On the linkage
of dynamic tables
in relational DBMSs

Tables and operations over tables are at the
center of the relational model and have been at
the core of the Structured Query Language (SQL)
since jts development in the 1970s. As database
applications have grown rapidly, the concept

of tables has been generalized in database
languages. The new generalized table concept
in the SQL standard and in some commercial
databases includes explicitly defined derived
tables, such as user-defined temporary tables,
transition tables, user-defined table functions,
and table locators, that can be manipulated by
users. We call them dynamic tables, because
their entities exist only at run time. The
challenges that these dynamic tables pose to
existing relational engines lie in the linkage
between the creation of the derived table and ils
references. In this paper, we describe a uniform
framework for compile-time and run-time
processing of dynamic tables. We also give a
thorough explanation of how such a generic
framework can be realized in existing relational
database management systems, such as IBM
DATABASE 2™ Common Server. Our experience
with our prototype has shown the simplicity,
generality, and efficiency of our approach.

Tables and operations over tables are at the cen-
ter of the relational model and have been at the
core of the Structured Query Language (SQL) since
its development in the 1970s. Queries define oper-
ations that accept tables as input operands and pro-
duce other tables as output. Query evaluation within
a relational database management system (DBMS)
engine is also based on relational operators (e.g., re-
striction, projection, join, etc.) that manipulate ta-
ble record streams.
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There are basically two types of tables supported by
SQL: base tables and derived tables. In the SQL-92
standard, '~ base tables are used to store the data
in the database. In contrast to base tables, derived
tables are defined in terms of existing base tables or
other derived tables. They can be defined either
explicitly by the user or implicitly by the database
engine. In SQL-92, explicitly defined derived tables,
called “views,” are specified by users in a
CREATE VIEW statement. Implicitly defined derived
tables are temporary tables created during the ex-
ecution of table operations to store intermediate re-
sults, and in general they are not directly manipu-
lable by the user. However, regardless of their type,
tables are internally manipulated uniformly by the
DBMS.

As database applications have grown rapidly, the
concept of tables has been generalized in the SQL
standard? and in some commercial DBMSs, for ex-
ample, the user-defined temporary tables in SQL-92,'
transition tables within triggers in SQL3,” and user-
defined table functions in IBM DATABASE 2* (DB2*)
Universal Database (UDB).®

These new derived tables are transient, but unlike
implicitly defined derived tables, they are directly ma-

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reterence and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

FUH ET AL. 539




nipulable by the user. In all cases, the physical table
produced by these extensions does not exist at com-
pile time, nor is it created by the SQL statement that
references it. For example, transition tables associ-
ated with a trigger are implicitly defined tables that
will contain copies of the rows affected when the trig-
ger is fired by some INSERT, UPDATE, or DELETE
statement. The trigger body, defining the action when
the trigger is fired, may reference these temporary
tables. Because the trigger body is compiled before
the execution of the SOL statement that fires the trig-
ger, the actual transition table does not come to ex-
ist until the firing SOL statement is executed. So, how
should a database engine represent these transition
table references at compile time?

The challenge that these extensions pose to existing
relational engines lies in the linkage between the cre-
ation of and the references to the derived table. This
problem is similar to the problem of external name
references that already exists in today’s programming
languages.” Analogous to the approach used by the
programming language compiler, in the trigger ex-
ample the SQL compiler will need to mark transition
table references as unresolved. Resolution occurs
when the trigger is fired and the trigger body is given
the actual transition table for execution. In other
words, the linkage between the table creation and
the table reference takes place dynamically as op-
posed to statically. For this reason, we call such ta-
bles dynamic tables, to separate them from ordinary
derived tables.

