76 LEISHMAN

Solution customization
=

bE] SOLUTION
CUSTOMIZATION -

Customization involves fit and alterability and is
based on understanding the commonality and
variability (c/v) across industries, geographies,
customers, and systems. This paper argues for
an emphasis on c/v through a customization life
cycle, from engineering customizable assets,
components, and solutions to supporting their
effective deployment. Examples of systems that
focus on customization through c/v are given.
These examples are described using the
customization life cycle and show what
mechanisms are most useful in each phase.

Today enterprises are facing many forces that
compel them to take a larger view of their sys-
tems. These forces include globalization, “buyouts,”
regulatory changes, commerce, cost, multiple cus-
tomer-access channels, product development cycles,
changing business processes, etc. This larger systems
view is creating a need to break down the applica-
tion “silos”' that exist today in a cost-effective and
low-risk manner. Companies are asking for help from

0018-8670/99/$5.00 © 1999 IBM

by D. A. Leishman

their own internal information systems (IS) organi-
zations as well as from external services consultants,
product developers, and packaged solutions vendors.

External services consultants (Andersen Consulting,
Electronic Data Systems, IBM) can bring many re-
sources to help in creating customer solutions, from
intellectual-capital assets, to hardware and software
products and components, to packaged solutions,
and finally to newly emerging component-based
packaged solutions. For effective and profitable use,
these items must be customizable to fit customers’
requirements and environments. Developers of these
customizable resources need guidelines: what is cus-
tomization and how can it be implemented success-
fully?

Customization involves fit and alterability and is based
on understanding the commonality and variability
(c/v) across industries, geographies, customers, and
systems. This paper introduces a customization life
cycle, and through examples shows what mechanisms
are most useful in each phase of the life cycle. A sub-
sequent section of the paper focuses on the mech-
anisms themselves.

Successful, profitable creation and deployment of so-
lutions across multiple customers, industries, and ge-
ographies is dependent on observing this customi-
zation life cycle. Focus on a customization life cycle
and c/v is already beginning to permeate the custom-
izable solutions developed in 1BM, and this work will
continue.

©Copyright 1999 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

What is customization?

This section gives a definition of customization, de-
scribes the notion of scope, and shows that customi-
zation can apply at multiple levels. A “value chain”
view of customization is presented and shows the in-
teraction between defining, developing, deploying,
and maintaining assets, components, and custom-
izable solutions. These ideas form the backdrop in
which to think about creating systems that are easily
customizable and maintainable.

Definitions. The dictionary definition? of “custom-
ize” is “to build, fit, or alter according to individual
specifications.” For the customer solutions we de-
velop, this implies (1) building “from scratch,” (2)
fitting an existing solution into a customer’s environ-
ment, (3) altering a solution to fit the customer’s re-
quirements, or any combination of the three. The
key is to fit to the customer’s specification through
either “green field” (new) development—by mak-
ing sure that a packaged solution fits the customer
very well and needs only minimal customization—or
being able to easily configure a solution from exist-
ing customizable assets and components.

Services consulting businesses today are proficient
in building custom solutions through green field de-
velopment and systems integration. Services consult-
ants that deploy ERP (enterprise resource planning)
packaged solutions, such as SAP** or PeopleSoft**,
often do extensive customization. Services and so-
lutions businesses of the future will be focused on
fitting and altering existing assets, components, and
solutions to meet customer requirements.

To provide fit and alterability requires, for one thing,
having the right parts to allow configurable systems.
Examples of these parts include common services,
data models, components, and objects. To fit the cus-
tomer, a system must also be extensible and able to
interoperate with existing systems. Thus customiz-
ability in the fullest extent means being configurable,
extensible, and open, and supporting interoperabil-
ity with legacy and other systems through messaging
and architectures such as Microsoft’s Distributed
Component Object Model (DcoM**) or the Object
Management Group’s Common Object Request
Broker Architecture®* (CORBA™*). We describe in
alater section what mechanisms are used to give SAP
and component-based systems these characteristics.

As used in this paper, assets refer to intellectual cap-
ital (proposals, contracts, presentations, etc.) or de-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

velopment life-cycle models (technical reference ar-
chitectures, business models, design models, etc.)
that could be reused on their own. Components re-
fer to hardware and software components and the
models that describe them. Software components can
be products, Java** “beans,” or components that ad-
here to a component architecture such as Enterprise
JavaBeans**, DCOM, or CORBA. Software products
include database management systems, workflow sys-
tems, etc. Customizable solutions can either (1) have
a limited set of common components across the ap-
plications within them, as many of the current ERP
systems do, or (2) contain many common underly-
ing components (business objects, frameworks), as
exemplified by the San Francisco™ project, described
later in this paper.

Keys to success in the solutions business are: ana-
lyzing the market to develop solutions that fit, sell-
ing solutions that fit the customer, and developing
solutions, components, and assets that can be altered
to fit the customer’s environment and requirements,
at both technical and business levels. When common
components are sought, success depends on incor-
porating fit and alterability into the right parts or
components. Success occurs when these reusable
items are easily customizable by services deployment
teams. Ultimate success is judged by the customer
and requires a solution to be customized to fit the
customer’s requirements in a timely manner, with
ongoing support and maintenance.

Scope of customization. To better understand how
to specify fit and alteration we need to consider the
scope of solutions being developed. It should be
noted that the solutions described here are to be cus-
tomized by other developers into final customer so-
lutions. Therefore, the requirements to be consid-
ered are not just end-user functionality (although
that is necessary), but also details of the business pro-
cesses, functional and nonfunctional requirements
for many different end users, and, more importantly,
the variances among them. The most critical vari-
ances must be represented in the system so that de-
velopers of the customer solutions can configure and
instantiate prespecified variation points. Where these
variances come from is the subject of this section.

A dictionary definition? of “scope” is “space or op-
portunity for unhampered motion, activity, or
thought.” In this section, scope is used to indicate
the opportunity for variances within a solution or set
of solutions. Scope levels include:

LEISHMAN 77

1. An application or solution meant for one or a few
customers (services)

2. An application or solution meant to be custom-
ized for many customers (packaged solutions)

3. Development of many similar applications or
solutions to be customized for many customers
(packaged and component-based solutions)

4. Development of applications or solutions to be
customized for many customers in different in-
dustries and geographies (packaged and compo-
nent-based solutions)

5. Multiple versions of assets and solutions being de-
veloped, customized, and deployed over time

At Level 1 are fully customized green field or inte-
gration engagements, where only one, or very few,
customers are considered during development. Fit
and alteration are not important design points. The
solution does not need to fit or be altered for an-
other customer. As well, customers will typically not
pay for their solution to be able to fit or be altered
to fit another customer’s requirements.

At Level 2, variation must be provided to fit the so-
lution to the customer and to allow for some alter-
ation to fit differences of individual customers. The
challenges are to produce the right solution for the
market (fit) and to allow easy alteration of impor-
tant customer differences. This could be through ex-
plicit variance points or through extensibility.

Level 3 design must fit the solution to the customer
and allow easy alteration to fit differences of indi-
vidual customers, but an additional design point is
now added. The new design point includes support
for production of several solutions or applications
from some common set of parts. This design point
can be added for several different reasons, but all
point back to the need to utilize common parts when
developing multiple applications or solutions. Pos-
sible goals leading to this design point include:

* The need for a common “look and feel” across a
set of applications or solutions (e.g., Lotus Smart-
Suite**, Microsoft Oftice**)

* The need for a consistent set of interfaces across
multiple access points for an application or solu-
tion (automated teller machine, call center, etc.)

* The need for common data models across enter-
prise systems and consistent management of per-
sistent data

* The need to save development costs by reducing
redundancy across applications or solutions

78 LEISHMAN

* The need for common legacy systems access from
several applications or solutions

The challenge is to design multiple applications or
solutions to meet all three design points: fit, alter-
ability, and common parts, while maintaining proj-
ect schedules for the individual solutions and while
managing the dependencies set up between devel-
opment of common parts and the applications and
solutions that utilize them.

Applications or solutions at Level 4 will include the
design points of fit and alterability as in Level 3, but
the scope of alterability now must include the re-
quirements of customers from not only one indus-
try or geographic region, but many. If the solution
or asset either does not fit, or is not easily alterable
for this larger range of customers, it will be difficult
to deploy and use. Additional complexity is added
if the assets or solutions developed for similar in-
dustries are meant to be used as part of other so-
lutions in other industries. Here we have the three
design points of Level 3, with dependencies increased
and project scheduling becoming more critical. An
example of this would be development of a call cen-
ter asset that needs to be specialized and used by
many different industries.

Geographic differences in cultural norms, govern-
ment regulations, etc., are also a large source of vari-
ance in Level 4 and must be explicitly represented
and understood for deploying solutions in new re-
gions. The decision to enter new regions should be
driven by marketing goals and will require some level
of geographic support and sales. The challenge is to
pick those assets and solutions for which the com-
plexity incurred is offset by expense reduction and
better market strategies.

