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Tables  and operations over tables are at the 
center of the relational model and have  been at 
the core of the Structured Query  Language (SQL) 
since its development in the 1970s. As database 
applications have grown rapidly, the concept 
of tables has  been  generalized in database 
languages.  The  new  generalized table concept 
in the SQL standard and in some commercial 
databases includes explicitly defined derived 
tables, such as user-defined temporary tables, 
transition tables, user-defined table functions, 
and table locators, that can  be manipulated by 
users. We call them dynamic tables, because 
their entities exist only at  run time.  The 
challenges that these dynamic tables pose to 
existing relational engines lie in the linkage 
between the creation of the derived table and its 
references. In this paper, we describe a uniform 
framework for compile-time and run-time 
processing of dynamic tables. We also give a 
thorough explanation of  how such a generic 
framework can  be  realized in existing relational 
database  management  systems, such as ISM 
DATABASE 2TM Common  Server.  Our  experience 
with our prototype has shown the simplicity, 
generality, and efficiency of our approach. 

T ables  and  operations  over  tables are  at  the cen- 
ter of the  relational  model  and have been at the 

core of the  Structured Query  Language (SQL) since 
its development in the 1970s. Queries  define  oper- 
ations  that  accept tables  as  input operands  and  pro- 
duce  other tables  as output.  Query evaluation within 
a  relational  database  management system (DBMS) 
engine is also  based on relational operators (e.g.,  re- 
striction,  projection,  join,  etc.)  that  manipulate  ta- 
ble  record  streams. 

There  are basically two types of tables  supported by 
SQL: base  tables  and  derived  tables. In the SOL-92 
standard,  base  tables  are used to  store  the  data 
in the  database.  In  contrast  to  base  tables,  derived 
tables are defined in terms of existing base  tables or 
other derived  tables.  They  can  be  defined  either 
explicitly by the user or implicitly by the  database 
engine. In SOL-92, explicitly defined  derived  tables, 
called "views," are specified by users in a 
CREATE VIEW statement. Implicitly defined  derived 
tables are  temporary tables  created  during  the ex- 
ecution of table  operations  to  store  intermediate  re- 
sults, and in general  they  are  not directly manipu- 
lable by the user.  However,  regardless of their type, 
tables are internally  manipulated uniformly by the 
DBMS. 

As database  applications have grown rapidly, the 
concept of tables  has  been  generalized in the SQL 
standard4  and in some  commercial DBMSS, for ex- 
ample, the user-defined temporary  tables in SQL-92, ' 
transition  tables within triggers in SQL3,5 and  user- 
defined  table  functions in IBM DATABASE 2" (DB2") 
Universal  Database (uDB)." 

These new derived  tables are  transient, but  unlike 
implicitly defined derived tables, they are directly ma- 
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nipulable by the user.  In all cases, the physical table 
produced by these  extensions does  not exist at com- 
pile  time, nor is it created by the SQL statement  that 
references  it.  For  example, transition  tables associ- 
ated with a  trigger are implicitly defined  tables  that 
will contain  copies of the rows affected when the trig- 
ger is fired by some INSERT,  UPDATE, or DELETE 
statement.  The trigger body, defining the action when 
the trigger is fired, may reference  these  temporary 
tables.  Because the trigger  body is compiled  before 
the execution of the SQL statement  that fires the trig- 
ger,  the  actual  transition  table  does  not  come  to ex- 
ist until the firing SQL statement is executed. So, how 
should  a  database  engine  represent  these  transition 
table  references  at compile  time? 

The challenge  that  these  extensions  pose  to existing 
relational  engines lies in the linkage between the cre- 
ation of and  the  references  to  the  derived  table.  This 
problem is similar to the problem of external  name 
references  that already exists in today's programming 
languages.  Analogous to  the  approach  used by the 
programming  language  compiler, in the trigger ex- 
ample  the SQL compiler will need  to  mark  transition 
table  references  as unresolved. Resolution  occurs 
when the trigger is fired and  the trigger body is given 
the  actual  transition  table  for  execution. In other 
words, the linkage  between the  table  creation  and 
the  table  reference  takes place dynamically as  op- 
posed to statically. For  this  reason, we call such  ta- 
bles dynamic tables, to  separate  them  from  ordinary 
derived  tables. 

