
On the linkage
of dynamic tables
in relational DBMSs

by G. Y. Fuh
J.-H. Chow
N. M. Mattos
6. T. Tran
T. C. Truong

Tables and operations over tables are at the
center of the relational model and have been at
the core of the Structured Query Language (SQL)
since its development in the 1970s. As database
applications have grown rapidly, the concept
of tables has been generalized in database
languages. The new generalized table concept
in the SQL standard and in some commercial
databases includes explicitly defined derived
tables, such as user-defined temporary tables,
transition tables, user-defined table functions,
and table locators, that can be manipulated by
users. We call them dynamic tables, because
their entities exist only at run time. The
challenges that these dynamic tables pose to
existing relational engines lie in the linkage
between the creation of the derived table and its
references. In this paper, we describe a uniform
framework for compile-time and run-time
processing of dynamic tables. We also give a
thorough explanation of how such a generic
framework can be realized in existing relational
database management systems, such as ISM
DATABASE 2TM Common Server. Our experience
with our prototype has shown the simplicity,
generality, and efficiency of our approach.

T ables and operations over tables are at the cen-
ter of the relational model and have been at the

core of the Structured Query Language (SQL) since
its development in the 1970s. Queries define oper-
ations that accept tables as input operands and pro-
duce other tables as output. Query evaluation within
a relational database management system (DBMS)
engine is also based on relational operators (e.g., re-
striction, projection, join, etc.) that manipulate ta-
ble record streams.

There are basically two types of tables supported by
SQL: base tables and derived tables. In the SOL-92
standard, base tables are used to store the data
in the database. In contrast to base tables, derived
tables are defined in terms of existing base tables or
other derived tables. They can be defined either
explicitly by the user or implicitly by the database
engine. In SOL-92, explicitly defined derived tables,
called "views," are specified by users in a
CREATE VIEW statement. Implicitly defined derived
tables are temporary tables created during the ex-
ecution of table operations to store intermediate re-
sults, and in general they are not directly manipu-
lable by the user. However, regardless of their type,
tables are internally manipulated uniformly by the
DBMS.

As database applications have grown rapidly, the
concept of tables has been generalized in the SQL
standard4 and in some commercial DBMSS, for ex-
ample, the user-defined temporary tables in SQL-92, '
transition tables within triggers in SQL3,5 and user-
defined table functions in IBM DATABASE 2" (DB2")
Universal Database (uDB)."

These new derived tables are transient, but unlike
implicitly defined derived tables, they are directly ma-
Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no othcr portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-scrvice systems. Permission to republish any
other portion of this paper must he obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37. NO 4 . 1998 OOl8-86/0/98/55.00 0 1998 IBM FUH ET AL. 539

nipulable by the user. In all cases, the physical table
produced by these extensions does not exist at com-
pile time, nor is it created by the SQL statement that
references it. For example, transition tables associ-
ated with a trigger are implicitly defined tables that
will contain copies of the rows affected when the trig-
ger is fired by some INSERT, UPDATE, or DELETE
statement. The trigger body, defining the action when
the trigger is fired, may reference these temporary
tables. Because the trigger body is compiled before
the execution of the SQL statement that fires the trig-
ger, the actual transition table does not come to ex-
ist until the firing SQL statement is executed. So, how
should a database engine represent these transition
table references at compile time?

The challenge that these extensions pose to existing
relational engines lies in the linkage between the cre-
ation of and the references to the derived table. This
problem is similar to the problem of external name
references that already exists in today's programming
languages. Analogous to the approach used by the
programming language compiler, in the trigger ex-
ample the SQL compiler will need to mark transition
table references as unresolved. Resolution occurs
when the trigger is fired and the trigger body is given
the actual transition table for execution. In other
words, the linkage between the table creation and
the table reference takes place dynamically as op-
posed to statically. For this reason, we call such ta-
bles dynamic tables, to separate them from ordinary
derived tables.

This process of linking a table reference to its phys-
ical table entity, called dynamic linking, is the sub-
ject of this paper. The contributions of our work are
the following. First, we have found that the key to
supporting various dynamic tables is dynamic link-
ing, and we have devised a uniform framework for
both compile-time and run-time processing of dy-
namic tables. The idea is to view dynamic tables as
generalized functions that produce record sets. For
each dynamic table, the compiler creates a table tem-
plate, which contains information known at compile
time, such as its column definition. Second, our ap-
proach has only small impact on existing run-time
architectures. We isolate most changes to the run-
time architecture into a new functional component,
the dynamic broker, which is responsible for dynam-
ically linking unresolved table references. Third,
there is minimal performance impact. Dynamic link-
ing takes place only when a dynamic table is first ref-
erenced (opened). Based on this approach, we have
prototyped the support of several of these new table

540 FUH ET AL.

extensions (specifically table functions, triggers, ta-
ble locators, and temporary tables) within the DB2
Common Server, which is an earlier release of the
DB2 UDB. Our experience with this prototype has
shown the simplicity, generality, and efficiency of our
approach.

Since the use of dynamic tables is still relatively new,
we briefly mention how transition tables for triggers
are handled in some products. In DB2 UDB, the trig-
ger body is compiled as part of an SQL statement that
can fire the trigger; thus there is no dynamic linking
issue. The disadvantage of this approach is the sig-
nificant work required in the compiler to understand
the semantics of triggers and, further, to prevent cer-
tain optimizations from being incorrectly applied. In
DB2 for ASI400': (Application System/400),* the user
creates a trigger program written in languages such
as C o r COBOL. When the trigger is fired, the trigger
program is passed a pointer to a trigger section that
contains information about the triggering statement
and a buffer for the old and new records. Low-level
application programming interfaces (APIS) are used
to access the buffer records through code in the trig-
ger program. None of these approaches is applica-
ble to other dynamic tables.