Finally, scope at Level 5 allows new versions of so-
lutions to be easily installed at existing customer sites.
This adds an additional design point for multiple ver-
sions. The challenge here is to integrate versioning
into alterable solutions such that, once they have
been altered to fit the specific requirements of a cus-
tomer, a customer can easily migrate to the new ver-
sion in a cost-effective way.

The scope of variances in solutions (over many cus-
tomers, industries, and geographies) is important to
understand, because the differences in customizabil-
ity lead to different design points, architectural con-
structs, and levels of development management.
Attempting to develop and deploy the range of so-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 1 A value chain of components and solutions

lutions, components, and assets described above
without a clear knowledge of the reasons for the
choices (preferably using a cost/benefit analysis), and
the means to manage the development and deploy-
ment, can lead to disappointing results. As well, it
must be clearly understood that the systems de-
scribed here are for creating customizable assets,
components, and solutions, with deployment teams
doing the customization that results in the final cus-
tomer solution. For development of customizable so-
lutions, we need requirements that show enough de-
tail to allow us to find the critical variances and build
them into the customizable solutions while support-
ing their inevitable evolution.

A solution-customization value chain. It is not
enough for the asset, component, and solution de-
velopers to implement end-customer functionality
in a general sense. There is a level of indirection that
must be recognized and designed for. In a sense, we
are developing tools to support the development of
end-customer solutions. The full value chain is shown
in Figure 1.

The right-hand side of Figure 1 shows the architec-
tures that specify and repositories that store reus-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

able assets. Multiple scopes are possible; as de-
scribed earlier and discussed in the next section,
commonality/variability analysis is a critical aspect
in developing architectures, components, and solu-
tions that incorporate the design points of fit and
alterability. The left-hand side of Figure 1 shows a
value chain of the full range of assets, components,
and solutions to be developed, stored, deployed, and
maintained by solutions and services groups. These
can be used in multiple ways:

1.

2.

Services deployment teams use assets directly for
customer solutions.

Solutions are created to fit a marketplace and the
architectural specification allows for only mini-
mal customization. Services deployment teams
then customize a solution for the customer.
Customizable and configurable components are
developed according to a generic architectural
specification and used to develop multiple cus-
tomizable applications and solutions, which are
then customized and installed by services deploy-
ment teams.

Services deployment teams use the customizable
components directly for customer solutions.

LEISHMAN 79

The customization life cycle

This section emphasizes the importance of under-
standing commonality and variability as the essence
of customizability. With this understanding, a cus-
tomization life cycle is introduced. This life cycle can
be implemented in the methods and processes of de-
velopers using various mechanisms. It is this life cy-
cle and its implementation that leads to customiz-
able solutions and thus success in the solutions
business.

Commonality and variability analysis. To be able
to manage development and deployment of the scope
described earlier, we must understand what will al-
low us to meet the design points of fit and altera-
bility and thus customizability. We must understand
the similarities and differences among the business
processes, requirements, and existing solutions across
the customer set for which the solutions are intended.
The requirements are both functional and nonfunc-
tional and exist at the technical as well as the ap-
plication or business level.

If the requirements for the common parts of solu-
tions for multiple customers are not understood,
there will not be a good fit. If the variations of mul-
tiple customers across multiple geographies and mul-
tiple industries are not understood, it will be very
difficult to ensure that the solutions are designed to
be alterable where necessary. This does not mean
that all variations will need to be maintained sep-
arately in a solution; often they can be generalized.
However, if the solutions are not designed to be al-
terable when necessary, it will be very difficult for
the deployment teams to alter them. Examples of
required variability include differences in standards
or business rules across customers and geographies,
such as tax calculations or telecommunications pro-
tocols.

The requirement for customizable asset, component,
and solution development is to explicitly represent
this commonality and variability (c/v). This repre-
sentation must support evolution of the assets and
components. This also means developing the solu-
tions so that the commonality and variability is fac-
tored out properly. We will examine several mech-
anisms for customization in a later section.

Steps in the customization life cycle. A customiza-
tion life cycle includes managing the c/v across cus-
tomers, incorporating the ¢/v into the assets, com-
ponents, and solutions, providing interfaces to the

80 LEISHMAN

customization points for deployment teams, and sup-
porting customer migration to new versions while
maintaining existing customizations. For success in
the solutions business, this life cycle should be re-
flected in the methods and processes used by devel-
opment and deployment teams. The life cycle con-
tains five steps. These are not intended to be
executed in a waterfall manner, but rather would find
their way into methods such as iterative development.
The five steps are:

1. Analyzing and representing ¢/v. Commonalities and
variabilities of customer environments and re-
quirements are analyzed and represented explic-
itly. The representation supports evolution as re-
sults are used and evaluated.

2. Implementing c/v. The commonalities and variabil-
ities are incorporated into generic architectural
descriptions and customizable components.

3. Interfaces. Aninterface and possibly tools are pro-
vided to aid in configuring components into so-
lutions and in their customization.

4. Customization. The interface is used to configure
and customize the components to fit the end cus-
tomer’s environment and requirements. Part of
this customization is to fit the components and
solutions to the customer as closely as possible.

5. Versioning. Customers migrate to new versions of
the components and solutions.

In the first phase of the life cycle, the commonal-
ities, variabilities, and invariants of customer envi-
ronments and requirements should be analyzed and
represented. This can be done in several ways—us-
ing domain experts, existing industry business mod-
els, existing systems, and requirements gathering. In-
variants refer to those parts of a system that never
change across customers and geographies; these be-
come part of the core system. The c/v aspects are
considered so that the common services, functions,
objects, rules, etc., of a system can be identified, with
the variations among them also identified. Some
mechanisms for representing this c/v exist today, such
as “use cases,”® where “uses” captures commonal-
ity and “extends” captures variation in requirements.
“Hot spots” in framework development are also used
to identify variation points.*

Other mechanisms for representing c/v in existing
systems are included in domain analysis techniques
such as FODA® and ODM.¢ All requirements during
the life of the assets and solutions should be man-
aged in the same way, giving rise to the need for a
good requirements management system that can ac-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

commodate c/v. Today, explicit analysis of c/v is of-
ten not done when creating customizable systems.
Instead, developers rely on intuition and good de-
sign practices. In framework development, large
numbers of iterations are used to get to the c/v
(SEMATECH, described in a later section, iterated for
sixyears). This is ineffective for the shorter lead times
and longer lifetimes of current systems. It is also in-
effective for systems at scope levels 3, 4, and 5, de-
scribed in the previous section. These systems need
a more systematic approach that includes both ex-
plicit representation of ¢/v and a good understand-
ing of the mechanisms for applying it in customiz-
able systems.

In the second phase of the life cycle, the ¢/v and in-
variants are implemented. This can be done through
many different mechanisms and techniques, as de-
scribed in a later section. At the core of this work
is the need for good architectural techniques and rep-
resentation. Implementation consists of moving the
invariant parts to a mandatory common core, clus-
tering the common parts for configurability, gener-
alizing variable parts where possible, developing ge-
neric designs, and providing well-defined points of
customization where variability is needed for differ-
ent industries, customers, and geographies. A good
example of applying c/v is the use of design patterns.’
For example, the Strategy pattern allows algorithms
to be varied within a common context. This could
be used to implement different business rules across
countries for taxation, for example. For component-
based systems where the scope is closer to an en-
terprise level, the key notion is the development of
generic architectures, common components, and
rules that allow multiple applications within a fam-
ily to be configured and customized.

When incorporating customizability, development
teams can apply the techniques and mechanisms (de-
scribed later) at three different times: when the as-
set or solution is being developed, at compile time,
and at run time. This means that areas meant for
customization are architected and designed into the
asset or solution, but when compiling a particular
version of an asset or solution, different parts, or ver-
sions of parts, can be combined. As well, deployment
teams and customers may be able to do some cus-
tomization at run time, such as changing screen color
or window positions. This adds another dimension
to the mechanisms and techniques.

The third phase of the customization life cycle pro-
vides an interface around the assets, components,

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

or solutions for deployment teams and other users.
Although it may be optional, an interface is often
an indication of maturity. An example interface is
the ABAP/4 (Advanced Business Application Pro-
gramming/4) language used with the SAP assets. An
interface can be used for several purposes: to explic-
itly identify variability and alterability points, to hide
the source code behind application programming in-
terfaces, to aid in the understandability of the assets
and solutions for easier deployment, to view and
adapt models of the system, and to aid in the con-
figuration and extension of the assets and solutions.
Examples of interfaces include scripting languages
to “glue” components together, and support for con-
figuring process and data models. Specialized tools,
such as visual modeling and code generation tools,
may be built that support the use of these interfaces
as well.

