BB2 SAWYER AND GUINAN

Software development:
Processes and
performance

This paper presents data that describe the
effects on software development performance
due to both the production methods of software
development and the social processes of how
software developers work together. Data from
40 software development teams at one site that
produces commercial software are used to
assess the effects of production methods and
social processes on both software product
quality and team performance. Findings indicate
that production methods, such as the use of
software methodologies and automated
development tools, provide no explanation for
the variance in either software product quality or
team performance. Social processes, such as
the level of informal coordination and
communication, the ability to resolve intragroup
conflicts, and the degree of supportiveness
among the team members, can account for 25
percent of the variations in software product
quality. These findings suggest two paradoxes
for practice: (1) that teams of software
developers are brought together to create
variability and production methods are used to
reduce variability, and (2) that team-level social
processes may be a better predictor of software
development team performance than are
production methods. These findings also suggest
that factors such as other social actions or
individual-level differences must account for the
large and unexplained variations in team
performance.

his paper presents data that describe the effects

on software development performance from
both the production methods of software develop-
ment and the social processes of how software de-
velopers work together. The premise behind this pa-
per is that the production methods of software
development—such as methodologies, techniques,
and tools—become available, then disappear at an

0018-8670/98/$5.00 © 1998 IBM

by S. Sawyer
P. J. Guinan

ever-increasing rate while the social processes of the
people developing software change more slowly. For
example, there has been a stream of software de-
velopment methodologies (e.g., object-oriented,
clean-room, and rapid-prototyping methodologies),
techniques (i.e., participatory design, requirements
engineering), and software development tools (such
as computer-aided software engineering [CASE]
tools) that reflect a production focus on software de-
velopment. At the same time, our knowledge of how
software developers work together is growing more
slowly (see, e.g., References 1-3).

Since software development is, at the least, partly a
social process means that understanding how peo-
ple work together to build software is critical, since
the importance of software in our society is matched
by the difficulty encountered in its development. For
example, about 40 percent of U.S. corporate capital
expenditures are directed toward software.* The U.S.
government is also committing biilions of dollars to
supporting research in computer hardware and soft-
ware.” Large-scale failures of software underscore
the difficulty in its development.® For example, the
U.S. Internal Revenue Service (IRS) has spent bil-
lions of dollars to replace the present tax system with
little to show as a result of trying, and no replace-
ment is yet available.” Further, corporate-level fail-
ures of information systems are routinely reported
in the popular press (see, €.g., References §-10).

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

In this paper we draw on data collected from 40 soft-
ware development teams at one U.S. site of a large,
global, software and hardware manufacturing com-
pany. (We have named the company “Compuco” for
the purpose of confidentiality.) These data are used
to explore the relationships of both the production
methods and social processes to software develop-
ment performance. Specifically, in this paper we ad-
dress two questions:

1. What are the contributions of production meth-
ods to software development performance?

2. What are the contributions of the social processes
of software developers working together to soft-
ware development performance?

To address these two questions the paper continues
in four parts. In the first part we highlight issues of
developing software and how they can be addressed.
In the second and third parts we highlight our data
collection and present our analysis and findings. We
then conclude with implications and suggestions for
software developers and for software development
researchers.

A multiperspective view on developing
software

In this part we outline general issues with software
development and discuss particular issues at the re-
search site used in this study. This discussion is pre-
mised on the observation that the two most common
responses to the current difficulties with creating soft-
ware are for software development organizations to:
(1) establish and follow more formalized production
methods for building software products and (2) use
teams of software development specialists and the
potential positive synergy that arises from their in-
teractions. Typically, software development teams
are brought together to make new, or enhance ex-
isting products. A feam is two or more software de-
velopers who are engaged in building a defined prod-
uct to be delivered within a certain time frame. A
team relies on the collective skills of its members be-
cause of the scope of the effort, the inherent com-
plexity of the effort, and the number of tasks needed
to develop modern software that normally exceeds
the ability of any one developer.

The team’s members rely on methodologies, tech-
niques, and tools to support software production. A
methodology represents the set of tasks and their
ordering that defines the processes of production.
For example, rapid application development

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

(RAD),'"? clean-room, " and object-oriented "* and
formal " methodologies are currently popular. Tech-
niques are sets of actions taken to complete a par-
ticular task. Examples include Joint Application De-
velopment (JAD)'® and structured walkthroughs. "’
Typically, a methodology draws on many techniques
and a tool provides automation or structure to a tech-
nique. '® This is the premise behind CASE tools: they
are not a methodology by themselves, but they sup-
port the use of techniques and can enable method-
ologies,'*?

This production perspective highlights the present
emphasis for much of the current research on soft-
ware development. Production methods describe
how individuals should work and the focus is on the
project. The team’s goal is to follow the proper
method and to use the proper techniques and tools
in support of that project.”! A substantial body of
writing focuses on the role of methodologies, tech-
niques, and tools (see, e.g., References 22, 23). The
production perspective seeks to underscore the re-
petitive, predictable, and manufacturing-like aspects
of software development (see, e.g., References 24—
26). Reducing the variations in the development pro-
cess, making the development process more routine,
developing specific guidelines for how to best address
common tasks, and making tools available to sup-
port these efforts are seen as central to the matu-
ration of software development as a profession and
as a more certain contributor to society.?’*

A second perspective on software development is as
asocial process.”"~* This perspective focuses on how
software developers work together to produce soft-
ware. The trend to using teams to produce software
magnifies the issues of working together to build soft-
ware.* For example, the social issues of working to-
gether to build software include coordination and
communication breakdowns'*** and the positive
and negative effects of such social processes as in-
tragroup conflict management. *~* Recently, the cul-
ture of software development in the U.S. has been
seen as a unifying force among developers, provid-
ing them a commonality of focus that enables soft-
ware development.** This implies that another is-
sue for software development teams is the degree
of shared norms that tie software developers to-
gether.

Social processes of software development encompass
both informal communication and intragroup coor-
dination activities such as discussing how activities
will be performed, finding and taking the time to talk

SAWYER AND GUINAN 553

with other team members, and the sharing of ideas
and information. **#* Social processes also include re-
solving the conflicts that arise in the course of work-
ing together, and encompass issues such as reduc-
ing the level of irritation and frustration among the
team, getting along well with one another, and re-
solving differences in a timely manner.*** There are
norms of loyalty and supportiveness that are part of
the growing culture of software developers as they
learn how to work together. This includes caring for
other members in the group (the occurrence of help-
ing behaviors between team members), being in-
spired by being a member, and seeing the team as
distinct from the larger organization.

A third way to view software development is from
an individual perspective. This perspective focuses
on the unique contributions of individuals to the
team. Issues from an individual perspective can in-
clude, for example, the degree of experience and skill
that each developer contributes.” The individual
perspective also encompasses the internal motiva-
tions for participating (such as ego gratification or
social power accumulation) and other personal mo-
tives.!

In this multiperspective approach to understanding
software development, distinguishing between the
production, social, and individual levels of a software
development team’s work is analytically useful, but
the actions of the three perspectives occur in a tightly
woven, interdependent process. ** For example, in-
cluding formal coordination mechanisms as a part
of the production process, while informal commu-
nication and coordination mechanisms are consid-
ered part of the social processes, is an analytic dis-
tinction. In both formal and informal meetings, team
members socialize. They talk, they encourage (or dis-
courage) supportive feelings toward the team, they
respond to (or ignore) potential intragroup conflicts,
and they do (or do not) communicate and coordi-
nate. Further, the team members jockey for social
power, they worry about the effects of embarrassing
questions, and they try to impress their peers. Thus,
the formal coordination factor reflects an intersec-
tion of production, social, and individual processes.
However, for this study, we focus on the team-level
issues of production and social perspectives, leaving
the individual perspective for future work. We re-
turn to this issue in our discussion of the findings at
the end of the paper.