The rest of this paper is organized as follows. The
next section discusses dynamic tables and illustrates
the issue of dynamic linkage. Following sections de-
scribe a compile-time framework, where dynamic ta-
bles are treated uniformly by the SQL compiler, and
the extended run-time architecture for supporting
dynamic tables. Remaining sections explain how the
dynamic linkage process can be realized in the con-
text of triggers, table locators, external table func-
tions, and user-defined temporary tables, and con-
clude the paper.

Dynamic tables

This section introduces the dynamic tables that are
of interest in this paper and illustrates the dynamic
linking issue.

User-defined table functions. A table function is a
function that returns a set of records. It not only pro-
vides a more general way (than a view) to compose
new tables from existing tables, but also allows ac-
cess to external data (e.g., data stored in flat files)
using the same query mechanisms. For example, we
may write the following DB2 UDB statement to de-
fine a table function avg-temp, implemented in C,

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

that results in a table of <city,date,temp> with the
average daily temperature for a group of cities:

CREATE FUNCTION avg-temp ()
RETURNS TABLE (city VARCHAR (30), date DATE,

LANGUAGE C
temp INTEGER)

The keyword TABLE in the RETURNS clause indicates
that the function is a table function." Once defined,
this function can be used in a query, for example,
to rcturn the average temperature in Chicago on
July 13, 1959:

SELECT temp FROM TABLE (avg-temp ()) AS adt
WHERE city = 'CHICAGO'
AND date = DATE '1959-07-13'

Notice that the table avg-temp in the SELECT state-
ment does not exist, nor is it accessible by the da-
tabase, until the table function is cxecuted at run
time. In other words, the compiler has generated an
executable plan (also called access section) for the
SELECT statement that refers to a nonexistent table.

Transition tables in triggers. As mentioned briefly
in the introduction, a transition table contains the
set of rows that were affected by the triggering state-
ment, i.e., those rows that are being inserted, up-
dated, or deleted. The scope of a transition table is
the whole trigger body, where it can be used as if i t
were a base or derived table.

The following defines a table employees and a trig-
ger keep-stat that will be fired after updates on the
table are performed:

CREATE TABLE employees
(name VARCHAR (30),
salary DECIMAL (9, 2),
dept VARCHAR (5))

CREATE TRIGGER keep-stat
AFTER UPDATE ON employees
REFERENCING NEW-TABLE AS new
FOR EACH STATEMENT
BEGIN ATOMIC

INSERT INTO stat
SELECT MIN (salary), AVG (salary), MAX (salary)

FROM new
END

The trigger body is defined by the statements within
the BEGIN block. When tired, it inserts into the ta-
ble stat a row with the new minimum, average, and
maximum salary information from the set of affected
rows with their updated values (REFERENCING
OLDJABLE could be used to refer to the affected
rows with their originalvalues). Given the trigger def-
inition, the following UPDATE statement on employ-
ees, on execution, will create a transition table (spec-
ified as new in the trigger definition) containing the
affected rows. In this case, the new table will contain
the new records of employees in the sales depart-
ment:

UPDATE employees SET salary = salary :i: 1.1
WHERE dept = 'Sales'

The contents of the transition table are derived by
the UPDATE operation and the trigger is fired after
UPDATE is executed. Notice that the transition table
referenced in the INSERT statement of the trigger
body does not exist until the execution of the UPDATE
statement, and again the compiler has to generate
an executable plan for the INSERT statement that re-
fers to a nonexistent table.

Table locators. Some SQL proposals suggest TABLE
as a built-in data type. With such, table locators are
introduced to bind tables (especially when they are
used to define columns resulting from a query) to
host variables. "' Table locators are "handles" that
allow applications to access the derived tables
through regular SQL table operations within the same
transaction. A host variable of a table locator type
is declared in the DECLARE SECTION of the appli-
cation program, as in the following example:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS TABLE (name VARCHAR (30),

salary DECIMAL (9, 2))
AS LOCATOR emp-loc;

SQL TYPE IS TABLE LIKE departments AS
LOCATOR dept-loc;

EXEC SQL END DECLARE SECTION;

One can declare a host variable of the table locator
type by providing the complete table structure (i.e.,
the list of column names and data type pairs), or by
providing the name of a table (departments in the
above example) from which the table structure is to
be derived. Once defined, the table locator host vari-
able can be used in assignments or other SQL state-
ments where tables can be used. In the following ex-
ample, the host variable emp-loc is assigned the

IBM SYSTEMS JOURNAL, VOL 37. NO 4, 1998
FUH ET AL. 541

result, of type TABLE, that contains names of the em-
ployees in the sales department who make more than
$50 000:

EXEC SQL SET :emp-loc = (SELECT (SELECT *
FROM TABLE (d.emps)
WHERE salary > 50000)

FROM departments AS d
WHERE name = 'Sales');

Notice that the example statement does not really
move the data of all employees of the sales depart-
ment to the host program. It merely creates a de-
rived table and assigns a handle value that uniquely
identifies this derived table in the server, during the
unit of work, to the host variable emp-loc. Because
emp-loc uniquely identifies the derived table, sub-
sequent queries can be issued, using this variable
where SQL expects a table. For example, the follow-
ing query returns the average salary of the employ-
ees in the table represented by emp-loc:

EXEC SQL SELECT AVG (salary) FROM TABLE
(:emp-loc);

User-defined temporary tables and other constructs.
User-defined temporary tables are tables that are
temporarily created and maintained by the SQL en-
gine for application programs connected to the
DBMS. They are defined like regular base tables, but
do not contain any data until the execution time of
a given application. The first time the application
program references the temporary table, it is instan-
tiated and made available for manipulation. In ad-
dition to temporary tables, SQL has other constructs
that explicitly define derived tables for which the con-
tents are not known until run time. These include
named table expressions and result sets returned by
stored procedures.