This process of linking a table reference to its phys-
ical table entity, called dynamic linking, is the sub-
ject of this paper. The contributions of our work are
the following. First, we have found that the key to
supporting various dynamic tables is dynamic link-
ing, and we have devised a uniform framework for
both compile-time and run-time processing of dy-
namic tables. The idea is to view dynamic tables as
generalized functions that produce record sets. For
each dynamic table, the compiler creates a table tem-
plate, which contains information known at compile
time, such as its column definition. Second, our ap-
proach has only small impact on existing run-time
architectures. We isolate most changes to the run-
time architecture into a new functional component,
the dynamic broker, which is responsible for dynam-
ically linking unresolved table references. Third,
there is minimal performance impact. Dynamic link-
ing takes place only when a dynamic table is first ref-
erenced (opened). Based on this approach, we have
prototyped the support of several of these new table
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extensions (specifically table functions, triggers, ta-
ble locators, and temporary tables) within the DB2
Common Server, which is an carlier release of the
DB2 UDB. Our experience with this prototype has
shown the simplicity, generality, and efficiency of our
approach.

Since the use of dynamic tables is still relatively new,
we briefly mention how transition tables for triggers
are handled in some products. In DB2 UDB, the trig-
ger body is compiled as part of an SQL statement that
can fire the trigger; thus there is no dynamic linking
issue. The disadvantage of this approach is the sig-
nificant work required in the compiler to understand
the semantics of triggers and, further, to prevent cer-
tain optimizations from being incorrectly applied. In
DB2 for AS/400% (Application System/400),* the user
creates a trigger program written in languages such
as C or COBOL. When the trigger is fired, the trigger
program is passed a pointer to a trigger section that
contains information about the triggering statement
and a buffer for the old and new records. Low-level
application programming interfaces (APIs) are used
to access the buffer records through code in the trig-
ger program. None of these approaches is applica-
ble to other dynamic tables.

The rest of this paper is organized as follows. The
next section discusses dynamic tables and illustrates
the issue of dynamic linkage. Following sections de-
scribe a compile-time framework, where dynamic ta-
bles are treated uniformly by the SQL compiler, and
the extended run-time architecture for supporting
dynamic tables. Remaining sections explain how the
dynamic linkage process can be realized in the con-
text of triggers, table locators, external table func-
tions, and user-defined temporary tables, and con-
clude the paper.

Dynamic tables

This section introduces the dynamic tables that are
of interest in this paper and illustrates the dynamic
linking issue.

User-defined table functions. A table function is a
function that returns a set of records. 1t not only pro-
vides a more general way (than a view) to compose
new tables from existing tables, but also allows ac-
cess to external data (e.g., data stored in flat files)
using the same query mechanisms. For example, we
may write the following DB2 UDB statement to de-
fine a table function avg_temp, implemented in C,
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that results in a table of <city,date,temp> with the
average daily temperature for a group of cities:

CREATE FUNCTION avg_temp ()
RETURNS TABLE (city VARCHAR (30), date DATE,
temp INTEGER)
LANGUAGE C

The keyword TABLE in the RETURNS clause indicates
that the function is a table function.” Once defined,
this function can be used in a query, for example,
to return the average temperature in Chicago on
July 13, 1959:

SELECT temp FROM TABLE (avg_temp ()) AS adt
WHERE city = 'CHICAGO'
AND date = DATE '1959-07-13'

Notice that the table avg_temp in the SELECT state-
ment does not exist, nor is it accessible by the da-
tabase, until the table function is cxecuted at run
time. In other words, the compiler has generated an
executable plan (also called access section) for the
SELECT statement that refers to a nonexistent table.

Transition tables in triggers. As mentioned briefly
in the introduction, a transition table contains the
set of rows that were affected by the triggering state-
ment, i.c., those rows that are being inserted, up-
dated, or deleted. The scope of a transition table is
the whole trigger body, where it can be used as if it
were a base or derived table.