Afourth perspective on software development is con-
textual. This perspective suggests that issues such as

554 SAWYER AND GUINAN

the competitiveness of the company, the industry in
which the company operates, the degree of mana-
gerial skill, the level of resources, and other extra-
organizational factors affect software development
performance.**’ For example, these factors contrib-
ute to the difficulty in comparing data about soft-
ware development teams who focus on making cus-
tom-designed embedded software for the U.S.

For this study, we focus

on the team-level issues

of production and social
perspectives.

Department of Defense (DoD) with teams building
DOS and Windows™**-based packaged products for
the personal computer market. That is, the differ-
ences in customers, markets, and goals of the soft-
ware products are so diverse that comparisons are
often difficult.*” Because of the potential for contex-
tual issues to overshadow the goals of this study, we
focused on collecting data from one organization.
This provides some control (albeit imperfect) of the
potential effects of organizational and environmen-
tal context. It also reduces (but does not eliminate)
the potential effects of intradepartmental differences.

The setting: Developing software at Heartland. The
data and analysis we discuss in this paper are drawn
from a field study at one U.S. software development
site (named Heartland for the purpose of confiden-
tiality) of Compuco. Heartland creates subsystem
software such as database products and languages.
These are sold as commercial packages, often in com-
binations that can provide for integrated solutions.
Packaged software is also known as commercial,
shrink-wrapped, and commercial-off-the-shelf soft-
ware. As a packaged software vendor, Compuco li-
censes their products for use by others. These prod-
ucts may have thousands, or even millions, of
licensees. This implies that development of these
products is done for a distant user who is typically
not a member of the organization, making extensive
user and developer interaction difficult. *® Typically,
at Heartland developers are involved with one prod-
uct for a lengthy time, participating in the develop-
mental and production cycle. *** This means that the

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

developers become quite knowledgeable about both
the features and the development history of the prod-
uct. Finally, and unlike most custom development
efforts, Heartland’s developers have no hand in the
products in which their subsystem is embedded.*’

Packaged software development, here exemplified
by Heartland, is an expanding and important aspect
of the software industry. While DoD and other large
institutions may always demand a certain level of cus-
tom-built software, the market for packaged software
is both large and growing.*** For example, IBM has
been a dominating force in commercial software with
products such as IMs* (Information Management
System) and DB2* (DATABASE 2*). Microsoft Cor-
poration’s rise as a corporate power is built on the
sales of its packaged software.*>*

Three reasons made Heartland a suitable research
site. First, they develop products for the commer-
cial market. As noted, this is an important, expand-
ing, and relatively under-studied area of software de-
velopment. Second, they are large enough to support
enough teams to provide adequate data for the study.
Finally, the software developers and managers were
motivated to participate. For example, like other
commercial software developers, Heartland’s prod-
ucts face increasing competition. Product time-to-
market issues and product quality are often compet-
ing pressures, The market life of each commercial
software product being developed is also shorten-
ing. Even so, long-term maintenance demands in-
crease with each new release. This combination led
to difficulties in maintaining existing products and
slowed the pace of new product development at the
host research site. Concurrently, developers were in-
creasingly unhappy with the way their work was struc-
tured and with the workplace pressures they faced.
They were working harder, spending more time at
work, and seeing fewer results. Senior managers at
Heartland were also under tremendous pressure
from the Compuco corporate executives to create
new products and extend revenue streams on exist-
ing lines.

To respond to the intertwined influences of market
pressure, product pressure, workplace pressure, and
corporate pressure, Heartland’s senior development
managers responded by refocusing development to
be team-based. This was also a move away from the
functional and project matrix management structure
they had relied on for more than 20 years. As a part
of that effort, this research represents a joint effort
between the authors and the developers at Heart-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

land to better understand the software development
team processes and performance effects at their
site. However, management and team structures re-
mained unchanged during the course of this study.
The current team structure is based on having a team
leader, a technical leader, and a relatively small num-
ber of developers to comprise the entire team. Each
team’s leader reports, in turn, to a product manager.

The production aspects. Heartland’s software devel-
opment organization exemplifies the production per-
spective of software development. The site follows
a rigorous, well-defined software development
method that is based on structured analysis and de-
sign approaches and has been evolving for nearly 20
years. This methodology is both well-known and
heartily supported by senior development manag-
ers. There is extensive training in the core software
development methodology and base techniques pro-
vided to all developers. As part of this method, per-
sonnel have developed and integrated a number of
automated software development tools (some are lo-
cally developed and some are commercial products)
into the development methodology. This method-
ologic rigor is, in part, one of the reasons why Heart-
land has been lauded for their process quality (hav-
ing won both several internal-to-the-company and
industry-wide quality awards in the past few years).
However, even at a single site, where developers have
been trained in one set of techniques and share a
common set of tools, the way these aspects of pro-
duction are used varies.

To capture the use of, and variations in, the produc-
tion aspects of software development at Heartland,
we collected data on (1) the level of formal coor-
dination mechanisms use, (2) the level of formal
methods use, and (3) the levels of tool use. Formal
coordination mechanisms include formal project
meetings, formal client meetings, and required doc-
umentation and deliverables. Thus, this measure of
formal coordination acts as a surrogate of project
management. The other two factors represent the
use of a software development methodology. For in-
stance, the use of version control procedures and
management of code libraries suggests a reliance on
a defined software development methodology. High
levels of tool usage reflect the use of standard de-
velopment techniques that allows for automation.

The social processes. The second perspective on soft-
ware development is as a social process. This focus
is on how the software developers work together to
produce software. Heartland’s development organi-

SAWYER AND GUINAN 5§55

zation also recognizes the importance of the social
processes of software development. For example,
there are numerous group dynamic, conflict man-
agement, and listening-skills seminars, extensive re-
wards for superior team performance, and both for-
mal and informal acknowledgments that teamwork
is critical. Further, development team members meet
on a regular basis (typically weekly) and normally
reside near each other.

The social processes of software development that
we measured include how team members perceive
their level of informal communication and coordi-
nation, their ability to resolve intragroup conflicts,
and the degree of supportiveness and loyalty they
felt for the other members of their team. The level
of informal communication and coordination means
the amount, and value, of communication both with
team members and with key people who are not part
of the team. The ability to resolve intragroup con-
flicts includes both surfacing differences and nego-
tiating acceptable shared agreements and compro-
mises. The degree of supportiveness includes how
team members feel toward other members of their
- team, and how they perceive other team members
feel toward them.

Software development performance. In order to as-
sess the value of production and social processes, a
measure of software development performance is re-
quired. This is problematic for at least two reasons.
First, the performance of software development
teams has been measured in many different ways.
Second, most of these measures have significant mea-
surement problems such as limited relationships to
business value and questionable validity.*'*?

Our approach is to view software development as
an activity intended to produce a product that will
affect the behavior of one or more stakeholders. We
further constrain our definition of stakeholders to
be individuals who are not team members but who
can affect design activities and who can be affected
by the resulting information systems. > While the
development team members certainly have a stake
in the product, our focus is on the external-to-the-
team stakeholders. These might be user managers,
senior development managers, or senior customers,
and they assess the team’s performance based on
their knowledge of the organization’s needs, expe-
rience with previous and ongoing software develop-
ment projects, and their expectations for quality.
Thus, we share the view of Seidler® who finds that
perceptual assessments of performance provided by

B56 SAWYER AND GUINAN

such knowledgeable managers (i.e., stakeholders)
have a high level of convergence with other objec-
tive measures of performance.

