remembering the good
old days when all that was required was a smile,

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LLOYD AND GALAMBOS 61

a nod, and going back to the branch office with a
fat contract in hand): “I’m sure we can. However,
I should tell you that if you were to relax this
requirement here, and this one here just a
bit . . . have a look at this contextual view of our
call center reference architecture” (pulls a set of
charts from his briefcase). “You are asking to place
your customer information file in the call center,
but you can see from the chart that other access
points that you mentioned to me really need to
have that file located somewhere shareable
. . . what most people seem to be doing these days
is placing the file on the enterprise server. If you
are flexible on these requirements maybe we would
be able to satisfy them using a straightforward vari-
ant of our standard solution architecture.”

CUSTOMER: “Good for you. How will it help me?”

IBM SALESPERSON: “To meet your requirements
as stated will cost $20 million, take three years,
and you will have a system unlike any other. There
is additional risk because no one has done it like
that before. On the other hand, to meet the slightly
modified requirements will take 18 months, cost
$10 million, and you will be using components that
have been proved in practice many times before.
It might even be a better solution for you. Which
would you like? It’s completely up to YOU.”

CUSTOMER (who has never had a vendor offer a
choice like this or been made to understand how
much the “special” requirements actually cost, so
that their worth can be judged): “Really? I will
take the modified version. See you in 18 months.”

Another learning point from IBM’s experience in at-
tempting asset-based reuse is that even experienced
architects want to understand the reasons that lie
behind the choice of particular aspects of the tech-
nical reference architecture, before they reuse it.
There are strong reasons for this, including the sen-
sitivity of the architecture to changes in the require-
ments, compared with requirements documented in
the context for the architecture. Less experienced
architects also need good advice when examining the
viability of a technical reference architecture for re-
use. For these reasons, we attach a design guidance
attribute to all our architecture assets. Design guid-
ance is provided in context and helps architects to
assess the suitability of the particular artifact for use
in a particular situation, and its sensitivity to changes
in the requirements from those assumed for the ref-

62 LLOYD AND GALAMBOS

erence artifact. Its purpose is to assist customization
of the asset while maintaining its integrity.

The nonfunctional requirements, and other qualities
that are intended to be met by the technical refer-
ence architecture, need to be attached to the archi-
tecture constructs at various levels of granularity,
ranging from the overall context to the specifics of
particular software components and particular hard-
ware nodes.

Additional requirements for large-scale enterprise so-
lutions. Earlier, we noted the importance of avoid-
ing silos in establishing the technical reference ar-
chitectures. As the ESS technical architecture team
began to codify and store fragments of the selected
technical reference architectures, it was clear that
to provide reuse, aid understandability, and avoid
duplication, descriptions of the functional aspects of
reference architectures needed to be based on de-
scriptions of a number of smaller architectural frag-
ments that we call domains. We define a domain as
a subject area that defines a context for analysis and
description of some aspect of an IT system. This is
illustrated in Figure 5 , which shows (an approxima-
tion of) the structure of the thin-client transactional
technical reference architecture.

This reference architecture consists of a functional
part and an operational part. The functional part is
seen to be based on a “transactional base” domain,
and other domains-Internet, intranet, and docu-
ment management. The transactional base domain
itself is based on a number of domains including se-
curity, persistency, and process/activity/serice. This
structuring of architectural assets allows other tech-
nical reference architectures to reuse architectural
fragments-for example, the collaboration techni-
cal reference architecture also uses the Internet and
intranet domains.

Large-scale enterprise solution development, as we
have seen, poses serious challenges to development
project managers. A good architecture, defined early,
is a great help in many areas, including the separa-
tion of concerns and the structuring of development
teams. Once the project size exceeds 100 person
years, project organization becomes a critical suc-
cess factor. Robert Prins” tackles these issues well,
and in particular promotes a layered architectural
style that we call process/activity/serice and that
matches well to our observations of actual architec-
tures from several projects, particularly those deal-
ing with enterprise workflow and call centers. In this

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 5 Structure chart for the thin-client transactional technlcal reference architecture

structure, the process elements are extracted from
the relatively invariant underlying business function-
ality, and are themselves separated into enterprise-
wide processes, with appropriate routing to roles, and
desktop scripting, frequently seen in call center im-
plementations under the terms “scripting” or “work-
flow.” The project can be organized around these
structures and work can proceed in parallel. This ap-
proach is well-suited to environments like insurance,
and those where the process requirement is rapidly
changing in a volatile business environment. It helps
not only with initial development, but with the sub-
sequent life of the system in its maintenance phase.
It has been shown to fit well with application archi-
tecture development by other IBM departments pro-
viding insurance solutions for the enterprise market-
place.