This  process of linking a  table  reference  to  its phys- 
ical table  entity,  called dynamic linking, is the sub- 
ject of this paper.  The  contributions of our work are 
the following. First, we have found  that  the key to 
supporting  various  dynamic  tables is dynamic link- 
ing, and we have  devised  a  uniform  framework for 
both  compile-time  and  run-time processing of  dy- 
namic  tables. The idea is to view dynamic  tables as 
generalized  functions  that  produce  record  sets.  For 
each dynamic table,  the compiler  creates  a  table  tem- 
plate, which contains  information known at compile 
time,  such  as its column  definition.  Second, our ap- 
proach  has only small  impact  on existing run-time 
architectures.  We  isolate  most  changes  to  the  run- 
time  architecture  into  a new functional  component, 
the dynamic  broker, which is responsible for dynam- 
ically linking unresolved  table  references. Third, 
there is minimal  performance  impact.  Dynamic link- 
ing takes  place only when  a  dynamic  table is first ref- 
erenced  (opened).  Based  on  this  approach, we have 
prototyped  the  support of several of these new table 
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extensions (specifically table  functions,  triggers,  ta- 
ble locators,  and  temporary  tables) within the DB2 
Common  Server, which is an  earlier  release of the 
DB2 UDB. Our experience with this  prototype  has 
shown the simplicity, generality, and efficiency  of our 
approach. 

Since the use of dynamic  tables is still relatively new, 
we briefly mention how transition  tables  for  triggers 
are handled in some  products. In DB2  UDB, the trig- 
ger body is compiled  as part of an SQL statement  that 
can  fire the trigger; thus  there is no dynamic  linking 
issue. The disadvantage of this approach is the sig- 
nificant work  required in the compiler to  understand 
the semantics of triggers and,  further,  to prevent  cer- 
tain  optimizations  from  being  incorrectly  applied. In 
DB2 for ASI400': (Application  System/400),* the user 
creates a  trigger  program  written in languages such 
as C o r  COBOL.  When the trigger is fired, the trigger 
program is passed  a pointer  to a trigger section that 
contains  information  about  the  triggering  statement 
and a buffer for  the  old  and new records. Low-level 
application  programming  interfaces (APIS) are  used 
to access the buffer records  through  code in the trig- 
ger  program.  None of these  approaches is applica- 
ble to  other dynamic  tables. 

The rest of this paper is organized  as follows. The 
next section  discusses  dynamic  tables  and  illustrates 
the issue of dynamic  linkage.  Following  sections de- 
scribe  a  compile-time  framework,  where  dynamic  ta- 
bles are  treated uniformly by the SQL compiler,  and 
the  extended  run-time  architecture  for  supporting 
dynamic  tables.  Remaining  sections  explain how the 
dynamic  linkage  process  can be realized in the  con- 
text of triggers,  table  locators,  external  table  func- 
tions, and user-defined  temporary  tables, and con- 
clude  the  paper. 

Dynamic tables 

This  section  introduces the dynamic  tables that  are 
of interest in this  paper  and illustrates the dynamic 
linking  issue. 

User-defined table functions. A table function is a 
function  that  returns a  set of records. It not only pro- 
vides a more  general way (than a view) to  compose 
new tables  from existing tables, but also allows ac- 
cess to  external  data  (e.g.,  data  stored in flat files) 
using the  same  query mechanisms. For example, we 
may write the following DB2 UDB statement  to  de- 
fine a  table  function avg-temp, implemented in C, 
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that results in a  table of <city,date,temp> with the 
average daily temperature  for a group of cities: 

CREATE FUNCTION avg-temp () 
RETURNS TABLE (city VARCHAR (30), date DATE, 

LANGUAGE C 
temp INTEGER) 

The keyword TABLE in the RETURNS clause indicates 
that  the  function is a  table  function."  Once  defined, 
this function  can  be  used in a query,  for  example, 
to  rcturn  the average temperature in Chicago on 
July 13, 1959: 

SELECT temp FROM TABLE (avg-temp ()) AS adt 
WHERE city = 'CHICAGO' 
AND date = DATE '1959-07-13' 

Notice  that  the  table avg-temp in the SELECT state- 
ment  does  not exist, nor is it accessible by the  da- 
tabase,  until  the  table  function is cxecuted at run 
time. In other words, the  compiler has generated  an 
executable plan (also  called access section)  for the 
SELECT statement  that  refers  to a  nonexistent  table. 

Transition tables in triggers. As mentioned briefly 
in the  introduction, a  transition  table  contains  the 
set of rows that were affected by the triggering  state- 
ment, i.e., those rows that  are being  inserted, up- 
dated,  or  deleted.  The  scope of a  transition  table is 
the whole  trigger  body,  where it can  be  used  as if i t  
were  a  base  or derived  table. 