What is important to observe is that in all these con-
structs the structure of the explicitly defined derived
tables is known by the sQL engine (since they are
defined as regular tables), but the contents do not
come into existence until the run time of an appli-
cation program or SQL statement that references it.

Extended table object representation

In our introduction, we suggested a uniform way to
view all kinds of dynamic tables: as functions that
produce tables at run time. In this section, we de-
scribe how to represent these unresolved dynamic
tables by extending the existing table objects, and in

542 FUH ET AL.

the next section, we describe how to use them for
dynamic linking. For convenience, we assume an ar-
chitecture similar to the DB2 Common Server. I ' We
believe that the design presented in this paper ap-
plies also to other relational database systems.

In DB2 Common Server, each SQL statement is com-
piled into an executable plan that consists of a set
of run-time objects manipulated by threads of op-
erators. '',I3 The main logic of a thread is to progres-
sively construct intermediate tables by applying op-
erators, such as sort or join, to the incoming table
streams. The main data structure associated with any
table operation is the table object (TAOB), and each
table reference has its own TAOB.

Current table objects. A TAOB is a descriptor for a
table reference in any table operation. Some of the
TAOB attributes are known and set at compile time
as constants (from the system catalog or the SQL
statement context), for example, the table type and
table identifier (ID) of a base table, the active col-
umn buffer areas, the associated search argument
predicate, l 4 etc. Some other TAOB attributes are used
to keep track of the run-time state of the table, such
as the current record ID, number of records fetched,
status of last operation, etc. Figure 1 illustrates some
important TAOB attributes that are of interest for this
paper.

The type of a table is indicated by the first attribute.
Currently, the possible values are temporay and base.
The table ID uniquely identifies a table. For base ta-
bles, the table ID is known at compile time and is set
by the compiler, while the table ID for a temporary
table is set at run time, when the table is created. As
shown in Figure 1, the compile-time TAOB has a
pointer to a target TAOB. The table ID in the target
TAOB points to the actual table. After the tempo-
rary table is created, all table operations on it will
see the same table ID through their own TAOBS by
this indirect pointer.

Many table operations are based on scans, either by
relation or by index. To maintain the current state
of a scan, the data manager component of the DBMS
creates a handle structure at the time when the tar-
get table is opened. This handle structure keeps track
of the position-sensitive information at the data ac-
cess level, and the handle is used to access the target
table for scan-based operations. The status field
keeps the current status (e.g., open, closed, end of
file) of the table operation. The record-id field keeps
the ID of the last record fetched.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

New attributes for dynamic tables. We now describe
new fields in the TAOB for supporting dynamic ta-
bles. Unlike ordinary tables, a dynamic table needs
to keep extra information obtained at compile time
(from the SQL statement or the system catalog) in
the TAOB, in order to resolve the “unknowns” at run
time. The kind of information needed varies for the
different dynamic tables:

Table functions: The function invocation descrip-
tor (UFOB) is needed for external table functions;
the I D is needed for internal table functions.
Transition tables: The type of transition table (old
or new), the associated trigger name, and the as-
sociated base table name are needed.
Table locator: The object that contains the column
definition of the table locator is needed.
User-defined temporary tables: The type of the
temporary table (global, local, or declared local) and
the associated table name are needed.

We have now identified these new table types: table
function, transition table, table locator, and user-defined
temporary table. A dynumic table descriptor is also

added to the TAOB as the common control block for
dynamic tables. For base tables and temporary ta-
bles, this is set to “null.” The dynamic table descrip-
tor contains the following information:

Subtype: The subtype field is an extension of the
table type. For table functions, it is set to internal
or external. For transition tables, it is either new
or old. For a user-defined temporary table, it can
be global, local, or declared local.
Table schema and table name: This is the schema
and the table name with which the underlying dy-
namic table is associated. It applies only to tran-
sition tables and user-defined temporary tables.
Trigger schema and trigger name: For a transition
table, this attribute further describes the schema
name and trigger name of the trigger where it is
declared.
Column definition object: This attribute points to
the column definition of the corresponding table
locator.
External function object: This attribute points to
the UFOB function descriptor of the correspond-
ing external function invocation.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998 FUH ET AL. 543

Figure 2 A typical relational DBMS architecture. A dynamic table broker is introduced for dynamic linking at the time the
table is opened. Once table references are resolved, all table operations proceed as before.

~ . _ _ _ _ _ _ _ _ . _ _ ~ ~ _ _ _ _ _ _ _ - ~ ~~~ -_______-
~~

In the following section, we will show how the ex-
tended TAOB described here is used at run time for
dynamic linking between the actual table entities and
the unresolved table references.

Extended run-time environment

A typical relational DBMS engine at run time con-
sists of a relational data service (RDS) component
for the logical (relational) view of the database, and
a data manager service (DMS) component for the

physical (raw data) view of the database. Figure 2
shows such an overall architecture. It also includes
a new component, the dynamic table broker, that is
used to support dynamic tables.

