122 BOOKS

Software Architecture in Practice, Len Bass, Paul
Clements, and Rick Kazman, Addison-Wesley Pub-
lishing Co., Reading, MA, 1998. 452 pp. (ISBN 0-201-
19930-0).

The book Software Architecture in Practice provides
definitive answers to the question: What is software
architecture? Written for organizations without es-
tablished architecture practices, this book answers
fundamental questions and issues often posed by
newcomers to software architecture. The following
paragraphs summarize the major ideas in the book.

The Architecture Business Cycle (ABC) is a simple
reference model, which is used throughout the book.
On any project, a handful of architectural influences
affect the designers of the software architecture. Four
kinds of influences include: end users, developers,
technologies, and experience. The ABCis used to de-
scribe each case study in a nutshell. A key message
of the ABC is that the resulting system qualities feed
back upon the architectural influences.

The book defines software architecture as “the struc-
ture or structures of the system, which comprise soft-
ware components, the externally visible properties
of those components, and the relationships among
them.” The term structure means a model or view of
a system. Components are the architectural objects
in each of these views. System structures address the
architectural influences from the ABC, such as stake-
holder requirements. The book’s definition of soft-
ware architecture is sufficiently general in purpose
to be compatible with well-known architecture ap-
proaches, such as the Zachman framework and open
distributed processing. Unfortunately, these ap-
proaches are not covered because they are consid-
ered too advanced for the book’s target audience.

The book defines architectural concepts by estab-
lishing several formative taxonomies, including sys-
tem qualities, architecture styles, and unit operations.
System qualities are overall characteristics of software
systems that are affected by architecture. Example

0018-8670/99/$5.00 © 1999 IBM

system qualities include: performance, functional-
ity, and modifiability. Architecture styles are catego-
ries of architectures that share similar components
and general patterns of interchange. Some well-
known architectural styles include: batch processing,
layered architectures, and event-based systems. Unit
operations are applications of fundamental architec-
ture principles. Examples of unit operations include:
architectural separation, abstraction, and resource
sharing.

One of the more advanced topics covered is the Soft-
ware Architecture Analysis Method. This is a tech-
nique for evaluating and comparing architecture de-
signs. The technique includes identification of
architectural change cases, followed by an assessment
of their system impacts. The results are compiled into
a simple tabular form and scored.

According to the authors, Software Architecture in
Practice represents the cumulative results of archi-
tecture research at the Software Engineering Insti-
tute (SEI), an influential organization in US. gov-
ernment software policy. Interestingly, this book
contains sections indicating SEI support for the use
of CORBA** and design patterns. This book is a fol-
low-on to the SEI's previous work, Software Architec-
ture: Perspectives on an Emerging Discipline (Prentice-
Hall, 1996), which reported earlier research results.
Both books have a nonprescriptive, nonjudgmental
philosophy about software architecture. This philos-
ophy is compatible with diverse software approaches,
but the books prescribe no specific methods or stan-
dards for designing software architecture.

Software Architecture in Practice is an important con-
tribution because it establishes a foundation of ar-
chitectural concepts that should be acceptable to
most organizations. For organizations without soft-
ware architecture practices, this book provides use-
ful explanations of fundamental terminology and a

©Copyright 1999 by International Business Machines Corpo-
ration.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

compelling rationale for architecture-based devel-
opment.

Thomas J. Mowbray
Blueprint Technologies, Inc.
MclLean, Virginia

**Trademark or registered trademark of Object Management
Group.

Surviving Object-Oriented Projects: A Manager’s
Guide, Alistair Cockburn, Addison-Wesley Publish-
ing Co., Reading, MA, 1998. 250 pp. (ISBN 0-201-
49834-0).

At a glance, Surviving Object-Oriented Projects ap-
pears to be a new contribution to the collection of
“little” books for managers, the kind of book whose
200 pages (plus appendices) can be read on a coast-
to-coast flight. In fact, its subtitle (4 Manager’s
Guide) and hand-drawn style of diagrams are frankly
derivative of David Taylor’s original little-00-for-
managers book from the same publisher. However,
these surface similarities are misleading; this book
is not a “lite” primer on object technology. It is also
not a textbook on project management, per se. It is
more of a vehicle for attitude adjustment based on
pragmatic advice, warnings about potholes to avoid,
and many anecdotes from real projects that Alistair
Cockburn has been involved with over the years.

There is much to like about this book, starting with
its basic philosophy. While many people have pes-
simistic expectations for projects that are trying “00”
(or any other new technology) for the first time,
Cockburn claims that success is possible, even likely,
even on your first try, if you:

* Avoid the pitfalls (enumerated in this book) that
have been “unpleasant surprises” for other
projects.

Establish a habit of delivering a work product, even

if the first drop is what Cockburn calls a “bubble-

gum” release. This habit plants the seed of thought
that “this team delivers” in the minds of the cus-
tomers and the development team itself.

* Realize and accept that you will make mistakes and
be prepared to change in order to fix them. Even
with good intentions and foreknowledge of the pit-
falls, the apocryphal “boogeyman” is out there—
what Cockburn calls WYDKYDK (“what you don’t

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

know you don’t know”). You can’t plan for it, be-
cause you don’t yet know what it’s going to be.
Cockburn advises: Give yourself permission to be
wrong, but also be prepared to do whatever it takes
to fix it when you find WYDKYDK. “To get your
project to succeed,” he warns, “you may have to
change some of your closest-held wishes and be-
liefs.”