The fourth phase of the life cycle is the use of the
interface or other descriptions of the assets, com-
ponents, and solutions by those higher in the value
chain to fit and alter (i.e., customize) them to fit the
customer’s environment and requirements. As well,
it may be necessary to extend them, and to ensure
that they interoperate with other systems, such as
legacy systems. Part of the deployment is to ensure
that sales organizations consider the fit of the assets,
components, and solutions to the customer’s envi-
ronment. Yet another part is configuration of the
assets, components, and solutions as part of the ef-
fort to fit into the customer’s environment.

An important part of the customization process is
to instantiate the variability points. If these points
have not been explicitly identified, teams will have
to adapt or alter the assets in ways that may not have
been anticipated by the development team. This may
lead to problems with the overall fit of the asset or
solution, but it may be the only way to satisfy the
customer’s requirements. Examples of customization
include: application installation, configuration of so-
lutions from parts, gluing the parts together with
scripting languages, instantiating (configuring) vari-
ability points, and adapting models that describe the
assets and solutions.

The final phase of the customization life cycle is the
migration of customers to new versions of the as-
sets, components, and solutions. This migration
should be done in a way that minimally affects the
customer solutions already in place and still allows
easy reimplementation of the customizations previ-
ously done. New versions involve release manage-

LEISHMAN 81

ment and configuration management of the assets
and solutions by the development teams. Much of
the versioning effort is in managing the changes made
by each customer. Versioning is made easier by min-
imizing the alterations that are possible, making good
use of interface definitions, and allowing only exten-
sions to components or objects.

Examples of customization

This section contains six examples of customizable
systems. Each is described in terms of the customi-
zation life cycle discussed earlier. The first three de-
scriptions represent general methods, mechanisms,
and techniques, the fourth describes a successful ERP
system, and the last two represent systems being de-
veloped within 1BM. These examples are provided
to show that successful systems being developed to-
day incorporate the customization life cycle. This sec-
tion also shows that different mechanisms can be,
and are, used in each of the life-cycle phases.

Jacobson, Griss, and Jonsson. The book entitled
Software Reuse: Architecture, Process and Organiza-
tion for Business Success,® by Jacobson, Griss, and
Jonsson, describes how to develop and deploy a fam-
ily of applications, described by one generic archi-
tecture, with reuse of a common set of underlying
components. This book also describes transforma-
tion processes and organizational structures that
need to be put in place for any organization embark-
ing on development, deployment, and management
of such application families. This is much different
than development of single, or multiple loosely re-
lated, applications. Here, a single architecture de-
scribes the components (objects and related work
products), component systems (sets of related com-
ponents, e.g., subsystems, frameworks), and appli-
cations (sets of component systems, configuration
scripts, related documentation, etc.) that are devel-
oped from these components. Multiple versions of
the applications for different geographies could be
developed, and each application is part of a family
of applications, such as those related to telephony
switching systems or financial and banking systems.

Figure 2 shows an architectural view of layers of tech-
nical and business components, with applications at
the top developed from the components. The appli-
cations at the top are typically designed to be highly
interoperable and possibly built within distribution
architectures, such as CORBA. It should be clearly
understood that the layered generic architecture

82 LEISHMAN

specifies the common components, their interfaces,
and the interactions required to develop all appli-
cations in a family, but any one application will use
only some of the components (which may be avail-
able in different versions). Configuration support is
needed when developing applications and solutions
from the components.

A key theme throughout the book is the idea of vari-
ation points and variants. Variation points are rep-
resented in all models from use case requirements
through component code, and variants implement
(specialize) the variation points. The authors also
stress the need for traceability of the variation points
through the models in order to support full reuse of
the component systems by application developers.
These variation points and variants correspond to
the emphasis on variability discussed throughout this

paper.

Analyzing and representing c/v. Commonality and vari-
ability is analyzed and represented first using the use
case method.” The key aspects of “uses” and “ex-
tends” support representation of commonality and
variability in the use cases. “Uses” can be used to
show common portions of use cases, while “extends”
can be used to show optional or variable portions.
Use cases are defined at the highest level of detail,
essentially the business processes supported by the
highest level applications. They are also used at the
level of components. Use cases for each of the re-
lated applications are obtained and analyzed to-
gether to find commonality and variability. Not all
possible use cases need to be gathered, but gener-
ally a good representative set should be obtained for
the initial architecture of components. Analysis of
the common parts of the use cases for the top-level
applications leads to the architectural definition of
the necessary component systems. Use cases at the
component level, and further c/v analysis, lead to fur-
ther representation of c¢/v at the component level.

This c/v at the use case level is then traced through
subsequent analysis and design models. The first level
of analysis is done to achieve the overall architec-
ture and to detail the requirements for the compo-
nent systems, which are developed separately from
the applications. An important aspect of this ap-
proach is the focus on separate component and ap-
plication development teams as well as separate de-
ployment teams. Processes and methods are
described for organizing around this type of archi-
tecture and development.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 2 A banking family of applications*

DIGICASH CASHIER

APPLICATION SYSTEMS

ATM CASHIER PAYMENT

INVOICING

BUSINESS-SPECIFIC SYSTEMS

MONEY MANAGEMENT

ACCOUNT MANAGEMENT

CUSTOMER MANAGEMENT

MIDDLEWARE

COMPONENT BROKER

SYSTEM SOFTWARE

WINDOWS NT® WORKSTATION

(TCP/IP)

TELECOMMUNICATIONS
PROTOCOL/INTERNET PROTOCOL

* From L Jacobson, M. Griss, and P. Jonsson, Software Reuse: Architecture, Process and Organization for Business Success.
Copyright 1997 Addison-Wesley Publishing Company. Reprinted with permission.

Implementing c/v. Several mechanisms are used to
implement the commonality and variability that is
represented in the use cases and other models. The
first is use of a layered architecture to separate tech-
nical parts from more business-related parts and to
define the common components. Little discussion of
the technical layers is included in the book. Most of
the examples shown relate to the business and ap-
plication layers. Aswell as showing the ¢/vin the anal-
ysis and design models, facades are described to sep-
arate public and private views of the components,
particularly as they relate to the variation points. Im-
ports relations define the use of components by other
applications. The authors also describe the use of
design patterns to implement the variation points and
help specify where variants can be configured into
component systems and applications. In addition, the
authors define several other variation mechanisms
that can be used, including inheritance, parameter-
ization, and extensions.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Interfaces. Interfaces, as described earlier, are dis-
cussed here, such as wizards, scripting, and templates,
but are not defined or shown in detail. The empha-
sis is on reuse of the component models by appli-
cation developers, with a brief discussion of the pos-
sible need to add customization points, package up
the applications further, and add installation scripts
and documentation for other deployment person-
nel.

Through the customization life cycle, this paper
makes a clear distinction among mechanisms used
to implement c/v, the definition of interfaces into the
¢/v, and customization of the ¢/v. Jacobson, Griss,
and Jonsson discuss variation points and variants and
mechanisms to implement them but do not make the
same important distinctions.

Customization. Applications are developed by dif-
ferent groups of practitioners than the component

LEISHMAN 83

system developers, and the models are reused,
tracked, specialized (at the specified variability
points), and extended during application develop-
ment. Applications themselves may have further cus-
tomization mechanisms built in to allow for customi-
zation on customer engagements, as described in the
value chain of Figure 1.

Versioning. Facades are used to hide the internals of
components and to support configuration manage-
ment. The emphasis is on hiding internals and ex-
posing only the variation points to the users. The au-
thors push for a more “black-box” approach, but
recognize that this may not be possible in the early
stages of component use by application developers,
who through early use of the components put more
variability requirements on them. Hiding the source
code behind well-defined interfaces allows updates
in later versions without affecting users. With vari-
ation clearly specified, the changes can be more eas-
ily managed.

FODA (feature-oriented domain analysis). “Domain
engineering” refers to the development of reusable
architectures and components and their subsequent
use in developing families of applications and sys-
tems. The first part of domain engineering is domain
analysis for reuse, where generic architectures and
their contained components are specified at analy-
sis and design levels through models, followed by im-
plementation of the design. The second part of
domain engineering is the use of the generic
architectures and components for application and
systems development. Example domains might be
business functions, such as marketing or human re-
sources, or an entire enterprise or a product line,
such as ink-jet printers or telephony switching sys-
tems. The analysis in domain engineering is usually
example-driven, where previous applications devel-
oped in the domain are the main input, supple-
mented with domain expert knowledge and possibly
future system requirements.