Scope includes both functional and operational aspects.
Personal experience, and observations from our proj-
ect surveys, convinced the team that enterprise-scale
technical reference architectures could not be re-
garded as adequate to support asset-based develop-

ment unless they handled both functional architec-
ture and operational architecture aspects. Why? We
saw too many examples where elegant software ar-
chitectures were “passed over the wall” late in the
project to the “infrastructure architects” and proved
impossible to implement in a way that met the non-
functional and other quality requirements for the sys-
tem. In other projects the infrastructure architects
did a great job on infrastructure design, but there
was insufficient rigor in definition to support a seam-
less integration with the developers building the ap-
plication; expensive project time was then spent late
in the project trying to patch the two parts together.

None of this is to say that there should not be sep-
aration of concerns in describing the architecture-
quite the opposite, as we discussed earlier in describ-
ing the work of Prins. The point here is that the
application development architects and the infra-
structure architects need to speak the same language
in terms of architectural descriptions and to under-
stand the key integrating mechanisms (like compo-
nent placement on nodes, and the shared interest in

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LLOYD AND GALAMBOS 63

Figure 6 Products are mapped from physical, not logical architecture

the semantics of control such as synchronization,
locking, and transaction scoping). Once the common
language is understood, each group is free to apply
the special methods and tools in its own area of con-
cern.

Product selection and logical architecture. The follow-
ing words of R. Schulte of the Gartner Group are
self-explanatory. “In many enterprises, ‘architecture’
means only a short list of standard products that have
been approved for use . . . shortlist architectures do
not offer application developers enough information
to make successful design decision^."^

We saw earlier that from a reuse perspective, it is
essential that the technical reference architecture is
presented at several linked levels of abstraction. In
ESS, product selection is included at the level of phys-
ical reference architecture, and there may be sev-

eral physical reference architectures for each logi-
cal reference architecture, as shown in Figure 6. We
recognize that different customers will have differ-
ent existing physical IT environments and that some
physical designs will fit better than others. However,
we do not intend to instantiate many physical archi-
tectures per logical architecture, because for both
customer and vendor, there is benefit in some con-
straint. From a vendor perspective, this helps prod-
uct suppliers to focus on a small number of environ-
ments and hence improve quality and reduce costs,
and helps service suppliers to focus the skill sets of
their implementation teams on a preferred set of
products, increasing staff flexibility and improving
the ability to deploy while reducing costs. From a
customer perspective, a gradual move to standard-
ization has similar benefits and, to some extent, re-
flects the desire of many customers to set and follow
a strategic direction.

64 LLOYD AND GALAMBOS IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 7 The key metamodel artifacts used in describing ESS reference architectures

In Figure 6 (which illustrates concepts rather than
describing actual ESS content), it can be seen that
the transactional base architecture for this example
offers two options at the physical elaboration point
for a particular logical architecture. For client op-
erating system, in the first option we see Windows
95** and in the second option osi2" (Operating
System/2*). Similarly, for server operating system we
see MVS and AIX* (Advanced Interactive Executor);
for transaction monitor, CICS and CICS/AIX; and for
database system, DB2* (DATABASE 2 *) and Oracle**.

A requirement placed on us by our industry repre-
sentatives was that ESS should not confine itself to
IBM products. Where other vendor products matched
the architecture, and were widely installed, they
should be considered for inclusion in the technical
reference architectures.

Architecture description language. We can now sum-
marize the main artifacts used in describing techni-

cal reference architectures. (Please refer to the ac-
companying paper' for further insight.) Figure 7
provides a simplified diagram of the metamodel. This
diagram shows a simplified view of the relationships
among many of the artifacts we have described, for
example the placement of software components on
nodes and the mapping between software compo-
nents and products. As we have seen, the actual
metamodel is more complex, for example in restrict-
ing product mappings to particular elaboration points
in the architecture.