As indicated in this figure, access requests to base
tables and ordinary derived tables will be processed
uniformly as before. The interpreter invokes the cor-
responding relational data access routines, which will
in turn invoke lower-level DMS data access routines.
Since the TAOBS of the subject tables are already

544 FUH ET AL IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

“linked” to the table I D corresponding to the phys-
ical table entity for base tables at compile time, or
at run time for ordinary derived tables, no special
treatment is needed for them.

Access to dynamic tables is complicated by the fact
that they are produced externally to the executing
SQL statement, whereas ordinary derived tables are
produced internally. The dynamic table broker com-
ponent is introduced to carry out this dynamic link-
ing process. In this section, we give a brief overview
of the existing run-time environment and describe
how the broker component can be integrated into
the existing run-time routines.

Current run-time environment. Table entities,
whether base or derived, must be created before they
can be accessed. A base table entity must be created
before any SQL statement that accesses it can be com-
piled. Its table ID is known a priori and is stored in
the TAOB of operations that access the table. On the
other hand, derived tables are “computed” from
other tables in an executing SQL statement. Ordinary
derived tables are created (and thus acquire a table
ID), populated, and accessed when the table expres-
sion that (implicitly) defines the derived table is eval-
uated. These derived tables are normally dropped
after execution of the SQL statement.

Any table must first be opened to initialize appro-
priate working areas before it can be manipulated.
The open process is accomplished by invoking the
open table run-time routine, which uses the table ID
to invoke lower-level DMS routines. Once the table
is opened, tuples in the table can be manipulated by
each individual run-time routine. When table ma-
nipulation is completed, the close table run-time rou-
tine is invoked to release the working areas.

The dynamic table broker. Since all table operations
have to go through the open routine, the natural
place to do dynamic linking is at open time, so we
add a simple dispatcher at the very beginning of the
open table routine. If the type indicates a base table
or a derived table operation, then the dispatcher al-
lows the request to fall through to the existing logic.
For dynamic tables, control will be passed to the dy-
namic table broker. The dynamic table broker will
resolve the linkage between unresolved dynamic ta-
ble references and the corresponding table entity.
Once the linkage is resolved, all the run-time rou-
tines can proceed as if the underlying table were an
ordinary derived table.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Dynamic linking involves two steps: first, finding the
target table entity and, second, storing the obtained
information in the current TAOB for subsequent uses.
Although the details of table lookup and attribute

_ _ _ _ _ _ _ _ _ _ ~ ~

Dynamic linking has two steps:
finding the target table entity

and storing the obtained
information in the current TAOB.

~

setting vary from one dynamic table to another, the
fundamental mechanism is the same. The following
segment of C-like pseudocode demonstrates the dis-
patching logic of the dynamic table broker:

switch access-taob.type
{

case TRANSITION-TABLE:
link-transition-table(access-taob);
break;

link-tablefunction(access-taob);
break;

link-table_locator(access-taob);
break;

link-user-defined-temporary_table(access-taob);
break;

case TABLE-FUNCTION:

case TABLE-LOCATOR:

case USER-DEFINEDJEMPORARY-TABLE:

}

where link-transition-table(), link-table-function(),
link-table-locator(), and Iink-user-defined-tempo-
rary-table() perform the linkage for the respective dy-
namic tables. The following section describes how
these routines can be realized.

Supporting dynamic tables

This section describes how the extended run-time
architecture supports dynamic tables.

Transition tables in triggers. Transition tables cap-
ture the state of affected rows when the triggering
SQL operation is applied to a table. More specifically,
the old transition table contains the value of affected
rows prior to the application of an UPDATE or a