The most important aspect of domain engineering
is its emphasis on analyzing multiple existing systems
within some scope and doing a commonality and vari-
ability analysis across processes, functions, techni-
cal platforms, operational contexts, data, objects,
tasks, etc. There are many levels where this type of
analysis is useful, including an entire enterprise or
some portion of it for one or typically several cus-
tomers. The models used to develop the generic ar-
chitectures and components are supplemented with
explicit representations of the commonality and vari-

84 LeisHMAN

ability. This analysis is done in order to reduce re-
dundant development, provide a common “look and
feel” across applications in the scope, increase the
quality and maintainability of applications, and to
support better interoperability among applications
within the scope. This type of analysis results in com-
ponents that can be configured together in multiple
ways to develop applications in a family of systems.

The emphasis on commonality and variability anal-
ysis develops because the components need to be re-
usable by many different application and system de-
velopers. This customizability needs to be built into
the components so they can be produced and main-
tained in a systematic fashion. If the applications and
systems themselves also need to be customizable,
then that must also be built into the architecture and
component definitions. Layered architectures are the
norm, and although all components that will be used
by the applications are defined within the generic
architecture, not all applications will use all compo-
nents. This means that the generic architectures must
also maintain configuration views of the systems to
be built. The generic architecture specifies all pos-
sible components and how they would work together,
but not all applications need or can use certain com-
binations of the components.

FODA, or feature-oriented domain analysis, is one
of several methods for doing domain analysis and
has to date been one of the most highly used, es-
pecially by telecommunications companies such as
Lucent Technologies and MCI WorldCom. Several
models are described at analysis and design levels
and are supplemented to show c/v information, but
the most characteristic model is the feature model.
Features are user-visible aspects or characteristics
of a domain, and are used to define a domain in terms
of the mandatory, optional, or alternative character-
istics of related systems within it. Mandatory features
must be included in all applications within the do-
main. Optional features will be in some applications
and not in others. Alternative features specify spe-
cific variations and typically define a specialization
or abstraction hierarchy. As stated earlier, applica-
tions within a domain share many common capabil-
ities. These capabilities, from the point of view of
the end user, are called features. Features include
the services or functionality provided by the appli-
cations. They also include hardware platform re-
quirements, performance requirements, and cost
characteristics. The feature model in FODA is devel-
oped at analysis time and is used to generalize and
parameterize the other models, including object

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 3 A telecom feature model for services*

* From M. Griss, J. Favaro, and M. D’Alessandro, “Developing Architecture Through Reuse.”
Copyright 1997 SIGS Publications. Reprinted by permission from Object Magazine 7, No.7 (September 1997).

models, functional models, process interaction mod-
els, and component models. The feature model also
defines configuration rules that, for example, might
specify that if air conditioning (feature) is chosen in
a car, then a certain size engine (feature) must also
be chosen.

FODA was first described in 1990° and comes from
the Carnegie Mellon Software Engineering Institute.
It predates many of the object analysis methods used
today, including use case modeling. In a recent ar-
ticle,? Griss, Favaro, and D’Alessandro describe the
use of the feature model to enhance the methods
proposed by Jacobson, Griss, and Jonsson® and de-
scribe how the feature model works with the use case
model to define a “reuser” oriented view of archi-
tectures and components for families of systems. An
example of a feature model is shown in Figure 3 and
describes the essential feature choices to be made
when developing new services (call waiting, call for-
warding, etc.) for telecommunications systems.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Straight lines in the figure indicate “composed-of”
relationships, circles above features indicate optional
features, and diamonds indicate alternative features.

The feature model provides a catalog of features and
gives a configuration road map of what can be se-
lected, combined, and further customized in a sys-
tem. This provides a view of more than just the func-
tionality that a reuser is trying to implement.
Developers of applications and systems select fea-
tures from the catalog and use it to make initial con-
figuration choices. Further detail of the functional-
ity to be developed is given by the traceable use case
and object models that point to detailed customi-
zation choices that must be made and implemented.

Analyzing and representing c/v. FODA uses several
models at analysis, architecture, design, and imple-
mentation time to explicitly represent commonality
and variability. The key model is the feature model,

LEISHMAN

85

which is used to generalize and parameterize the
other models.

Implementing c/v. The c/v is represented in the ge-
neric architectures, which specify all components
needed to implement the family of systems in the
chosen scope. The feature model specifies all fea-
tures that are available in the family of systems and
is used to generalize and parameterize other mod-
els, where further detail is specified using several
mechanisms described later in this paper.

Interfaces. The interfaces provided to a reuser are
the models and generic architecture description. The
feature model is provided to support configuration
decisions and to select the mandatory, optional, and
alternative aspects of the final system. Choice of
these features then leads to the appropriate mod-
els, where details can be further specified and re-
fined.

Customization. The first part of customization by a
user of the generic architecture and components is
analysis of the features needed by the end customer.
This analysis is driven by the features available as
specified in the feature model and the configuration
rules. Once these choices are made, further customi-
zation will be needed in the various models and fi-
nally in the code that implements the feature model.
In a value-chain view, there may or may not be a sep-
arate installer at the customer site, in addition to an
application or system developer who may work away
from the site.

Versioning. FODA itself makes no distinctions about
versioning of components, but this is clearly de-
scribed as part of the packaging and ongoing main-
tenance of component-based systems. Here several
mechanisms, such as generators and separate inter-
face definitions, are important.

Frameworks. Frameworks can be defined as “a re-
usable design of all or part of a system that is rep-
resented by a set of abstract classes and the way their
instances interact.”'® A chief aspect of frameworks
as we are defining them here is that a flow of con-
trol, which shows how the objects interact, is part of
the framework description. Frameworks may be de-
veloped when several instances of the design are ex-
pected to be needed in the future. Frameworks can
be calling, where the framework maintains control,
or callable, where applications call a framework to
provide a service. Many people refer to whole ar-
chitectures as frameworks; for example, SEMATECH

86 LEISHMAN

and CORBA are sometimes called frameworks. In this
paper, frameworks have actual object representa-
tions.

Analyzing and representing c/v. Frameworks are usu-
ally developed by analyzing several examples of sim-
ilar systems, or parts of systems. After analysis of
many examples, generalization is the primary mech-
anism used to develop the core framework structure.
The primary mechanism for analyzing and represent-
ing variability in frameworks today is the use of hot
spots.* Hot spots define the abstract classes that can
be implemented in different ways by different users
of the framework. Typically, initial versions of frame-
works are first defined and hot spots are later iden-
tified, based on analysis and user feedback.

Implementing c/v. In addition to generalization and
hot spots, design patterns’ are a key mechanism for
developing frameworks. As described elsewhere, !
an important aspect of design patterns is that they
give good designs for areas where various types of
variability are needed. Hot spots can be used to iden-
tify needed variability and a design pattern can be
applied that incorporates that variability and has
been shown to work well in the past.

Customization. Techniques for customization of
frameworks include “white box” and “black box.”
White-box customization is done by subclassing and
overriding abstract and concrete classes. Black-box
reuse is done through composition and delegation.
In black-box customization, the classes that imple-
ment the different variations exist and the user cus-
tomizes by selecting the appropriate classes to con-
figure into the system.

Versioning. Black-box reuse is preferred over white-
box reuse because it avoids the difficulties associated
with versioning, configuration management, and re-
lease management. But black-box frameworks are
much harder to develop and often evolve after mul-
tiple uses of a white-box implementation.

SAP. SAP AG, an international company based in Ger-
many, develops integrated packaged applications in
the ERP (enterprise resource planning) domain. The
structure of the current system, R/3, is shown in Fig-
ure 4.2 Tt consists of a basis layer, an application
layer, a development workbench, and a business en-
gineering workbench.

The basis layer contains the middleware of the R/3
system. This middleware makes the applications in-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

dependent of the system interfaces of the operating
system, database system, and communication system
used and ensures optimal handling of business trans-
actions. On the basis layer sits the application layer,
which implements the business functions and pro-
cesses of the R/3 system. The basis layer is written
in Cand C+ +, while the application layer is written
in the fourth-generation language ABAP/4.

Individual program modules in the basis layer pro-
vide the following services:

1. Presentation services for implementation of the
graphical user interface

2. Application services for handling of the applica-
tion logic and units of work

3. Database services for storage and recovery of bus-
iness data

R/3 presentation services include modules for the
representation of various document and graphic
types as well as the required communication services.
The applications of the R/3 system work in a trans-
action-oriented fashion. A SAP transaction is a se-
quence of logically linked dialog steps consistent with
business practices. SAP also supports cross-applica-
tion transactions and database updates using logi-
cal units of work. These transactions can happen
within or across processes and in different comput-
ers. The logical connection of dialog steps belong-
ing to a transaction is guaranteed by the SAP system.
For the definition and manipulation of data, the R/3
system exclusively uses SQL (system query language)
commands. The architecture of the system is laid out
in such a way that differences in the syntax and se-
mantics of the SQL implementations of different da-
tabase manufacturers are isolated in special R/3
modules. Therefore, in principle, all relational da-
tabase systems in the market can be supported.