The following defines  a  table employees and a  trig- 
ger keep-stat that will be fired  after updates  on  the 
table  are  performed: 

CREATE TABLE employees 
(name VARCHAR (30), 
salary DECIMAL (9, 2), 
dept VARCHAR (5)) 

CREATE  TRIGGER keep-stat 
AFTER UPDATE ON employees 
REFERENCING  NEW-TABLE  AS new 
FOR EACH  STATEMENT 
BEGIN ATOMIC 

INSERT INTO stat 
SELECT MIN (salary), AVG (salary), MAX  (salary) 

FROM new 
END 

The trigger body is defined by the  statements within 
the BEGIN block.  When  tired, it inserts  into  the  ta- 
ble stat a row with the new minimum,  average, and 
maximum salary information  from the  set of affected 
rows with their  updated  values (REFERENCING 
OLDJABLE could be used to  refer  to  the affected 
rows  with their  originalvalues).  Given the trigger def- 
inition,  the following UPDATE statement  on employ- 
ees, on execution, will create a  transition  table  (spec- 
ified as new in the trigger  definition)  containing the 
affected rows. In this  case, the new table will contain 
the new records of employees in the sales depart- 
ment: 

UPDATE employees SET salary = salary :i: 1.1 
WHERE dept = 'Sales' 

The  contents  of  the  transition  table  are derived by 
the UPDATE operation  and  the trigger is fired  after 
UPDATE is executed.  Notice  that  the  transition  table 
referenced in the INSERT statement of the trigger 
body does  not exist until the execution of the UPDATE 
statement,  and again the  compiler  has  to  generate 
an  executable  plan  for the INSERT statement  that re- 
fers to a  nonexistent  table. 

Table locators. Some SQL proposals  suggest TABLE 
as  a  built-in data type.  With  such, table locators are 
introduced to bind  tables (especially when they are 
used to define  columns  resulting  from  a  query) to 
host  variables. "' Table  locators  are "handles" that 
allow applications  to access the derived  tables 
through  regular SQL table  operations within the  same 
transaction. A host  variable of a  table  locator type 
is declared in the DECLARE SECTION of the appli- 
cation  program,  as in the following example: 

EXEC SQL BEGIN  DECLARE  SECTION; 
SQL TYPE IS TABLE (name VARCHAR (30), 

salary DECIMAL (9, 2)) 
AS  LOCATOR emp-loc; 

SQL TYPE IS TABLE LIKE departments AS 
LOCATOR dept-loc; 

EXEC SQL END  DECLARE  SECTION; 

One can  declare  a  host  variable of the  table  locator 
type by providing the  complete  table  structure  (i.e., 
the list of column names  and  data type  pairs), or by 
providing the  name of a  table (departments in the 
above  example)  from which the  table  structure is to 
be derived.  Once  defined,  the  table locator  host vari- 
able  can  be  used in assignments or  other SQL state- 
ments  where  tables  can  be used.  In the following ex- 
ample,  the host  variable emp-loc is assigned the 
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result, of type TABLE, that contains  names of the  em- 
ployees in the sales department who make  more  than 
$50 000: 

EXEC SQL SET :emp-loc = (SELECT  (SELECT * 
FROM TABLE (d.emps) 
WHERE salary > 50000) 

FROM departments AS d 
WHERE name = 'Sales'); 

Notice  that the example statement  does  not really 
move the  data of  all employees of the sales depart- 
ment to the host  program.  It  merely  creates  a  de- 
rived table  and assigns a  handle value that uniquely 
identifies this  derived  table in the  server,  during  the 
unit of work, to  the host variable emp-loc. Because 
emp-loc uniquely  identifies the derived  table,  sub- 
sequent  queries can be  issued, using this  variable 
where SQL expects  a  table. For example,  the follow- 
ing query  returns  the  average salary of the employ- 
ees in the  table  represented by emp-loc: 

EXEC SQL SELECT  AVG (salary) FROM TABLE 
(:emp-loc); 

User-defined temporary tables and other constructs. 
User-defined  temporary  tables are tables that  are 
temporarily created  and  maintained by the SQL en- 
gine  for  application  programs  connected to  the 
DBMS.  They are defined like regular  base  tables, but 
do not contain any data until the execution  time of 
a given application. The first time the application 
program  references  the  temporary  table, it is instan- 
tiated  and  made available for  manipulation. In ad- 
dition  to  temporary tables, SQL has  other constructs 
that explicitly define derived tables for which the con- 
tents  are not known until  run  time. These include 
named  table  expressions  and  result  sets  returned by 
stored  procedures. 

What is important  to  observe is that in all these  con- 
structs the  structure of the explicitly defined  derived 
tables is known by the sQL engine  (since  they are 
defined  as  regular  tables),  but the  contents  do not 
come  into  existence until the  run  time of an appli- 
cation  program  or SQL statement  that  references it. 

Extended table object representation 

In our  introduction, we suggested  a  uniform way to 
view all kinds of dynamic  tables:  as  functions that 
produce  tables  at  run  time. In this section, we de- 
scribe how to represent  these  unresolved  dynamic 
tables by extending the existing table objects, and in 
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the next section, we describe how to use them  for 
dynamic linking. For convenience, we assume an  ar- 
chitecture similar to the DB2 Common  Server. I '  We 
believe that  the design presented in this  paper  ap- 
plies also to  other  relational  database systems. 