Given these issues, we characterize software devel-
opment performance as multidimensional and in-
clude three attributes: product quality, team effi-
ciency, and team effectiveness. Stakeholders provide
the product quality assessment. Both the team ef-
fectiveness and efficiency measures are also assessed
by stakecholders and combined into an aggregated
measure of team performance. The team perfor-
mance factor is also drawn from the developers on
each of the teams. This provides a self-reported mea-
sure of team performance in terms of team effec-
tiveness and team efficiency. Thus, three perfor-
mance factors are measured: stakeholder-rated
product quality, stakeholder-rated team perfor-
mance, and self-reported (by the developers) team
performance.

Studying Heartland’s software development
teams

This part describes the research methods used to as-
sess the effects of the production and social processes
of software development teams on software devel-
opment performance. To do this, we used multiple
data collection methods: direct observation of their
work as it occurred, quantifiable data on use and per-
formance (drawn from two surveys), and a synthesis
of the anecdotes and stories of software develop-
ment. Beginning in early 1993, we spent 18 months
collecting data on Heartland’s software developers
doing their work, in their native environment. Us-
ing interviews and surveys is sensible since we are
collecting data on their perceptions about how their
teams rely on the various production process and so-
cial process factors. The individual responses to the
survey are aggregated to the team level for analy-
sis.® Analysis of the survey data is done using mul-
tiple regression and correlation techniques.®”-% This
means that each performance factor is assessed for
the contribution of both the production and social
process factors (represented as the amount of vari-
ance explained). Table 1 presents these factors and
the question areas to help define the factors. Appen-
dix A presents their zero-item correlations, means,
and standard deviations.

With the support of the team members and their
managers (including senior managers), we gathered
data from 45 software development teams. We for-
mally interviewed 56 people. Many of these people

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

/

Table 1 Factors and scale questions

*Note: Factor reliability is a measure of the degree to which responses to these questions covary. This is measured using Chronbach’s alpha. If the alpha is greater than 0.70,
the scale comprising a set of indicators is considered reliable for exploratory work. Several scales are much higher, suggesting that the usc of previously validated scales
improves the value of these factors.

spoke with us again, often several times, during our organized response sessions (such as debriefings of
observation period. We also met informally, or in teams), with another 153 developers and managers

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998 SAWYER AND GUINAN B§5§7

Table 2 Team and individual characteristics (without
age and gender data)

*Note: Reflects responses from 27 percent of sample, representing those having
previous management experience but who are not presently managing.

from the 45 teams following our survey data collec-
tion. The topics of these informal meetings varied,
but the issues and questions were driven by the on-
going analysis of both survey data and previous in-
terviews. Most of the informal sessions were not
taped. Instead, these were documented with post soc
field notes.®'

Survey-based data were gathered from 40 teams (and
128 respondents) at the site. This represents more
than 30 percent of the project teams and 10 percent
of the developers at the site. Five of the 45 teams
were not surveyed: three declined and two were per-
forming software support and not development. The
surveys were developed from existing scales (see Ap-
pendix B) and pilot-tested at the site.*> We used these
surveys to gather data about how the team members
interacted with one another, how they produced soft-
ware, self-reported performance, and demographic
data about the teams and team members. Survey
questions were posed at the team level, as this is the
level of analysis. This is also the level of measure-
ment and the level of theory.”

We also collected data about performance from
stakeholders for each of these teams. This was done
with a structured survey in a phone-based interview
employing the scale developed and used by Hen-
derson and Lee™ in their study of software develop-
ers. In the debriefing (offered to all teams®) that fol-
lowed the major data collection and analysis phases,
we returned to the site and asked additional ques-

558 SAWYER AND GUINAN

tions to reflect on and amplity the findings from the
initial data analysis.

Some additional data on product quality were gath-
ered by the site and provided to us. This archival data
on product quality is at the product level. This can-
not be directly linked to the individual modules. This
means that product quality data cannot be associ-
ated with the 40 teams in this analysis. However,
product quality data can be compared at the prod-
uct level and that is discussed in the final part of this

paper.

Interview data are used to amplify findings from the
statistical analysis. Self-reported team performance
data are drawn from the same survey that is used to
collect the predictors of that performance. This is
a form of method bias that typically results in over-
exaggerated relationships.® Thus, the regressions
based on self-reported team performance may be
more useful as an indicator of the existence of a re-
lationship than as a measure of the strength of that
relationship. Stakeholder data are used to develop
the team performance and product quality factors.
These data are drawn from separate surveys and are
not as susceptible to this method bias.

As we noted at the beginning of this paper, the de-
velopment teams in this study build software for com-
mercial sale. These commercial software products
are quite large (typically more than one million lines
of code) and some have been in the market for three
decades. The teams involved in this study contrib-
ute to one of four products. Each team is typically
charged with one module—a distinct part of the over-
all product—that must be integrated together and
work seamlessly in the final assembled product. What
this means is that, while the modules may be distinct
segments and identifiable at some level, as a prod-
uct they are tightly integrated into one system. Dur-
ing development, this means that teams are often
highly dependent on one another and these depen-
dencies are not sequential. That is, two modules may
pass data back and forth when used in the product.
This means the two teams must work closely together
as both customer and producer. Team size ranges
from 4 to 14 people, with the average being 9 mem-
bers. On average, the team members have been to-
gether for nearly two years and they change team
leadership every year. Table 2 includes more infor-
mation about these developers.

The level of experience and product knowledge are
viewed as critical measures of a team’s competence.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Table 3 Effects of methodology factors on performance

“TézathMormam ;

No significance

Note: Beta weights for methodology factors are not significant contributors to explaining the variance (p<0.10).

Table 4 Effects of methodology and formal coordination factors on performance

Method use

Automated tool use

Formal coerdination

- Variance explained (%)
- (adjusted r*)

Stakeholder-Rated Selt-Reported

BT9***

- 50.0%*

Note: ** =p<0.01; *** =p<0.001; n =40 teams

Beta weights for formal coordination are significant contributors to explaining the variance (p<0.10).

For example, developers on the 40 tcams have a
mean of more than nine years in software develop-
ment, more than four years with the company, and
nearly two years with their present teams. The in-
dividual respondents have a mean of 9.8 project’s
worth of experience (where a project is a previous
release of a product). Of the respondents, 89 per-
cent have a college degree; 34 percent also have a
master’s degree or doctorate. Many of the original
developers have stayed with these products since in-
ception and they provide a wealth of product knowl-
edge and perspective to the teams. Further, an es-
poused belief at the site is that it takes several years
for junior developers to become fully aware of prod-
uct intricacies.

Effects of production and social processes

To address the two questions posed at the beginning
of the paper, this part presents the analysis and find-
ings in four subsections: The first describes the ef-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

fects of production factors on software development
performance. The second presents the added effects
of the social process factors on software development
performance. The third describes the moderating in-
fluence of production factors such as methodology
and tool use. The fourth presents issues with the anal-
ysis.

The effects of production processes. Tables 3 and 4
present analyses that assess the contributions to soft-
ware development performance due to production
methods. Table 3 presents the contributions of the
two methodology factors to each of the three per-
formance factors. This analysis shows that both the
formal method and tool use factors provide no sig-
nificant contribution to any of the three performance
factors. That is, variations in the use of formal meth-
ods and the use of automated development tools pro-
vide no explanation of the variance in stakeholder-rated
product quality, stakeholder-rated team performance,
or self-reported team performance.