The applications of the R/3 system are based on an
overall business model that makes possible a uniform
view of all data and business processes in the enter-
prise. The overall model covers financial account-
ing, controlling, asset management, materials man-
agement, production planning, sales and distribution,
quality management, plant maintenance, project
management, service management, human re-
sources, office communication, workflow functions,
industry solutions, and open information warchouse.

SAP also supports workflow management. It coor-

dinates the sequence of work steps and the activi-
ties of the people involved, and it provides the soft-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 4 The SAP architecture*

ABAP/4 AND BUSINESS R/3 APPLICATIONS
ENGINEERING

WORKBENCHES

R/3 MIDDLEWARE/BASIS LAYER

SYSTEM SOFTWARE

* From R. Busk-Emden and J. Galimow, S4P R/3 System: A Client/Server
Technology. Copyright 1996 Addison-Wesley Publishing Co.
Reprinted with permission.

ware functions necessary for business processes. This
is supported by workflow definition tools and a run-
time environment that controls the workflow. The
workflow architecture contains an organizational
model, a process model, and an object model. Tasks
performed by members of an organization link the
processes depicted in a workflow. The workflow steps
of a business process are described in the process
model, and reference the tasks in the organizational
model. The workflow steps are usually methods of
a business object and are defined in a business ob-
ject repository. Business objects are assigned a data
model that describes the object from a data point of
view, with additional areas for constraints, business
rules, methods, attributes, and input and output
events.

Analyzing and representing c/v. SAP AG has worked
with several process standards groups to define the
common business processes used in the system. This
has helped to ensure that the processes and related
functions provided in the SAP system will be close
to what many companies will need. Although not
much is known about how they explicitly represent
and manage the variability in the system, Busk-Em-
den and Galimow state that “during implementation
of the process chains, the different characteristics of
the standard solutions needed for different branches

LEISHVAN 87

of industry and company types, as well as multilin-
gualism and national particularities were taken into
consideration.”'? Requests for future customer ex-
its and changes to the system are handled through
arequirements change process, which is used for fu-
ture updates to the system and represents required
variability. This requirements process is often ini-
tiated through customer interest groups.

Implementing c/v. Common business processes, func-
tions, workflows, screens, basis (technical infrastruc-
ture layer), and data models are part of the SAP sys-
tem and common default parameter settings are
available upon first installation. Variability of the sys-
tem is allowed through customer exits (calls to cus-
tomer-specific application modules that have been
anticipated by sAP) for differences within functions.
Variability is also built into the system by allowing
several key system models to be configured, altered,
and extended in different ways. These include the
organization model (organizations and the tasks per-
formed by roles within the organization), the pro-
cess model (all processes in the system), the func-
tion model (all functions in the model that are related
to the processes), the data model and subsequent
table settings, the distribution model of how appli-
cations and services are distributed across the com-
putational tiers, and the user interface of screens and
screen flows.

As well, the system can be expanded to allow new
functionality to be added, and interoperability with
other programs is possible through the ALE (appli-
cation linking and embedding) mechanism and sup-
port for CORBA and OLE (object linking and embed-
ding). Variability is also built into SAP through
different versions of the system. These include coun-
try-specific versions as well as recently available in-
dustry-specific versions. The interpretative nature of
R/3 also gives possible variability at run time.

Interfaces. Two interfaces into the SAP R/3 system
are available. The first is the ABAP/4 Development
Workbench, which is the programming environment
for development of enterprise-wide client/server so-
lutions. It supports the entire software development
life cycle with tools for modeling, programming in
ABAP/4, definition of data and table structures, and
design of user interfaces. Support for testing, tun-
ing, maintenance, and large development teams is
also available. As a supplement to the development
tools, the business and software components of the
SAP system can be incorporated through this inter-

88 LeisHMAN

face. ABAP/4 supports functional modules, and the
components of SAP are based on these. Functional
modules have a clearly defined calling interface, and
import, export, and table parameters are defined
there. Functional modules can also be called across
system boundaries using remote function calls
(RFCs). The ABAP/4 Development Workbench can be
used to extend default system parameters provided
with SAP. Most recently, SAP has added components
and business objects. These components are open
and accessible to other vendors through BAPIs (bus-
iness application programming interfaces).

The second type of interface provided by the SAP sys-
tem is the Business Engineering Workbench. This
workbench contains all of the functions and infor-
mation for process-oriented support of initial imple-
mentation projects, follow-up projects, and release-
change projects. This interface is extensive and
contains a default methodology for projects, imple-
mentation guides with experience-based details of
the methodology, project management support, de-
fault documentation, the repository of all functions
and processes for installation and customization,
transactions for support in customizing the system,
and a reference model that describes the entire SAP
default system.

The reference model contains a function model (all
function modules in the system), process model (all
processes in the system, both worktlow/event-based
and input/output-based), information model (show-
ing inputs and outputs to functions), communication
model (communication between organizational
units), organization model (organizational structure
and task relationships), distribution model (distri-
bution scenarios possible for R/3 and support for
ALE), and the data model (entity-relationship mod-
el). Not listed here but also part of this interface is
access to default screen layouts.

Customization. The two interfaces just described are
used to install, customize, and extend the SAP R/3
system. First a default, industry-neutral version of
the system is installed that contains a simple orga-
nizational structure, consistently set parameters for
all applications, country-specific charts of accounts,
standard settings for account assignment, configu-
rations for control of standard processes, and stan-
dard settings for processes like “dunning and pay-
ment,” “planning and forecasting,” “pricing,” and for
printing and form layout, authorization privileges,
and so on.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

This default system is then used for understanding
and selection of those parts of R/3 that fit the cus-
tomer, providing a foundation for requirements anal-
ysis in the first phase of the methodology. The sec-
ond phase of the methodology is focused on detailing
and implementation by:

¢ Changing global system settings

» Configuring processes, functions, and data mod-
els

* Mapping the company organization

¢ Choosing the appropriate distribution model

* Implementing interfaces

¢ Implementing customer exits

s Deleting unneeded portions of user interfaces, ap-
plications, and data

» Extending the system using the ABAP/4 interface.
Extensions include processes, functions, data
model, database tables, and use of ABAP/4 aids in
integration and distribution with other parts of R/3.

The complexity of the second phase is in the inter-
relationships that exist within the system. The R/3
system consists of several thousand custom-setting
possibilities, and the need for consistent settings can
make implementation of an R/3 system a very com-
plex task. The implementation guides help with con-
sistent settings and proper use of the interfaces. Im-
plementation and customization can also be difficult
due to the inflexibility of the business processes pro-
vided. Typically, a company must change its business
and organizational structure to conform to the SAP
software.

The third phase of the methodology is preparing to
“go live” and includes developing custom documen-
tation by adapting existing documentation, training
users on the system, transferring data, and setting
up the environment. The final phase of the meth-
odology is putting the system into operation.

Versioning. The customer changes are maintained,
and when a new version of SAP is installed, the cus-
tomizations are again added. Only additions to the
existing system are easily allowed: no source code
changes should be made unless the source extends
the system. If source code changes are not made, SAP
can be fairly sure that new versions will not cause
major changes to a company’s installation. Bug fixes
are delivered in separate small releases of the sys-
tem.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Recently, SAP has been maintaining separate versions
for different geographies and different industry vari-
ations of the software.

San Francisco. The San Francisco project in IBM is
developing a set of frameworks that are very close
in structure to the layered architecture of common
components described by Jacobson, Griss, and Jon-
sson.® The base layer, as shown in Figure 5, consists
of a foundation and utilities layer with a common
business objects layer above it.

Currently, San Francisco supports application areas
such as general ledger, accounts receivable, accounts
payable, warehouse management, and order man-
agement. It provides the business and technical in-
frastructure on which business partner 1Svs (inde-
pendent software vendors) can develop their own
applications. The common business objects are those
that are used across the domains. Above the base
layer are the business frameworks that support com-
mon business processes in the application domains.
The application developers define their applications
using the underlying technical and business infra-
structure. Each 1SV defines unique applications
through differences in user interface, business rules,
industry, geographic, or other competitive features.

The San Francisco project has three main objectives
that support the customization life cycle presented
in this paper.'* The first objective is to offer easy en-
try into object-oriented (00) development. That ob-
jective led to customizable frameworks that provide
about 40 percent of the application code and allow
extension and customization. Developers start with
existing San Francisco system models and code and
add variations.

The second objective is to support ISVs’ applications
to make their companies more competitive. This
objective led to common business objects, custom-
izable application frameworks, and a flexible tech-
nical infrastructure for San Francisco. This in-
frastructure provides common services such as
transaction management, persistence management,
security, and systems management. The infrastruc-
ture also supports multiple client and server oper-
ating systems and multiple architectures, ranging
from fat client to Internet and thin client topologies.