FUH ET AL. 545

Figure 3 Run-time configuration and dynamic linking after trig1 is entered
~~~~ ~~~~~~~~~ ~~~ 

DELETE operation,  and  the new trunsition table con- 
tains  the value of affected rows that will be  (or  were) 
used in an UPDATE or  an INSERT operation.  When 
a triggering operation (INSERT,  DELETE, or UPDATE) 
is executed,  transition  tables are  created  and pop- 
ulated,  based on the subtype of the  transition  table 
(old  or new), the triggering operation,  and  the cur- 
rent  content of the table. 

Two  more  details  deserve  further discussion.  First, 
transition  tables are  created  during  the execution o f  
the triggering statement.  Therefore,  the TAOB has 
to  be recorded in a specific area known by the dy- 
namic  table  broker  routine, link-transitionLtable(), to 
resolve references  to  the  transition  table in the ex- 
ecutable plan  associated with the trigger  body.  Sec- 
ond,  the activation of triggers can be  nested, because 
some of the SQL statements in the trigger body may 
cause  another  (or  the  same) trigger to  be activated. 
Therefore, like procedure calls in conventional  pro- 
gramming  languages, the  data  structure  for main- 
taining TAOBs of transition  tables is a  stack so that 

546 FUH ET AL. 

the  innermost TAOB always has  precedence. TAOBs 
are  pushed  onto  the transition table stuck at  trigger 
body entry  and  popped off at trigger body exit. 

The dynamic  table broker finds the  top  entry of the 
transition  table  stack  for  the  actual  table  entity,  and 
stores  the  obtained  table ID in the TAOB of the  cur- 
rent  table  reference. To illustrate our discussion, here 
is pseudocode  for  the  main logic of the dynamic  ta- 
ble  broker  routine link-transition-table(): 

link-transition-table(access-taob) 
{ 

TAOB actual-taob; 

/* (1) Look up the  transition  table  stack */ 
if (access-taob+dt-cb.subtype = = NEW) 

actualLtaob = tran-tbl-stack[top].new; 
else 

actual-taob = tran-tbl-stack[top].old; 
/+ (2) Copy  specific  attributes */ 
access-taob+type = actual_taob+type; 

IBM SYSTEMS JOURNAL,  VOL 37, NO 4, 1998 



access-taob+id = actual-taob-id; 

/ v  (3) Copy implementation-dependent generic 
attributes 4 

modifypother-attributes(access-taob, actual-taob); 
1 

Putting  everything  together, we use the following ex- 
ample to demonstrate  the  run-time flow of the dy- 
namic  linkage for  transition tables.  Let t l ,  t2, and t3 
be  tables with numeric  columns c l  and c2, and trigl 
and trig2 be  the ajkr  updatefbr each statement trig- 
gers  for t l  and t2, respectively. Moreover, trigl pro- 
cesses  only the new transition  table nt, whereas trig2 
processes  both the new and old  transition  tables nt 
and ot: 

CREATE  TRIGGER trigl AFTER UPDATE ON t l  
REFERENCING  NEW-TABLE AS nt 
FOR EACH  STATEMENT MODE DB2SQL 

BEGIN 
. . .  

CASE  (SELECT COUNT(:I.) FROM nt) 
WHEN 2: 

END  CASE; 
UPDATE t2 SET ~2 = ~2 c2 WHERE ~2 < 0; 

. . .  
END 

CREATE  TRIGGER trig2 AFTER UPDATE ON t2 
REFERENCING  NEWJABLE  AS nt 

OLD-TABLE AS ot 
FOR EACH  STATEMENT MODE DB2SQL 

BEGIN 
. . .  

INSERT INTO t3 SELECT nt.cl, ot.c2 FROM nt, ot; 

END 

The following update  operation  on t l  will fire trigl, 
which will  in turn fire trig2: 

. . .  

UPDATE t l  SET ~2 = -c2 WHERE ~2 < 0 

The run-time  configuration  and the dynamic link- 
ing process  when trigl is fired are  sketched in Figure 
3. During  the  update of t l ,  the transition  table nt is 
created  and  populated with affected rows. Before 
trigl is entered,  the TAOB of nt is pushed  onto  the 
transition  table stack (the old  transition  table is not 
generated  and is indicated by “null”),  and  then  a dy- 
namic linking occurs  at the first reference  to nt in 

IBM SYSTEMS JOURNAL, VOL 37, NO 4,  1998 

the  trigger body. Figure 4 shows the  configuration 
when trig2 is also  fired. 

User-defined temporary tables. A global temporaly 
table is a  user-defined  temporary  table  shared by all 
SQL operations in a database  connection session. It 
is “global” in that  changes  are  immediate  and vis- 
ible by subsequent  operations against the  same  da- 
tabase  connection. It is “temporary” in that  the  con- 
tent  persists only during  the  database  connection; 
the physical table  entity for  the global temporary  ta- 
ble is dropped  at  the  end of the  connection session. 
Another  important  characteristic of global tempo- 
rary tables is that they are not  shared  among  data- 
base  connection  sessions.  These  characteristics  can 
be  best  understood  through  an  example.  Let gtt be 
a  global  temporary  table and t l  and t2 be base ta- 
bles with column  definition  identical to  that of gtt. 
The  database  connections, serialized or interleaved, 
will populate t l  and t2 with the rows as shown in 
Figure 5.  

When  a global temporary  table is opened  on behalf 
of an SQL operation,  the dynamic  table broker  rou- 
tine link-user-definedtemporary-table will look up  the 
actual  table  entity in a global symbol table  located 
in the working area  for  the  connection. If it is found, 
the TAOB of the  actual  table entity is used to per- 
form  the dynamic  table  linkage. If it is not  found, 
the  table entity is created  and  entered  into  the sym- 
bol table  for  subsequent  lookups.  The TAOB of the 
newly created  table entity is then used to  perform 
the dynamic  table  linkage  for the underlying  table 
access. The details of the  table linkage are identical 
to  that of transition  table  reference,  and  the follow- 