SAWYER AND GUINAN 559

8661 ¥ ON ‘Z&€ TOA “IYNHNOr SWILSAS Wal

-01d s1o5qns 1304 JOJ $10308] IN0J Fururewar o) ursn
s10308] 2ouewIoyrad 221y) 91} JO Yora J0] SUOISSIF
-9 '$1I030B] [10q JO ueow pajedaidse oyl uel) 1oy3iy
pa1eI 18NS 1310 2y], "s[00) Juswdo[aaap aremijos
PolBUIOINE PUB SPOYIAW [BULIOJ JO 9sN 1) JO URIW
po1e32133R 21 UBY] JOMO] PajeI JasqNs 1SIY 9], SIS
-qns om) ojul swe9) Jo ojdures oy ds om ‘sisd[eue
SIT[] 1oNpUod O], "y 2|qe], ur pajiodai s3urpurf o) £q
P215933ns sem SIY T, "pasn s1010e] douewrorad ao1yy
2y} ur suonjelrea ururerdxs ur s10j08] uononpoid jo
9101 31 ojul SIsATeUE [RUONIPPE S1Usaxd g 9[qe [, *asn
[001 pue £3o[opoyjou jo duangul Junesspowr dYJ,

‘Jonpoid aremijos s,wes o) Jo Agenb oy ur soue
-11eA 913 JO Ju0d1ad ()7 A[IBaU I0J JUNOJIR OS[E S10}
-oeJ 9soy [, "oouruniofrad weal pajeI-1opjoyayels ul
doueLIRA AU} JO JUDIad €7 10] JUNOdOR JuswoFeuew
101[JUO2 DI0W PUR ‘UOTJBOIUNTIIOD [BULIOJUI JO S[AJ]
I9USIY ‘UONBUIPIO0D [BUWLIO] JO S[OAJ] JoySIY JR]) MOYS
OS[e G 9[qe [, Ul Blep Y], "oourwiiojiod weo; pautod
-01-J]98 UI 9dUBRLIRA 9] JO Juad1ad 69 urejdxa ssausAl
-110ddns Jo spoas[10481y pue GuawoSeur OIFUOD
dnoJSenul o1ow ‘VOHRITUNUILIOD [EWLIOJUL JO S[OAJ]
12US1Y ‘UONBUWIPIO0d [RWIO] JO S[AAS] 10YSIY 1BY) MOYS
BIR(] 'S10708] 9durwLIOfIad 9a1) 9Y1 JO YorS 0} LONNq
-173U00 1107} SUIsSISSE Ul s1030v) ssavold [eos pue
uononpoid 211 Y1oq Furiquiod sisA[eur 3y JO S)NS

NYNIND anv w3amvs (96

-01 syuasaxd ¢ ojqey, ‘1ay10803 Sunjiom siadofaaop
QIBMIJOS JO $9552001d [B100S 013 0) aNnp doUrWIOIad
Juawdo[dAap 2IBMIJOS 0) SUOIINQIIIUOD JY} SSISSE
0], *sassadoad [enos pue uononpoid Jo s1oafd Ay,

"SUOIIDISqNS [BISAS IXOU I} UT 90UD
-NJul SIY) SSNISIP 9N "S10398] dourwIofrad o) pue
s1010e] $s3001d TR100S 91 udamiaq drysuoneal ay}
Jouanpul et $j003 JUAWdO[2ASD SIEMIJOS PIJBIO]
-Ne IO SPOYIoW [BULIO] JO 9Sh 1) ey} SUBOW SIY],
ssse " 2oURULIONAd UO 3530 ‘SureIopow 10 “10aIIpur
ue dAey Avw s10308J uononpoid osayl yeyl ST $1$08
-3ns os[® SIY) JBYA\ 'SI030B] 2ourULIOjIod 001Y) o)
JO om] ul soueIIeA 1sow oy} ure[dxa 0 sdjoy swisiue
-[O3U UOT)RUIPIOO0D [BULIOJ JO SN 911 “PUOIS “onfea
A1o1eURidX0 1311p oY Op1a0id s10108) ASo[oporyiow
3y} sI1,] ‘sSUIpuLf OM] JSBI] JB SOIBOIPUI SISATRUE SIY

‘Airenb jonpoid pajer-1o
-ployaxeIs Ul UoBLIBA 91} JO uonjeue[dxs jueoyiuss
Aue sopiaoad s1030e] uononpoxd 3say} Jo suoU I1oAs
-moH -oouewioyrad wes) parrodai-jies pue pariod
-2I-10p[OaYe1S 911 Yloq Ul 3durLIRA 9Y) JO uoniod
JueOYIUSIS B 10} SJUNOIIE JOJOBY UONRUIPIOOD [BIU
-10§ 9y, "s10joe} soururiofrad 991y 23 Jo Yora 0}
10108} UONRUIPIOOD [BULIO] AU} pue SI0)0k] A30[0po
-(1oul om) oY) JO uonNqLIIuod Iy} sjussaid 4 s1qe],

(01°¢>d) sourirea oy Swmeldio o) s10qLIUOD JuesygmBis o2 umoys siyBrom Blog
SWeal O = U 1100°0>d = wxx (100> = xx 1507050 =4 310N

%1190 ‘ '?ﬂi}ﬂﬁ{ﬂﬂﬁn oN
wnnILS S ew66E
wk#SLS “: - o ‘§€63'
: s Bs L : o T ex60F
N uognqpﬁﬂé?? ON HOYNqLITOs ON 'qumq uos o
UOQuqmuéd oN R piagﬁqmuoa oN) uamqymoa N

oauewouad uo sl101oe} sS320id Je100s pue uohonpoud Jo S1PaYT S 9|qeL

Table 6 Moderating effects of low levels of methodology on performance

S4pRe*

.204*

Tnformal coord./comniun. -

Conflict management 3244+

- Supportiveness -

 contribution

-No contribution

" No.contribution

_ No contribution

Note: * =p<0.05; **=p<0.01; *** =p<0.001; n =20 teams
Beta weights shown are significant contributors to explaining the variance (p<0.10).

duced no significant models of the teams with high
formal method and tool use.

Two significant models were found for teams in the
low formal method and tool use subset. That is, for
the 20 teams in the subsample that had lower levels
of methodology use, the levels of formal and infor-
mal coordination and conflict management are sig-
nificant contributors, explaining 25 percent of the
variance in product quality. All four factors are sig-
nificant contributors and account for 62 percent of
the variance in self-reported team performance. This
implies that, for the teams who make minimal use
of both formal methods and automated software de-
velopment tools, low levels of use moderate the re-
lationship between the three social process factors
(plus formal coordination) and two of the three per-
formance factors used in this analysis. Further, the
performance of teams who used both formal meth-
ods and automated software development tools the
least, are not significantly different from the high use
teams.

Similar split-sample analysis using the social process
factors and formal coordination produced no signif-
icant models. This suggests that these social process
factors and formal coordination do not have any
moderating influence on the use of formal methods
and automated software development tools. Since
two of the performance factors are based on the per-
ceptions of stakeholders, it is important to note that

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

these stakeholders were unlikely to know much about
the social processes of the teams. However, they
would be aware of any formal coordination mech-
anisms that required the team—or its leaders—to
contact the stakeholder (via either meetings or de-
liverables).

Analysis issues. There are at least two issues with
this analysis that merit additional discussion. The first
issue regards the use of multiple regression as the
basic analysis technique. That is, analysis based on
multiple regression is susceptible to multicollinear-
ity among the independent variables.”” Multicol-
linearity is the tendency for supposedly independent
factors to be related to each other, possibly inval-
idating certain assumptions behind using this statis-
tical technique. Potential multicollinearity issues are
minimized if the folerance between any two factors
remains below 0.700.% In this analysis no tolerance
exceeded this upper limit.

A second issue with this analysis regards the sources
of data. Since all data are collected at one software
development site, there may be some concern with
the representative distribution of the data. Appen-
dix A provides the means and standard deviations
for all the factors used in this study. The normal dis-
tributions (indicated by the standard deviations) sug-
gest that the use of one site for data collection did
not constrain the range of responses used to con-
struct the factors used in this analysis.