Tool considerations. As we started to collect and cod-
ify technical reference architectures in 1996, we ini-
tially used documents and presentations to describe
them. It became clear almost immediately that this
was not the right approach for building a reusable
repository of architectural assets. With more than
200 components and 60 nodes, version control via
documentation was almost impossible, and standard

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LLOYD AND GALAMBOS 65

Figure 8 Information system view of business function. In a three-tier client/senrer model, the common business
transactions are placed so that they can be used from all access points.

documents did not encourage rigor in semantics and
notation. Gaps in the content were difficult to spot.

We made a decision in 1997 to document formal
component models in Rational Software Corpora-
tion’s Rational ROSE** modeling tool, using nota-
tions based on UML (Unified Modeling Language) l8

where this was appropriate for the component de-
scribed. In addition, we developed a Lotus Notes**
database to support the rest of our artifacts and to
provide an indexing mechanism into the ROSE mod-
els. Notes facilities allow us to structure material in
a relatively formal way to support our semantics.
Notes has excellent replication capabilities for dis-
tribution of the material to professionals (in IBM, the
Services and Global Industries professionals have
standardized on the use of Notes clients and IBM lap-
top PCS). It also allows us to store existing documents
and presentations for use with clients. Where appro-
priate, we “cut and pasted” ROSE diagrams into
Notes artifacts for easy access by our professional
teams.

The combination of Lotus Notes and Rational ROSE
tools has proved effective. We have a few problems,

which will be addressed as we gain more experience.
These include the requirement to be able to use se-
lected, up-to-date architectural artifacts in client
workshops from time to time; IBM presenters typ-
ically use transparencies for this purpose, and this
makes it difficult for us to manage copies. However,
we are reluctant to begin potentially complex and
expensive tool development until we gain more expe-
rience in architecture reuse.

During early architectural engagements using ESS as-
sets, in a number of cases the clients have concluded
that a structured Notes database is a good way for
them to store and maintain their own set of tailored
architectural descriptions, rather than base their ar-
chitecture definitions on standard word-processed
documents. This is particularly helpful when the IT
department is distributed over several locations,
where Notes replication facilities support local up-
date but provide at the same time a consolidated
view. It allows the architectural descriptions to be
kept fresh while particular domain descriptions are
delegated to relevant departments. Further informa-
tion about these experiences is provided in another
paper in this issue.19

66 LLOYD AND GALAMBOS IBM SYSTEMS JOURNAL, VOL 38, NO 1 , 1999

Figure 9 Sample list of logical components in the ESS technical reference architectures

Operational
Model

Nod e
I

Asynchronous Collaboration [Logicall
Automatic Call Distribution [Logical]
Bat& M ~ n a g e ~ e n t & o g i W
BDW Catalog Admin Workstation Setvices [Logical]
BDW Catalog [Logicafl
BDW Client Workstation Services [Logical]
BOW Setvices [tagid]
BDW System-of-Record [Logical]
BW Catalog A&nin Workstation Senrices kogical]
BIW Catalog [Logical]
BiW Client W o r k s ~ o n Senrims [Logid;l
BIW Population [Logical]
BIW Sewices &ogiW
Build [Logical]
Business Data Warehouse [Logioal]
Business Information Warehouse Environment [Logical]
Business Information Warehouse [Logical]
Call Data Services [Logical]
Call Processing and Management [Logical]
Call Volume Forecasting and CSR Scheduling [Logical]
Change Extraction (Client] [Logiml]
Change Extraction (Server) [Logical]
Qassified Sources [Logical]
Client Security Setvices [Logical]

”.

Some examples of content. In this section we describe
some examples of architecture artifacts that are part
of the ESS technical reference architecture content
as we write this paper. By the time it is published,
there is a high probability that the content, and pos-
sibly the notations will have changed. These exam-
ples should not be viewed as definitive; we offer them
to aid understanding and provide additional insight.
Some details have been omitted.

It is not our intention to explain how the assets are
used in any particular case, and it is outside the scope
of this paper to describe how solution development
methods make use of the architectural assets. How-
ever, the assets are structured to aid the architect in
his or her work-examples include the design guid-

ance attribute attached to each relevant artifact, and
the use of contextual views to aid communications
(a key part of the architecture business cycle de-
scribed by Bass et al.’).

Contextual views. In Figure 4, we showed an exam-
ple of a contextual view that focused on the access
points for the required solution. Experience has
shown that early views of the to-be (target) IT sys-
tem are of great value in helping clients to under-
stand some of the important business implications
of architectural decisions. For example, we have
found that a chart similar to Figure 8 helps clients
to appreciate the benefits of the “hub and spoke”
pattern to support an integrated view of their cus-
tomer (a holistic view, rather than separate product-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LLOYD AND GALAMBOS 67

Figure 10 (Part 1 of 2) Component relationship diagram from the telephony domain

holder records) through use of a three-tier architec-
ture.