The third objective is to provide an open solution
that will allow trade-offs in cost, performance, and
skill requirements. Developers can choose which
parts of the frameworks to use and are able to use

LEISHVMAN 89

Figure 5 The San Francisco architecture

BUSINESS PARTNER APPLICATIONS:

U GENERAL ORDER
LEDGER MANAGEMENT

WAREHOUSE
MANAGEMENT

* COMMON BUSINESS OBJECTS,

FOUNDATION AND UTILITIES.

08/4006

WINDOWS 95®

one infrastructure in multiple ways for multiple mar-
kets, depending on cost and performance require-
ments. Developers can use the frameworks in var-
ious ways, depending on their skill level: without
change, with changes, or with extensions. Develop-
ers can even build their own frameworks that make
use of the San Francisco infrastructure.

San Francisco provides a good example of the cus-
tomization life cycle, using the advanced techniques
of frameworks.

Analyzing and representing c/v. Commonality and vari-
ability was analyzed and explicitly represented at
multiple levels. Business processes for the applica-
tion domains were decomposed into business tasks,
modeled with use cases as described previously.
Common tasks were identified, as were abstract and
extendible tasks. The use case modeling concepts
were modified to add an “inherits” notion in order
to more fully capture the abstract tasks. These tasks
were also classified as high, medium, or low vola-
tility with respect to company or country require-
ments. Tasks were further elaborated at design time
into one or more specific scenarios showing business
logic detail. This detail was also analyzed for optional

00 LEISHMAN

WINDOWS NT®
WORKSTATION

and mandatory inputs and outputs. The framework
requirements documents explicitly represented com-
monality and differences in business rules, industry-
specific differences, and country-specific differences.
Variability in interfaces on the client side is also sup-
ported.

Implementing c/v. Several mechanisms are used in
San Francisco to implement the c/v. First, analysis
models are augmented with design patterns,” where
variability in business processes were identified. Sec-
ond, design-level classes that need to be extended
are named with a specific prefix to help users iden-
tify them. Third, configurability and extendibility of
classes is supported through a mechanism that al-
lows dynamic addition of class relationships at run
time through the use of properties. One way that prop-
erties support configurability is that Java packages
can be maintained with only one-way dependencies,
thus allowing the purchase and use of them more
independently. Another way that properties support
configurability is that code-level changes are not re-
quired.

Design patterns solve basic problems and provide
classes to support variations on a solution to a prob-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

lem. Several of the commonly known design patterns
are used in San Francisco, and several new ones were
added. In all, about a dozen design patterns are used,
making it a very flexible set of frameworks and bus-
iness objects. Some of the patterns support varia-
tion at compile time, such as the Policy pattern, while
others support variation at run time, such as the Dy-
namic Identifiers pattern. Others, such as the Fac-
tory pattern, even allow dynamic change to a per-
sistence server location. This aids in partitioning
objects across servers and in mapping objects to dif-
ferent legacy databases. The use of “command” ob-
jects as business tasks also supports variation in the
partitioning of work load across servers and in trans-
action management. The command objects can be
executed as independent transactions or as part of
a larger transaction.

Eight patterns are used in San Francisco as exten-
sion points for customization:

1. Properties—add attributes or relationships at run
time.

2. Policies—replace or modify business rules.

3. Encapsulated chain of responsibility—allows use
of different policies for different objects or pro-
cesses; for example, first look up the discount pol-
icy for the customer; if none exists look at the
product; otherwise use company-level policy.

4. Dynamic identifiers—support new user-defined
categorizations, such as a new account code, trans-
action type, etc.

5. Class factories— can be customized to map objects
to existing database tables or partition objects of
the same type across different servers.

6. Extensible items—-can have behavior added or re-
moved dynamically to move execution up or down
the class hierarchy.

7. Life cycles—allow redefinition of complex busi-
ness processes to add or remove steps, conditions,
and behavior.

8. Keyables and cached balances— define complex
keys from multiple attributes to compute “on the
fly” or cache summary data.

Commonality, and to some extent variability, is im-
plemented in San Francisco using layered architec-
ture techniques. A very important layer is the com-
mon infrastructure and its programming model. The
programming model allows developers to add in
common services, provided in the infrastructure, as
needed. These services include transaction, persis-
tence, and notification services. Common business
objects, in another layer, provide objects common

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

to multiple domains and include common business
tasks and common application services such as in-
teroperability. Unique structure and behavior, par-
ticular to a specific domain, is implemented as part
of an application framework. A “business partner”
is an example of a common business object, while
a “warehouse” object is particular to a distribution
or logistics domain.

Four patterns are used specifically for commonality
and to ease maintenance and understanding:

1. Aggregating and hiding controllers— group objects
and attach groups to different levels of a company
hierarchy. They provide views at a single company
level, aggregate higher levels, or hide certain
groups.

2. Shared/sharing controllers—support objects that
have some attributes that vary at a controller
group level.

3. Atomic update-—supports update validation and
rollback involving multiple objects.

4. Tightly coupled creation—establishes ownership
of an object when it is created. This allows cre-
ation of an object that is subject to policies and
validation by its owning object.

Interfaces. Interfaces into the San Francisco frame-
works and infrastructure are provided in multiple
ways, including programming models, wizards, tools,
extension guides, and code generation. Programming
models provide an interface to the design model and
to the services provided by the infrastructure. A pro-
gram model for business object developers docu-
ments which methods must be overridden, which
methods may be optionally overridden, and what new
methods must be defined. A client programming
model supports definition of transaction scope and
choices for other services, such as locking models
and persistence and execution locations. “Wizards”
that work in conjunction with the programming mod-
els are also available. They make the programming
models easier to use by, for example, guiding a de-
veloper to places in a framework where modifica-
tions are necessary.

Code generators are also provided as an interface.
These generators use the object design model and
the programming model, which specifies how services
and object relationships are to be handled, and pro-
duce code. Other interfaces are provided to devel-
opers through various tools that support object mod-
eling and link to the code generation tools.

LEISHMAN §1

Customization. The San Francisco frameworks to-
day are examples of white-box frameworks and thus
allow changes to the design models and code con-
tained within them. These changes must be made in
a way that preserves the contracts and interfaces
specified in the frameworks. This is supported and
enforced by the interface mechanisms just described.
Basically, customization occurs in four steps. First,
new requirements in the form of processes, tasks,
and use cases are analyzed and variations on exist-
ing functions and business tasks are specified. Sec-
ond, the object design models are customized and
extended as necessary using the interface tools, pro-
gramming models, wizards, and extension guides.
Third, the design model and programming models
are used by the code generator to produce code.
Fourth, the class-level code is completed, tested, and
integrated into a business environment.

Functional customization can be done in several
ways:

1. By using a factory object to manage create, de-
lete, and update access to a framework business
object

2. By creating new domain classes from the base

3. By extending existing domain classes and meth-

ods by subclassing and overriding to add, for ex-

ample, new attributes, or new logic in a method

By instantiating extension points in the patterns

. By chaining policies and domain objects to sup-

port use of the right policy (business rule), based
on the domain object involved

6. By using properties or dynamic identifiers for run-
time customization

v

Customization must also be considered from ar-
chitectural and nonfunctional perspectives. This
includes choices concerning hardware topology,
performance, transactions, persistence, object place-
ment and execution, legacy integration, client inter-
face choices, and others. The Factory pattern sup-
ports mapping objects and data to interoperate with
legacy data and applications, for example.

Versioning. Versioning is supported in San Francisco
through Java packages. These packages have been
designed to support one-way dependencies that al-
low configurability and easier maintenance. Elimi-
nation of circular dependencies between the pack-
ages will allow easier maintenance of new packages
upon new releases of the software. There is also ver-
sioning support for the interfaces and implementa-
tions supported and, to some extent, for object con-

02 LEISHMAN

tents (instance data). Much of the work involved in
creating new releases will be manual, aided by ver-
sioning tools.

SEMATECH and Super Poseidon. The Semicon-
ductor Manufacturing Technology consortium
(SEMATECH) has been developing an industry stan-
dard for a software framework for computer inte-
grated manufacturing (CIM). The CiM framework de-
fines a component-based architecture that forms the
basis for a next generation of manufacturing execu-
tion systems (MESs).'* The architecture is shown in
Figure 6 and includes specification of classes to the
method and attribute level, common components
consisting of related classes, and characterization of
functional groups of applications. Super Poseidon
represents the IBM initiative to develop according
to the SEMATECH specification.

Suppliers of semiconductor MESs and users of these
systems have collaborated to specify the standard
partitioning and capabilities for a marketplace of
commercial MES solutions. Development of the ar-
chitectural specification consisted of an initial ver-
sion in 1991 with several subsequent iterations of us-
ing the framework over a seven-year period. A robust
change methodology was used to handle the changes
requested from users of the initial specification. This
is an example of framework definition that is not ex-
plicit about ¢/v. Commonality and variability are dis-
covered, through iteration, while using the frame-
work. Although iteration is needed, relying on it
exclusively can lead to long development periods.