ing pseudocode  outlines  the  main logic of the dy- 
namic  table  broker  routine link-user-defined-tempo- 
rary-table(): 

link-user-defined-temporary-table(access-taob) 
I 

switch (access-taob+dtLcb.subtype) 
I 

case GLOBAL: 
I 

TAOB actual-taob; 

/*: 1. Look up  the global  symbol table. 4 
actual-taob = find-global-temporary-table 

(access-taob); 

/:I. 2. Create the  global temporary table, if not 
created yet. 4 

if (actual-taob == NULL) 

FUH ET AL 547 



Figure 4 Run-time  configuration  and  dynamic  linking  after  trig2  is  entered 

actual-taob = create-global-temporary-table 
(access-taob); 

/* 3. Copy  specific  attributes. 4 4  

access-taobjtype = actual-taob+type; 
access-taobjid = actual-taobdid; 

I 6  4. Copy  implementation-dependent generic 
attributes. 4 

modify-other-attributes(access-taob, 
actual-taob); 

I 
break; 

case  LOCAL: 
{ 

I 
I 

I 

At  the  end of a  database  connection, the  database 
engine will scan the global symbol table  and  drop all 
the  table  entities  created  on behalf of global tem- 
porary  table accesses in  that  connection  session. 

Local temporary  tables and declared locul  temporury 
tubles are similar to global temporary tables. The only 
difference is in scope. Local temporary  tables  are 
shared  among all the SQL operations  belonging  to 
the  same SQL module, while declared local tempo- 
rary tables are  shared in a PSM (Persistent  Stored 
Module4) basic block. Therefore,  the  data  structure 
and  table  resolution logic for global temporary  ta- 
bles also apply for local and  declared local tempo- 
rary tables.  However, since the symbol table  has to 
be  scoped, the initialization  and the  clean-up logic 
described  above  for global temporary  tables  has to 
be  performed  for  each  scope of the underlying SQL 
statement. 

Table functions. Table  functions can be  internal  or 
external. The body of internal  table  functions  con- 
sists of a  sequence of SQL statemcnts. In contrast, 
external  table  functions are written in host languages 
such  as C, C++, Java*::", Visual Basic"", etc. 

For  internal  table  functions,  the physical table  en- 
tity is indeed  the executable  plan of the body of 

548 FUH ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998 



the  table  function.  Therefore,  the  broker  routine 
link-table-function invokes the plan manager of the 
database  engine to load the  desired  plan, which is 
identified by the plan I D  stored in the dynamic  table 
descriptor of the underlying TAOB. The in-memory 
descriptor of the plan being  loaded is also  recorded 
in the TAOB for  execution of subsequent  invocations 
of the  table  function. 

External  table  functions  are  treated by the  database 
engine as “black-box  table  producers.” Therefore, 
the physical table  entity is the  entry point of the ex- 
ternal  function  that  implements  the  table  function. 
To obtain  the entry  point of the  external  function, 
link-table-function dynamically loads the  desiredfunc- 
tion library into  the  address  space of the  database 
engine. The symbol table of the library being  loaded 
into  memory is then  searched  for  the  desired  exter- 
nal function.  Once resolved, the function  entry  point 
is recorded in the dynamic  table  descriptor of the 
underlying TAOB for  subsequent  invocation of this 
table  function. 

The main logic of link-table-function is illustrated by 
the following pseudocode: 

link-table-function(access-taob) 
I 

TAOB actual-taob; 
switch (access-taob-dt-cb.subtype) 

case INTERNAL-TF: 
/::: Internal table function: load access plan. */ 
access-taob-d-cb.pIan-cb-ptr = 

load-plan(access-taob-dt-cb.planlD); 
break; 

IBM SYSTEMS JOURNAL, VOL 37, NO 4 ,  1998 

case EXTERNAL-TF: 
/::: External table  function:  load library and 

library-handle = dynamicLoad 

access-taob+dt-cb.function-entry = 

resolve entry. */ 

(access-taob-dt-cb.libPath); 

resolveEntry(1ibrary-handle, 
access_taob+dt-cb.functionName); 

break; 
1 

Currently,  the  table  function  support in DB2 UDB a!- 
lows only read  operations (i.e., open,  fetch,  and 
close). 

Table locators. A locator  table is used to  keep track 
of table  locators  created in a given transaction. The 
locator  table  maps  a  locator ID t o  a  pointer  to  the 
TAOB of the actual  associated  table.  At the begin- 
ning of a  transaction,  the  locator  table is initialized 
with no entry in it. During  a  transaction, new table 
entries  are  created  whenever  (derived) tables are 
“bound  out”  to  a host  variable  (through the SET 
statement,  for example). At  the  end of a  transaction, 
the  locator  table is purged  after all the  table loca- 
tors  are  freed. 

When  a  table  locator is accessed in an SQ~statement, 
the  run-time dynamic linking process  takes  place in 
two steps.  First, the locator ID, which has  been  stored 
in the host  variable, is bound in and  stored in the 
dynamic  table  descriptor of the underlying  access 
TAOB, at  the bind-in time of the plan  execution of 
the SQL statement. In the following pseudocode, 

FUH ET AL. 549 



userobject is the locator ID from  the host variable, 
and sqlObject is the access TAOB: 

bind_in(type, sqlobject,  userobject) 
I 

switch (type) 
I 

case TABLE-LOCATOR: 
sql0bject-d-cb.locatorlD = userobject; 
break; 

case . . . 
1 

1 

Second, at  the  time  the  corresponding  table is 
opened,  the  locator ID set  earlier in the access TAOB 
is used to look up the  locator  table  to get the actual 