The following defines a table employees and a trig-
ger keep_stat that will be fired after updates on the
table are performed:

CREATE TABLE employees
(hame  VARCHAR (30),
salary DECIMAL (9, 2),
dept VARCHAR (5))

CREATE TRIGGER keep_stat
AFTER UPDATE ON employees
REFERENCING NEW_TABLE AS new
FOR EACH STATEMENT
BEGIN ATOMIC
INSERT INTO stat
SELECT MIN (salary), AVG (salary), MAX (salary)
FROM new

END
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The trigger body is defined by the statements within
the BEGIN block. When fired, it inserts into the ta-
ble stat a row with the new minimum, average, and
maximum salary information from the set of affected
rows with their updated values (REFERENCING
OLD_TABLE could be used to refer to the affected
rows with their original values). Given the trigger def-
inition, the following UPDATE statement on employ-
ees, on execution, will create a transition table (spec-
ified as new in the trigger definition) containing the
affected rows. In this case, the new table will contain
the new records of employees in the sales depart-
ment:

UPDATE employees SET salary = salary * 1.1
WHERE dept = 'Sales'

The contents of the transition table are derived by
the UPDATE operation and the trigger is fired after
UPDATE is executed. Notice that the transition table
referenced in the INSERT statement of the trigger
body does not exist until the execution of the UPDATE
statement, and again the compiler has to generate
an executable plan for the INSERT statement that re-
fers to a nonexistent table.

Table locators. Some SQL proposals suggest TABLE
as a built-in data type. With such, table locators are
introduced to bind tables {especially when they are
used to define columns resulting from a query) to
host variables. !’ Table locators are “handles” that
allow applications to access the derived tables
through regular SOL table operations within the same
transaction. A host variable of a table locator type
is declared in the DECLARE SECTION of the appli-
cation program, as in the following example:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS TABLE (name  VARCHAR (30),
salary DECIMAL (9, 2))
AS LOCATOR emp_loc;
SQL TYPE IS TABLE LIKE departments AS
LOCATOR dept_loc;
EXEC SQL END DECLARE SECTION;

One can declare a host variable of the table locator
type by providing the complete table structure (i.e.,
the list of column names and data type pairs), or by
providing the name of a table (departments in the
above example) from which the table structure is to
be derived. Once defined, the table locator host vari-
able can be used in assignments or other SOL state-
ments where tables can be used. In the following ex-
ample, the host variable emp_loc is assigned the
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result, of type TABLE, that contains names of the em-
ployees in the sales department who make more than
$50 000:

EXEC SQL SET :emp_loc = (SELECT (SELECT =*
FROM TABLE (d.emps)
WHERE salary > 50000)
FROM departments AS d
WHERE name = 'Sales');

Notice that the example statement does not really
move the data of all employees of the sales depart-
ment to the host program. It merely creates a de-
rived tabie and assigns a handle value that uniquely
identifies this derived table in the server, during the
unit of work, to the host variable emp_loc. Because
emp_loc uniquely identifies the derived table, sub-
sequent queries can be issued, using this variable
where SOL expects a table. For example, the follow-
ing query returns the average salary of the employ-
ees in the table represented by emp_toc:

EXEC SQL SELECT AVG (salary) FROM TABLE
(:emp_loc);

User-defined temporary tables and other constructs.
User-defined temporary tables are tables that are
temporarily created and maintained by the SOL en-
gine for application programs connected to the
DBMS. They are defined like regular base tables, but
do not contain any data until the execution time of
a given application. The first time the application
program references the temporary table, it is instan-
tiated and made available for manipulation. In ad-
dition to temporary tables, SQL has other constructs
that explicitly define derived tables for which the con-
tents are not known until run time. These include
named table expressions and result sets returned by
stored procedures.

What is important to observe is that in all these con-
structs the structure of the explicitly defined derived
tables is known by the SQL engine (since they are
defined as regular tables), but the contents do not
come into existence until the run time of an appli-
cation program or SQL statement that references it.

Extended table object representation

In our introduction, we suggested a uniform way to
view all kinds of dynamic tables: as functions that
produce tables at run time. In this section, we de-
scribe how to represent these unresolved dynamic
tables by extending the existing fable objects, and in

542 FuUH ET AL

the next section, we describe how to use them for
dynamic linking. For convenience, we assume an ar-
chitecture similar to the pB2 Common Server.' We
believe that the design presented in this paper ap-
plies also to other relational database systems.