In DB2 Common  Server,  each SQL statement is com- 
piled into an  executable  plan that consists of a  set 
of run-time  objects  manipulated by threads of op- 
erators. '',I3 The main logic of a thread is to progres- 
sively construct  intermediate  tables by applying op- 
erators,  such  as sort or join, to  the incoming table 
streams. The main data  structure associated with any 
table operation is the  table object (TAOB), and  each 
table  reference  has its own TAOB. 

Current table objects. A TAOB is a  descriptor  for  a 
table  reference in any table  operation.  Some of the 
TAOB attributes  are known and  set at compile  time 
as  constants  (from  the system catalog or  the SQL 
statement context),  for  example, the  table type and 
table  identifier (ID) of a  base  table, the active col- 
umn buffer areas,  the associated  search  argument 
predicate, l 4  etc.  Some  other TAOB attributes are used 
to  keep track of the  run-time  state of the  table, such 
as the  current  record ID, number of records  fetched, 
status of last operation,  etc.  Figure 1 illustrates  some 
important TAOB attributes  that  are of interest  for this 
paper. 

The type of a  table is indicated by the first attribute. 
Currently, the possible values are temporay and base. 
The table ID uniquely identifies  a  table. For base  ta- 
bles, the  table ID is known at compile  time  and is set 
by the compiler, while the  table ID for  a  temporary 
table is set  at run  time,  when the  table is created. As 
shown in Figure 1, the compile-time TAOB has  a 
pointer  to a  target TAOB. The  table ID in the  target 
TAOB points to  the  actual  table.  After  the  tempo- 
rary table is created, all table  operations  on it will 
see  the  same  table ID through  their own TAOBS by 
this  indirect  pointer. 

Many table  operations  are based on scans, either by 
relation or by index. To maintain  the  current  state 
of a  scan, the  data  manager  component of the DBMS 
creates  a  handle  structure  at  the  time  when  the  tar- 
get table is opened. This handle  structure  keeps  track 
of the  position-sensitive  information at  the  data ac- 
cess level, and  the  handle is used to access the  target 
table  for  scan-based  operations. The  status field 
keeps  the  current  status (e.g., open,  closed, end of 
file) of the  table  operation. The record-id field keeps 
the ID of the last record  fetched. 
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New attributes for dynamic tables. We now describe 
new fields in the TAOB for  supporting dynamic ta- 
bles. Unlike  ordinary  tables,  a dynamic table  needs 
to  keep  extra  information  obtained at compile  time 
(from the SQL statement or  the system catalog) in 
the TAOB, in order to resolve the “unknowns” at  run 
time.  The kind of information  needed  varies  for the 
different dynamic tables: 

Table  functions: The function invocation descrip- 
tor  (UFOB) is needed  for  external  table  functions; 
the I D  is needed  for  internal  table  functions. 
Transition  tables:  The type of transition  table (old 
or new), the associated  trigger  name,  and the as- 
sociated  base  table  name are  needed. 
Table  locator: The object that  contains  the column 
definition of the  table  locator is needed. 
User-defined  temporary  tables: The type of the 
temporary table (global,  local, or declared local) and 
the associated  table  name  are needed. 

We have now identified  these new table types: table 
function, transition table, table locator, and user-defined 
temporary table. A dynumic table descriptor is also 

added  to  the TAOB as the common  control block for 
dynamic tables. For base  tables  and  temporary  ta- 
bles, this is set to “null.” The dynamic  table  descrip- 
tor  contains  the following information: 

Subtype: The subtype field is an  extension of the 
table type. For  table functions, it  is set to internal 
or external. For  transition  tables, it is either new 
or old. For  a user-defined  temporary  table, it can 
be global, local, or declared local. 
Table  schema  and  table  name:  This is the schema 
and  the  table  name with  which the underlying dy- 
namic  table is associated.  It  applies only to  tran- 
sition tables  and  user-defined  temporary  tables. 
Trigger  schema  and  trigger  name: For  a transition 
table,  this  attribute  further  describes  the  schema 
name  and  trigger  name of the  trigger  where it is 
declared. 
Column definition object:  This attribute points to 
the column  definition of the  corresponding  table 
locator. 
External  function  object:  This  attribute  points to 
the UFOB function  descriptor of the  correspond- 
ing external  function  invocation. 
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Figure 2 A typical  relational DBMS architecture. A dynamic  table  broker is introduced  for  dynamic  linking  at  the  time  the 
table  is  opened.  Once  table  references  are  resolved,  all  table  operations  proceed  as  before. 