Implementation of the c/v is done by architecting
common components and common services and by
using design patterns with components for variabil-
ity points. Interfaces to the classes and components
are well specified and include contracts between the
components specifying the services exchanged, the
events recognized, the data passed, and the con-
straints enforced.

Mention of interfaces or special tools to facilitate
customization of the components is not made and
is not really appropriate in this instance. There is doc-
umentation of the architecture specification for sup-
pliers of the components and applications. De-
velopers are meant to follow these interface
specifications.

Implementors use the specification of the CIM frame-

work to develop their own versions of the compo-
nents and applications and rely on inheritance and

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 6 The SEMATECH architecture*

TRANSPORT
JOB

* From D. Doscher and R. Hodges, “SEMATECH’s Experiences with the CIM Framework.”
Copyright 1957 Association for Computing Machinery {ACM). Reprinted with permissi

OBJECT REQUEST BROKER (CORBA)

from Ce ications of the ACM 40, No. 10 (October 1997).

delegation of responsibilities to lower-level compo-
nents to extend and add their own variations on the
specification.

Suppliers of the components may add to, but can-
not delete from the specification. This will ensure
interoperability between components from different
suppliers and will allow for upgrades on later ver-
sions. However it will not ensure that versions with
extensions to the specifications will work well to-
gether.

Mechanisms for customization

This section provides a more generalized descrip-
tion of the mechanisms to be used in the customi-
zation life cycle. It is intended to support instruc-
tion on, and methods to develop customizable assets,

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

applications, and solutions. While there is a cost as-
sociated with performing this level of analysis and
representation, the benefits in terms of flexible, eas-
ily customizable systems can far outweigh the cost
in the longer term.

Methods for analyzing c/v. The need to explicitly an-
alyze and represent commonality and variability in
enterprise systems and families of solutions is only
beginning to be understood today. The goal is cre-
ation of customizable systems that are meant to be
customized by other developers. Without an explicit
analysis of the commonality and variability points re-
quired in our systems, it will be difficult to ensure
their presence. Three types of analysis techniques
exist: example-driven, requirements-driven, and ar-
chitecturally focused. Many of these methods can be
used individually or in concert.

LEISHMAN 93

Example-driven technigues. Two types of example-
driven techniques exist:

« Domain analysis for reuse techniques. These in-
clude FODA (feature-oriented domain analysis)*
and ODM (organization domain modeling).”

s Hot spot definition for representing variability
points of frameworks?

These systems rely heavily on analysis of existing sys-
tems and use of domain experts. Existing systems are
analyzed and their commonality and variability are
explicitly represented in models at the design and
implementation levels.

Requirements-driven techniques. Two different mech-
anisms exist that rely heavily on requirements and
domain experts:

s Use cases with “uses” and “extends” to represent
commonality, variability, and optionality*®

s Definition of common business processes and as-
sociated common functions and data models, with
variation points noted, as in SAP"

These mechanisms focus on analysis of requirements
and business processes and explicitly represent com-
monality and variability at this level. This represen-
tation is then followed by further elaboration of this
¢/v at design and implementation levels, as well as
in architectural models.

Architecture-focused technique. Another way to ex-
plicitly represent c/v is through an architecture that
describes the common parts and the rules for how
and when these parts can be configured together and
which parts are optional (configuration rules).’
These configurations are driven by understanding the
features of a family of solutions, with points of vari-
ability at an architectural level.

Mechanisms for implementing c/v. Several differ-
ent mechanisms for incorporating customizability
into assets, components, and solutions have been dis-
cussed briefly in the examples. This section of the
paper collects these mechanisms into one place.
Some of these mechanisms can be used at design
time, while others are applicable at compile or run
time.

Layered architectures support separation of concerns
at an architectural level.*"* This separation may be
only conceptual or logical, or it may actually be at
a physical level. This physical representation would

04 LEISHMAN

exist as an application programming interface or pro-
gramming model definition that abstracts the func-
tional specifics of the layer away from its users. This
mechanism is useful for partitioning commonality.

Components, subsystems, and packages are mecha-
nisms for partitioning commonality and providing
modularity in systems.® This modularity supports
subsequent related variation points and configura-
tion and version control. These structuring mech-
anisms should preserve the encapsulation of highly
coupled portions of a system as well as the separa-
tion between them.

Design, analysis, business, and architecture patterns can
be thought of as common ways to solve commonly
encountered problems. These patterns are particu-
larly useful because they also allow for needed vari-
ances. The paper by Lloyd and Galambos® in this
issue defines technical reference architectures as an
example of architectural patterns. The paper by Mc-
David'® in this issue defines business patterns and
describes how they can be specialized as well as
mapped into requirements. Analysis patterns have
been described by Fowler 7 and by Coad et al.'® De-
sign patterns*’ were discussed earlier. All of these
patterns are most useful when considered as mech-
anisms to implement the required commonality and
variability of a system.

Multiple versions allow variation. This mechanism can
be used to produce multiple versions of a class, com-
ponent, or even a solution. For example, different
versions of a solution for different geographies or
different industries could be developed. This would
be an alternative to producing one common base,
which could then be customized. The choice should
be made using a cost/benefit analysis of the situa-
tion, including analyzing the cost and difficulty of
maintaining multiple versions. '

Elaboration points in analysis and architectural mod-
els are discussed by Lloyd and Galambos. The tech-
nical reference architectures can be modeled at a log-
ical and physical level, with commonality shown at
the logical level and specialization or variation shown
in the physical elaboration of the logical level model.
Consider, for example, that every customer has a dif-
ferent physical information technology environment
as a result of history. Some will be MvS (multiple
virtual storage) and CICS*; some will be UNIX**; etc.
Each will have a different affinity for individual ven-
dors. Some customers will be more prepared to

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

plunge into new technology than others. So there is
variability here.

At the same time, many companies need to do trans-
actional processing, and most have call centers. It is
possible to define logical technical architectures that
are standard patterns, valid across a wide customer
set, to represent such domains as transactional pro-
cessing. That represents commonality. Variability
can be accommodated by mapping capabilities, and
by defining architectures and designs at the physical
level (for example, “transactional processing on
MVS,” “transactional processing on ATX*”) that share
a common logical architecture.

Abstract classes allow behavior and data to be de-
fined abstractly, then instantiated at the time of cus-
tomization.>

Subclassing and inheritance allow common data and
behavior to be defined concretely in a class, which
is then subclassed to specialize each variation need-
ed.*

Parameters defined for methods within a class allow
for variances in behavior at run time. Functions and
procedures can also be parameterized to allow for
variability. >

Templates can be used to describe the generic struc-
ture of a class, component, or data structure. These
might include points of variability as parameters.
Templates are often used in conjunction with gen-
erators and wizards to help users instantiate the tem-
plates for their particular variances.®'

DL Ls (dynamic link libraries) support run-time link-
ing of different libraries. These allow variability in
the configuration of the software of a system at run
time.®

Customer exits specify points in a function or pro-
cedure where it is expected that customers will need
to vary its behavior. This technique could support,
for example, variations in business rules for differ-
ent industries or geographies. This provides not only
variability but also supports the explicit tracking of
changes made during the customization of a solu-
tion. "2

Stored procedures can be attached to databases. This
technique allows variation in the procedures to be
triggered in association with state changes in data-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

base systems. It also provides performance enhance-
ments in systems with high transaction rates.

Parameter tables are used in many packaged solutions
to support customization of data and function pa-
rameters. This technique collects the parameters and
groups of parameters that can be customized into
one area."

User profiles define potential users of a system. This
technique supports installation of different portions
of a system, depending on the user profiles selected.

Install scripts define what components or modules
are to be present in a system. This technique allows
different components to be installed for different sys-
tems. "

Configuration supports the choice of alternative func-
tions and implementations. These can be in the form
of classes, components, functions, procedures, pack-
ages, etc. This technique requires a modularized sys-
tem that can be configured in different (varying)
ways.”

Configuration rules define which parts of a system rely
on which other parts. Such rules ensure that installed
functionality selected by an end customer will have
all required supporting components of the system
installed as well. They also specity required and op-
tional parts of a system.’

Facades and component interface extensions allow
commonality across multiple interfaces on a com-
ponent. Facades are particularly important when the
components contain variability points within them,
and where the variability points are associated with
particular interface definitions.®

Properties, property sheets, and customizers are the
mechanisms used in JavaBeans** to support defi-
nition and customization of bean attributes.'>%

Import/export mechanisms allow reusable entities
such as classes, components, models, etc., to be ex-
ported and made available for subsequent import-
ing into a particular system or solution under devel-
opment.® The entities can be exported because they
have been defined in relation to an overall generic
architecture of a family of solutions. This not only
allows the definition of reusable entities; it also en-
sures that they will interoperate in a syntactic as well
as a semantic manner to solve a family of related bus-
iness problems.