Components. Figure 9 lists some of the software com-
ponents defined in our technical reference architec-
tures. The list is taken from the ESS Lotus Notes as-
set repository and shows components at the logical
elaboration point-most of those shown are used in
the call center or business intelligence reference ar-
chitectures.

When harvesting and generalizing components, we
need to be careful about the level of granularity to
which we decompose the functionality. A component
is not the same thing as a class in object-oriented
terminology. In many cases, there are existing ven-
dor products that could be used to implement each
of these components, and this serves as one guide
to the lowest level of component description that we
provide. However, some vendor products are really
suites of products that need to be located on mul-
tiple nodes. In this case the internal structure can
be important in creating the operational or functional
aspect of architecture; if so, we break down the com-
ponent models to a lower level of granularity. In Fig-
ure 9, the component “BDW System-of-Record’’
encapsulates a lower-level component “System-of-
Record Access” (not shown in the figure), and it is
this lower-level component that is linked to a ven-
dor product at the physical elaboration point of the
business intelligence technical reference architec-
ture.

Component models. Figure 10 is a simplified illus-

68 LLOYD AND GALAMBOS

tration of the component model (showing both a
component relationship model fragment and a com-
ponent interaction model fragment) from the tele-
phony domain, which is part of the call center tech-
nical reference architecture.

In the component relationship diagram, we are show-
ing the main usage relationships, together with their
cardinalities. For example, the Customer component
makes use of the Telephoneswitch component. Please
note that the ComputerTelephonylnterface compo-
nent, despite its name, is a component in its own right
that provides the functionality to interface between
a Telephoneswitch component and a computer te-
lephony integration application. Its responsibilities
include providing an event channel from a switch to
an application, providing a command channel from
the application to the switch, and providing the ap-
plication with an interface that is independent of the
type of switch.

In the component interaction diagram, we see var-
ious messages being exchanged between the iden-
tified component instances during the collaboration
IdentifL Caller, using an interactive voice response
component. A collaboration is defined as an occur-
rence of a sequence of operations that realizes a use
case scenario.’ The conventions followed in the di-
agram are those of UML; for example, a half arrow-
head denotes an asynchronous message. l8

As previously mentioned, from the surveys of real-
life engagements in 1996 and 1997, and from other
sources, for example the work of Robert Prins,17 we

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 10 (Part 2 of 2) Component interaction diagram for collaboration Identify Caller

identified an architectural pattern that we call
process/activity/service. This links the world of in-
tracompany administrative workflow, through desk-
top scripting, to specific atomic units of processing
that are relatively invariant over time in a particular
IT system. This is particularly relevant in call center
applications, and the telephony domain is closely
linked with the process/activity/service domain.

IBM SYSTEMS JOURNAL, VOL 38. NO 1, 1999

Logical operational architecture. Figure 11 shows a
simplified fragment of the operational aspect of the
thin-client transactional technical reference archi-
tecture, which focuses on the security domain within
that architecture. Associated with this diagram is a
walkthrough (not illustrated), which has similar no-
tation to a component interaction diagram but iden-
tifies nodes, so that the service level characteristics

LLOYD AND GALAMBOS 69

Figure 11 Simplified fragment of the logical operational architecture diagram from the thin-client transactional
architecture

and other qualities of this architecture, such as se-
curity, can be discussed and analyzed.

Nodes. Figure 12, taken from the ESS Notes data-
base, lists some of the logical nodes in the ESS tech-
nical reference architectures and provides some idea
of scope and content for the integrating enterprise
technical reference architecture.

Figure 13 shows some of the logical nodes selected
for the thin-client transactional technical reference
architecture, as a subset of the nodes of the enter-
prise architecture-selected nodes are highlighted.
Some of these nodes (for example domain name sys-
tem) will be reused in other reference architectures,
while others (such as integration) are unique to the
transactional technical reference architecture. Nodes
that are not highlighted include a group devoted to
the call center reference architecture (for example
CTI [computer telephony integration], PBWACD [pri-
vate branch exchange/automatic call distribution],
and IVR), and others associated primarily with the
collaboration architecture.