SAWYER AND GUINAN 561

The roles of production factors in
supporting the social processes

Data indicate that the level of both formal methods
and automated tool use do not aid in predicting soft-
ware development performance. However, the role
of formal coordination, and several of the social pro-
cess factors, can account for some of the variation
in the software development performance we mea-
sured. For example, the combination of production
and social process factors accounts for 25 percent of
the variance between the teams with the highest and
lowest levels of stakeholder-rated product quality.

In this section we address four issues suggested by
this analysis. The first two issues are (1) rethinking
the relationship between the production and social
factors, and (2) potential limitations due to the in-
teresting sample demographics. The last two issues
go beyond the data from the current study to present
discussions of (3) the potential effects to software
development practice suggested by these findings,
and (4) the question of the unexplained variance in
stakeholder-rated team performance and product
quality.

Rethinking the relationship between production and
social process factors. Data from this study show that
of the three production factors measured, the two
that focus on assessing the methodologic aspects—
level of method and tool use—are not significant pre-
dictors of software development performance. Fur-
thermore, the analysis of the moderating effects of
both method and tool use in this analysis suggests
that higher levels of method and tool use are even
less valuable than lower levels in helping to predict
software development performance.

One reason this site was selected for the research
is that they have a well-established software devel-
opment methodology. This is accompanied by ex-
tensive training and the provision of automated tools
to support steps of the software development meth-
odology. Data presented in Figure 1 indicate that
many of the method aspects are not used extensively
and are seen as having marginal value. Further, while
tool use varies, it provides no predictive value for
performance. Other data, provided by the site on
quality at the product level, provides little additional
information. For example, the distribution of the
teams, relative to all three measures of software team
performance, does not differ across the five prod-
ucts to which these 40 teams contribute.

562 SAWYER AND GUINAN

The findings suggest that one explanation for the im-
portance of the formal coordination factor is it re-
flects actions that bring the production aspects of
software development into a social context. That is,
this factor represents the use of meetings, documents,
and required interactions that bring the developers
together. In this way, the formal coordination aspects
of a methodology are valuable since they provide for
an occasion to socialize. Observations of meetings and
the anecdotes of participants suggest that it is the
process of socializing at these meetings that provides
value, not the occurrence of the meetings or the re-
quirement of the methodology being followed to
have those meetings occur. This finding also implies
that a value of project management, for which this
formal coordination factor serves as a surrogate, may
be that most project management techniques require
team members to interact.

If team-level software development methodologies
serve primarily as a means to require socialization,
it may be that these methods are important primar-
ily because they help to teach team members when,
and what, to discuss. In that sense, teaching software
development methods and tool usage may have the
unintended effect of guiding “valued” social pro-
cesses. For example, Vessey and Sravanapudi® find
that CASE tools serve as effective collaboration de-
vices. This is one way to interpret the value of lower
levels of method and tool use: they reflect an effec-
tive source of guidance without dogmatic (and so-
cially counter-productive) effects that may arise from
over-adherence to formal methods or tool use.

The explanatory value of both social processes and
the role of formal coordination highlight the impor-
tance of nonproduction aspects of the development
process. While this has been widely recognized, this
analysis underscores the extent to which the factors
influencing software development performance are
still poorly understood.®?’ Further, this finding sug-
gests that allowing for “people factors” in the dis-
cussion of new software methodologies (see, e.g.,
References 49, 67) may be placing the emphasis on
the wrong aspect: “putting the cart before the horse.”
Perhaps software development methods should
be developed to explicitly encourage socialization
among developers—a behavior-centered process.
This is the gist of DeMarco’s® point that most soft-
ware developers, when asked to work with another
on a project, never ask, “in what language?” They
ask, “with whom?” Refocusing software develop-
ment methods from production (or engineering)-
centered to socially (or behaviorally)-centered meth-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 1

The use and value of methods and automated tools

PRESCRIBED FORMAL PROJECT REQUIRED
METHODS OR REVIEWS DOCUMENTATION
PATTERNS

© NEUTRAL 4

1 Teamuse
VALUE TO TEAM 1 = LOW, 7 = HIGH
(BASED ON A SEVEN-POINT LIKERT SCALE)

* AUTOMATED TOOL USE

1= NOT USED, 7 = FREQUENT USE

AUTOMATED SHARED CODE TOOLS FOR COMMON
DEVELOPMENT REPOSITORIES/LIBRARIES ACCESS TO
SOFTWARE WORK PRODUCTS

7

NEUTRAL 4

1 reamuse

VALUE TO TEAM 1 = LOW, 7 = HIGH
(BASED ON A SEVEN-POINT LIKERT SCALE)

ods seems appropriate given that the data show that
software development production aspects are both
secondary to social aspects of software development
and most valuable if used sparingly.®”

This emphasis reversal, where production methods
are designed to support the social processes of soft-
ware development teams, is well-represented in

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

1 = NOT USED, 7 = FREQUENT USE

60

the discussions of software development at Mi-
crosoft. ***%%7 They contend that Microsoft’s devel-
opment processes are based on individual interac-
tion and flexible processes based on fixed team
meetings. Work by Zachary** suggests that the so-
cial interactions of dominant team members shape
the development processes more than do produc-
tion methods. Sawyer, Farber, and Spillers® find

SAWYER AND GUINAN

563

that, when allowed, software teams will adapt tool
use to fit their own, emergent needs. Curtis® asserts
that any software development effort that does not
explicitly account for how people work together is
likely to be unsuccessful. Data from this study sup-
port these assertions and findings.

In discussing the limited effect of methods and tool
use on software development team performance, it
is imperative to realize that our focus is at the team-
level uses of tools and methods. Thus, the steady evo-

Improvements in individual
productivity due to
individual-level tools are
indirectly linked to
team performance.

lution and improvement of programming languages,
compilers, debuggers, and other elements of indi-
vidual-level software development do not contradict
these findings. In fact the improvements in software
development at the individual level have been sub-
stantial. The issue raised by this analysis is that the
improvements in individual productivity due to in-
dividual-level tools, which do help software devel-
opers, are only indirectly linked to team performance.
The same is not as certain for methods that focus
on organizing the group (see, i.e., Reference 71).
These data suggest that this absence of affect arises
because current methods are not developed around
the social interactions of developers, focusing instead
on producing software. Since the three levels of soft-
ware development—individual, social, and produc-
tion—are tightly tied together, a myopic focus on
production actually decreases the potential value that
software development methodologies are to provide.

Interesting sample demographics. One issue with
generalizing the findings from this study is the
potential uniqueness of the sample. First, these de-
velopers produce packaged software and this is dif-
ferent from traditional information systems devel-
opment.*’ Second, data in Table 1 suggest that three
characteristics of the developers at this site are un-
usual: level of formal education, years of professional
experience, and team stability (as measured by time

H64 SAWYER AND GUINAN

in the same job and time as a member of the same
team). This combination of extensive formal edu-
cation, professional software development experi-
ence, and team stability suggests that, while the pro-
duction and social aspects of software development
provide some predictive value, the major differen-
tiating factors may be at the individual level.

These data imply that, even with well-developed
communication, coordination, conflict-management
skills, and a strong sense of team supportiveness, the
performance of software development teams hinges
on individual talent. This scenario lends additional
credence to Boehm’s > work with software cost driv-
ers. He suggested that individual programmer dit-
ferences are three times the power of the team’s ef-
fect on software costs. Weinberg' posits that the
difference between the best and worst programmers
may be a factor of 10. One commonly held belief is
that software gurus and tremendous individual con-
tribution are the basis for commercial software suc-
cess (see, e.g., References 3, 40). The current study
provides data to support this assertion. What is not
clear is the extent to which the social aspects of soft-
ware development mitigate or enhance individual
skills.

