
Solution customization

by D. A. Leishman

Customization involves fit and alterability and is
based on understanding the commonality and
variability (clv) across industries, geographies,
customers, and systems. This paper argues for
an emphasis on clv through a customization life
cycle, from engineering customizable assets,
components, and solutions to supporting their
effective deployment. Examples of systems that
focus on customization through clv are given.
These examples are described using the
customization life cycle and show what
mechanisms are most useful in each phase.

T oday enterprises are facing many forces that
compel them to take a larger view of their sys-

tems. These forces include globalization, “buyouts,”
regulatory changes, commerce, cost, multiple cus-
tomer-access channels, product development cycles,
changing business processes, etc. This larger systems
view is creating a need to break down the applica-
tion “silos” ’ that exist today in a cost-effective and
low-risk manner. Companies are asking for help from

their own internal information systems (IS) organi-
zations as well as from external services consultants,
product developers, and packaged solutions vendors.

External services consultants (Andersen Consulting,
Electronic Data Systems, IBM) can bring many re-
sources to help in creating customer solutions, from
intellectual-capital assets, to hardware and software
products and components, to packaged solutions,
and finally to newly emerging component-based
packaged solutions. For effective and profitable use,
these items must be customizable to fit customers’
requirements and environments. Developers of these
customizable resources need guidelines: what is cus-
tomization and how can it be implemented success-
fully?

Customization involvesfifit and alterabiliQ and is based
on understanding the commonality and variability
(c/v) across industries, geographies, customers, and
systems. This paper introduces a customization life
cycle, and through examples shows what mechanisms
are most useful in each phase of the life cycle. A sub-
sequent section of the paper focuses on the mech-
anisms themselves.

Successful, profitable creation and deployment of so-
lutions across multiple customers, industries, and ge-
ographies is dependent on observing this customi-
zation life cycle. Focus on a customization life cycle
and c/v is already beginning to permeate the custom-
izable solutions developed in IBM, and this work will
continue.

Wopyright 1999 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royaltyprovided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

76 LEISHMAN 0018-8670/99/$5.00 0 1999 IBM IBM SYSTEMS JOURNAL, VOL 38, NO 1 , 1999

What is customization?

This section gives a definition of customization, de-
scribes the notion of scope, and shows that customi-
zation can apply at multiple levels. A “value chain”
view of customization is presented and shows the in-
teraction between defining, developing, deploying,
and maintaining assets, components, and custom-
izable solutions. These ideas form the backdrop in
which to think about creating systems that are easily
customizable and maintainable.

Definitions. The dictionary definition’ of “custom-
ize” is “to build, fit, or alter according to individual
specifications.” For the customer solutions we de-
velop, this implies (1) building “from scratch,” (2)
fitting an existing solution into a customer’s environ-
ment, (3) altering a solution to fit the customer’s re-
quirements, or any combination of the three. The
key is to fit to the customer’s specification through
either “green field” (new) development-by mak-
ing sure that a packaged solution fits the customer
very well and needs only minimal customization-or
being able to easily configure a solution from exist-
ing customizable assets and components.

Services consulting businesses today are proficient
in building custom solutions through green field de-
velopment and systems integration. Services consult-
ants that deploy ERP (enterprise resource planning)
packaged solutions, such as SAP”” or Peoplesoft**,
often do extensive customization. Services and so-
lutions businesses of the future will be focused on
fitting and altering existing assets, components, and
solutions to meet customer requirements.

To provide fit and alterability requires, for one thing,
having the right parts to allow conjigurable systems.
Examples of these parts include common services,
data models, components, and objects. To fit the cus-
tomer, a system must also be extensible and able to
interoperate with existing systems. Thus customiz-
ability in the fullest extent means being configurable,
extensible, and open, and supporting interoperahil-
ity with legacy and other systems through messaging
and architectures such as Microsoft’s Distributed
Component Object Model (DCOM”“) or the Object
Management Group’s Common Object Request
Broker Architecture”” (CORBA””). We describe in
a later section what mechanisms are used to give SAP
and component-based systems these characteristics.

As used in this paper, assets refer to intellectual cap-
ital (proposals, contracts, presentations, etc.) or de-

IBM SYSTEMS JOURNAL, VOL 38, NO l , 1999

velopment life-cycle models (technical reference ar-
chitectures, business models, design models, etc.)
that could be reused on their own. Components re-
fer to hardware and software components and the
models that describe them. Software components can
be products, Java* * “beans,” or components that ad-
here to a component architecture such as Enterprise
JavaBeans“*, DCOM, or CORBA. Software products
include database management systems, workflow sys-
tems, etc. Customizable solutions can either (1) have
a limited set of common components across the ap-
plications within them, as many of the current ERP
systems do, or (2) contain many common underly-
ing components (business objects, frameworks), as
exemplified by the San Francisco” project, described
later in this paper.

Keys to success in the solutions business are: ana-
lyzing the market to develop solutions that fit, sell-
ing solutions that fit the customer, and developing
solutions, components, and assets that can be altered
to fit the customer’s environment and requirements,
at both technical and business levels. When common
components are sought, success depends on incor-
porating fit and alterability into the right parts or
components. Success occurs when these reusable
items are easily customizable by services deployment
teams. Ultimate success is judged by the customer
and requires a solution to be customized to fit the
customer’s requirements in a timely manner, with
ongoing support and maintenance.

Scope of customization. To better understand how
to specify fit and alteration we need to consider the
scope of solutions being developed. It should be
noted that the solutions described here are to be cus-
tomized by other developers into final customer so-
lutions. Therefore, the requirements to be consid-
ered are not just end-user functionality (although
that is necessary), but also details of the business pro-
cesses, functional and nonfunctional requirements
for many different end users, and, more importantly,
the variances among them. The most critical vari-
ances must be represented in the system so that de-
velopers of the customer solutions can configure and
instantiate prespecified variationpoints. Where these
variances come from is the subject of this section.

A dictionary definition* of “scope” is “space or op-
portunity for unhampered motion, activity, or
thought.” In this section, scope is used to indicate
the opportunity for variances within a solution or set
of solutions. Scope levels include:

LEISHMAN 77

1. An application or solution meant for one or a few
customers (services)

2. An application or solution meant to be custom-
ized for many customers (packaged solutions)

3. Development of many similar applications or
solutions to be customized for many customers
(packaged and component-based solutions)

4. Development of applications or solutions to be
customized for many customers in different in-
dustries and geographies (packaged and compo-
nent-based solutions)

5. Multiple versions of assets and solutions being de-
veloped, customized, and deployed over time

At Level 1 are fully customized green field or inte-
gration engagements, where only one, or very few,
customers are considered during development. Fit
and alteration are not important design points. The
solution does not need to fit or be altered for an-
other customer. As well, customers will typically not
pay for their solution to be able to fit or be altered
to fit another customer’s requirements.

At Level 2, variation must be provided to fit the so-
lution to the customer and to allow for some alter-
ation to fit differences of individual customers. The
challenges are to produce the right solution for the
market (fit) and to allow easy alteration of impor-
tant customer differences. This could be through ex-
plicit variance points or through extensibility.

Level 3 design must fit the solution to the customer
and allow easy alteration to fit differences of indi-
vidual customers, but an additional design point is
now added. The new design point includes support
for production of several solutions or applications
from some common set of parts. This design point
can be added for several different reasons, but all
point back to the need to utilize common parts when
developing multiple applications or solutions. Pos-
sible goals leading to this design point include:

The need for a common “look and feel” across a
set of applications or solutions (e.g., Lotus Smart-
Suite**, Microsoft Office**)
The need for a consistent set of interfaces across
multiple access points for an application or solu-
tion (automated teller machine, call center, etc.)
The need for common data models across enter-
prise systems and consistent management of per-
sistent data
The need to save development costs by reducing
redundancy across applications or solutions

78 LEISHMAN

The need for common legacy systems access from
several applications or solutions

The challenge is to design multiple applications or
solutions to meet all three design points: fit, alter-
ability, and common parts, while maintaining proj-
ect schedules for the individual solutions and while
managing the dependencies set up between devel-
opment of common parts and the applications and
solutions that utilize them.

Applications or solutions at Level 4 will include the
design points of fit and alterability as in Level 3, but
the scope of alterability now must include the re-
quirements of customers from not only one indus-
try or geographic region, but many. If the solution
or asset either does not fit, or is not easily alterable
for this larger range of customers, it will be difficult
to deploy and use. Additional complexity is added
if the assets or solutions developed for similar in-
dustries are meant to be used as part of other so-
lutions in other industries. Here we have the three
design points of Level 3, with dependencies increased
and project scheduling becoming more critical. An
example of this would be development of a call cen-
ter asset that needs to be specialized and used by
many different industries.

Geographic differences in cultural norms, govern-
ment regulations, etc., are also a large source of vari-
ance in Level 4 and must be explicitly represented
and understood for deploying solutions in new re-
gions. The decision to enter new regions should be
driven by marketing goals and will require some level
of geographic support and sales. The challenge is to
pick those assets and solutions for which the com-
plexity incurred is offset by expense reduction and
better market strategies.

Finally, scope at Level 5 allows new versions of so-
lutions to be easily installed at existing customer sites.
This adds an additional design point for multiple ver-
sions. The challenge here is to integrate versioning
into alterable solutions such that, once they have
been altered to fit the specific requirements of a cus-
tomer, a customer can easily migrate to the new ver-
sion in a cost-effective way.