LEISHMAN 9§

A registry defines and maintains the objects and
components contained in a system. It allows vari-
ance in the objects that are registered.

Adapters and connectors support the connection to
multiple legacy and database systems. These adapt-
ers form a generic interface.

Iteration refers to finding c/v through several itera-
tions or versions of a component or solution. Iter-
ation is used to determine the required variability
points for different industries, countries, customers,
etc. This mechanism is typically recommended as the
way to build frameworks, for example.*

Interface definition mechanisms. There are several
mechanisms that can be used for defining interfaces
into customizable assets, components, applications,
and solutions.

Programming models document, and provide a def-
inition of, how portions of a system are to be used
from an interface perspective. This can include the
actual application programming interface for part
of a system, or define the rules for using or extend-
ing some part of a system. Examples include the pro-
gramming models of the San Francisco project in
IBM. 13,19

Wizards support developers in accessing and using
various programming models, templates, and com-
ponent definitions.*'

Generators produce code “skeletons” and “build”
files from input templates, scripts, instantiated pa-
rameters, and rules for specialization.

Component interface definition supports separation
of interfaces from implementation. Examples include
CORBA’s IDL (Interface Definition Language), Mi-
crosoft’s COM (Common Object Model), JavaBeans
containers, and the function module definition in
SAP’s ABAP/4. %1

Tool support for interface definition mechanisms in-
cludes:

1. Development workbenches, such as ABAP/4, which
provide support for development of new func-
tional modules and components.

2. Scripting languages, such as those in ABAP/4, Java,
or Lotus Notes™**, that support “gluing together”
existing components.

Customization mechanisms. Given that customiz-
ability has been implemented in the assets, compo-

06 LEISHMAN

nents, and solutions, we can describe several gen-
eral ways in which these assets, components, and
solutions are then customized, by developers and de-
ployment teams, to develop end-user customer so-
lutions. Examples include:

1. Assembly and configuration of parts, components,
and functional modules

2. Scripting, or gluing together parts, components,
and functional modules

3. Framework completion in either a white-box fash-
ion, where the code is adapted at variation points,
or in a black-box fashion, where existing objects
and components (variants) are configured into the
defined extension (variation) points'

4. Parameter setting for methods, functions, proce-
dures, tables, templates, etc.

5. Architecture topology determined to be fat cli-
ent, thin client, Internet based, etc. Other tech-
nical architecture decisions must also be made,
including install vs execute points, persistence
mechanisms, etc.>3%

6. Extension of the system through subclassing, over-
riding methods, extending component interfaces,
adding new functions or components, etc.

7. Integration with other applications, and linkages
made to customer business processes, including
workflow and transaction management systems

Versioning mechanisms. We can consider version-
ing mechanisms as ways to ensure that it will be pos-
sible and easy to fix bugs and for customers to up-
grade to new versions. This requires easy evolution
of the system, based on the changes made to it in
the field and on new variations or changes requested
by customers. All versioning mechanisms require
some level of change management, but this gets much
harder if code is actually changed. Use and exten-
sion of the system should trigger the capture and
feedback of these extensions to the core develop-
ment group for consideration in new versions. Ex-
ample mechanisms include:

1. Usage of defined interfaces only—preventing
changes to implementation code at other than
specified points of variability will ease version
management

2. Extensions to the interfaces allowed—no deletion
of any interface elements, interfaces, and imple-
mentations

3. White-box frameworks—will be more difficult to
update, code changes will need to be tracked and
managed

4. Black-box frameworks—variations are handled

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

through configuration and thus will make version-
ing much easier than white-box frameworks

5. Packages—versions of packages can be supported

6. Versioning of data and legacy mapping

7. Versioning tools—support change management
across versions

Summary

The major consideration in this paper is the creation
of assets, components, and solutions that are cus-
tomizable, based on defining and developing com-
mon, yet variable components. For enterprise-level
systems, this requires viewing the system to be built
as being not just for the end user, but for other sys-
tem developers whose job it is to fit, assemble, con-
figure, customize, and alter the system into a final
customer solution, possibly also developing addi-
tional customizable applications in the middle of a
“value chain.”

Development of customizable systems requires spec-
ification of a generic architecture for multiple inte-
grated applications in the enterprise, with specifi-
cations for the common components used to build
these applications and configuration rules for devel-
oping the final applications and solutions. Develop-
ment of the generic architecture requires different
analysis and representation techniques and work
products from those meant for only a small number
of applications. Development of these types of sys-
tems is usually most effective if the component de-
velopment is separate from the application and fi-
nal customer solution development. At the center
of development and deployment of customizable sys-
tems is the notion of commonality and variability
analysis and a customization life-cycle method.

Systems in the future will require more emphasis on
customization, and use of the customization life cy-
cle defined here will be necessary for success in the
solutions business.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of SAP AG, PeopleSoft,
Inc., Microsoft Corporation, Object Management Group, Sun Mi-
crosystems, Inc., Lotus Development Corporation, or The Open
Group.

Cited references and note

1. A “silo” is a part of an IT solution that is not integrated with
other parts. The name comes from the visualization of such
a solution—the different applications stand apart from one
another, like farm silos in silhouette against a prairie sky.
2. Webster’s Ninth New Collegiate Dictionary.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

3. L Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven Ap-
proach, Addison-Wesley Publishing Co., Reading, MA (1992).

4. W. Pree, Design Patterns for Object-Oriented Software Devel-
opment, Addison-Wesley Publishing Co., Reading, MA
(1995).

5. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, Fea-
ture-Oriented Domain Analysis Feasibility Study: Interim Re-
port, CMU/SEI-90-TR-21 Technical Report (August 1990).

6. M. Simos, “Organization Domain Modeling (ODM),” Pro-
ceedings of the ACM-SIGSOFT Symposium on Software Re-
usability, Seattle, WA (April 1995).

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley Publishing Co., Reading, MA (1995).

8. L. Jacobson, M. Griss, and P. Jonsson, Software Reuse: Ar-
chitecture, Process and Organization for Business Success, Ad-
dison-Wesley Publishing Co., Reading, MA (1997).

9. M. Griss, J. Favaro, and M. D’Alessandro, “Developing Ar-
chitecture Through Reuse,” Object Magazine 7,No. 7, 35-41
(September 1997).

10. R. E. Johnson, “Frameworks = (Components + Patterns),”
Communications of the ACM 40, No. 10 (October 1997).

11. D.Leishman and S. Fraser, International Conference on Soft-
ware Engineering, 1995.

12. R. Busk-Emden and J. Galimow, SAP R/3 System: A
Client/Server Technology, Addison-Wesley Publishing Co.,
Reading, MA (1996).

13. K. Bohrer, “Architecture of the San Francisco Frameworks,”
IBM Systems Journal 37, No. 2, 156-169 (1998).

14. D.Doscher and R. Hodges, “SEMATECH’s Experiences with
the CIM Framework,” Communications of the ACM 40, No.
10 (October 1997).

15. P. T. L. Lloyd and G. M. Galambos, “Technical Reference
Architectures,” IBM Systems Journal 38, No. 1, 51-75 (1999,
this issue).

16. D. W. McDavid, “A Standard for Business Architecture De-
scription,” IBM Systems Journal 38, No. 1, 12-31 (1999, this
issue).

17. M. Fowler, Analysis Patterns: Reusable Object Models, Addi-
son-Wesley Publishing Co., Reading, MA (1996).

18. P. Coad, M. Mayfield, and D. North, Object Models: Strat-
egies, Patterns and Applications, Yourdon Press, Englewood
Cliffs, NJ (1996).

19. V. D. Amold, R. J. Bosch, E. F. Dumstorff, P. J. Helfrich,
T. C.Hung, V. M. Johnson, R. F. Persik, and P. D. Whidden,
“IBM Business Frameworks: San Francisco Project Techni-
cal Overview,” IBM Systems Journal 36,No. 3, 437-445 (1997).

Accepted for publication November 5, 1998.

Deborah A. Leishman IBM Global Industries, 3039 Cornwallis
Road, Research Triangle Park, North Carolina 27709 (electronic
mail: leishman@us.ibm.com). Dr. Leishman joined IBM in 1995
and is an IBM Senior Technica] Staff Member. She currently leads
the ESS development team for IBM Global Industries. Dr. Leish-
man received a Ph.D. degree in computer science in 1994. She
has worked on object-oriented systems and focused on reuse for
several years, and prior to joining IBM she worked as reuse man-
ager on a large architecture-driven framework development proj-
ect. Dr. Leishman has also worked as a development manager
for spatial data products and as a researcher for knowledge-based
systems.

Reprint Order No. G321-5698.

LEISHMAN

97