~ . _ _ _ _ _ _ _ _ . _ _ ~  ~ _ _ _ _ _ _ _ - ~  ~~~ -_______- 
~~ 

In the following section, we  will show how the ex- 
tended TAOB described here is used at  run  time  for 
dynamic linking between the actual  table  entities  and 
the unresolved  table  references. 

Extended run-time environment 

A typical relational DBMS engine  at  run  time  con- 
sists of a relational  data service (RDS) component 
for  the logical (relational) view of the  database,  and 
a data  manager service (DMS) component  for  the 

physical (raw data) view  of the  database.  Figure 2 
shows such an overall  architecture.  It also includes 
a new component,  the dynamic table  broker, that is 
used to  support dynamic  tables. 

As indicated in this figure,  access  requests  to  base 
tables and  ordinary derived  tables will be processed 
uniformly as before. The interpreter invokes the cor- 
responding  relational data access routines, which  will 
in turn  invoke lower-level DMS data access routines. 
Since the TAOBS of the subject  tables are  already 
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“linked” to the  table I D  corresponding to the phys- 
ical table  entity  for  base  tables  at  compile  time,  or 
at  run  time  for  ordinary derived  tables, no special 
treatment is needed  for  them. 

Access to dynamic  tables is complicated by the fact 
that they are  produced externally to  the executing 
SQL statement,  whereas  ordinary derived  tables are 
produced  internally. The dynamic  table broker com- 
ponent is introduced to carry out this  dynamic link- 
ing process.  In  this  section, we  give a brief overview 
of the existing run-time  environment  and  describe 
how the  broker  component  can  be  integrated  into 
the existing run-time  routines. 

Current run-time environment. Table  entities, 
whether  base or derived,  must  be  created  before they 
can be accessed. A base  table  entity  must  be  created 
before any SQL statement  that accesses it can  be com- 
piled.  Its  table ID is known a priori and is stored in 
the TAOB of operations  that access the  table.  On  the 
other  hand, derived  tables are  “computed”  from 
other tables in an  executing SQL statement.  Ordinary 
derived  tables are  created  (and  thus  acquire a  table 
ID), populated,  and accessed  when the  table expres- 
sion that (implicitly) defines  the  derived  table is eval- 
uated.  These derived  tables are normally dropped 
after execution of the SQL statement. 

Any  table  must first be opened  to initialize appro- 
priate working  areas before it can be manipulated. 
The  open process is accomplished by invoking the 
open table run-time  routine, which uses the  table ID 
to invoke lower-level DMS routines.  Once  the  table 
is opened,  tuples in the  table can be  manipulated by 
each  individual  run-time  routine. When  table  ma- 
nipulation is completed,  the close table run-time  rou- 
tine is invoked to  release  the working areas. 

The dynamic table broker. Since all table  operations 
have to go  through  the  open  routine,  the  natural 
place  to do dynamic linking is at  open time, so we 
add a  simple  dispatcher  at  the very beginning of the 
open  table  routine. If the type indicates a base  table 
or a  derived  table operation,  then  the  dispatcher al- 
lows the  request to fall through  to  the existing logic. 
For dynamic  tables,  control will be passed to  the dy- 
namic table  broker.  The dynamic  table broker will 
resolve the linkage  between  unresolved  dynamic  ta- 
ble  references  and  the  corresponding  table  entity. 
Once  the linkage is resolved, all the  run-time  rou- 
tines  can  proceed as if the underlying  table  were an 
ordinary  derived  table. 
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Dynamic linking involves two steps:  first,  finding the 
target  table  entity  and,  second,  storing  the  obtained 
information in the  current TAOB for  subsequent uses. 
Although  the  details of table  lookup  and  attribute 

_ _ _ _ _ _ _ _ _ _ ~ ~  

Dynamic  linking  has two  steps: 
finding the  target  table  entity 

and  storing the  obtained 
information  in  the current TAOB. 

~ 

setting vary from  one dynamic  table to  another,  the 
fundamental mechanism is the  same.  The following 
segment of C-like pseudocode  demonstrates  the dis- 
patching logic of the dynamic  table broker: 

switch access-taob.type 
{ 

case TRANSITION-TABLE: 
link-transition-table(access-taob); 
break; 

link-tablefunction(access-taob); 
break; 

link-table_locator(access-taob); 
break; 

link-user-defined-temporary_table(access-taob); 
break; 

case TABLE-FUNCTION: 

case TABLE-LOCATOR: 

case USER-DEFINEDJEMPORARY-TABLE: 

} 

where link-transition-table(), link-table-function(), 
link-table-locator(), and Iink-user-defined-tempo- 
rary-table() perform  the linkage for  the respective dy- 
namic  tables. The following section  describes how 
these  routines  can  be  realized. 

Supporting  dynamic tables 

This  section  describes how the  extended  run-time 
architecture  supports dynamic  tables. 