The scope of variances in solutions (over many cus-
tomers, industries, and geographies) is important to
understand, because the differences in customizabil-
ity lead to different design points, architectural con-
structs, and levels of development management.
Attempting to develop and deploy the range of so-

IBM SYSTEMS JOURNAL, VOL 38, NO l , 1999

Figure 1 A value chain of components and solutions
~~~ ~~~ 

lutions,  components,  and  assets  described  above 
without  a  clear knowledge of the  reasons  for  the 
choices (preferably using a  costbenefit analysis), and 
the  means  to  manage  the  development  and deploy- 
ment,  can  lead to disappointing  results. As well, it 
must  be clearly understood  that  the systems de- 
scribed here  are for  creating  customizable assets, 
components,  and  solutions, with deployment  teams 
doing the customization that results in the final cus- 
tomer solution. For development of customizable so- 
lutions, we need  requirements  that show enough  de- 
tail to allow us to find the critical variances  and build 
them  into  the customizable  solutions while support- 
ing their  inevitable  evolution. 

A solution-customization value chain. It is not 
enough  for  the  asset,  component,  and  solution  de- 
velopers to implement  end-customer  functionality 
in a  general  sense.  There is a level of indirection that 
must  be  recognized  and  designed  for. In a  sense, we 
are developing  tools to  support  the  development of 
end-customer solutions. The full value chain is shown 
in Figure 1. 

The right-hand  side of Figure 1 shows the architec- 
tures  that specify and  repositories that  store reus- 

able  assets.  Multiple  scopes  are  possible;  as  de- 
scribed  earlier  and discussed in the next section, 
commonality/variability analysis is a critical aspect 
in developing  architectures,  components,  and  solu- 
tions that  incorporate  the design points of fit and 
alterability. The left-hand  side of Figure 1 shows a 
value  chain of the full range of assets,  components, 
and  solutions to  be developed,  stored,  deployed,  and 
maintained by solutions  and services groups. These 
can  be  used in multiple ways: 

1. Services deployment  teams use assets directly for 
customer  solutions. 

2. Solutions are  created  to fit a  marketplace  and  the 
architectural specification allows for only mini- 
mal customization. Services deployment  teams 
then  customize  a  solution  for the customer. 

3. Customizable  and  configurable  components are 
developed  according to a  generic  architectural 
specification and  used to develop  multiple cus- 
tomizable  applications  and  solutions, which are 
then  customized and installed by services deploy- 
ment  teams. 

4. Services deployment  teams  use the customizable 
components directly for  customer  solutions. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LEISHMAN 79 



The customization life cycle 

This  section  emphasizes the  importance of under- 
standing  commonality and variability as  the essence 
of customizability. With  this  understanding,  a cus- 
tomization life cycle  is introduced.  This life cycle can 
be  implemented in the  methods  and processes of de- 
velopers using various  mechanisms. It is this life cy- 
cle and its implementation  that  leads  to  customiz- 
able  solutions  and  thus success in the solutions 
business. 

Commonality and variability analysis. To be able 
to  manage development and deployment of the scope 
described  earlier, we must  understand what will al- 
low us to  meet  the design points of  fit and  altera- 
bility and  thus customizability. We must  understand 
the similarities  and differences among  the business 
processes, requirements,  and existing solutions across 
the  customer  set  for which the solutions are  intended. 
The requirements  are  both  functional  and nonfunc- 
tional  and exist at the  technical  as well as  the  ap- 
plication or business level. 

If the  requirements  for  the  common  parts of solu- 
tions  for  multiple  customers are  not  understood, 
there will not  be  a  good fit. If the variations of mul- 
tiple customers across multiple geographies and mul- 
tiple  industries are  not  understood, it will be very 
difficult to  ensure  that  the  solutions  are designed to 
be  alterable where necessary. This  does  not  mean 
that all variations will need  to  be  maintained sep- 
arately in a  solution; often they  can be  generalized. 
However, if the solutions are  not designed to be  al- 
terable  when necessary, it will be very difficult for 
the deployment  teams to  alter  them. Examples of 
required variability include differences in standards 
or business  rules  across  customers  and  geographies, 
such  as tax calculations or telecommunications  pro- 
tocols. 

The  requirement  for customizable asset, component, 
and solution  development is to explicitly represent 
this  commonality  and variability (4.). This repre- 
sentation  must  support  evolution of the assets  and 
components.  This  also  means  developing  the  solu- 
tions so that  the commonality  and variability is fac- 
tored  out properly. We will examine  several  mech- 
anisms  for  customization in a  later  section. 

Steps  in the customization life cycle. A customiza- 
tion life cycle includes  managing the civ across cus- 
tomers,  incorporating  the c/v into  the assets,  com- 
ponents,  and solutions, providing interfaces to  the 

80 LEISHMAN 

customization points  for  deployment  teams,  and  sup- 
porting  customer  migration  to new versions while 
maintaining existing customizations. For success in 
the solutions business, this life cycle should be  re- 
flected in the  methods  and processes  used by devel- 
opment  and deployment  teams. The life cycle con- 
tains five steps. These  are  not  intended  to  be 
executed in a waterfall manner,  but  rather would find 
their way into  methods such as iterative development. 
The five steps  are: 

1. Analyzing  and representing c/v. Commonalities  and 
variabilities of customer  environments  and  re- 
quirements  are analyzed  and  represented explic- 
itly. The representation  supports  evolution  as  re- 
sults are used  and  evaluated. 

2. Implementingclv. The commonalities and variabil- 
ities are  incorporated  into  generic  architectural 
descriptions  and  customizable  components. 

3. Inte$aces. An interface  and possibly tools are pro- 
vided to aid in configuring components  into so- 
lutions  and in their  customization. 

4. Customization. The interface is used to configure 
and  customize the  components  to fit the  end cus- 
tomer’s  environment  and  requirements.  Part of 
this  customization is to fit the  components  and 
solutions to  the  customer as closely as possible. 

5. Versioning. Customers  migrate to new versions of 
the  components  and solutions. 

In  the first phase of the life cycle, the commonal- 
ities, variabilities,  and  invariants of customer envi- 
ronments  and  requirements  should  be analyzed and 
represented.  This  can  be  done in several ways-us- 
ing domain  experts, existing industry  business  mod- 
els, existing systems, and  requirements  gathering. In- 
variants  refer to  those  parts of a system that never 
change  across  customers  and  geographies;  these be- 
come part of the  core system. The c/v aspects are 
considered so that  the common services, functions, 
objects, rules, etc., of a system can be identified, with 
the variations  among them also  identified.  Some 
mechanisms for  representing  this c/v exist today, such 
as  “use cases,”’ where  “uses”  captures  commonal- 
ity and  “extends”  captures  variation in requirements. 
“Hot spots” in framework  development are also used 
to identify variation  points. 

Other mechanisms  for  representing c/v in existing 
systems are included in domain analysis techniques 
such  as F O D A ~  and O D M . ~  All requirements  during 
the life of the assets and  solutions  should  be  man- 
aged in the same way,  giving rise to  the  need  for a 
good  requirements  management system that  can ac- 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



commodate c/v. Today, explicit analysis of  c/v  is of- 
ten  not  done when  creating  customizable systems. 
Instead,  developers rely on intuition  and  good de- 
sign practices. In framework  development,  large 
numbers of iterations  are used to get to  the c/v 
(SEMATECH, described in a  later  section,  iterated  for 
sixyears). This is ineffective for  the  shorter  lead times 
and  longer  lifetimes of current systems. It is also in- 
effective for systems at scope levels 3 ,  4, and 5 ,  de- 
scribed in the previous  section. These systems need 
a  more  systematic  approach that includes  both ex- 
plicit representation of  c/v and  a  good  understand- 
ing of the mechanisms  for applying it in customiz- 
able systems. 

In  the  second  phase of the life cycle, the c/v and  in- 
variants are  implemented.  This  can  be  done  through 
many different  mechanisms  and  techniques,  as  de- 
scribed in a  later  section. At  the  core of this  work 
is the need  for good architectural  techniques  and  rep- 
resentation.  Implementation  consists of moving the 
invariant  parts to a  mandatory  common  core, clus- 
tering  the  common  parts for configurability, gener- 
alizing variable  parts  where possible, developing  ge- 
neric designs, and providing well-defined points of 
customization  where variability is needed  for differ- 
ent industries,  customers,  and  geographies.  A  good 
example of applying c/v is the use of design patterns.’ 
For example, the Strategy pattern allows algorithms 
to  be varied within a  common  context.  This  could 
be used to implement  different  business  rules  across 
countries  for  taxation,  for  example.  For  component- 
based systems where  the scope is closer to  an  en- 
terprise level, the key notion is the  development of 
generic  architectures,  common  components,  and 
rules  that allow multiple  applications within a  fam- 
ily to be  configured  and  customized. 

When  incorporating customizability, development 
teams can apply the techniques  and mechanisms (de- 
scribed later)  at  three different times: when the as- 
set or solution is being developed, at compile  time, 
and  at  run time.  This  means that  areas  meant  for 
customization are  architected  and designed into  the 
asset or solution,  but  when  compiling  a  particular 
version of an asset or solution, different parts, or ver- 
sions of parts,  can be combined.  As well, deployment 
teams  and  customers may be  able  to  do  some cus- 
tomization at run time, such as changing screen  color 
or window positions.  This  adds another dimension 
to  the mechanisms and techniques. 

The third  phase of the  customization life cycle pro- 
vides an  interface  around  the assets,  components, 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 

or solutions  for  deployment  teams  and other users. 
Although  it may be  optional,  an  interface is often 
an indication of maturity. An example  interface is 
the MAP14 (Advanced Business Application  Pro- 
gramming/4)  language  used with the SAP assets. An 
interface  can  be  used  for several purposes: to explic- 
itly identify variability and alterability points, to hide 
the  source  code  behind  application  programming in- 
terfaces, to aid in the understandability of the assets 
and  solutions  for  easier  deployment, to view and 
adapt  models of the system, and to aid in the con- 
figuration and extension of the assets  and  solutions. 
Examples of interfaces  include  scripting  languages 
to “glue”  components  together,  and  support  for  con- 
figuring process  and data models.  Specialized  tools, 