TAOB. Then  the TAOB attributes of the  current TAOB 
are initialized according to  those  ofthe actual TAOB: 

link-table-locator(access-taob) 
I 

TAOB actual-taob; 

/i: 1. Look up the  global  symbol table. */ 
actual-taob = find-table-locator 

(access_taob+dt-cb.locatorlD); 

/* 2. Copy  specific  attributes. :I:/ 

access-taob-type = actual-taob4ype; 
access-taob-id = actual-taob+id; 

/* 3. Copy implementation-dependent generic 
attributes. :*/ 

modify-other-attributes(access-taob, actual-taob); 
1 

Conclusion 

The  traditional  concept of tables in relational  da- 
tabases has been generalized in the SQL language and 
in some  commercial  database systems. Unlike  tra- 
ditional  tables, dynamic tables exist only at query- 
execution  time  and are directly manipulable by the 
user. The query  compiler  generates  unresolved ta- 
ble references  and relies on  some  run-time linking 
mechanism to resolve them. 

We have proposed  a  generic  framework  for  support- 
ing dynamic tables in existing query compilers, where 
all dynamic tables are  treated in a uniform way  by 
the compiler  and  broker  functions are  added  into 
the  run-time  environment  to  establish the dynamic 
linkage. We have described  the  extensions to  the 

550 FUH ET AL. 

compiler  and the  run-time environment in the  con- 
text of DB2 Common  Server,  and  explained how this 
generic  framework can be  applied to support  tran- 
sition tables, table functions, user-defined temporary 
tables,  and  table  locators.  We have also built a pro- 
totype  based on this framework. The success of our 
prototype  has  confirmed  our  expectation of the sim- 
plicity and  the applicability of our design. 

In future work, we would like to  continue exploring 
in two directions: 

Abstract tables: Recently, abstract tubles have been 
proposed. I s  These would ultimately allow all op- 
erations on a  table to  be user-definable; that is, 
the  user  could  define open, fetch, close, insert,  up- 
date,  delete,  and  even rollback and commit oper- 
ations. Although we do not expect any impact from 
such a  generalization on  the framework we de- 
scribe in this  paper, we would like to take  a  closer 
look at  the language  specification. 
MPP parallel  environment: DB2 UDB Version 5 sup- 
ports MPP (massively parallel processing) where  ta- 
bles can be partitioned  across  multiple  nodes  to 
exploit a parallel environment.  A copy of the  same 
executable plan is executed on multiple nodes, with 
table  queues  for  shipping  data  streams.  The result- 
ing table  from  each  node is piped  through  table 
queues to the  “coordinator”  node  for final process- 
ing and bind out  to  the client. We would like to 
enhance  our framework to work in such  a  parallel 
environment. 

Acknowledgments 

The  authors would like to  thank  the anonymous  re- 
viewers for  their  suggestions on improving  the  pre- 
sentation of the  paper. 

‘“Trademark  or  registered  trademark of International  Business 
Machines  Corporation. 

“,.-Trademark  or  registered  tradernark of Sun  Microsystems,  Inc. 
or Microsoft  Corporation. 

...  ... 

Cited references and notes 

1. ISO-ANSI, Datubuse Language SQL, ISOilEC 9075: 1992, 
American  National  Standards  Institute, 11 West  42nd  Street, 
New York,  NY 10036 (1992). 

2. C. J. Date  and H. Danven,A Guide  to the SQL Standurd, Third 
Edition,  Addison-Wesley  Publishing  Co.,  Reading, MA 

3. J. Melton  and A. R. Simon, Understanding  the New SQL: A 
Conzplete Guide, Morgan  Kaufmann  Publishers,  San  Fran- 
cisco, CA (1993). 

4. ISO-ANSI, Working Draft Dutubase Language SQLJFounda- 

(1993). 

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998 



5. 

6. 

7. 

8 

9. 

10. 

11. 

12 

13 

14 

tion (SQL3), X3H2-97-315,  DBL:  BBN-008, J.  Melton,  Ed- 
itor  (September 1Y97); American  National  Standards  Insti- 
tute, l l  West  42nd  Street, New York,  NY 10036. 

SQL  standard, which will be informally called SQL-98 or SQL- 
In this  paper,  we  use SQL3 to  refer  to the next release o f  the 

99,  depending  on  when it is published,  and we use SQL4  to 
refer  to  the  release  after  SQL3. 
IBM DB2 UniversalDrrtabuse SQL Reference Versiorz 5, S10J- 
8165-00, IBM  Corporation  (1997);  available  through IBM 
branch offices.  Also  available  from  http:i/www.software. 
ibm.com/cgi-binidb2www/library/pubs.d2w/report#UDB 
PUBS. 
IBM Vis~mlAge for C+ + Reference Manual, S33H-4982-00, 
IBM  Corporation (1997), available  through  IBM  branch 
offices. 
IBM DB2 forASi4OO Dutahme I’rvgrumming, SC41-5701-00, 
IBM  Corporation  (1997);  available  through IBM branch 
offices. Also  available  from http:i/booksrvr.rchland.ibm. 
comibookmgri8.htm. 
Currently,  TABLE is not  a  data  type. The proposal of TA- 
BLE  as  a  data  type  has  been  moved t o  SQL4. 
A  host  variable is a  variable in the  (host)  application’s  pro- 
gramming  language. 
IBM DB2 SQL Refercncejor Common Server, S20H-4665-01, 
IBM  Corporation  (1993);  available  through  IBM  branch 
offices. 
G.  M. Lohman,  “Grammar-Like  Functional  Rules  for  Rep- 
resenting  Query  Optimization  Alternatives,” Proceedingy of 
the,4CMSICMOD Conference, Chicago,  IL  (June 1988), pp. 

L.  M.  Hass, J.  C.  Freytag,  G.  M.  Lohman,  and  H.  Pirahesh, 

the ACM SlCMOD Conference, Portland, O R  (May 1989), 
“Extensible  Query  Processing in Starburst,” Proceedings of’ 

18 -27. 

pp. 377-388. 
. P. G.  Selinger,  M.  Astrahan,  D.  Chamberlin,  R.  Lorie,  and 

T. Price,  “Access  Path  Selection in a  Relational  Database 