Transition  tables  in triggers. Transition  tables  cap- 
ture  the  state of affected rows when the triggering 
SQL operation is applied to a  table. More specifically, 
the old transition  table contains  the  value of affected 
rows prior to the  application of an UPDATE or a 
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Figure 3 Run-time  configuration  and  dynamic  linking  after  trig1 is entered 
~~~~ ~~~~~~~~~ ~~~ 

DELETE operation,  and  the new trunsition table con- 
tains  the value of affected rows that will be  (or  were) 
used in an UPDATE or  an INSERT operation.  When 
a triggering operation (INSERT,  DELETE, or UPDATE) 
is executed,  transition  tables are  created  and pop- 
ulated,  based on the subtype of the  transition  table 
(old  or new), the triggering operation,  and  the cur- 
rent  content of the table. 

Two  more  details  deserve  further discussion.  First, 
transition  tables are  created  during  the execution o f  
the triggering statement.  Therefore,  the TAOB has 
to  be recorded in a specific area known by the dy- 
namic  table  broker  routine, link-transitionLtable(), to 
resolve references  to  the  transition  table in the ex- 
ecutable plan  associated with the trigger  body.  Sec- 
ond,  the activation of triggers can be  nested, because 
some of the SQL statements in the trigger body may 
cause  another  (or  the  same) trigger to  be activated. 
Therefore, like procedure calls in conventional  pro- 
gramming  languages, the  data  structure  for main- 
taining TAOBs of transition  tables is a  stack so that 
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the  innermost TAOB always has  precedence. TAOBs 
are  pushed  onto  the transition table stuck at  trigger 
body entry  and  popped off at trigger body exit. 

The dynamic  table broker finds the  top  entry of the 
transition  table  stack  for  the  actual  table  entity,  and 
stores  the  obtained  table ID in the TAOB of the  cur- 
rent  table  reference. To illustrate our discussion, here 
is pseudocode  for  the  main logic of the dynamic  ta- 
ble  broker  routine link-transition-table(): 

link-transition-table(access-taob) 
{ 

TAOB actual-taob; 

/* (1) Look up the  transition  table  stack */ 
if (access-taob+dt-cb.subtype = = NEW) 

actualLtaob = tran-tbl-stack[top].new; 
else 

actual-taob = tran-tbl-stack[top].old; 
/+ (2) Copy  specific  attributes */ 
access-taob+type = actual_taob+type; 
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access-taob+id = actual-taob-id; 

/ v  (3) Copy implementation-dependent generic 
attributes 4 

modifypother-attributes(access-taob, actual-taob); 
1 

Putting  everything  together, we use the following ex- 
ample to demonstrate  the  run-time flow of the dy- 
namic  linkage for  transition tables.  Let t l ,  t2, and t3 
be  tables with numeric  columns c l  and c2, and trigl 
and trig2 be  the ajkr  updatefbr each statement trig- 
gers  for t l  and t2, respectively. Moreover, trigl pro- 
cesses  only the new transition  table nt, whereas trig2 
processes  both the new and old  transition  tables nt 
and ot: 

CREATE  TRIGGER trigl AFTER UPDATE ON t l  
REFERENCING  NEW-TABLE AS nt 
FOR EACH  STATEMENT MODE DB2SQL 

BEGIN 
. . .  

CASE  (SELECT COUNT(:I.) FROM nt) 
WHEN 2: 

END  CASE; 
UPDATE t2 SET ~2 = ~2 c2 WHERE ~2 < 0; 

. . .  
END 

CREATE  TRIGGER trig2 AFTER UPDATE ON t2 
REFERENCING  NEWJABLE  AS nt 

OLD-TABLE AS ot 
FOR EACH  STATEMENT MODE DB2SQL 

BEGIN 
. . .  

INSERT INTO t3 SELECT nt.cl, ot.c2 FROM nt, ot; 

END 

The following update  operation  on t l  will fire trigl, 
which will  in turn fire trig2: 

. . .  

UPDATE t l  SET ~2 = -c2 WHERE ~2 < 0 

The run-time  configuration  and the dynamic link- 
ing process  when trigl is fired are  sketched in Figure 
3. During  the  update of t l ,  the transition  table nt is 
created  and  populated with affected rows. Before 
trigl is entered,  the TAOB of nt is pushed  onto  the 
transition  table stack (the old  transition  table is not 
generated  and is indicated by “null”),  and  then  a dy- 
namic linking occurs  at the first reference  to nt in 
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the  trigger body. Figure 4 shows the  configuration 
when trig2 is also  fired. 

User-defined temporary tables. A global temporaly 
table is a  user-defined  temporary  table  shared by all 
SQL operations in a database  connection session. It 
is “global” in that  changes  are  immediate  and vis- 
ible by subsequent  operations against the  same  da- 
tabase  connection. It is “temporary” in that  the  con- 
tent  persists only during  the  database  connection; 
the physical table  entity for  the global temporary  ta- 
ble is dropped  at  the  end of the  connection session. 
Another  important  characteristic of global tempo- 