such as visual modeling  and  code  generation  tools, 
may be built that  support  the use of these  interfaces 
as well. 

The  fourth  phase of the life cycle is the use of the 
interface or  other descriptions of the assets,  com- 
ponents,  and  solutions by those  higher in the value 
chain to fit and  alter  (i.e.,  customize)  them  to fit the 
customer’s  environment  and  requirements. As well, 
it may be necessary to extend  them, and  to  ensure 
that they interoperate with other systems, such as 
legacy systems. Part of the deployment is to  ensure 
that sales  organizations  consider the fit  of the  assets, 
components,  and  solutions  to  the  customer’s envi- 
ronment.  Yet  another  part is configuration of the 
assets,  components,  and  solutions  as  part of the ef- 
fort to fit into  the customer’s  environment. 

An  important  part of the customization  process is 
to instantiate  the variability points. If these  points 
have not  been explicitly identified,  teams will have 
to  adapt  or  alter  the assets in ways that may not have 
been  anticipated by the  development  team. This may 
lead to problems with the overall fit  of the asset or 
solution,  but  it may be  the only way to satisfy the 
customer’s requirements. Examples of customization 
include: application  installation,  configuration of so- 
lutions  from  parts, gluing the  parts  together with 
scripting  languages,  instantiating (configuring) vari- 
ability points,  and  adapting  models that describe the 
assets and solutions. 

The final phase of the customization life cycle  is the 
migration of customers  to new versions of the as- 
sets,  components,  and  solutions.  This  migration 
should  be done in a way that minimally affects the 
customer  solutions  already in place  and still allows 
easy reimplementation of the customizations previ- 
ously done. New versions involve release  manage- 

LEISHMAN 81 



ment  and configuration  management of the assets 
and solutions by the  development teams.  Much of 
the versioning effort is in managing the changes made 
by each  customer.  Versioning is made  easier by min- 
imizing the  alterations  that  are possible, making good 
use of interface  definitions,  and allowing only exten- 
sions to components or objects. 

Examples of customization 

This  section  contains six examples of customizable 
systems. Each is described in terms of the customi- 
zation life cycle discussed earlier. The first three  de- 
scriptions  represent  general  methods,  mechanisms, 
and  techniques,  the  fourth describes a successful ERP 
system, and  the last two represent systems being  de- 
veloped within IBM. These examples are provided 
to show that successful systems being  developed  to- 
day incorporate  the customization life  cycle. This sec- 
tion  also shows that different  mechanisms  can  be, 
and  are,  used in each  of  the life-cycle phases. 

Jacobson, Griss, and Jonsson. The book  entitled 
Software Reuse: Architecture, Process and Organiza- 
tion for Business Success,’ by Jacobson,  Griss,  and 
Jonsson,  describes how to develop  and deploy a  fam- 
ily  of applications,  described by one  generic archi- 
tecture, with reuse of a  common  set of underlying 
components.  This  book  also  describes  transforma- 
tion  processes  and  organizational  structures  that 
need to be  put in place for any organization  embark- 
ing on development,  deployment,  and  management 
of such  application families. This is much different 
than  development of single, or multiple loosely re- 
lated,  applications. Here, a single architecture  de- 
scribes the  components (objects  and  related work 
products),  component systems (sets of related com- 
ponents, e.g., subsystems, frameworks),  and  appli- 
cations  (sets of component systems, configuration 
scripts,  related  documentation,  etc.) that  are devel- 
oped  from  these  components. Multiple  versions of 
the applications  for  different  geographies  could  be 
developed, and  each application is part of a family 
of applications,  such  as  those  related to telephony 
switching systems or financial and banking systems. 

Figure 2 shows an  architectural view  of layers of tech- 
nical and  business  components, with applications at 
the  top developed  from the  components. The appli- 
cations at  the  top  are typically designed to  be highly 
interoperable  and possibly built within distribution 
architectures,  such  as cORBA. It should  be clearly 
understood  that  the layered  generic  architecture 

82 LEISHMAN 

specifies the  common  components,  their  interfaces, 
and  the  interactions  required  to  develop all appli- 
cations in a family, but any one application will use 
only some of the  components (which may be avail- 
able in different  versions).  Configuration  support is 
needed  when  developing  applications  and  solutions 
from the  components. 

A key theme  throughout  the book is the  idea of vari- 
ation  points  and  variants.  Variation  points are  rep- 
resented in  all models  from use case  requirements 
through  component  code,  and  variants  implement 
(specialize) the variation  points. The authors  also 
stress the  need for traceability of the  variation  points 
through  the models in order  to  support full  reuse of 
the  component systems by application  developers. 
These  variation  points  and  variants  correspond to 
the  emphasis on variability discussed throughout this 
paper. 

Analyzingand representingclv. Commonality and vari- 
ability is analyzed and  represented first using the use 
case method.3  The key aspects of “uses”  and “ex- 
tends”  support  representation of commonality  and 
variability in the use cases. “Uses” can be used to 
show common  portions of use cases, while “extends” 
can be used to show optional or variable  portions. 
Use  cases are defined at  the highest level of detail, 
essentially the business  processes  supported by the 
highest level applications.  They are also used at  the 
level of components.  Use  cases  for  each of the  re- 
lated  applications are  obtained  and analyzed to- 
gether to find commonality  and variability. Not all 
possible use cases need  to  be  gathered, but  gener- 
ally a  good  representative  set  should  be  obtained  for 
the initial  architecture of components. Analysis of 
the common  parts of the use cases  for the top-level 
applications  leads to  the  architectural definition of 
the necessary component systems. Use cases at  the 
component level, and  further clv analysis, lead to fur- 
ther  representation of  clv at  the  component level. 

This civ at  the use case level is then  traced  through 
subsequent analysis and design models. The first  level 
of analysis is done  to achieve the overall  architec- 
ture  and to detail  the  requirements  for  the  compo- 
nent systems, which are developed  separately  from 
the applications. An  important aspect of this  ap- 
proach is the focus on separate  component  and ap- 
plication development  teams  as well as separate  de- 
ployment  teams.  Processes and  methods  are 
described  for  organizing around this type of archi- 
tecture  and  development. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



Figure 2 A banking  family of applications* 

* From 1. Jacobson, M. Griss, and P Jonsson, SoJiiare Reuse: Archrtecture, Process and Organizution,/or Business Success. 
Copyright 1997 Addison-Wesley Publishmg  Company.  Reprmted with permission. 

Implementing civ. Several  mechanisms are used to 
implement  the commonality  and variability that is 
represented in the use cases  and other models. The 
first is use of a layered architecture to  separate tech- 
nical parts  from  more  business-related  parts  and to 
define  the  common components. Little discussion of 
the technical  layers is included in the book. Most of 
the examples shown relate  to  the business  and  ap- 
plication layers. As well as showing the civ in the anal- 
ysis and design models,facades are described to sep- 
arate public and  private views of the  components, 
particularly as they  relate  to  the variationpoints. Im- 
ports relations  define  the use of components by other 
applications. The  authors also describe the use of 
designpatterns to implement  the  variation  points  and 
help specify where  variants  can  be  configured  into 
component systems and applications. In addition,  the 
authors  define several other variation  mechanisms 
that can be used, including inheritance,  parameter- 
ization. and  extensions. 

Interfaces. Interfaces,  as  described  earlier,  are dis- 
cussed here, such as wizards, scripting, and  templates, 
but  are  not defined or shown in detail. The  empha- 
sis is on  reuse of the  component  models by appli- 
cation  developers, with a brief discussion of the pos- 
sible need  to  add customization  points,  package up 
the  applications further,  and  add installation  scripts 
and  documentation  for  other  deployment  person- 
nel. 

Through  the customization life cycle, this paper 
makes  a  clear  distinction  among  mechanisms used 
to implement c/v, the definition of interfaces  into  the 
c/v, and  customization of the c/v. Jacobson,  Griss, 
and  Jonsson discuss variation points  and  variants  and 
mechanisms to implement  them  but do not  make  the 
same  important  distinctions. 

Customization. Applications are developed by dif- 
ferent  groups of practitioners  than  the  component 

IBM SYSTEMS JOURNAL, VOL 38. NO 1. 1999 LEISHMAN 83 



system developers, and  the models are reused, 
tracked, specialized (at the specified  variability 
points), and extended during application develop- 
ment. Applications themselves may have further cus- 
tomization mechanisms  built  in to allow for customi- 
zation on customer engagements, as described in the 
value chain of Figure 1. 

Versioning. Facades are used to hide the internals of 
components and  to  support configuration manage- 
ment. The emphasis is on hiding internals and ex- 
posing  only the variation points to the users. The  au- 
thors push for a more “black-box” approach, but 
recognize that this may not be possible in the early 
stages of component use by application developers, 
who through early  use of the components put more 
variability requirements on them. Hiding the source 
code behind well-defined interfaces allows updates 
in later versions without affecting users. With vari- 
ation clearly  specified, the changes can be more eas- 
ily managed. 

FODA (feature-oriented  domain analysis). “Domain 
engineering” refers to  the development of reusable 
architectures and components and their subsequent 
use  in developing families of applications and sys- 
tems. The first part of domain engineering is domain 
analysis for reuse, where generic architectures and 
their contained components are specified at analy- 
sis and design  levels through models,  followed by im- 
plementation of the design. The second part of 
domain engineering is the use of the generic 
architectures and components for application and 
systems development. Example domains might be 
business functions, such  as marketing or human re- 
sources, or an entire  enterprise or a product line, 
such as ink-jet printers or telephony switching  sys- 
tems. The analysis  in domain engineering is usually 
example-driven, where previous applications devel- 
oped in the domain are  the main input, supple- 
mented with domain expert knowledge and possibly 
future system requirements. 

The most important aspect of domain engineering 
is  its emphasis on  analyzing multiple existing  systems 
within  some  scope  and  doing a commonality and vari- 
ability  analysis across processes, functions, techni- 
cal platforms, operational contexts, data, objects, 
tasks, etc. There  are many  levels where this type of 