In pB2 Common Server, each SQL statement is com-
piled into an executable plan that consists of a set
of run-time objects manipulated by threads of op-
erators. > The main logic of a thread is to progres-
sively construct intermediate tables by applying op-
erators, such as sort or join, to the incoming table
streams. The main data structure associated with any
table operation is the table object (TAOB), and each
table reference has its own TAOB.

Current table objects. A TAOB is a descriptor for a
table reference in any table operation. Some of the
TAOB attributes are known and set at compile time
as constants (from the system catalog or the SQL
statement context), for example, the table type and
table identifier (ID) of a base table, the active col-
umn buffer areas, the associated search argument
predicate, '* etc. Some other TAOB attributes are used
to keep track of the run-time state of the table, such
as the current record 1D, number of records fetched,
status of last operation, etc. Figure 1 illustrates some
important TAOB attributes that are of interest for this

paper.

The type of a table is indicated by the first attribute.
Currently, the possible values are temporary and base.
The table 1D uniquely identifies a table. For base ta-
bles, the table 1D is known at compile time and is set
by the compiler, while the table ID for a temporary
table is set at run time, when the table is created. As
shown in Figure 1, the compile-time TAOB has a
pointer to a target TAOB. The table ID in the target
TAOB points to the actual table. After the tempo-
rary table is created, all table operations on it will
see the same table ID through their own TAOBs by
this indirect pointer.

Many table operations are based on scans, either by
relation or by index. To maintain the current state
of a scan, the data manager component of the DBMS
creates a handle structure at the time when the tar-
get table is opened. This handle structure keeps track
of the position-sensitive information at the data ac-
cess level, and the handle is used to access the target
table for scan-based operations. The status field
keeps the current status (e.g., open, closed, end of
file) of the table operation. The record_id field keeps
the ID of the last record fetched.
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Figure 1 TAOB attributes
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New attributes for dynamic tables. We now describe
new fields in the TAOB for supporting dynamic ta-
bles. Unlike ordinary tables, a dynamic table needs
to keep extra information obtained at compile time
(from the SOL statement or the system catalog) in
the TAOB, in order to resolve the “unknowns” at run
time. The kind of information needed varies for the
different dynamic tables:

s Table functions: The function invocation descrip-
tor (UFOB) is needed for external table functions;
the 1D is needed for internal table functions.

s Transition tables: The type of transition table (old
or new), the associated trigger name, and the as-
sociated base table name are needed.

» Table locator: The object that contains the column
definition of the table locator is needed.

s User-defined temporary tables: The type of the
temporary table (global, local, or declared local) and
the associated table name are neceded.

We have now identified these new table types: table

function, transition table, table locator, and user-defined
temporary table. A dynamic table descriptor is also
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added to the TAOB as the common control block for
dynamic tables. For base tables and temporary ta-
bles, this is set to “null.” The dynamic table descrip-
tor contains the following information:

*» Subtype: The subtype field is an extension of the
table type. For table functions, it is set to internal
or external. For transition tables, it is either new
or old. For a user-defined temporary table, it can
be global, local, or declared local.

» Table schema and table name: This is the schema
and the table name with which the underlying dy-
namic table is associated. It applies only to tran-
sition tables and user-defined temporary tables.

* Trigger schema and trigger name: For a transition
table, this attribute further describes the schema
name and trigger name of the trigger where it is
declared.

* Column definition object: This attribute points to
the column definition of the corresponding table
locator.

» External function object: This attribute points to
the UFOB function descriptor of the correspond-
ing external function invocation.
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Figure 2

A typical relational DBMS architecture. A dynamic table broker is introduced for dynamic linking at the time the

table is opened. Once table references are resolved, all table operations proceed as before.

In the following section, we will show how the ex-
tended TAOB described here is used at run time for
dynamic linking between the actual table entities and
the unresolved table references.