rary tables is that they are not  shared  among  data- 
base  connection  sessions.  These  characteristics  can 
be  best  understood  through  an  example.  Let gtt be 
a  global  temporary  table and t l  and t2 be base ta- 
bles with column  definition  identical to  that of gtt. 
The  database  connections, serialized or interleaved, 
will populate t l  and t2 with the rows as shown in 
Figure 5.  

When  a global temporary  table is opened  on behalf 
of an SQL operation,  the dynamic  table broker  rou- 
tine link-user-definedtemporary-table will look up  the 
actual  table  entity in a global symbol table  located 
in the working area  for  the  connection. If it is found, 
the TAOB of the  actual  table entity is used to per- 
form  the dynamic  table  linkage. If it is not  found, 
the  table entity is created  and  entered  into  the sym- 
bol table  for  subsequent  lookups.  The TAOB of the 
newly created  table entity is then used to  perform 
the dynamic  table  linkage  for the underlying  table 
access. The details of the  table linkage are identical 
to  that of transition  table  reference,  and  the follow- 
ing pseudocode  outlines  the  main logic of the dy- 
namic  table  broker  routine link-user-defined-tempo- 
rary-table(): 

link-user-defined-temporary-table(access-taob) 
I 

switch (access-taob+dtLcb.subtype) 
I 

case GLOBAL: 
I 

TAOB actual-taob; 

/*: 1. Look up  the global  symbol table. 4 
actual-taob = find-global-temporary-table 

(access-taob); 

/:I. 2. Create the  global temporary table, if not 
created yet. 4 

if (actual-taob == NULL) 
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Figure 4 Run-time  configuration  and  dynamic  linking  after  trig2  is  entered 

actual-taob = create-global-temporary-table 
(access-taob); 

/* 3. Copy  specific  attributes. 4 4  

access-taobjtype = actual-taob+type; 
access-taobjid = actual-taobdid; 

I 6  4. Copy  implementation-dependent generic 
attributes. 4 

modify-other-attributes(access-taob, 
actual-taob); 

I 
break; 

case  LOCAL: 
{ 

I 
I 

I 

At  the  end of a  database  connection, the  database 
engine will scan the global symbol table  and  drop all 
the  table  entities  created  on behalf of global tem- 
porary  table accesses in  that  connection  session. 

Local temporary  tables and declared locul  temporury 
tubles are similar to global temporary tables. The only 
difference is in scope. Local temporary  tables  are 
shared  among all the SQL operations  belonging  to 
the  same SQL module, while declared local tempo- 
rary tables are  shared in a PSM (Persistent  Stored 
Module4) basic block. Therefore,  the  data  structure 
and  table  resolution logic for global temporary  ta- 
bles also apply for local and  declared local tempo- 
rary tables.  However, since the symbol table  has to 
be  scoped, the initialization  and the  clean-up logic 
described  above  for global temporary  tables  has to 
be  performed  for  each  scope of the underlying SQL 
statement. 

Table functions. Table  functions can be  internal  or 
external. The body of internal  table  functions  con- 
sists of a  sequence of SQL statemcnts. In contrast, 
external  table  functions are written in host languages 
such  as C, C++, Java*::", Visual Basic"", etc. 

For  internal  table  functions,  the physical table  en- 
tity is indeed  the executable  plan of the body of 
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the  table  function.  Therefore,  the  broker  routine 
link-table-function invokes the plan manager of the 
database  engine to load the  desired  plan, which is 
identified by the plan I D  stored in the dynamic  table 
descriptor of the underlying TAOB. The in-memory 
descriptor of the plan being  loaded is also  recorded 
in the TAOB for  execution of subsequent  invocations 
of the  table  function. 

External  table  functions  are  treated by the  database 
engine as “black-box  table  producers.” Therefore, 
the physical table  entity is the  entry point of the ex- 
ternal  function  that  implements  the  table  function. 
To obtain  the entry  point of the  external  function, 
link-table-function dynamically loads the  desiredfunc- 
tion library into  the  address  space of the  database 
engine. The symbol table of the library being  loaded 
into  memory is then  searched  for  the  desired  exter- 
nal function.  Once resolved, the function  entry  point 
is recorded in the dynamic  table  descriptor of the 
underlying TAOB for  subsequent  invocation of this 
table  function. 

The main logic of link-table-function is illustrated by 
the following pseudocode: 

link-table-function(access-taob) 
I 

TAOB actual-taob; 
switch (access-taob-dt-cb.subtype) 

case INTERNAL-TF: 
/::: Internal table function: load access plan. */ 
access-taob-d-cb.pIan-cb-ptr = 