analysis  is useful, including an  entire  enterprise  or 
some portion of it for one  or typically several cus- 
tomers. The models used to develop the generic ar- 
chitectures and components are supplemented with 
explicit representations of the commonality and vari- 

84 LEISHMAN 

ability. This analysis  is done in order to reduce re- 
dundant development, provide a common “look and 
feel” across applications in the scope, increase the 
quality and maintainability of applications, and  to 
support better interoperability among applications 
within the scope. This type of analysis results in  com- 
ponents that can be configured together in multiple 
ways to develop applications in a family of systems. 

The emphasis on commonality and variability anal- 
ysis develops because the components need to be re- 
usable by many different application and system de- 
velopers. This customizability needs to be built into 
the components so they can be produced and main- 
tained in a systematic fashion. If the applications and 
systems themselves also need to be customizable, 
then that must  also be built into the architecture and 
component definitions.  Layered architectures are  the 
norm, and although all components that will be  used 
by the applications are defined within the generic 
architecture, not all applications will use  all compo- 
nents. This means that  the generic architectures must 
also maintain configuration views  of the systems to 
be built. The generic architecture specifies  all pos- 
sible components and how  they  would  work together, 
but not all applications need or can use certain com- 
binations of the components. 

FODA, or feature-oriented domain analysis,  is one 
of several methods for doing domain analysis and 
has to date been one of the most  highly used, es- 
pecially by telecommunications companies such as 
Lucent Technologies and MCI WorldCom. Several 
models are described at analysis and design  levels 
and are supplemented to show  c/v information, but 
the most characteristic model is the feature  model. 
Features  are user-visible aspects or characteristics 
of a domain, and are used  to  define a domain in terms 
of the mandatory,  optional, or alternative character- 
istics of related systems  within  it. Mandatory features 
must be included in all applications within the  do- 
main. Optional features will be in some applications 
and not in others. Alternative features specify spe- 
cific variations and typically  define a specialization 
or abstraction hierarchy. As stated earlier, applica- 
tions within a domain share many common capabil- 
ities. These capabilities, from the point of  view  of 
the end user, are called features. Features include 
the services or functionality provided by the appli- 
cations. They also include hardware platform re- 
quirements, performance requirements, and cost 
characteristics. The  feature model in FODA is  devel- 
oped at analysis time and is  used to generalize and 
parameterize the  other models, including object 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



Figure 3 A telecom  feature  model for services* 

* From M. Griss, J .  Favaro,  and M. D’Alessandro, “Developing Architecture Through Reuse.” 
Copyright 1997 SIGS Publications. Reprinted by permission from Object Magazine 7, No.7 (September 1997) 

models,  functional models, process  interaction  mod- 
els, and  component  models.  The  feature  model  also 
defines  configuration  rules  that,  for  example, might 
specify that if air  conditioning (feature) is chosen in 
a  car,  then  a  certain size engine (feature) must  also 
be  chosen. 

FODA was first described in 19905 and  comes  from 
the Carnegie Mellon Software Engineering  Institute. 
It  predates many of the  object analysis methods used 
today, including use case  modeling. In a  recent  ar- 
ticle,’ Griss,  Favaro,  and  D’Alessandro  describe the 
use of the  feature model to enhance  the  methods 
proposed by Jacobson,  Griss,  and Jonsson8 and  de- 
scribe how the  feature  model works with the use case 
model  to define  a “reuser”  oriented view  of archi- 
tectures  and  components  for  families of systems. An 
example of a feature  model is shown in Figure 3 and 
describes the essential feature choices to  be  made 
when  developing new services (call waiting, call for- 
warding, etc.)  for  telecommunications systems. 

Straight  lines in the figure indicate  “composed-of” 
relationships, circles above features indicate optional 
features,  and  diamonds  indicate  alternative  features. 

The  feature model provides a  catalog of features  and 
gives a  configuration  road map of what  can be  se- 
lected,  combined,  and further customized in a sys- 
tem.  This  provides  a view  of more  than  just  the  func- 
tionality that a  reuser is trying to implement. 
Developers of applications  and systems select  fea- 
tures  from  the catalog  and  use it to  make initial con- 
figuration  choices. Further detail of the functional- 
ity to  be developed is  given by the  traceable use case 
and  object  models that point to  detailed  customi- 
zation  choices that must be  made  and  implemented. 

Analyzing and representing c/v. FODA uses several 
models at analysis, architecture,  design,  and  imple- 
mentation  time to explicitly represent  commonality 
and variability. The key model is the  feature model, 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LEISHMAN 85 



which is used to generalize and parameterize the 
other models. 

Implementing clv. The clv  is represented in the ge- 
neric architectures, which  specify  all components 
needed to implement the family of systems in the 
chosen scope. The  feature model specifies  all fea- 
tures  that  are available  in the family of systems and 
is used to generalize and parameterize other mod- 
els, where further detail is  specified  using several 
mechanisms described later in this paper. 

Inteqaces. The interfaces provided to  a reuser are 
the models and generic architecture description. The 
feature model is provided to support configuration 
decisions and  to select the mandatory, optional, and 
alternative aspects of the final  system. Choice of 
these features  then leads to  the  appropriate mod- 
els, where details can be further specified and re- 
fined. 

Customization. The first part of customization by a 
user of the generic architecture and components is 
analysis of the  features needed by the end customer. 
This analysis is driven by the  features available as 
specified in the  feature model and the configuration 
rules. Once these choices are made, further customi- 
zation will be needed in the various models and fi- 
nally  in the code that implements the  feature model. 
In a value-chain  view, there may or may not be a sep- 
arate installer at the customer site, in addition to an 
application or system developer who  may work away 
from the site. 

Versioning. FODA itself makes no distinctions about 
versioning of components, but this is clearly de- 
scribed as part of the packaging and ongoing main- 
tenance of component-based systems. Here several 
mechanisms, such as generators and separate  inter- 
face definitions, are  important. 

Frameworks. Frameworks can be defined as “a  re- 
usable design of all or part of a system that is rep- 
resented by a set of abstract classes and the way their 
instances interact.” lo A chief aspect of frameworks 
as we are defining them here is that  a flow  of con- 
trol, which  shows  how the objects interact, is part of 
the framework description. Frameworks may be de- 
veloped when several instances of the design are ex- 
pected to be needed in the  future. Frameworks can 
be calling, where the framework maintains control, 
or callable, where applications call a framework to 
provide a service.  Many people refer to whole ar- 
chitectures as frameworks; for example, SEMATECH 

86 LEISHMAN 

and CORBA are sometimes called  frameworks. In this 
paper, frameworks have actual object representa- 
tions. 

Analyzing  and  representing clv. Frameworks are usu- 
ally developed by analyzing several examples of sim- 
ilar systems, or  parts of systems. After analysis of 
many examples, generalization is the primary mech- 
anism  used to develop the core framework structure. 
The primary  mechanism for analyzing and represent- 
ing  variability  in frameworks today is the use of hot 
spots.4  Hot spots define the abstract classes that can 
be implemented in different ways  by different users 
of the framework.  Typically,  initial  versions of frame- 
works are first defined and hot spots are  later iden- 
tified, based on analysis and user feedback. 

Implementing clv. In addition to generalization and 
hot spots, design patterns’ are  a key mechanism for 
developing frameworks. As described elsewhere, l1 

an important aspect of design patterns is that they 
give good designs for areas where various types of 
variability are needed. Hot spots can  be  used to iden- 
tify needed variability and  a design pattern can be 
applied that incorporates that variability and has 
been shown to work  well  in the past. 

Customizution. Techniques for customization of 
frameworks include “white box” and “black box.” 
White-box customization is done by subclassing and 
overriding abstract and concrete classes.  Black-box 
reuse is done through composition and delegation. 
In black-box customization, the classes that imple- 
ment the different variations exist and the user  cus- 
tomizes by selecting the  appropriate classes to con- 
figure into  the system. 

Versioning. Black-box reuse is preferred over white- 
box reuse because it  avoids the difficulties associated 
with versioning, configuration management, and re- 
lease management. But black-box frameworks are 
much harder  to develop and often evolve after mul- 
tiple uses of a white-box implementation. 

SAP. SAP AG, an international company  based in Ger- 
many, develops integrated packaged applications in 
the ERP (enterprise resource planning) domain. The 
structure of the  current system, Rl3, is  shown  in  Fig- 
ure 4.12 It consists of a basis layer, an application 
layer, a development workbench, and a business en- 
gineering workbench. 

The basis  layer contains the middleware of the Rl3 
system. This middleware makes the applications in- 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



dependent of the system interfaces of the  operating 
system, database system, and  communication system 
used and  ensures  optimal  handling of business trans- 
actions. On  the basis layer sits the application layer, 
which implements  the  business  functions  and  pro- 
cesses of the R/3 system. The basis layer is written 
in C and C+ +, while the application layer is written 
in the  fourth-generation language ABAPI4. 

Individual  program  modules in the basis layer pro- 
vide the following services: 

1. Presentation services for  implementation of the 

2. Application services for  handling of the applica- 

3. Database services for  storage  and recovery of bus- 

graphical  user  interface 

tion logic and  units of work 

iness data 

R/3 presentation services include  modules  for the 
representation of various  document  and  graphic 
types as well as  the  required  communication services. 
The applications of the R/3 system work in a  trans- 
action-oriented  fashion.  A SAP transaction is a  se- 
quence of  logically linked dialog steps consistent with 
business  practices. SAP also  supports cross-applica- 
tion  transactions  and  database  updates using logi- 
cal units of work. These  transactions  can  happen 
within or across  processes  and in different  comput- 
ers. The logical connection of dialog  steps  belong- 
ing to a  transaction is guaranteed by the SAP system. 
For  the definition  and  manipulation of data,  the R/3 