Extended run-time environment

A typical relational DBMS engine at run time con-
sists of a relational data service (RDS) component
for the logical (relational) view of the database, and
a data manager service (DMS) component for the

FUH ET AL.

physical (raw data) view of the database. Figure 2
shows such an overall architecture. It also includes
a new component, the dynamic table broker, that is
used to support dynamic tables.

As indicated in this figure, access requests to base
tables and ordinary derived tables will be processed
uniformly as before. The interpreter invokes the cor-
responding relational data access routines, which will
in turn invoke lower-level bms data access routines.
Since the TAOBs of the subject tables are already
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“linked” to the table 1D corresponding to the phys-
ical table entity for base tables at compile time, or
at run time for ordinary derived tables, no special
treatment is needed for them.

Access to dynamic tables is complicated by the fact
that they are produced externally to the executing
SQL statement, whereas ordinary derived tables are
produced internally. The dynamic table broker com-
ponent is introduced to carry out this dynamic link-
ing process. In this section, we give a brief overview
of the existing run-time environment and describe
how the broker component can be integrated into
the existing run-time routines.

Current run-time environment. Table entities,
whether base or derived, must be created before they
can be accessed. A base table entity must be created
before any SQL statement that accesses it can be com-
piled. Its table 1D is known a priori and is stored in
the TAOB of operations that access the table. On the
other hand, derived tables are “computed” from
other tables in an executing SQL statement. Ordinary
derived tables are created (and thus acquire a table
D), populated, and accessed when the table expres-
sion that (implicitly) defines the derived table is eval-
uated. These derived tables are normally dropped
after execution of the SOL statement.

Any table must first be opened to initialize appro-
priate working areas before it can be manipulated.
The open process is accomplished by invoking the
open table run-time routine, which uses the table 1D
to invoke lower-level DMS routines. Once the table
is opened, tuples in the table can be manipulated by
each individual run-time routine. When table ma-
nipulation is completed, the close table run-time rou-
tine is invoked to release the working areas.

The dynamic table broker. Since all table operations
have to go through the open routine, the natural
place to do dynamic linking is at open time, so we
add a simple dispatcher at the very beginning of the
open table routine. If the type indicates a base table
or a derived table operation, then the dispatcher al-
lows the request to fall through to the existing logic.
For dynamic tables, control will be passed to the dy-
namic table broker. The dynamic table broker will
resolve the linkage between unresolved dynamic ta-
ble references and the corresponding table entity.
Once the linkage is resolved, all the run-time rou-
tines can proceed as if the underlying table were an
ordinary derived table.
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Dynamic linking involves two steps: first, finding the
target table entity and, second, storing the obtained
information in the current TAOB for subsequent uses.
Although the details of table lookup and attribute

Dynamic linking has two steps:
finding the target table entity
and storing the obtained
information in the current TAOB.

setting vary from one dynamic table to another, the
fundamental mechanism is the same. The following
segment of C-like pseudocode demonstrates the dis-
patching logic of the dynamic table broker:

switch access_taob.type
{
case TRANSITION_TABLE:
link_transition_table(access_taob);
break; .
case TABLE_FUNCTION:
link_table_function(access_taob);
break;
case TABLE_LOCATOR:
link_table_locator(access_taob);
break;
case USER_DEFINED _TEMPORARY_TABLE:
link_user_defined_temporary_table(access_taob);
break;

-

where link_transition_table(), link_table_function(),
link_table_locator(), and link_user_defined_tempo-
rary_table() perform the linkage for the respective dy-
namic tables. The following section describes how
these routines can be realized.

Supporting dynamic tables

This section describes how the extended run-time
architecture supports dynamic tables.

Transition tables in triggers. Transition tables cap-
ture the state of affected rows when the triggering
SQL operation is applied to a table. More specifically,
the old transition table contains the value of affected
rows prior to the application of an UPDATE or a

FUH ET AL. 545




Figure 3 Run-time configuration and dynamic linking after trig1 is entered
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DELETE operation, and the new transition table con-
tains the value of affected rows that will be (or were)
used in an UPDATE or an INSERT operation. When
a triggering operation (INSERT, DELETE, or UPDATE)
is executed, transition tables are created and pop-
ulated, based on the subtype of the transition table
(old or new), the triggering operation, and the cur-
rent content of the table.