One of the nodes in the enterprise architecture is
“integration,” or integration server. This relatively

complex node has various components placed on it,
as shown in the simplified view in Figure 14.

The integration server is an extremely important part
of the thin-client transactional technical reference
architecture, as it represents a key logical tier in a
three-tier architecture. As we have harvested more
instances from engagements, we have extended our
descriptions of the integration server and the com-
ponents that are located on it, and we continue to
develop our understanding of this area.

Using technical reference architectures. Although
the strategic aim of the ESS program is to improve
effectiveness in building IT solutions, we have been
successful in using technical reference architectures
to create IT architectures for clients. For this pur-
pose we have used charts similar to Figure 15 to de-
scribe the reference architectures. This chart shows
some of the key artifacts within the various refer-
ence architectures, and the arrows give some indi-
cation of the sequence in which the various artifacts
are used during a typical engagement.

Our engagement teams used contextual views both
to confirm understanding and to encourage a con-

70 LLOYD AND GALAMBOS IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 12 Sample list of logical nodes in the ESS technical reference architectures

Agent Mobile Workstation [Logical]
Application Development and Maintenance [Logical]
Application Sewer [Logical]
Asynchronous Collaboration [Logical]
ATM [Logical]
BDW Catalog Admin Workstation [Logical]
BDW Client Workstation [Logical]
BIW Catalog Admin Workstation [Logical]
BIW Client Workstation [Logical]
Business Data Warehouse [Logical]
Business Information Warehouse [Logical]
CSC Administrator Workstation [Logical]
CSR Workstation [Logical]
CTI [Logical]
Customer Care [Logical]
Data Distribution [Logical]
Data Warehouse [Logical]
Dial and Leased Gateway [Logical]
Dialmireless (RF) Gateway [Logical]
Directoly [Logiml]
Document Composition Server [Logical]
Document Preparation Sewer [Logical]
Domain Name Server [Logical]
DW Web Clientworkstation [Logical]
Fax [Loaicall

vergence to one or another of our technical refer-
ence architectures, if appropriate. Logical architec-
ture models (primarily node descriptions and
operational architecture models) were customized,
and if necessary extended, as needed for the engage-
ment, using the in-context design guidance provided
as part of the asset set. From a consideration of the
existing and to-be IT environments, corresponding
physical architecture models were customized and
extended, and product selection completed.

In some cases, clients were sufficiently impressed with
the power of the semantic model that the engage-
ment contract was adjusted and the required archi-
tecture was delivered with a supporting tool (either
Web-based or Notes-based).

Throughout the engagement, the IBM team tracked
the modifications made to the technical reference
architectures, and where these changes were assessed
as being of general value rather than specific to only
one client, they were communicated back to the ESS
technical architecture team for consideration as ref-
erence architecture enhancements.

For further information on our experiences in using
the technical reference architectures on architecture
engagements, see the accompanying paper. ’’

Concluding remarks

Existing methods of large-scale solution develop-
ment and deployment rely too heavily on the “he-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LLOYD AND GALAMBOS 71

Figure 13 Part of the node inventory for the enterprise architecture. Nodes in the thin-client transactional reference
architecture are highlighted in green.

roic” approach and have proved unreliable. It is ur-
gent that the IT industry move away from this
handcrafting approach to development, and accept
greater discipline and constraint in order to meet the
needs of the businesses it serves. The concept of tech-
nical reference architectures, together with their sup-
porting processes, provides a means for IT practition-
ers to build robust, scalable enterprise solutions
quickly, with improved quality and reduced risk. In
this paper we have shown how IBM has structured
and built a constrained set of such reference archi-
tectures, harvested from successful enterprise con-
sulting engagements; and we have indicated that our
early experiences in deploying them in architecture
engagements have demonstrated the approach to be
effective.

The reference architecture approach presents its own
challenges. Chief among them are first, the reluc-
tance of the IT professional community to system-
atically reuse the work of others; and second, the cor-
porate business model and organization changes
needed to reward and support reuse and standard-
ization. In today’s fast-moving IT environment, the

72 LLOYD AND GALAMBOS

feedback processes supporting the reference archi-
tecture approach are crucial in ensuring the vitality
of the architectural assets. With them, and with the
wholehearted support of the practitioner commu-
nity, the discipline of the market will ensure that the
technical reference architectures are kept fresh and
represent the best current practice.