load-plan(access-taob-dt-cb.planlD); 
break; 
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case EXTERNAL-TF: 
/::: External table  function:  load library and 

library-handle = dynamicLoad 

access-taob+dt-cb.function-entry = 

resolve entry. */ 

(access-taob-dt-cb.libPath); 

resolveEntry(1ibrary-handle, 
access_taob+dt-cb.functionName); 

break; 
1 

Currently,  the  table  function  support in DB2 UDB a!- 
lows only read  operations (i.e., open,  fetch,  and 
close). 

Table locators. A locator  table is used to  keep track 
of table  locators  created in a given transaction. The 
locator  table  maps  a  locator ID t o  a  pointer  to  the 
TAOB of the actual  associated  table.  At the begin- 
ning of a  transaction,  the  locator  table is initialized 
with no entry in it. During  a  transaction, new table 
entries  are  created  whenever  (derived) tables are 
“bound  out”  to  a host  variable  (through the SET 
statement,  for example). At  the  end of a  transaction, 
the  locator  table is purged  after all the  table loca- 
tors  are  freed. 

When  a  table  locator is accessed in an SQ~statement, 
the  run-time dynamic linking process  takes  place in 
two steps.  First, the locator ID, which has  been  stored 
in the host  variable, is bound in and  stored in the 
dynamic  table  descriptor of the underlying  access 
TAOB, at  the bind-in time of the plan  execution of 
the SQL statement. In the following pseudocode, 
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userobject is the locator ID from  the host variable, 
and sqlObject is the access TAOB: 

bind_in(type, sqlobject,  userobject) 
I 

switch (type) 
I 

case TABLE-LOCATOR: 
sql0bject-d-cb.locatorlD = userobject; 
break; 

case . . . 
1 

1 

Second, at  the  time  the  corresponding  table is 
opened,  the  locator ID set  earlier in the access TAOB 
is used to look up the  locator  table  to get the actual 
TAOB. Then  the TAOB attributes of the  current TAOB 
are initialized according to  those  ofthe actual TAOB: 

link-table-locator(access-taob) 
I 

TAOB actual-taob; 

/i: 1. Look up the  global  symbol table. */ 
actual-taob = find-table-locator 

(access_taob+dt-cb.locatorlD); 

/* 2. Copy  specific  attributes. :I:/ 

access-taob-type = actual-taob4ype; 
access-taob-id = actual-taob+id; 

/* 3. Copy implementation-dependent generic 
attributes. :*/ 

modify-other-attributes(access-taob, actual-taob); 
1 

Conclusion 

The  traditional  concept of tables in relational  da- 
tabases has been generalized in the SQL language and 
in some  commercial  database systems. Unlike  tra- 
ditional  tables, dynamic tables exist only at query- 
execution  time  and are directly manipulable by the 
user. The query  compiler  generates  unresolved ta- 
ble references  and relies on  some  run-time linking 
mechanism to resolve them. 

We have proposed  a  generic  framework  for  support- 
ing dynamic tables in existing query compilers, where 
all dynamic tables are  treated in a uniform way  by 
the compiler  and  broker  functions are  added  into 
the  run-time  environment  to  establish the dynamic 
linkage. We have described  the  extensions to  the 
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compiler  and the  run-time environment in the  con- 
text of DB2 Common  Server,  and  explained how this 
generic  framework can be  applied to support  tran- 
sition tables, table functions, user-defined temporary 
tables,  and  table  locators.  We have also built a pro- 
totype  based on this framework. The success of our 
prototype  has  confirmed  our  expectation of the sim- 
plicity and  the applicability of our design. 

In future work, we would like to  continue exploring 
in two directions: 

Abstract tables: Recently, abstract tubles have been 
proposed. I s  These would ultimately allow all op- 
erations on a  table to  be user-definable; that is, 
the  user  could  define open, fetch, close, insert,  up- 
date,  delete,  and  even rollback and commit oper- 
ations. Although we do not expect any impact from 
such a  generalization on  the framework we de- 
scribe in this  paper, we would like to take  a  closer 
look at  the language  specification. 
MPP parallel  environment: DB2 UDB Version 5 sup- 
ports MPP (massively parallel processing) where  ta- 
bles can be partitioned  across  multiple  nodes  to 
exploit a parallel environment.  A copy of the  same 
executable plan is executed on multiple nodes, with 
table  queues  for  shipping  data  streams.  The result- 
ing table  from  each  node is piped  through  table 
queues to the  “coordinator”  node  for final process- 
ing and bind out  to  the client. We would like to 
enhance  our framework to work in such  a  parallel 
environment. 
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