Two more details deserve further discussion. First,
transition tables are created during the execution of
the triggering statement. Therefore, the TAOB has
to be recorded in a specific area known by the dy-
namic table broker routine, link_transition_table(), to
resolve references to the transition table in the ex-
ecutable plan associated with the trigger body. Scc-
ond, the activation of triggers can be nested, because
some of the SOL statements in the trigger body may
cause another (or the same) trigger to be activated.
Therefore, like procedure calls in conventional pro-
gramming languages, the data structure for main-
taining TAOBs of transition tables is a stack so that
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the innermost TAOB always has precedence. TAOBs
are pushed onto the transition table stack at trigger
body entry and popped off at trigger body exit.

The dynamic table broker finds the top entry of the
transition table stack for the actual table entity, and
stores the obtained table ID in the TAOB of the cur-
rent table reference. To illustrate our discussion, here
is pseudocode for the main logic of the dynamic ta-
ble broker routine link_transition_table():

link_transition_table(access_taob)

{
TAOB actual_taob;

/¥ (1) Look up the transition table stack =/
if (access_taob—dt_cb.subtype == NEW)
actual_taob = tran_tbl_stack[top].new;
else

actual_taob = tran_tbl_stack[top].old;
/+ (2) Copy specific attributes */
access_taob—type = actual taob—type;
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access_taob—id = actual_taob—id;

/*# (8) Copy implementation-dependent generic
attributes =/

modify_other_attributes(access_taob, actual_taob);

}

Putting everything together, we use the following ex-
ample to demonstrate the run-time flow of the dy-
namic linkage for transition tables. Let t1, t2, and t3
be tables with numeric columns ¢1 and ¢2, and trig1
and trig2 be the after update for each statement trig-
gers for t1 and 12, respectively. Moreover, trig1 pro-
cesses only the new transition table nt, whereas trig2
processes both the new and old transition tables nt
and ot:

CREATE TRIGGER trig1 AFTER UPDATE ON t1
REFERENCING NEW_TABLE AS nt
FOR EACH STATEMENT MODE DB2SQL
BEGIN

CASE (SELECT COUNT(x) FROM nt)
WHEN 2:
UPDATE t2 SET ¢2 = ¢2 * c2 WHERE ¢2 < 0;
END CASE;

END

CREATE TRIGGER trig2 AFTER UPDATE ON 12
REFERENCING NEW_TABLE AS nt
OLD_TABLE AS ot
FOR EACH STATEMENT MODE DB2SQL
BEGIN

INSERT INTO t3 SELECT nt.c1, ot.c2 FROM nt, of;
END

The following update operation on t1 will fire trig1,
which will in turn fire trig2:

UPDATE t1 SET c2 = ~c2 WHERE ¢2 < O

The run-time configuration and the dynamic link-
ing process when trig1 is fired are sketched in Figure
3. During the update of t1, the transition table nt is
created and populated with affected rows. Before
trig1 is entered, the TAOB of nt is pushed onto the
transition table stack (the old transition table is not
generated and is indicated by “null”), and then a dy-
namic linking occurs at the first reference to nt in
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the trigger body. Figure 4 shows the configuration
when trig2 is also fired.

User-defined temporary tables. A global temporary
table is a user-defined temporary table shared by all
SQL operations in a database connection session. It
is “global” in that changes are immediate and vis-
ible by subsequent operations against the same da-
tabase connection. Itis “temporary” in that the con-
tent persists only during the database connection;
the physical table entity for the global temporary ta-
ble is dropped at the end of the connection session.
Another important characteristic of global tempo-
rary tables is that they are not shared among data-
base connection sessions. These characteristics can
be best understood through an example. Let gtt be
a global temporary table and t1 and t2 be base ta-
bles with column definition identical to that of gtt.
The database connections, serialized or interleaved,
will populate t1 and t2 with the rows as shown in
Figure 5.