system exclusively uses SQL (system query  language) 
commands. The  architecture of the system is laid out 
in such  a way that differences in the syntax and  se- 
mantics of the SQL implementations of different  da- 
tabase  manufacturers  are  isolated in special R/3 
modules.  Therefore, in principle, all relational  da- 
tabase systems in the  market can be  supported. 

The applications of the R/3 system are based  on  an 
overall business model that  makes possible a uniform 
view  of all data  and business processes in the  enter- 
prise. The overall model covers financial account- 
ing, controlling,  asset  management,  materials  man- 
agement,  production planning, sales and distribution, 
quality management,  plant  maintenance,  project 
management, service management,  human  re- 
sources, office communication, workflow functions, 
industry solutions,  and  open  information  warehouse. 

SAP also  supports workflow management.  It  coor- 
dinates  the  sequence of work  steps  and  the activi- 
ties of the  people involved, and  it  provides the soft- 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 

Figure 4 The SAP architecture* 

ABAP/4  AND  BUSINESS W3 APPLICATIONS 

WORKBENCHES 
ENGINEERING 

5 
* !  From R. Busk-Emden and J. Galimow, SAP W3 System. A Client/Sewer 
Technology. Copyright 1996 Addlson-Wesley Publishing Co. 
Repnnted wlth permission. 1 

ware functions necessary for business processes. This 
is supported by workflow definition  tools  and  a  run- 
time  environment  that  controls  the workflow. The 
workflow architecture  contains  an  organizational 
model,  a  process  model, and an  object  model.  Tasks 
performed by members of an organization link the 
processes depicted in a workflow. The workflow steps 
of a business process are described in the process 
model,  and  reference the tasks in the organizational 
model.  The workflow steps  are usually methods of 
a  business  object and  are defined in a  business  ob- 
ject  repository. Business objects are assigned a data 
model  that describes the object  from  a data point of 
view, with additional  areas for  constraints,  business 
rules, methods,  attributes,  and  input  and  output 
events. 

Analyzing  and representing c/v. SAP AG has  worked 
with several  process standards  groups  to define the 
common  business  processes used in the system. This 
has  helped to  ensure  that  the processes  and  related 
functions  provided in the SAP system will be close 
to what many companies will need.  Although  not 
much is known about how they explicitly represent 
and  manage  the variability in the system, Busk-Em- 
den  and Galimow state  that  “during  implementation 
of the process  chains, the different characteristics of 
the  standard  solutions  needed  for different branches 

LEISHMAN 87 



of industry and company types, as well as multilin- 
gualism and  national particularities  were  taken  into 
consideration.”  Requests  for  future  customer ex- 
its and  changes to  the system are  handled  through 
a  requirements  change  process, which is used for fu- 
ture  updates  to  the system and  represents  required 
variability. This  requirements  process is often ini- 
tiated  through  customer  interest  groups. 

Implementingc/v. Common business processes, func- 
tions, workflows, screens, basis (technical  infrastruc- 
ture layer), and  data  models  are  part of the SAP sys- 
tem  and  common  default  parameter settings are 
available upon first installation. Variability of the sys- 
tem is allowed through  customer exits (calls to cus- 
tomer-specific  application  modules that have been 
anticipated by  SAP) for differences within functions. 
Variability is also  built into  the system by allowing 
several key system models to  be configured,  altered, 
and  extended in different ways. These include the 
organization  model  (organizations  and the tasks  per- 
formed by roles within the organization), the  pro- 
cess model (all processes in the system), the func- 
tion model (all functions in the  model  that are related 
to  the processes), the  data  model  and  subsequent 
table  settings, the distribution  model of how appli- 
cations  and services are  distributed  across  the  com- 
putational tiers, and  the  user  interface of screens  and 
screen flows. 

As well, the system can  be  expanded  to allow new 
functionality to  be  added,  and interoperability with 
other  programs is possible through  the ALE (appli- 
cation linking and  embedding)  mechanism  and  sup- 
port  for CORBA and OLE (object linking and  embed- 
ding).  Variability is also  built into SAP through 
different versions of the system. These  include  coun- 
try-specific versions as well as recently available in- 
dustry-specificversions. The interpretative nature of 
R/3  also gives possible variability at  run  time. 

Znteeaces. Two interfaces  into the SAP R/3 system 
are available. The first is the ABAPI4 Development 
Workbench, which is the programming  environment 
for  development of enterprise-wide  clientherver so- 
lutions. It  supports  the  entire software  development 
life cycle with tools  for  modeling,  programming in 
ABAPI4, definition of data  and  table  structures,  and 
design of user  interfaces.  Support  for  testing, tun- 
ing, maintenance,  and  large  development  teams is 
also available. As a  supplement to  the  development 
tools, the business  and  software  components of the 
SAP system can be  incorporated  through this  inter- 

88 LEISHMAN 

face. ABAPI4 supports  functional  modules,  and the 
components of SAP are based on  these.  Functional 
modules have a clearly defined calling interface,  and 
import,  export,  and  table parameters  are defined 
there.  Functional  modules  can  also  be called across 
system boundaries using remote function calls 
(RFCS). The ABAPI4 Development  Workbench can be 
used to extend  default system parameters provided 
with SAP. Most  recently, SAP has added  components 
and  business  objects. These  components  are  open 
and accessible to  other  vendors  through BAPIs (bus- 
iness application  programming  interfaces). 

The second type of interface provided by the SAP sys- 
tem is the Business Engineering  Workbench.  This 
workbench  contains all of the  functions  and infor- 
mation  for  process-oriented  support of initial imple- 
mentation  projects, follow-up projects,  and  release- 
change  projects.  This  interface is extensive and 
contains  a  default  methodology  for  projects,  imple- 
mentation  guides with experience-based  details of 
the methodology,  project  management  support,  de- 
fault  documentation,  the  repository of  all functions 
and  processes  for  installation  and  customization, 
transactions  for  support in customizing the system, 
and  a  reference  model  that  describes  the  entire SAP 
default system. 

The  reference  model contains  a  function  model (all 
function  modules in the system),  process  model  (all 
processes in the system, both workflow/event-based 
and  input/output-based),  information  model (show- 
ing inputs  and  outputs to functions),  communication 
model  (communication  between  organizational 
units),  organization  model  (organizational  structure 
and  task  relationships),  distribution  model  (distri- 
bution  scenarios possible for  R/3  and  support  for 
ALE), and  the  data  model (entity-relationship  mod- 
el).  Not listed here  but also part of this  interface is 
access to  default screen layouts. 

Custornizution. The two interfaces  just  described are 
used to install, customize,  and  extend the SAP R/3 
system. First  a  default,  industry-neutral  version of 
the system is installed that  contains a  simple  orga- 
nizational  structure,  consistently  set parameters  for 
all applications, country-specific charts of accounts, 
standard settings  for  account  assignment, configu- 
rations  for  control of standard  processes,  and  stan- 
dard settings  for  processes like “dunning  and pay- 
ment,”  “planning  and forecasting,” “pricing,” and for 
printing  and  form layout, authorization privileges, 
and so on. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



This  default system is then  used for  understanding 
and  selection of those  parts of R/3 that fit the cus- 
tomer, providing a  foundation  for  requirements  anal- 
ysis  in the first phase of the methodology. The sec- 
ond  phase of the methodology is focused on detailing 
and  implementation by: 

Changing global system settings 
Configuring  processes,  functions,  and data  mod- 

Mapping  the company  organization 
Choosing the  appropriate distribution  model 
Implementing  interfaces 
Implementing  customer exits 
Deleting  unneeded  portions of user interfaces, ap- 
plications,  and data 
Extending the system using the ABAPI4 interface. 
Extensions  include  processes,  functions, data 
model,  database  tables,  and use of ABAPI4 aids in 
integration  and distribution with other  parts of R/3. 

els 

The complexity of the  second  phase is  in the  inter- 
relationships that exist within the system. The R/3 
system consists of several thousand  custom-setting 
possibilities, and  the  need  for  consistent  settings  can 
make  implementation of an R/3 system a very com- 
plex task. The  implementation guides  help with con- 
sistent  settings  and proper use of the interfaces.  Im- 
plementation  and  customization  can  also  be difficult 
due  to  the inflexibility of the business processes  pro- 
vided. Typically, a  company must change its business 
and  organizational  structure to conform to  the SAP 
software. 

The third  phase of the  methodology is preparing  to 
“go live” and includes  developing  custom  documen- 
tation by adapting existing documentation,  training 
users  on the system, transferring  data,  and setting 
up  the  environment.  The final phase of the  meth- 
odology is putting  the system into  operation. 

Versioning. The  customer changes are  maintained, 
and  when  a new version of SAP is installed, the cus- 
tomizations are again added. Only additions  to  the 
existing system are easily allowed: no  source  code 
changes  should be  made unless  the  source  extends 
the system. If source  code  changes  are  not  made, SAP 
can  be fairly sure  that new versions will not  cause 
major  changes to a company’s installation. Bug fixes 
are delivered in separate small  releases of the sys- 
tem. 

Recently, SAP has  been maintaining separate versions 
for  different  geographies  and different industryvari- 
ations of the software. 

San Francisco. The San  Francisco  project in IBM is 
developing  a  set of frameworks that  are very close 
in structure  to  the  layered  architecture of common 
components  described by Jacobson,  Griss,  and Jon- 
sson. The base layer, as shown in Figure 5 ,  consists 
of a  foundation  and  utilities layer with a  common 
business  objects layer above it. 

Currently,  San  Francisco  supports  application  areas 
such as general ledger, accounts receivable, accounts 
payable,  warehouse  management,  and  order  man- 
agement. It provides the business  and  technical in- 
frastructure  on which business partner ISVS (inde- 
pendent software  vendors) can develop  their own 
applications. The common business objects are  those 
that  are used  across the  domains. Above the base 
layer are  the business frameworks  that  support  com- 
mon  business  processes in the application  domains. 
The application  developers  define  their  applications 
using the underlying technical  and  business  infra- 
structure.  Each ISV defines  unique  applications 
through differences in user  interface,  business rules, 
industry,  geographic, or  other competitive  features. 

The  San Francisco  project  has three main objectives 