Key to being able to follow this advice is the use of
an incremental approach to development. Unless the
project is scheduled and staged in multiple incre-
ments, there will not be the opportunity to find and
fix WYDKYDK, or to improve less-than-perfect or in-
complete initial deliveries. The use of incremental
development is so crucial that Cockburn lists it as
the first of his four critical success factors, and its
absence as the first of two key failure indicators. (His
other key failure indicator is the use of C++.)

The pitfalls and guidance expressed in this book are
not “ivory tower” musings: Cockburn has collected
experiences from many difterent projects, of all sizes,
types, and purposes. Chapter 2 summarizes 11 real
projects, describing the problem domain, size and
experience of the staff, project type, duration, and
a history of each project’s successes and failures.
Many of these projects reappear in the rest of the
book as illustrations of the points being made. To
evaluate the conclusions from these real project de-
briefings, it would have been helpful to have the proj-
ect dates in the profile information. For instance,
conclusions about the value of modeling tools, based
on projects in the early and mid-1990s, may be less
valid now, due to the standardization of a Unified
Modeling Language (UML) and the maturation of
the modeling tools that are available.

Cockburn’s discussion of methodology is not a dry
recitation of phases of development. His “big-M”
methodology provides a holistic view of how deliv-
erables, standards, tools, and techniques are tied into
people, teams, roles, and skills. The discussion is al-
ways very people-oriented, and Cockburn’s advice
is generally pragmatic; he doesn’t suggest things that
are unachievable in a real-life project. He describes
the value of “lite” methodologies where they would
be most appropriate for a project. He also discusses
the importance of low-precision deliverables in the
early phases of development. 1 have often seen de-
velopers try to create preliminary “domain-level”
models with details more appropriate to implemen-
tation-level class diagrams. (Sometimes this is done
in an effort to “use everything” in a complex mod-

Books 123

eling notation.) End result: Analysis paralysis, aban-
donment of the “incomplete” models, and frantic
leap to code. Cockburn reminds us that low preci-
sion is sometimes the appropriate choice, in a sec-
tion that should be required reading for every soft-
ware engineer who becomes involved in “analysis”
activities.

In keeping with Cockburn’s focus on Humans and
Technology (the name of his company), he gives lots
of advice on training-related issues. He points out
the high cost of training, and the higher cost of not
training: “Yes, you really did spend something like
$6000 per person to get three weeks of training. Or
you spent double that letting your people wander
around on their own without a teacher.” (I"d more
than double that.) There is also some interesting, and
nonintuitive, advice about how to organize teams that
include a large number of “newbies.” He advocates
putting all of the novices in a “training team” (or
“day care”), under the guidance of a single expert
developer. This training team has very light devel-
opment responsibilities, while the bulk of the work
product is assigned to the “progress team,” made up
of the experienced developers. This approach is con-
trary to the more typical strategy of forming a num-
ber of mixed teams of several novices and an expert.
Cockburn makes a very good case for considering
the training team approach.

A feature I like in this book are the eyewitness ac-
counts, stories from the trenches provided by many
industry colleagues. My favorite is Luke Hoh-
mann’s “Burn Some Pancakes.” The appendices are
also nice. Appendix A is structured as a set of 12
patterns for risk mitigation. These are excellent read-
ing for all project managers, whether or not they are
managing OO projects.

If I had to pick one thing that I don’t like about this
book, it would be Cockburn’s treatment of the
“small-m” methodologies, specifically the use of
model-based development methods. Cockburn has
a long-standing bias away from the use of graphical
models. However, this is one area where OO projects
may really differ from “traditional” projects, and
managers need to be aware of the ramifications. If
a team is using a model-oriented approach to object-
oriented analysis and design, as described in the
“popular” 00 methods books:

* The schedule needs to accommodate the up-front
time (before coding starts) for models to be de-
veloped, reviewed, and reworked.

124 BoOKS

» The team needs tools. Good modeling tools are
expensive, and ['ve seen many teams try to do with-

113

out. Cockburn’s “scanner challenge” (“How many
changes are required before the tool beats a pen-
cil drawing scanned into Lotus Notes**?”) is cute,
but I groan when someone gives that kind of am-
munition to managers who balk at spending money
to give their teams the tools they need.

Bottom line: As an 0O developer, would I want my
manager to read this book? The answer is an un-
equivocal “yes.” From this book, the manager would
get the right attitudes and some heuristics for suc-
cess. To provide more of the discipline of project
management, I’d match it up with other “bigger”
books, such as Goldberg and Rubin’s Succeeding with
Objects, or the 1BM Object-Oriented Technology
Center’s Developing Object-Oriented Software. ButI'd
want my manager to read this one first to establish
the attitude and belief that success is achievable. As
the author says: “Success is better than failure. Al-
though you can learn some lessons from failure, from
success you learn how to succeed.”

Susan Lilly
SRA International, Inc.
Fairfax, Virginia

**Trademark or registered trademark of Lotus Development Cor-
poration.

Note—The books reviewed are those the Editor thinks might be
of interest to our readers. The reviews express the opinions of
the reviewers.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