When a global temporary table is opened on behalf
of an SQL operation, the dynamic table broker rou-
tine link_user_defined_temporary_table will look up the
actual table entity in a global symbol table located
in the working area for the connection. If it is found,
the TAOB of the actual table entity is used to per-
form the dynamic table linkage. If it is not found,
the table entity is created and entered into the sym-
bol table for subsequent lookups. The TAOB of the
newly created table entity is then used to perform
the dynamic table linkage for the underlying table
access. The details of the table linkage are identical
to that of transition table reference, and the follow-
ing pseudocode outlines the main logic of the dy-
namic table broker routine link_user_defined_tempo-
rary_table():

link_user_defined_temporary_table(access_taob)
{
switch (access_taob—dt cb.subtype)
{
case GLOBAL:

{
TAOB actual_taob;

/# 1. Look up the global symbol table. =/
actual_taob = find_global_temporary_table
(access_taob);

/% 2. Create the global temporary table, if not
created yet. x/
if (actual_taob == NULL)
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Figure 4 Run-time configuration and dynamic linking after trig2 is entered
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actual_taob = create_global_temporary_table
(access_taoby);
/% 3. Copy specific attributes. =/
access_taob—type = actual_taob—type;
access_taob—id = actual_tacb—id;

/% 4. Copy implementation-dependent generic
attributes. =/
modify_other_attributes(access_taob,
actual_taob);
1
break;
case LOCAL:

{

At the end of a database connection, the database
engine will scan the global symbol table and drop all
the table entities created on behalf of global tem-
porary table accesses in that connection session.
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Local temporary tables and declared local temporary
tables are similar to global temporary tables. The only
difference is in scope. Local temporary tables are
shared among all the SQL operations belonging to
the same SOL module, while declared local tempo-
rary tables are shared in a PSM (Persistent Stored
Module*) basic block. Therefore, the data structure
and table resolution logic for global temporary ta-
bles also apply for local and declared local tempo-
rary tables. However, since the symbol table has to
be scoped, the initialization and the clean-up logic
described above for global temporary tables has to
be performed for each scope of the underlying SQL
statement.

Table functions. Table functions can be internal or
external. The body of internal table functions con-
sists of a sequence of SQL statements. In contrast,
external table functions are written in host languages
such as C, C++, Java®*, Visual Basic**, etc.

For internal table functions, the physical table en-
tity is indeed the executable plan of the body of
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Figure 5 Global temporary tables

Connection 1

connect to db;

insert into gtt values (1, 2);
insert into gtt values (2, 4);
insert into t1 select * from gtt;
connect reset;

Resutt 1

={(12,24}

the table function. Therefore, the broker routine
link_table_function invokes the plan manager of the
database engine to load the desired plan, which is
identified by the plan 1D stored in the dynamic table
descriptor of the underlying TAOB. The in-memory
descriptor of the plan being loaded is also recorded
in the TAOB for execution of subsequent invocations
of the table function.

External table functions are treated by the database
engine as “black-box table producers.” Therefore,
the physical table entity is the entry point of the ex-
ternal function that implements the table function.
To obtain the entry point of the external function,
link_table_function dynamically loads the desired func-
tion library into the address space of the database
engine. The symbol table of the library being loaded
into memory is then searched for the desired exter-
nal function. Once resolved, the function entry point
is recorded in the dynamic table descriptor of the
underlying TAOB for subsequent invocation of this
table function.