One of the benefits in using technical reference ar-
chitectures for solution development is to reduce risk,
and we have mentioned some of the mechanisms,
including in-context design guidance, that we use to
help our practitioners customize the assets sensibly.
But a good set of architectural assets does not avoid
the need for architects to be properly trained, and
successful implementation of the asset-based ap-
proach should include training in good work-prod-
uct-based development methods, such as IBM’S SI~AD
method for its Global Services community, and ap-
propriate subject matter expertise.

One of the themes underpinning our implementa-
tion of the reference architecture concept has been
the need to integrate the operational aspect of ar-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 14 Simplified description of the integration server node

chitecture together with the more familiar functional
aspect. We have stressed that to be successful, a so-
lution must be grounded in reality. Actual capabil-
ities and limitations of hardware, operating systems,
and middleware need to be considered right from
the start. IT vendors must take and support this ho-
listic view for the full potential of technical refer-
ence architectures to be realized.

Acknowledgments

The codification of technical reference architectures
is a complex task, and many professional colleagues
have contributed to our work. We would like to rec-
ognize in particular Martin Cooke, Bruce Crossman,
Jan Lock, John Rothwell, Philippe Spaas, and Rob-
ert Youngs, who have been part of our core team
almost from the start. We also recognize our team
colleagues Tim Barrett, Ian Charters, Steve Clarke,
Steve Cook, Ralph Hodgson, George Hutfilz, De-
borah Leishman, Doug McDavid, Silvia Pighin,
David Redmond-Pyle, and Anders Stange.

Along the way we received invaluable help and en-
couragement from executives, “subject-matter ex-
perts,” and engagement teams from many parts of
IBM, including Jonathan Adams, Rick Ahlgren, Jim
Amsden, Rock Angier, John Baker, John Black, Pe-
ter Bohnhoff, Anne Bomford, Marty Buskirk, Ron
Buszko, John Cameron, Jean-Pol Castus, Alan Chiv-
ers, Chris Codella, Jim Davey, Ciaran Dellafera,
Vince Devine, Alan Dreibelbis, Derek Duerden,
Dave Ehnebuske, Don Ferguson, Patrick Fournery,
David Gamey, Qing Ge, Bob Gray, Tina Harris,
Philip Hausler, Ed Hood, Ton Ikink, Arjen Jansen,
Keith Jones, Ed Kahan, Genie King, Nina Liang,
Mike Lloyd, Leo Marland, Jim McGugan, Ross
McKenrick, Julian Paas, Dave Parkhill, Maurice
Perks, Emily Plachy, Colin Rous, Oliver Rye, Geoff
Sharman, Dave Spencer, Howard Taylor, Phil Teale,
Emeline Tjan, Thomas Wappler, Ray Wells, Neale
Whyatt, and Roger Wright.

We would like to thank our colleagues Burnie Blake-
ley, John Fetvedt, and Robert Youngs for their help
in reviewing this document. Finally, we would like

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LLOYD AND GALAMBOS 73

Figure 15 Technical reference architecture assets cover a wide range, from patterns of requirements to product
selection.

to thank all those project IT architects “out in the
trenches” who kindly gave their time to help us with
our surveys. We hope that one result of our work
will be that before too long, their life will be less
stressful, less frustrating, and more rewarding.

*Trademark or registered trademark of International Business
Machines Corporation.

*“Trademark or registered trademark of Object Management
Group, Microsoft Corporation, Oracle Corporation, Rational
Software Corporation, or Lotus Development Corporation.

Cited references and notes

1. A “silo” is a part of an IT solution that is not integrated with
other parts. The name comes from the visualization of such
a solution-the different applications stand apart from each
other, like farm silos in silhouette against a prairie sky. An-
other name for this kind of solution is “stovepipe.” A good
explanation of stovepipes as an “antipattern” can be found
in W. J. Brown, R. C. Molveau, H. W. McCormick, and
T. J. Mowbray, Antipatterns: Refactoring Software, Architec-
tures, and Projects in Crisis, John Wiley & Sons, Inc., New
York (1998).

2. In a fat-client solution, client systems perform most of the
data processing operations. The data may be stored locally
or on a server.

3. R. Schulte, Architecture and Planning for Modern Application
Styles, Gartner Group Strategic Analysis Report SSA:
R-ARCH-104 (April 28, 1997).