Management  Systcm,” Proceedings of rile ACM SIG‘MOD 
Conference, Boston, MA (May 1979), pp. 23-34. 

IS. ISOIANSI, Wurkbrg Drafr Management of External Data 
(SQLIMED),  X3H2-97-32IiDBL:  BBN-014, J .  Melton,  Ed- 
itor  (October  1997);  American  National  Standards  Institute, 
11 West  42nd  Street,  New  York, NY 10036. 

Accepted for publication  May 12, 1998. 

Gene Y. Fuh IBM Software Solutions Uivlsion, P.O. Box 40023, 
Sun Jose, California 95/41 (electronic muil:ful~~~~~~.s.iDm.com). Dr. 
F u h  received  the  Ph.D.  degree in computcrscicnce  from  the  State 
University of  New York  at  Stony  Brook in 1989. Since  then,  he 
has  worked in the  area of compiler  development  for  various  pro- 
gramming  languages,  such  as VHDL (Very  High  Scale IC  [hard- 
ware]  Description  Language),  Verilog,  FORTRAN 90, and  SQL. 
He is currently  the  technical  leader  for  the DB2 Spatial  Extender 
team  and  an  architect  for  the  DB2  UDB  object-relational  tech- 
nologies.  Prior  to  joining  IBM in 1993, Dr. Fuh held  several  tech- 
nical management  positions in the  electronic  CAD  (computer- 
aided  design)  industry.  His  recent  technical  interests  are  compiler 
construction,  language  design,  objcct  relational  DB  technologies, 
clientiserver  debugging  methodology,  and  Internet  application 
development. 

Jyh-Herng Chow IBM S o f i w r ~ r ~  Solntioms DiL’i,YiVn, P.O. Box 
49023, Sun Jose, Califvrnia 95/41 (electronic nlrlil: elwwjh@us. 
ihm.com). Dr.  Chow  received  the M S .  and  Ph.D.  degrees  from 

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998 

the  university o f  Illinois  at  Urbana-Champaign in 1990 and 1993, 
and  the B.S. degree fr-om National  Taiwan  University in 1985, all 
in computer  science.  He  has  been  working  on  the  DB2  Universal 
Database  engine  andwas a technical  leader in developingshared- 
memory  intraquery  parallelism  support in Version 5. His  recent 
work  focuses  on  Internet  applications  and  the  management of 
structured  documents,  such  as  those  written in XML  (extensible 
Markup  Language).  Prior  to  joining IBM’s Database  Technol- 
ogy Institute  (DBTI),  he  was  with  the  Application  Development 
Technology  Institute,  responsible  for  developing  shared-memory 
parallelizingcompilers,  run-time  systems,  and  advanced  compiler 
optimization  techniques. 

Nelson M. Mattos IBM Softwore Solutions Division, P.O. Box 
49023, San Jose, Califvrnra 95/41 (ekcrronic ntuil: mattos@us. 
ibm.com). Dr.  Mattos is a Senior  Technical Staff‘ Member  and 
manager of DBTI.  He is IBM’s chief  architect  for  object-rela- 
tional  DBMSs  and  the  standard  project  authority  for  SQL. H e  
leads  extensions  to  SQL,  drives  the  development o f  object-rela- 
tional  extensions  for  the  DB2  products,  and is a key force  behind 
the  various  Extender  products  that  exploit  the  object-relational 
features of DB2.  His  DBTl  organization is working  on sevel-al 
extensions to  DB2  UDB:  object-relational  constructs,  event  man- 
agement,  support for multimedia,  query  rcwrite  and  optimiza- 
tion,  query  parallelism, new index  management  techniques,  com- 
ponent-based  object  and  application  development,  and  constructs 
to  increase  the  expressive  power  of  SQL. H e  has  also  been  heav- 
ily involved in the  development o f  the  SQL3  standard  as  IBM’s 
representative  to  the  American  National  Standards  Institute 
(ANSI)  SQL  committee  and  a  U.S.  representative  to  the  Inter- 
national  Organization  for  Standardization (ISO) Committee  for 
database.  He  has  contributed extensively to  the  design of SQL3 
through  more  than 300 accepted  proposals.  Prior  to  joining  IBM, 
Dr.  Mattos was an  associate  professor  at  the  University of Kai- 
serslautern,  Germany,  where  he  was involved in research  on ob- 
ject-oriented  and  knowledge  base  management  systems. He re- 
ceived  the B.Sc. and  MSc.  degrces  from  the  Federal  University 
of Rio  Grande  do SUI, Brazil, in 1981 and 1984, and  the  Ph.D. 
degree in computer science  from  the Llniversity o f  Kaiserslau- 
tern in 1989. H e  has  published  over 30 papers  on  object-relational 
databases,  knowledge  base  management,  and  application  areas 
in various  magazines  and  conferences,  and is the  author of An 
Approach to Knowledge Ruse Managemcnr, Springer-Verlag ( I  989). 

Brian T. Tran IBM Software Solutions Division, P.O. Box  49023, 
Son Jose, California 95141 (electronic mail: hrrrarz~)cIs.ihm.com). 
Mr.  Tran received  the M S .  degree in computer  science  engineer- 
ingfrom  San  Jose  State  University,  California, in 1986. He is cur- 
rently  a key technical  member in the  Object  Strike  Force  at  DBTI. 
He is also a key developer in the  Data  JoineriSpatial  Extender, 
working to  extend  thc  current  DB2iData  Joiner  component  to 
support  spatial  queries. 

Tuong C. Truong IBM Software Solutions Division, P.O. Box 
49023, Sun Jose, Culifi)rnirI 95141 (elcctrorlic mail: tciruong@us. 
il~nz.com). Mr.  Truong  received  the B.S. degree in computer  sci- 
cnce in 1990 and  the M.B.A. degree i n  1998, both  from  San  Jose 
State  University. He joined  IBM  at  the  Santa  Teresa  Laboratory 
in  1991 and  has  worked  at  DBTI in the  DB2  UDB  SQL  compiler 
area  for  the  past five years.  Mr.  Truong’s  interests  include  da- 
tabase  technology  and  Web  technology  and  their  business  appli- 
cations. 

Reprint  Order No. (3321-5689. 

FUH ET AL. 551 