Paradoxes for practice. Generalizing to a broader
population based on the data from this small, and
possibly unique, sample must be seen as speculation.
That said, we speculate that the findings of this study
suggest two paradoxes. The first point is the need
for teams of software developers to provide diverse
perspectives versus the use of software development
methods that are designed to minimize variance.
That is, one of the premises in establishing software
methods and formal production processes is to re-
move some of the variance that working together in
the highly dynamic, conflict-oriented, pressure-filled
workplace that characterizes commercial software
development seems to demand.

In contrast to the cross-functional, heterogeneous
basis of teams, formal software processes are de-
signed to remove individual variability. This is done
by focusing on how deliverables occur, implicitly ig-
noring who makes them. The premise behind using
teams in software development is that the produc-
tion losses due to the need for people to work to-
gether are offset, it is believed, by the production
gains of this group effort.” This means that a de-
fined software development process is designed to
reduce the individual variability that the use of teams
comprising multiple software development special-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

ists is supposed to enhance. The data in this study
indicate that, while a defined software development
method may not directly contribute to software de-
velopment performance, its absence heightens the
effects of the social processes.

A second point is that the skills surrounding the so-
cial process issues of coordination, communication,
conflict management, and supportiveness are typi-
cally not being provided to developers as part of their
formal education. So, these skills are either devel-
oped on the job or the developers are limited by the
ability to use only their technical knowledge in the
social world that is software development. Given the
increasing technical demands and the quick-chang-
ing nature of computing technology, commercial
software developers are often caught between main-
taining and expanding their technical skill base while
also being required to learn and use these “soft
skills.” Since software developers have relatively low
levels of social needs,”” this increased emphasis on
socialization may be producing part of the stress that
Heartland’s developers are experiencing.

This skills paradox suggests that embedding mech-
anisms to improve the social processes between de-
velopers can aid in developing both sets.** Curtis®
asserts that there is still too little attention paid to
developing methods of software development based
on the socialization patterns and needs of the de-
velopers (though Microsoft’s synch-and-stabilize ap-
proach does so implicitly®*”). Certainly practicing
developers understand the need for interaction and
communication at an informal level. ** As Pressman™
observes about the obvious, “A process that stifles
creativity will encounter resistance.”

A third point is suggested by the data in Appendix
A. The correlations among the three social process
factors and formal coordination factor suggest that
these four factors may represent facets of a higher-
level factor. That is, these four factors may be rep-
resenting a higher-level factor such as “software de-
velopment team culture.” This nebulous concept is
both acknowledged in practice and not casily mea-
sured.*“7 In that context, this research represents
a small step toward a better understanding of the
norms, behaviors, myths, and rituals that make up
the culture of software development, a culture that
extends beyond the realm of production.*"

The unexplained variance. We set out to explain the

performance variations in software development due
to both production and social factors. Analysis of the

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

survey data from the 40 software teams at Heart-
land suggests that other, unmeasured factors must
account for the unexplained variance. We focused
on the social and production levels of software de-
velopment teams. Findings from this study suggest
that we should now include individual-level factors
such as motivation, experience, and knowledge (see,

Social process issues of
coordination, communication,
conflict management, and
supportiveness are not
part of formal education.

e.g., References 1, 6, 38). At the social level, we could
also expand the analysis to include other factors. For
example, we did not account for team leadership and
influence, ™" other aspects of group process such as
boundary spanning,* intragroup control,*"* and so-
cial power,*" and more of the cultural aspects of de-
velopment.**%

From a production perspective, additional analysis
might benefit from looking at the specific subcycles
of software development tasks and focus in more de-
tail on the use of specific techniques and tools. And,
other measures of software development perfor-
mance (such as lines of code or function points) may
be more useful (i.e., Susskind'® used a combination
of reported and measured factors). Further, while
there will always be random chance, we believe that
it plays a smaller role than, for example, the 75 per-
cent for stakeholder-rated product quality. The bet-
ter accounting for variance using the self-reported
(versus stakeholder-rated) team performance mea-
sure is, as stated, due in part to the use of one in-
strument to collect both process and outcome data.
Finally, extending the analysis to allow comparisons
across organizational boundaries may help to explore
contextual factors that might influence software de-
velopment. Given all these issues, what this research
suggests is that we are still unsure of many of the
key contributors to explaining the variance in soft-
ware development performance.

SAWYER AND GUINAN 565

Appendix A Factor Cotrelations

INFORMAL
COORDINATION

SUPPORTIVENESS

The diagonal is the mean (standard deviation) based
on a seven-point scale with 1 low/bad and 7 high/good.
The matrix represents the zero order correlation based
on Pearson product moment, two tailed. A significant
correlation indicates a relationship but not any causality.
For example, the significant correlation between formal
coordination and stakeholder-rated product quality
means that as one changes, so will the other, We imply
the causality theorizes that higher levels of formal
coordination will lead to higher levels of product quality.

CONFLICT - . ,
MANAGEMENT "\ | - 517+ B1arer FORMAL

EE COORDINATION
FORMAL L | .
COORDINATION 460*% Bryeer ’ METHOD

. § USE

METHOD ‘ ‘
USE A8t 17 45 162 463 (. AUTOMATED

TOOL USE

AUTOMATED , ‘ L STAKEHOLDER

TOOL USE - 212 086 | w00l 168 5t PRODUCT

o , o g QUALITY

* STAKEHOLDER , 2 , STAKEHOLDER

PRODUCT, .+ 367+ AB* A1 065 182 TEAM

QUALITY - 7 : PERFORMANCE
STAKEHOLDER" SRR £ R SELF-REPORTED
TEAM.. . [< ol £ 160 804 o TEAM ;
'PERFORMANCE - T S PERFORMANCE
SELF-REPORTED | . B R :
TW e ,_572*** R .500:** ; - .524*:*’ : BB2***

PERFORMANCE . | - BRI

* P<L.05
» P<.01
**xx P< 001

Acknowledgments

The assistance of the Heartland developers, Bob
Spillers, Joel Farber, Harry Campbell, Dave Tolle-
son, Mike Pauser, and Mike Dockter have made this
paper possible. Comments on earlier drafts from Bob
Benjamin, Lisa Covi, Kevin Crowston, Bob Heck-
man, Chatpong Tangmanee, Ping Zhang, and three
anonymous reviewers have substantially improved
this paper.

Appendix B: Scale development

To develop the measures of social process we draw
on two sources. For the ability of the team to man-

B66 SAWYER AND GUINAN

age intragroup conflict we use a scale developed and
validated by Green and Taber.? To measure the
level of informal coordination, communication, and
feelings of supportiveness, we draw on a scale de-
veloped by Hackman® for use in evaluating group
process behaviors. To depict the three factors used
to assess the production processes, we draw on a
measurement scale for technology that focuses on
technology use® that is tailored for the software de-
velopment domain.®” The scale is adapted from
Kraut and Streeter.®

We chose a set of performance measures that en-
compass a multiattribute view of software perfor-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

m

ance. The three measures—product quality, team

efficiency, and team effectiveness—are drawn from

a

scale used to assess software development team

performance. '***® Self-reported performance data
were collected from the developers. This scale draws
on the work of Guinan, Cooprider, and Sawyer.
Scales were pretested prior to use and the entire scale
was used to assess the factor for analysis (see the note

in

Table 1).

*Trademark or registered trademark of International Business
Machines Corporation.

EES

Trademark or registered trademark of Microsoft Corporation.

Cited references

1

2.

13.

14.

15,

17.

18.

20.

. G. Weinberg, The Psychology of Computer Programming, Van

Nostrand Reinhold Co., New York (1971).