that  support  the customization life cycle presented 
in this paper. l 3  The first objective is to offer easy en- 
try into  object-oriented (00) development. That ob- 
jective  led to customizable  frameworks that provide 
about 40 percent of the application  code  and allow 
extension  and  customization.  Developers  start with 
existing San  Francisco system models  and  code  and 
add  variations. 

The second objective is to  support ISVS’ applications 
to  make  their  companies  more competitive.  This 
objective led to common business objects,  custom- 
izable application  frameworks, and a flexible tech- 
nical infrastructure  for  San  Francisco.  This  in- 
frastructure  provides  common services such  as 
transaction  management,  persistence  management, 
security, and systems management. The infrastruc- 
ture also  supports  multiple client and  server oper- 
ating systems and  multiple  architectures,  ranging 
from  fat  client  to  Internet  and thin client topologies. 

The  third objective is to provide an  open solution 
that will allow trade-offs in cost, performance,  and 
skill requirements.  Developers  can  choose which 
parts of the  frameworks to use and  are  able  to use 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LEISHMAN 89 



Figure 5 The San  Francisco  architecture 

one infrastructure in multiple ways for multiple mar- 
kets, depending on cost and performance require- 
ments. Developers can  use the frameworks in var- 
ious  ways, depending on their skill  level: without 
change, with changes, or with extensions. Develop- 
ers can even build their own frameworks that make 
use of the San Francisco infrastructure. 

San Francisco provides a good example of the cus- 
tomization life  cycle,  using the advanced techniques 
of frameworks. 

Analyzingand  representingclv.  Commonality  and  vari- 
ability  was  analyzed and explicitly represented at 
multiple levels.  Business processes for the applica- 
tion domains were decomposed into business tasks, 
modeled with use cases  as described previously. 
Common tasks were identified, as were abstract and 
extendible tasks. The use case modeling concepts 
were modified to add an “inherits” notion in order 
to more fully capture  the abstract tasks. These tasks 
were also  classified  as  high, medium, or low vola- 
tility  with respect to company or country require- 
ments. Tasks were further elaborated at design  time 
into one or more specific scenarios showing  business 
logic detail. This detail was  also  analyzed for optional 

90 LEISHMAN 

and mandatory inputs and  outputs.  The framework 
requirements documents explicitly represented com- 
monality and differences  in  business rules, industry- 
specific  differences, and country-specific  differences. 
Variability in interfaces on the client side is  also sup- 
ported. 

Implementing CIV. Several mechanisms are used  in 
San Francisco to implement the clv. First, analysis 
models are augmented with  design patterns,’ where 
variability in business  processes were identified. Sec- 
ond, design-level  classes that need to be extended 
are named with a specific  prefix to help users iden- 
tify them. Third, configurability and extendibility of 
classes  is supported through a mechanism thlat al- 
lows  dynamic addition of class relationships at run 
time through the use  ofproperties. One way that prop- 
erties support configurability is that Java packages 
can be maintained with  only  one-way dependencies, 
thus allowing the purchase and  use of them more 
independently. Another way that properties support 
configurability  is that code-level changes are not re- 
quired. 

Design patterns solve  basic problems and provide 
classes to support variations on a solution to  a prob- 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



lem. Several of the commonly known design patterns 
are used in San Francisco, and several new ones  were 
added. In all, about  a  dozen design patterns  are used, 
making it a very flexible set of frameworks and bus- 
iness objects.  Some of the  patterns  support varia- 
tion at compile time, such as  the Policy pattern, while 
others  support variation at run  time,  such  as the Dy- 
namic  Identifiers  pattern.  Others,  such as the  Fac- 
tory pattern, even allow dynamic  change to a per- 
sistence  server  location.  This  aids in partitioning 
objects  across  servers  and in mapping  objects to dif- 
ferent legacy databases. The use of “command”  ob- 
jects as business  tasks also supports  variation in the 
partitioning of work load across  servers  and in trans- 
action  management. The command  objects  can be 
executed as independent  transactions or  as  part of 
a larger  transaction. 

Eight  patterns  are used in San  Francisco as exten- 
sion  points  for  customization: 

1. Properties-add attributes or relationships at  run 

2. Policies-replace or modify business  rules. 
3. Encapsulated chain of responsibility-allows use 

of different policies for  different  objects or  pro- 
cesses; for example, first look up the discount pol- 
icy for the customer; if none exists look at  the 
product;  otherwise  use company-level policy. 

4. Dynamic identifiers-support  new user-defined 
categorizations, such as a new account code, trans- 
action type, etc. 

5. Class  factories-can be customized to  map objects 
to existing database  tables or partition  objects of 
the same type across different servers. 

6. Extensible  items-can have behavior  added or re- 
moved dynamically to move execution up or down 
the class hierarchy. 

7. Life cycles-allow redefinition of complex busi- 
ness processes to  add  or remove steps, conditions, 
and  behavior. 

8. Keyables and  cached balances-define complex 
keys from  multiple  attributes to  compute  “on  the 
fly” or  cache summary data. 

time. 

Commonality, and  to  some extent variability, is im- 
plemented in San  Francisco using layered  architec- 
ture techniques. A very important layer is the com- 
mon  infrastructure  and its programming  model. The 
programming  model allows developers to  add in 
common services, provided in the  infrastructure,  as 
needed.  These services include  transaction, persis- 
tence,  and notification services. Common  business 
objects, in another layer, provide  objects  common 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 

to multiple  domains  and  include  common  business 
tasks  and  common  application services such as in- 
teroperability.  Unique  structure  and  behavior,  par- 
ticular to a specific domain, is implemented  as  part 
of an application  framework. A “business partner” 
is an example of a  common business object, while 
a  “warehouse”  object is particular  to a distribution 
or logistics domain. 

Four  patterns  are used specifically for  commonality 
and to ease  maintenance  and  understanding: 

1. Aggregating and hiding controllers-group objects 
and  attach  groups  to different levels of a  company 
hierarchy. They provide views at a single company 
level, aggregate  higher levels, or hide  certain 
groups. 

2. Sharedlsharing controllers-support objects that 
have some  attributes  that vary at a  controller 
group level. 

3. Atomic update-supports update validation  and 
rollback involving multiple  objects. 

4. Tightly coupled creation-establishes ownership 
of an  object  when it is created.  This allows cre- 
ation of an object that is subject to policies and 
validation by its owning object. 

Zntefaces. Interfaces  into  the  San  Francisco  frame- 
works and  infrastructure  are  provided in multiple 
ways, including programming models, wizards, tools, 
extension guides, and  code  generation. Programming 
models  provide an interface to  the design model  and 
to  the services provided by the infrastructure. A pro- 
gram  model  for  business  object  developers  docu- 
ments which methods  must be overridden, which 
methods may be optionally overridden,  and what new 
methods  must  be  defined. A client  programming 
model  supports  definition of transaction  scope  and 
choices for  other services, such  as locking models 
and persistence  and  execution  locations.  “Wizards” 
that work in conjunction with the programming mod- 
els are also  available.  They  make  the  programming 
models  easier to use by, for  example, guiding a de- 
veloper to places in a  framework  where modifica- 
tions are necessary. 

Code  generators  are also  provided  as an interface. 
These  generators use the object design model  and 
the programming model, which specifies how  services 
and  object  relationships are  to  be  handled,  and  pro- 
duce  code.  Other interfaces are provided to devel- 
opers  through  various  tools  that  support  object  mod- 
eling and link to  the  code  generation tools. 

LEISHMAN 91 



1 

Custornization. The San Francisco frameworks to- 
day are examples of white-box frameworks and thus 
allow changes to  the design models and code con- 
tained within them. These changes must be made in 
a way that preserves the contracts and interfaces 
specified  in the frameworks. This is supported and 
enforced by the interface mechanisms just described. 
Basically, customization occurs in four steps. First, 
new requirements in the form of processes, tasks, 
and use  cases are analyzed and variations on exist- 
ing functions and business tasks are specified.  Sec- 
ond,  the object design models are customized and 
extended as necessary  using the interface tools, pro- 
gramming models, wizards, and extension guides. 
Third,  the design model and programming models 
are used by the code generator to produce code. 
Fourth,  the class-level code is completed, tested, and 
integrated into  a business environment. 

Functional customization can be done in several 
ways: 

1. By using a factory object to manage create,  de- 
lete, and update access to a framework business 
object 

2. By creating new domain classes from the base 
3. By extending existing domain classes and meth- 

ods by subclassing and overriding to add, for ex- 
ample, new attributes, or new  logic  in a method 

4. By instantiating extension points in the  patterns 
5.  By chaining policies and domain objects to sup- 

port use of the right  policy (business rule), based 
on the domain object involved 

6. By using properties or dynamic  identifiers for run- 
time customization 

Customization must  also be considered from ar- 
chitectural and nonfunctional perspectives. This 
includes choices concerning hardware topology, 
performance, transactions, persistence, object  place- 
ment and execution, legacy integration, client inter- 
face choices, and others. The Factory pattern sup- 
ports mapping objects and  data to interoperate with 
legacy data  and applications, for example. 

Versioning. Versioning is supported in San Francisco 
through Java packages. These packages have been 
designed to  support one-way dependencies that al- 
low configurability and easier maintenance. Elimi- 
nation of circular dependencies between the pack- 
ages will  allow easier maintenance of  new packages 
upon new releases of the software. There is  also ver- 
sioning support for the interfaces and implementa- 
tions supported  and,  to some extent, for object con- 

92 LEISHMAN 

tents (instance data). Much of the work  involved  in 
creating new releases will be manual, aided by ver- 
sioning tools. 

SEMATECH and Super Poseidon. The Semicon- 
ductor Manufacturing Technology consortium 
(SEMATECH) has been developing an industry stan- 
dard for a software framework for computer inte- 
grated manufacturing (CIM). The CIM framework de- 
fines a component-based architecture that forms the 
basis for a next generation of manufacturing execu- 
tion systems (MESS). l4 The architecture is shown  in 
Figure 6 and includes specification of classes to  the 