4. I . Jacobson, M. Griss, and P. Jonsson, Software Reuse: Ar-
chitecture, Process and Organizution for Business Success, Ad-
dison-Wesley Publishing Co., Reading, MA (1997).

5. L. Bass, P. Clements, and R. Kazman, Software Architecture

74 LLOYD AND GALAMBOS

in Practice, Addison-Wesley Publishing Co., Reading, MA
(1998).

6. E. C. Plachy and P. A. Hauler, “Enterprise Solutions Struc-
ture,”IBMSystems Journal38, No. 1,4-ll(1999, this issue).

7. B. Boehm, “Engineering Context,” First International Work-
shop on Architecture for Software Systems, April 1995, Seat-
tle, WA.

8. M. Shaw and D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline, Prentice Hall, Upper Saddle River,
NJ (1996).

9. R. Youngs, D. Redmond-Pyle, P. Spaas, and E. Kahan, “A
Standard for Architecture Description,” IBM Systems Jour-
nal 38, No. 1, 32-50 (1999, this issue). This paper contains
a glossary with more detailed definitions of terms used here.

IO. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc., New York (1996).

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley Publishing Co., Reading, MA (1995).

12. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiks-
dahl-King, and S. Angel, A Pattern Language: Towns, Build-
ing.~, Construction, Oxford University Press, New York (1977).

13. K. A. Bohrer, “Architecture of the San Francisco Frame-
works,” IBM Systems Journal 37, No. 2, 156-169 (1998).

14. Information about IBM Component Broker Series is avail-
able at http://www.software.ibm.comiad/cb.

15. With “back-end scripting” the mid-tier server (the “hub”)
takes a request for information and decomposes it into a script
of multiple, discrete tasks, each appropriate for an individ-
ual legacy application, and manages all of the associated work-

16. Early, Cloud & Company is now part of the new Customer
Relationship Solutions (CRS) software company, an inde-
pendent subsidiary of IBM. For more information see http:
//www.ibm.com/services/crs/index.html.

now.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

17. R. Prins, Developing Business Objects: A Framework-Driven
Approach, McGraw-Hill Publishing Company, London
(1996).

18. See http://www.omg.org for link to UML specifications.
19. T. Harris, J. W. Rothwell, and P. T. L. Lloyd, “Experiences

in Reusing Technical Reference Architectures,”ZBMSystems
Journal 38, No. 1, 98-117 (1999, this issue).

Accepted for publication October 9, 1998.

P. T. L. (Tim) Lloyd IBM United Kingdom Ltd., P. 0. Box 31, War-
wick CV345JL, England (electronic mail: tim-lloyd@uk.ibm.com).
Mr. Lloyd is a consulting IT architect in the IBM United King-
dom Object Technology Practice. He led the ESS Technical Ar-
chitecture team from its inception in 1996, and subsequently be-
came team leader for overall ESS development. Currently, he is
lead architect for the ESS Operations team. He previously worked
as enterprise systems engineer and solutions project consultant
for several large IBM enterprise clients in the government, re-
tail, and utilities industries, as technical architect on a large in-
surance solutions development project, and as regional specialist
in various subject areas, including large systems hardware and
software, storage systems, and office systems. Other areas of expe-
rience include the application of image processing and workflow
in enterprise-scale solutions. He received a B.Sc. degree in the-
oretical physics from Manchester University.

George M. Galambos IBM Canada, 1250 Boulevard Rene
Levesque, Montreal, Canada H3B 4W2 (electronic mail:
galambos@ca.ibm.com). Dr. Galambos is a Distinguished Engi-
neer and certified as an IT architect in the e-Business Architec-
ture Consulting Practice, based in Montreal. In the past six years
he has led architecture and design engagements in the finance,
insurance, transportation, and government industries. He has con-
tributed as a core team member to the development and deploy-
ment of the ESS technical architecture. Prior to his role as a con-
sulting architect, Dr. Galambos focused on IT strategy definition
and on the design of high performanceihigh availability on-line
systems and networks for large Canadian and international cus-
tomers. He used this experience to coauthor IBM’s End-to-End
System Design Method. Current interests include performance
and availability characteristics of the network computing model,
the integration server design concept, and asset-based system de-
sign. He graduated as a chemical engineer from the Leningrad
Technology Institute and received a Ph.D. degree in chemical en-
gineering from the Budapest Technical University in 1972.

Reprint Order No. G321-5697.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LLOYD AND GALAMBOS 75