F. Brooks, The Mythical Man-Month: Essays on Software En-

gineering, Addison-Wesley Publishing Co., Reading, MA

(1975).

. G. Zachary, “Armed Truce: Software in the Age of Teams,”
Information Technology & People 11, No. 1, 59-66 (1998).

. S.Roach, “Services Under Siege—the Restructuring Imper-
ative,” Harvard Business Review 70, 5, 82-92 (September-Oc-
tober 1991).

. J. Hartmanis and L. Herbert, Computing the Future: A Broader
Agenda for Computer Science and Engineering, National Acad-
emy Press, Washington, D.C. (1992).

. R.Glass, “The Ups and Downs of Programmer Stress,” Com-
munications of the ACM 40, No. 4, 17-19 (1997).

. R. Stengel, “An Overtaxed IRS,” Time 67, No. 20, 58-62
(1997).

. L. Fisher, “Data Network Suffers Biggest Blackout Ever,” The
New York Times, C5 (August 8, 1996).

. L. Fisher, “Human Error and Software Created Data Net-
work Glitch,” The New York Times, C1-3 (August 9, 1996).

. M. Wald, “Future Hazy for Systems to Guide Ship Traffic,”
The New York Times, C19 (November 25, 1996).

. K. Lantz, The Prototyping Methodology, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1989).

. D. Card, “The RAD Fad: Is Timing Really Everything?,”

IEEE Computer 12, No. 5, 19-23 (1981).

H. Mills, M. Dyer, and R. Linger, “Cleanroom Software En-

gineering,” IEEE Software 2, No. 9, 19-24 (1984).

G. Booch and J. Rumbaugh, Unified Method for Object-Ori-

ented Development, Documentation Set 0.8, Rational Soft-

ware Corporation (1996).

C. Fidge, P. Kearney, and M. Utting, “A Formal Method for

Building Concurrent Real-Time Software,” IEEE Software

14, No. 2, 99-106 (1997).

. J. Wood and D. Silver, Joint Application Design, John Wiley

& Sons, Inc., New York (1989).

D. Freedman and G. Weinberg, Handbook of Walkthroughs,

Inspections and Technical Reviews, Little, Brown & Co., Bos-

ton, MA (1982).

C. Susskind, Understanding Technology, The Johns Hopkins

University Press, Baltimore, MD (1973).

. P. Guinan, J. Cooprider, and S. Sawyer, “The Effective Use

of Automated Application Development Tools,” IBM Sys-

tems Journal 36, No. 1, 124-139 (1997).

J. livari, “Why Are CASE Tools Not Used?,” Communica-

tions of the ACM 39, No. 10, 94-103 (1996).

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

24,

25.

26.

27.

28.

29.

30.

31

37.

38.

39.

40.

42.

43.

44.

45.

. W. Curtis, W. Hefley, and S. Miller, The People Capability
Maturity Model: P-CMM, Software Engineering Institute Re-
port, CMU/SEI-95-MM-01, Pittsburgh, PA (1995).

. D. Perry and W. Schafer, “Editorial,” Software Process: Im-
provements and Practice 1, No. 1, 1 (1995).

. R. Marciniak, Software Engineering, IEEE Press, Thousand

Oaks, CA (1994).

W.Humphrey, A Discipline for Software Engineering, Addison-

Wesley Publishing Co., Reading, MA (1995).

W. Humphrey, Managing the Software Process, Addison-

Wesley Publishing Co., Reading, MA (1989).

M. Paulk, “The Evolution of the SEI’s Capability Maturity

Model for Software,” Software Process: Improvements and

Practice 1, No. 1, 3-16 (1995).

A. Davis, “It Feels Like Deja Vu All Over Again,” IEEE Soft-

ware 13, No. 4, 4 (1996).

A. Wasserman, “Toward a Discipline of Software Engineer-

ing,” IEEE Software 13, No. 6, 23-32 (1996).

V. Basili and J. Musa, “The Future Engineering of Software:

A Management Perspective,” Computer 6, No. 5, 90-96

(1991).

M. Newman and D. Robey, “A Social Process Model of User-

Analyst Relationships,” MIS Quarterly 16, 249-266 (1992).

R. Hirschheim, H. Klein, and M. Newman, “Information Sys-

tems Development as Social Action: Theoretical Perspectives

and Practice,” Omega 19, 587-608 (1991).

. D.Robey and R. Newman, “Sequential Patterns in Informa-
tion Systems Development: An Application of a Social Pro-
cess Model,” ACM Transactions on Information Systems 14,
No. 1, 30-63 (1996).

. S. Sawyer, J. Farber, and R. Spillers, “Supporting the Social
Processes of Software Development,” Information Technol-
ogy & People 10, No. 1, 4662 (1997).

. W. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the
Software Design Process for Large Systems,” Communica-
tions of the ACM 31, No. 11, 12681287 (1988).

. F. Brooks, “No Silver Bullet: Essence and Accidents of Soft-
ware Engineering,” IEEE Computer 20, No. 4,10-19 (1987).

. D. Robey, “Conflict Models for Implementation Research,”

Applications of Management Science, R. Schultz and

M. Ginzberg, Editors, JAI Press, Greenwich, CT (1984).

D. Robey, D. Farrow, and C. Franz, “Group Process and Con-

flict in Systems Development,” Management Science 35, No.

10, 1172-1191 (1989).

D. Walz, J. Elam, and W. Curtis, “The Dual Role of Conflict

in Group Software Requirements and Design Activities,”

Communications of the ACM 36, No. 10, 63-76 (1993).

E. Carmel, “American Hegemony in Packages Software Trade

and the ‘Culture of Software’,” The Information Society 13,

No. 1, 124-142 (1997).

G. Zachary, Show-stopper!, The Free Press, New York (1994).

. L. Kirsch, “The Management of Complex Tasks in Organi-

zations: Controlling the Systems Development Process,” In-

formation Systems Research 7, No. 1, 1-21 (1996).

L. Suchman, “Making Work Visible,” Communications of the

ACM 38, No. 9, 56-65 (1995).

K. Thomas, “Conflict and Conflict Management,” Handbook

of Industrial and Organizational Psychology, M. Dunnette, Ed-

itor, John Wiley & Sons, Inc., New York (1983).

L. Pondy, “Organizational Conflict: Concepts and Models,”

Administrative Science Quarterly 12, 296-320 (1967).

J. McGrath, “Time Matters in Groups,” Intellectual Team-

work: Social and Technological Foundations of Cooperative

Work, J. Galegher, R. Kraut, and C. Egido, Editors, Lawrence

Erlbaum Associates, Inc., Hillsdale, NJ (1990), pp. 1-23.

SAWYER AND GUINAN

567

46.

47.

48.

49,

50.

51

52.

54.

55.

56.

57.

59.

60.

61.

62.

63.

64.

65.

66.

67.

J. McGrath and A. Hollingshead, Groups Interacting with
Technology, Sage, San Francisco, CA (1993).

E. Carmel and S. Sawyer, “Packaged Software Development
Teams: What Makes Them Different?,” Information Tech-
nology & People 11, No. 1, 7-19 (1998).

M. Keil and E. Carmel, “Customer-Developer Links in Soft-
ware Development,” Communications of the ACM 38, No. 3,
33-44 (1995).

E. Carmel and S. Becker, “A Process Model for Packaged
Software Development,” IEEE Transactions on Engineering
Management 41, 5, 50-61 (1995).

M. Cusumano and R. Selby, Microsoft Secrets: How the World’s
Most Powerful Software Company Creates Technology, Shapes
Markets, and Manages People, The Free Press/Simon & Schus-
ter, New York (1995).