method and  attribute level, common components 
consisting of related classes, and characterization of 
functional groups of applications. Super Poseidon 
represents the IBM initiative to develop according 
to  the SEMATECH specification. 

Suppliers of semiconductor MESS and users of these 
systems  have collaborated to specify the  standard 
partitioning and capabilities for a marketplace of 
commercial MES solutions. Development of the  ar- 
chitectural specification consisted of an initial ver- 
sion  in  1991  with several subsequent iterations of us- 
ing the framework  over a seven-year period. A robust 
change methodology  was  used to handle the changes 
requested from users of the initial specification. This 
is an example of framework definition that is not ex- 
plicit about c/v. Commonality and variability are dis- 
covered, through iteration, while  using the  frame- 
work. Although iteration is needed, relying on it 
exclusively can lead to long development periods. 

Implementation of the c/v  is done by architecting 
common components and common services and by 
using  design patterns with components for variabil- 
ity points. Interfaces to  the classes and components 
are well  specified and include contracts between the 
components specifying the services exchanged, the 
events recognized, the  data passed, and the con- 
straints enforced. 

Mention of interfaces or special tools to facilitate 
customization of the components is not made and 
is not really appropriate in  this instance. There is  doc- 
umentation of the architecture specification for sup- 
pliers of the components and applications. De- 
velopers are meant to follow these interface 
specifications. 

Implementors use the specification of the CIM frame- 
work to develop their own versions of the compo- 
nents and applications and rely on inheritance and 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



Figure 6 The  SEMATECH  architecture* 

* From D. Doscher and R. Hodges, “SEMATECH’s  Experiences  with  the  CIM  Framework.” 
Copyright 1997 Association for Computing Machinely (ACM). Reprinted  with  permission  from Communications ofthe ACM40, No. 10  (October 1997) 

delegation of responsibilities to lower-level compo- 
nents  to extend  and  add  their own variations on the 
specification. 

Suppliers of the  components may add  to,  but  can- 
not  delete  from  the specification. This will ensure 
interoperability  between  components  from  different 
suppliers  and will allow for  upgrades on later ver- 
sions. However it will not ensure  that versions with 
extensions to  the specifications will work well to- 
gether. 

Mechanisms for customization 

This  section  provides  a more generalized  descrip- 
tion of the mechanisms to  be used in the customi- 
zation life cycle. It is intended  to  support  instruc- 
tion on, and  methods  to  develop customizable assets, 

applications,  and  solutions.  While there is a cost as- 
sociated with performing  this level of analysis and 
representation,  the  benefits in terms of flexible, eas- 
ily customizable systems can  far  outweigh the cost 
in the longer  term. 

Methods for analyzing c/v. The  need  to explicitly an- 
alyze and  represent  commonality  and variability in 
enterprise systems and families of solutions is only 
beginning to  be  understood  today.  The goal is cre- 
ation of customizable systems that  are  meant  to  be 
customized by other developers.  Without  an explicit 
analysis of the commonality and variability points  re- 
quired in our systems, it will be difficult to  ensure 
their  presence.  Three types of analysis techniques 
exist: example-driven,  requirements-driven,  and ar- 
chitecturally  focused. Many of these  methods  can  be 
used individually or in concert. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 LEISHMAN 93 



Example-driven  techniques. Two types of example- 
driven  techniques exist: 

Domain analysis for  reuse  techniques. These in- 
clude FODA (feature-oriented  domain analysis)' 
and ODM (organization  domain  modeling).s 
Hot  spot definition  for  representing variability 
points of frameworks3 

These systems rely  heavily on analysis of existing sys- 
tems  and use of domain  experts. Existing systems are 
analyzed and  their  commonality  and variability are 
explicitly represented in models at  the design  and 
implementation levels. 

Requirements-driven  techniques. Two different mech- 
anisms exist that rely heavily on requirements  and 
domain  experts: 

Use cases with "uses" and "extends" to  represent 
commonality, variability, and optionality"' 
Definition of common  business  processes  and as- 
sociated  common  functions  and data models, with 
variation  points  noted, as in SAP12 

These mechanisms focus on analysis of requirements 
and business processes  and explicitly represent  com- 
monality and variability at this level. This  represen- 
tation is then followed by further  elaboration of this 
c/v at design and  implementation levels, as well as 
in architectural  models. 

Architecture-focused  technique. Another way to ex- 
plicitly represent civ is through an architecture  that 
describes the common  parts  and the rules  for how 
and  when  these  parts can be configured together  and 
which parts  are  optional (configuration  rules).g 
These configurations are driven by understanding  the 
features of a family of solutions, with points of vari- 
ability at an architectural level. 

Mechanisms for implementing c/v. Several differ- 
ent mechanisms  for  incorporating customizability 
into assets, components,  and  solutions have been dis- 
cussed briefly in the examples.  This  section of the 
paper collects  these  mechanisms  into one place. 
Some of these  mechanisms  can be used at design 
time, while others  are applicable at compile or  run 
time. 

Layered  architectures support  separation of concerns 
at an architectural level. K'' This  separation may be 
only conceptual or logical, or it may actually be  at 
a physical level. This physical representation would 

94 LEISHMAN 

exist as an application programming  interface or pro- 
gramming  model  definition that  abstracts  the func- 
tional specifics of the layer away from its users.  This 
mechanism is useful  for  partitioning  commonality. 

Components, subsystems, and  packages are  mecha- 
nisms for  partitioning  commonality  and providing 
modularity in systems. * This  modularity  supports 
subsequent  related  variation  points  and  configura- 
tion and version  control.  These  structuring  mech- 
anisms should  preserve the encapsulation of highly 
coupled  portions of a system as well as the  separa- 
tion  between  them. 

Design, analysis, business, and architecture patterns can 
be  thought of as  common ways to solve commonly 
encountered  problems.  These  patterns  are  particu- 
larly useful because  they also allow for  needed  vari- 
ances. The  paper by Lloyd and  Galambos" in this 
issue defines  technical  reference  architectures as an 
example of architectural  patterns. The  paper by Mc- 
David16 in this issue defines  business  patterns  and 
describes how they can  be specialized as well as 
mapped  into  requirements. Analysis patterns have 
been  described by F ~ w l e r ' ~  and by Coad  et al. " De- 
sign  pattern^^.^ were discussed earlier. All of these 
patterns  are most useful when  considered as mech- 
anisms to implement  the  required commonality  and 
variability of a system. 

Multiple versions allow variation. This mechanism can 
be used to produce  multiple  versions of a class, com- 
ponent,  or even a solution. For example,  different 
versions of a  solution  for  different  geographies or 
different  industries  could be developed.  This would 
be an  alternative to producing one common  base, 
which could  then be customized. The choice  should 
be  made using a  costibenefit analysis of the situa- 
tion, including analyzing the cost and difficulty  of 
maintaining  multiple versions. l 2  

Elaborationpoints in analysis and  architectural  mod- 
els are discussed by Lloyd and  Galambos. The tech- 
nical reference  architectures can be  modeled at a log- 
ical and physical level, with commonality shown at 
the logical level and specialization or variation shown 
in the physical elaboration of the logical level model. 
Consider,  for example, that every customer has a  dif- 
ferent physical information technology environment 
as a result of history. Some will be MVS (multiple 
virtual  storage)  and CICS"; some will be UNIX* *; etc. 
Each will have a different affinity for individual ven- 
dors.  Some  customers will be  more  prepared  to 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



plunge  into new technology than  others. So there is 
variability here. 

At  the  same time, many companies  need to  do trans- 
actional processing, and  most have call centers.  It is 
possible to define logical technical  architectures  that 
are  standard  patterns, valid across  a wide customer 
set,  to  represent  such  domains  as  transactional  pro- 
cessing. That  represents commonality. Variability 
can be  accommodated by mapping  capabilities,  and 
by defining architectures  and designs at  the physical 
level (for  example,  “transactional  processing on 
MVS,” “transactional processing on AIX*”) that  share 
a  common logical architecture. 

Abstract classes allow behavior  and data  to  be de- 
fined abstractly, then  instantiated  at  the  time of cus- 
tomization. 

Subclassing and inheritance allow common data  and 
behavior to  be defined  concretely in a class, which 
is then subclassed to specialize each  variation  need- 
ed. 39y 

Parameters defined  for  methods within a class allow 
for  variances in behavior at  run time.  Functions  and 
procedures  can  also  be  parameterized  to allow for 
variability.y,’2 

Templates can be used to describe the generic  struc- 
ture of a class, component, or  data  structure.  These 
might include  points of variability as  parameters. 
Templates  are  often used in conjunction with gen- 
erators  and wizards to help users instantiate  the  tem- 
plates  for  their  particular  variances. 8,’3 

DLLs (dynamic link libraries)  support  run-time link- 
ing of different libraries. These allow variability in 
the configuration of the  software of a system at  run 
time. 

Customer exits specify points in a  function or pro- 
cedure  where it is expected that  customers will need 
to vary its behavior.  This  technique  could  support, 
for  example,  variations in business rules  for differ- 
ent industries or geographies.  This provides not only 
variability but  also  supports the explicit tracking of 
changes made  during  the customization of a solu- 
tion. l 2  

Storedprocedures can  be  attached  to  databases.  This 
technique allows variation in the  procedures  to  be 
triggered in association with state changes in data- 

IBM SYSTEMS JOURNAL, VOL 38, NO l ,  1999 

base systems. It also provides performance  enhance- 
ments in systems with high transaction  rates. 

Parameter tables are used in many packaged solutions 
to  support customization of data  and  function  pa- 
rameters.  This  technique collects the  parameters  and 
groups of parameters  that can be customized  into 
one  area. 

Userprofiles define  potential  users of a system. This 
technique  supports  installation of different  portions 
of a system, depending on the  user profiles selected. 

Install scripts define  what  components or modules 
are  to  be  present in a system. This  technique allows 
different components  to  be installed for different sys- 
tems. l 2  

Configuration supports  the choice of alternative func- 
tions and  implementations.  These  can  be in the  form 
of classes, components,  functions,  procedures,  pack- 