The main logic of link_table_function is illustrated by
the following pseudocode:

link_table_function{access_taob)
{
TAOB actual_taob;
switch (access_taob—dt_cb.subtype)

case INTERNAL_TF:
/+ Internal table function: load access plan. */
access_taob—dt_cb.plan_cb_ptr =
load_plan(access_taob—dt_cb.planiD);
break;
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Conriection 2

connect to db;

insert into gtt values (3, 6);
insert into gtt values (4, 8);
insert into 2 select * from git;
connect reset;

Result-2

t1={(36),{428}

case EXTERNAL_TF:
/% External table function: load library and
resolve entry. =/
library_handle = dynamicLoad
(access_taob—dt_cb.libPath);
access_taob—dt_cb.function_entry =
resolveEntry(library _handle,
access_taob—dt_cb.functionName);
break;

Currently, the table function support in DB2 UDB al-
lows only read operations (i.e., open, fetch, and
close).

Table locators. A locator table is used to keep track
of table locators created in a given transaction. The
locator table maps a locator ID to a pointer to the
TAOB of the actual associated table. At the begin-
ning of a transaction, the locator table is initialized
with no entry in it. During a transaction, new table
entries are created whenever (derived) tables are
“bound out” to a host variable (through the SET
statement, for example). At the end of a transaction,
the locator table is purged after all the table loca-
tors arc freed.

When a table locator is accessed in an SQL statement,
the run-time dynamic linking process takes place in
two steps. First, the locator 1D, which has been stored
in the host variable, is bound in and stored in the
dynamic table descriptor of the underlying access
TAOB, at the bind-in time of the plan execution of
the sOL statement. In the following pseudocode,
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userObject is the locator 1D from the host variable,
and sqlObject is the access TAOB:

bind_in(type, sglObject, userObject)
{
switch (type)
{
case TABLE_LOCATOR:
sqlObject—dt_cb.locatorlD = userObject;
break;
case. ..
1
1

Second, at the time the corresponding table is
opened, the locator 1D set earlier in the access TAOB
is used to look up the locator table to get the actual
TAOB. Then the TAOB attributes of the current TAOB
are initialized according to those of the actual TAOB:

link_table_locator(access_taob)

{
TAOB actual _taob;

/# 1. Look up the global symbol table. =/
actual_taob = find_table_locator
(access_taob—dt_cb.locatorlD);

/% 2. Copy specific attributes. =/
access_taob—type = actual_taob—type;
access_taob—id = actual_taob—id;

/x 3. Copy implementation-dependent generic
attributes. =/
modify_other_attributes(access_taob, actual_tacby;

Conclusion

The traditional concept of tables in relational da-
tabases has been generalized in the SQL language and
in some commercial database systems. Unlike tra-
ditional tables, dynamic tables exist only at query-
execution time and are directly manipulable by the
user. The query compiler generates unresolved ta-
ble references and relies on some run-time linking
mechanism to resolve them.

We have proposed a generic framework for support-
ing dynamic tables in existing query compilers, where
all dynamic tables are treated in a uniform way by
the compiler and broker functions are added into
the run-time environment to establish the dynamic
linkage. We have described the extensions to the
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compiler and the run-time environment in the con-
text of DB2 Common Server, and explained how this
generic framework can be applied to support tran-
sition tables, table functions, user-defined temporary
tables, and table locators. We have also built a pro-
totype based on this framework. The success of our
prototype has confirmed our expectation of the sim-
plicity and the applicability of our design.

In future work, we would like to continue exploring
in two directions:

* Abstract tables: Recently, abstract tables have been
proposed. ' These would ultimately allow all op-
erations on a table to be user-definable; that is,
the user could define open, fetch, close, insert, up-
date, delete, and even rollback and commit oper-
ations. Although we do not expect any impact from
such a generalization on the framework we de-
scribe in this paper, we would like to take a closer
look at the language specification.

* MPP parallel environment: DB2 UDB Version 5 sup-
ports MPP (massively parallel processing) where ta-
bles can be partitioned across multiple nodes to
exploit a parallel environment.® A copy of the same
executable plan is executed on multiple nodes, with
table queues for shipping data streams. The result-
ing table from each node is piped through table
queues to the “coordinator” node for final process-
ing and bind out to the client. We would like to
enhance our framework to work in such a parallel
environment.
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