C. Kemerer, “An Agenda for Research in the Managerial
Evaluation of Computer-Aided Software Engineering
(CASE) Tool Impacts,” Proceedings of the 22nd Annual Ha-
waii International Conference on Systems Science, IEEE Press
(1989), pp. 219-228.

W. Delone and E. McLean, “Information Systems Success:
The Quest for the Dependent Variable,” Information Systems
Research 3, No. 1, 60-95 (1992).

. J. Seidler, “On Using Informants: A Technique for Collect-

ing Quantitative Data and Controlling Measurement Error
in Organization Analysis,” American Sociological Review 39,
No. 12, 816-831 (1974).

S. Lee, D. Goldstein, and P. Guinan, “Informant Bias in I/S
Design Team Research,” Information Systems Research.: Con-
temporary Approaches & Emergent Trends, H. Nissen, H. Klein,
and R. Hirschheim, Editors, North-Holland Publishing Co.,
Amsterdam (1991).

J. Henderson and S. Lee, “Managing I/S Design Teams: A
Control Theories Perspective,” Management Science 38, No.
6, 757-777 (1992).

L. James, “Aggregation Bias in Estimates of Perceptual
Agreement,” Journal of Applied Psychology 67, No. 2, 219—
229 (1982).

D. Amick and H. Wahlberg, Introductory Multivariate Anal-
ysis, MrCutchan Publishing Co., Berkeley, CA (1975).

. W. Dillon and M. Goldstein, Multivariate Analysis: Methods

and Applications, John Wiley & Sons, Inc., New York (1984).
J. Cohen and P. Cohen, Applied Multiple Regression/
Correlation Analysis for the Behavioral Sciences, Lawrence
Erlbaum Associates, Inc., Hillsdale, NJ (1983).

E. Pedhazur and L. Schmelkin, Measurement, Design, and
Analysis, Lawrence Erlbaum Associates, Inc., Hillsdale, NJ
(1991).

R. Bogdan and S. Bicklen, Qualitative Research for Educa-
tion, Allyn and Bacon, New York (1982).

D. Dillman, Mail and Telephone Surveys: The Total Design
Method, John Wiley & Sons, Inc., New York (1978).

K. Klein, F. Dansereau, and R. Hall, “Levels Issues in The-
ory Development, Data Collection, and Analysis,” Academy
of Management Review 19, No. 2, 195-229 (1994).

T. DeMarco and T. Lister, Peopleware: Productive Projects
and Teams, Dorset House, New York (1987).

N. Venkatraman, “The Concept of Fit in Strategy Research:
Toward Verbal and Statistical Correspondence,” Academy
of Management Review 14, No. 3, 423-444 (1989).

1. Vessey and P. Sravanapudi, “CASE Tools as Collabora-
tive Support Technologies,” Communications of the ACM 38,
No. 1, 83-95 (1995).

Luqi and J. Goguen, “Formal Methods: Promises and Prob-
lems,” IEEE Software 14, No. 1, 73-85 (1997).

B68 SAWYER AND GUINAN

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

T. DeMarco, Why Does Software Cost So Much? And Other
Puzzles of the Information Age, Dorset House, New York
(1995).

W. Curtis, “Three Problems Overcome with Behavioral Mod-
els of the Software Development Process,” Proceedings of the
11th International Conference on Software Engineering, IEEE
Press (1989), pp. 398-399.

M. Cusumano and R. Selby, “How Microsoft Builds Soft-
ware,” Communications of the ACM 40, No. 6, 53—-61 (1997).
G. Hidding, “Reinventing Methodology: Who Reads It and
Why?,” Communications of the ACM 40, No. 11, 102-109
(1997).

B. Boehm, Software Engineering Economics, Prentice-Hall,
Inc., New York (1981).

1. Steiner, Group Process and Productivity, Academic Press,
New York (1972).

D. Cougar, “New Challenges in Motivating MIS Personnel,”
Journal of Information Systems Management 9,36—41 (1989).
R. Zawacki, “Motivating IT People in the *90s: An Alarming
Drop in Job Satisfaction,” Software Practitioner 3, No. 6, 1,
4-5 (1993).

R. Pressman, “Software Process Perceptions,” IEEE Software
13, No. 6, 16-19 (1996).

D. Avison and M. Meyers, “Information Systems and An-
thropology: An Anthropological Perspective on IT and Or-
ganizational Culture,” Information Technology & People 8, No.
3, 43-56 (1995).

G. Yukl, Leadership in Organizations, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1989).

P. Nutt, “Tactics of Implementation,” Academy of Manage-
ment Journal 29, No. 2, 230-261 (1986).

D. Ancona and D. Caldwell, “Information Technology and
Work Groups: The Case of New Product Teams,” Intellec-
tual Teamwork: Social and Technological Foundations of Co-
operative Work, J. Galegher, R. Kraut, and C. Egido, Editors,
Lawrence Erlbaum Associates, Hillsdale, NJ (1990).

M. Markus, “Power, Politics, and MIS Implementation,”
Communications of the ACM 26, No. 6, 430—444 (1983).
S. Sawyer and P. Guinan, “Application Development as Cul-
ture,” Proceedings of the 1995 AIS Americas Conference,
M. Ahuja, D. Galletta, and H. Watson, Editors, ACM Press,
New York (1995), pp. 54-56.

P. Guinan, J. Cooprider, and S. Faraj, “Enabling Software
Development Team Performance During Requirements Def-
inition: A Behavioral Versus Technical Approach,” Informa-
tion Systems Research 9, No. 2, 101-125 (1998).

S. Green and T. Taber, “The Effects of Three Social Deci-
sion Schemes on Decision Group Process,” Organizational
Performance and Human Behavior 25, 97-106 (1980).

J. Hackman, A Set of Methods for the Research on Work Teams,
Technical Report 1, Yale School of Organization and Man-
agement, New Haven, CT (1982).

J. Slocum and H. Sims, Jr., “A Typology for Integrating Tech-
nology, Organization, and Job Design,” Human Relations 33,
No. 3, 193-212 (1980).

J. Henderson and J. Cooprider, “Dimensions of I/S Planning
and Design Aids: A Functional Model of CASE Technolo-
gy,” Information Systems Research 1, No. 3, 227-252 (1990).
R. Kraut and L. Streeter, “Coordination in Software Devel-
opment,” Conumunications of the ACM 38, No. 3, 69-81
(1995).

Accepted for publication May 1, 1998.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Steve Sawyer Syracuse University School of Information Studies,
4-206 Center for Science and Technology, Syracuse, New York 13244-
4100 (electronic mail: ssawyer@cat.syr.edu). Dr. Sawyer is an as-
sistant professor at the Syracuse University School of Informa-
tion Studies. He received his doctorate at Boston University. His
research focuses on how people work together and how they use
information technology. Present research includes investigating
how software development can be improved through attending
to the social aspects of working together and the differences be-
tween packaged and custom software development. Dr. Sawyer
has published in Computer Personnel, the IBM Systems Journal,
IEEE Software, and Information Technology & People.

Patricia J. Guinan Babson College, Babson Park, Massachusetts
02157-0310 (electronic mail: guinan@hcc01.babson.edu). Dr. Gui-
nan is an associate professor of information systems in the math-
ematics and science department at Babson College. She is the
McDermott Term Chair recipient at Babson and conducts both
applied and theoretical research in the areas of technology trans-
fer and communication-related issues in information system de-
sign. She received her Ph.D. from Indiana University. Her re-
search has been published in a number of journals, including
Human Communication Research, the IBM Systems Journal, Group
and Organizations, and Information Systems Research. Dr. Gui-
nan has also published an award-winning book entitled Patterns
of Excellence for IS Professionals.

Reprint Order No. G321-5690.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

SAWYER AND GUINAN 569