ages, etc.  This  technique  requires  a  modularized sys- 
tem that can  be  configured in different (varying) 
ways. Ir 

Configuration rules define which parts of a system  rely 
on which other  parts.  Such  rules  ensure  that installed 
functionality  selected by an  end  customer will have 
all required  supporting  components of the system 
installed as well. They  also specify required  and  op- 
tional  parts of a system9 

Facades and component  inteface extensions allow 
commonality  across  multiple  interfaces on a  com- 
ponent.  Facades are particularly important when the 
components  contain variability points within them, 
and  where the variability points  are associated with 
particular  interface  definitions. 

Properties, properg sheets, and customizers are  the 
mechanisms  used in JavaBeans** to support defi- 
nition  and  customization of bean  attributes. I3,l9 

Importlexport mechanisms allow reusable  entities 
such  as classes, components,  models,  etc.,  to  be ex- 
ported  and  made available for  subsequent  import- 
ing into a  particular system or solution under devel- 
opmenL8  The  entities can  be  exported  because  they 
have  been  defined in relation to  an overall generic 
architecture of a family of solutions.  This not only 
allows the definition of reusable  entities; it also  en- 
sures  that they will interoperate in a syntactic as well 
as  a  semantic  manner to solve a family of related bus- 
iness problems. 

LEISHMAN 95 



A registry defines and  maintains the objects  and 
components contained in a system. It allows  vari- 
ance in the objects that are registered. 

Adapters and  connectors support the connection to 
multiple legacy and  database systems. These  adapt- 
ers form a generic interface. 

Iteration refers to finding c/v through several itera- 
tions or versions of a component or solution. Iter- 
ation is used to determine  the required variability 
points for different industries, countries, customers, 
etc. This mechanism  is  typically recommended as the 
way to build frameworks, for e ~ a m p l e . ~  

Interface definition mechanisms. There  are several 
mechanisms that can be used for defining interfaces 
into customizable assets, components, applications, 
and solutions. 

Programming models document, and provide a def- 
inition of, how portions of a system arc to  be  used 
from an interface perspective. This can include the 
actual application programming interface for part 
of a system, or define the rules for using or extend- 
ing  some part of a system.  Examples include the  pro- 
gramming models of the San Francisco project in 
IBM. 1 3 ~ 9  

Wizards support developers in  accessing and using 
various programming models, templates, and com- 
ponent definitions. 

Generators produce code “skeletons” and “build” 
files from input templates, scripts, instantiated pa- 
rameters, and rules for specialization. 

Component inte$ace definition supports separation 
of interfaces from implementation. Examples  include 
CORBAs IDL (Interface Definition Language), Mi- 
crosoft’s COM (Common Object Model), JavaBeans 
containers, and  the function module definition in 
SAP’S ABAP14.12,’3 

Toolsupport for interface definition mechanisms in- 
cludes: 

1. Development workbenches,  such  as ABAP14, which 
provide support for development of  new func- 
tional modules and components. 

2. Scripting  languages,  such  as those in ABAPI4, Java, 
or Lotus Notes* *, that  support “gluing together” 
existing components. 

Customization mechanisms. Given that customiz- 
ability has been implemented in the assets, compo- 

96 LEISHMAN 

nents, and solutions, we can describe several gen- 
eral ways  in  which these assets, components, and 
solutions arc then customized, by developers and de- 
ployment teams, to develop end-user customer so- 
lutions. Examples include: 

1. Assembly  and  configuration of parts, components, 
and functional modules 

2. Scripting, or gluing together  parts, components, 
and functional modules 

3. Framework  completion  in either a white-box  fash- 
ion, where the code is adapted at variation points, 
or in a black-box fashion, where existing objects 
and components (variants) are configured into the 
defined extension (variation) points“’ 

4. Parameter setting for methods, functions, proce- 
dures, tables, templates, etc. 

5. Architecture topology determined to be fat cli- 
ent, thin client, Internet based, etc. Other tech- 
nical architecture decisions must also be made, 
including install vs execute points, persistence 
mechanisms, etc. 12~13~19 

6. Extension of the system through subclassing,  over- 
riding methods, extending component interfaces, 
adding new functions or components, etc. 

7. Integration with other applications, and linkages 
made to customer business processes, including 
workflow and transaction management systems 

Versioning mechanisms. We  can consider version- 
ing mechanisms as ways to ensure  that it will be pos- 
sible and easy to fix bugs and for customers to up- 
grade to new versions. This requires easy evolution 
of the system, based on  the changes made to it in 
the field and on new variations or changes requested 
by customers. All versioning mechanisms require 
some  level of change management, but  this  gets  much 
harder if code is  actually changed. Use and exten- 
sion of the system should trigger the capture  and 
feedback of these extensions to  the core develop- 
ment group for consideration in  new versions. Ex- 
ample mechanisms include: 

1. Usage of defined interfaces only-preventing 
changes to implementation code at  other  than 
specified points of variability will ease version 
management 

2. Extensions  to the interfaces allowed-no deletion 
of any interface elements, interfaces, and imple- 
mentations 

3. White-box frameworks-will be more difficult to 
update, code changes will need to be tracked and 
managed 

4. Black-box  frameworks-variations are handled 

ISM SYSTEMS JOURNAL,  VOL 38, NO 1, 1999 



through configuration and  thus will make version- 
ing much  easier  than white-box frameworks 

5. Packages-versions of packages can be  supported 
6. Versioning of data  and legacy mapping 
7. Versioning tools-support change  management 

across  versions 

Summary 
The major  consideration in this paper is the  creation 
of assets,  components,  and  solutions  that  are cus- 
tomizable,  based on defining and  developing  com- 
mon, yet variable  components.  For  enterprise-level 
systems, this  requires viewing the system to  be built 
as being  not  just  for the  end user,  but  for other sys- 
tem  developers  whose  job  it is to fit, assemble,  con- 
figure,  customize,  and  alter the system into a final 
customer  solution, possibly also  developing  addi- 
tional  customizable  applications in the middle of a 
“value  chain.” 

Development of customizable systems requires spec- 
ification of a  generic  architecture  for  multiple  inte- 
grated  applications in the  enterprise, with specifi- 
cations  for the common  components  used to build 
these  applications  and  configuration  rules  for devel- 
oping the final applications  and  solutions.  Develop- 
ment of the  generic  architecture  requires different 
analysis and  representation  techniques  and work 
products  from  those  meant  for only a  small  number 
of applications.  Development of these types of sys- 
tems is usually most effective if the  component de- 
velopment is separate from the application  and fi- 
nal  customer  solution  development.  At  the  center 
of development  and  deployment of customizable sys- 
tems is the  notion of commonality and variability 
analysis and  a  customization life-cycle method. 

Systems in the  future will require  more  emphasis on 
customization, and use of the customization life cy- 
cle defined here will be necessary for success in the 
solutions business. 

*Trademark or registered trademark of lntcrnational Business 
Machines Corporation. 

**Trademark or registered trademark of SAP AG,  Peoplesoft, 
Inc., Microsoft Corporation, Object Management Group, Sun Mi- 
crosystems, Inc., Lotus  Development  Corporation, or  The Open 
Group. 

Cited  references  and note 

1. A “silo” is a part of an IT solution that is not integrated with 
other parts. The name comes from the visualization of such 
a solution-the different applications stand apart from one 
another, like farm silos in silhouette against a  prairie sky. 

2. Webster’s Ninth  New Collegiate Dictionaly. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 

3. I. Jacobson, M. Christerson, P. Jonsson, and  G. Overgaard, 
Object-Oriented Software Engineering: A Use Case Driven Ap- 
proach, Addison-Wesley Publishing Co., Reading, MA (1992). 

4. W. Pree, Design Patterns for Object-Oriented Software Devel- 
opment, Addison-Wesley Publishing Co., Reading, MA 
(1995). 

5. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, Fea- 
ture-Oriented Domain Analysis Feasibility Study: Interim Re- 
port, CMUISEI-90-TR-21 Technical Report (August 1990). 

6 .  M. Simos, “Organization  Domain Modeling (ODM),” Pro- 
ceedings of the ACM-SIGSOFT  Symposium on Software Re- 
usability, Seattle, WA (April 1995). 

7. E.  Gamma, R. Helm, R. Johnson,  and J. Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software, Ad- 
dison-Wesley Publishing Co., Reading, MA (1995). 

8. I. Jacobson, M. Griss, and P. Jonsson, Software Reuse: Ar- 
chitecture, Process and Organization for Business Success, Ad- 
dison-Wesley Publishing Co., Reading,  MA (1997). 

9. M. Griss, J. Favaro, and M. D’Alessandro, “Developing Ar- 
chitecture  Through  Reuse,” Object Magazine 7, No. 7,35541 
(September 1997). 

IO. R.  E. Johnson,  “Frameworks = (Components + Patterns),” 
Communications of the ACM 40, No. 10 (October 1997). 

11. D. Leishman and S. Fraser, International Conference on Soft- 
ware Engineering, 1995. 

12. R. Busk-Emden and J. Galimow, SAP R13 System: A 
ClientlSewer Technology, Addison-Wesley Publishing Co., 
Reading,  MA (1996). 

13. K. Bohrer,  “Architecture of the San Francisco Frameworks,” 
IBM Systems Journal 37, No. 2, 156-169 (1998). 

14. D. Doscher and R. Hodges, “SEMATECHs Experiences with 
the  CIM  Framework,” Communications ofthe  ACM 40, No. 
IO (October 1997). 

15. P. T. L. Lloyd and G. M. Galambos, “Technical  Reference 
Architectures,” IBM Systems Journal 38, No. 1,51-75 (1999, 
this issue). 

16. D. W. McDavid, “A Standard  for Business Architecture  De- 
scription,” IBM Systems Journal 38, No. l, 12-31 (1999, this 

17. M. Fowler, Analysis Patterns: Reusable Object Models, Addi- 
issue). 

son-Wesley Publishing Co., Reading,  MA (1996). 
18. P. Coad, M. Mayfield, and  D. North, Object Models: Strat- 

egies, Patterns and Applications, Yourdon Press, Englewood 
Cliffs, NJ (1996). 

19. V. D. Arnold, R. J. Bosch, E. F. Dumstorff, P. J. Helfrich, 
T. C. Hung, V. M. Johnson, R. F. Persik, and P. D. Whidden, 
“IBM Business Frameworks: San Francisco Project Techni- 
cal Overview,”IBMSystemsJoumal36, No. 3,437-445 (1997). 

Accepted for publication November 5, 1998. 

Deborah A. Leishman IBM Global Industries, 3039 Comwallis 
Road, Research Triangle  Park, North Carolina 27709 (electronic 
mail: leishman@us.ihm.com). Dr. Leishman joined IBM in 1995 
and is an IBM Senior Technical Staff Member.  She currently leads 
the ESS development team for IBM Global Industries. Dr. Leish- 
man received a  Ph.D.  degree in computer science in 1994. She 
has worked on  object-oriented systems and focused on reuse  for 
several years, and prior to joining IBM she worked as  reuse man- 
ager on  a large architecture-driven framework development proj- 
ect.  Dr. Leishman has also worked as a  development  manager 
for spatial data products and  as  a  researcher for knowledge-based 
systems. 

Reprint Order No. G321-5698. 

LEISHMAN 97 


