308 cotTscHALK

Technical overview
of IBM’s Java initiatives

This paper gives an overview of some of

IBM’s major Java™ efforts and sets forth a
structure that relates the individual Java efforts
to one another. The paper describes IBM’s
overall approach toward Java and describes how
IBM is exploiting Java to answer customer
requirements in such areas as server platforms,
reusable components, and tools. This paper will
serve as an introduction to some of the other
papers that are included in this issue of the IBM
Systems Journal and that detail individual areas
of IBM’s focus on Java.

ver the last few years, 1BM has seized upon the

Java®™™ programming language as a way to help
its customers meet today’s business challenges. In
IBM we believe that the simplicity, portability, scal-
ability, and security associated with Java will help
our customers to meet their customers’ needs. IBM’s
efforts with Java scale from the microchip to the en-
terprise and involve applications, infrastructure, and
tools.

One of the main reasons why IBM’s customers are
excited about the potential of Java is that IBM’s plans
for exploiting Java technology allow users to easily
access existing data, services, and applications re-
siding on IBM mainframe systems such as $/390*
(System/390*) and As/400* (Application System/400*).
It is estimated that 70 percent of the critical busi-
ness data in the world reside on mainframe comput-
ers. Without Java, mainframe data and services can
be reached and extended to the new interconnected
world of the World Wide Web only by writing ap-
plications that deal with a myriad of proprietary ap-
plication programming interfaces (APIs). Java, with
its standardized APIs for invoking different system
services and data, serves as the glue to bind existing

0018-8670/98/$5.00 © 1998 IBM

by K. D. Gottschalk

data and applications to this new world. Thus, Java
enables our customers to have the best of both
worlds, combining the security and availabitity of sys-
tems that have been developed over many years with
the new reach and immediacy of information avail-
able through the Internet and the World Wide Web.

This issue of the IBM Systems Journal describes sev-
eral major efforts by IBM in such areas as Java for
use in the enterprise, Java frameworks for applica-
tion development, Java components, and Java tools.
In this paper, we provide an overall picture of some
of IBM’s major Java efforts and point to some of the
other papers in the issue for more detail.

This paper assumes a basic familiarity with Java, the
Java Development Kit (JDK**), the Java Virtual Ma-
chine (JVM), client/server computing, and network
computing. There are many introductory books and
presentations on Java; for a good technical introduc-
tion to Java see Flanagan.'

IBM Java architecture overview

Figure 1 sets forth the overall architectural structure
of the 1BM Java implementations. The architecture
is divided into three tiers: client, application server,
and data/transaction server. The application server
and the client platform both execute programs writ-
ten in Java and are connected via an Internet or in-
tranet transport layer. The third tier consists of a data
server or transaction server, or both, that typically

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

APPLICATION SERVER RUNNING JAVA

JAVA APPLICATIONS AND SERVLETS

SERVER JAVA COMPONENT LAYER

SERVER-JAVA APPLICATION INFRASTRUCTURE

SERVER WEB INFRASTRUCTURE

JAVAVIRTUAL MACHINE AND CLASSES

SERVER PLATEGRM (AIX, OS/2, MVS, AS/400, WiNa2y

JAVA CLIENT PLATFORM

JAVA CLIENT PLATFORM (AIX, 0S/2, WIN32: JAVADS)

JAVAVIRTUAL MACHINE AND CLASSES

CUENT WEB INFRASTRUCTURE (BROWSERMEBTGP) :

CLIENT JAVA COMPONENT LAYER

provides non-Java services to Java applications re-
siding on the application server.

The multitier architecture illustrated in Figure 1, with
connections between tiers, incorporates a logical,
rather than a physical distinction. The three types
of components may be located on different physical
platforms, or they may all be located on the same
physical platform. Although Figure 1 shows one ap-
plication server and a single Java client, in reality
each application server will communicate with many
Java client platforms, and a single Java client plat-
form may communicate with multiple application
servers. Finally, multiple application servers may
communicate with one another.

In order to more readily understand the components
in the IBM view of Java, we have grouped them into
layers, as indicated in Figure 1. Within the applica-
tion server, the applications and servlets supporting
Java make use of reusable software components
called JavaBeans™** that reside in the server Java

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

JAVA APPLICATIONS AND APPLETS

component layer. Below the component layer is the
server Java application infrastructure, an application-
oriented set of services that provide the Java appli-
cations with needed common functionality; an ex-
ample of such a service might be a framework
oriented toward the development of integrated bus-
iness applications.

Below the server Java application infrastructure is
the server Web infrastructure, consisting of a set of
services that provide general support for Java on the
application server. An example of such functional-
ity might be some classes to support the execution
of servlets in a Java environment.

Below the server Web infrastructure is the Java Vir-
tual Machine, or JvM, which supports Java compo-
nents on the application server with basic Java func-
tionality. The JVM is hosted on a server operating
system, which might be a UNIX** platform such
as AIX* (Advanced Interactive Executive), a Micro-
soft Windows** platform, 0S/400* (Operating Sys-

GoTTscHALK 309

Figure 2 Application server running Java

" "APPLICATION LAYER | JAVA ARPLIGATIONS AND SERVLETS

- COMPONENT LAYER

COMPOMENTS
¢ ENTERPRISE

. APPLICATION SAN

' INFRASTRUCTURE FRANCISCO' | '« COLLAB. | BROKER
’ i ’ » MAIL

» ETC.

DOMING | COMPONENT JAVABEANS

& WEBRUNNER
BEANS
» ETC.

WER WEBSPHERE APPLICATION SERVER

INFRASTRUGTURE | Fitriis o

JYMAND CLASSES | |/ CORECLASSES | STANDARD EXTENSION CLASSES | . USER CLASSES

SERVER JAVAVIFTUAL MACHINE

UPLATFORMS | b Al 0872, 08/390, AS/400, WINGZ ...

tem /400), 082* (Operating System/2*), 0s/390* (Oper-
ating System/390), or VM/ESA* (Virtual Machine/
Enterprise Systems Architecture™®).

A transport layer connects the application server and
Java client platforms, as well as the application server
and data or transaction server platforms.

The Java client platform provides the interface to
the end user. In the Java environment, the client plat-
form might be A1X, 0S/2, a Windows platform, a net-
work computer (NC), or any other platform running
the JvM and having the appropriate graphical user
interface for communicating with the end user. In
the client, the JvM and other client run-time infra-
structure support Java client applications and applets
that facilitate interaction with the end user via the
client browser or webtop. As can be seen from Fig-
ure 1, layering of functionality on the Java client gen-
erally mirrors that on the application server.

We next look in more detail at IBM’s particular in-
frastructure for the application server.
Application server infrastructure

IBM’s implementation of the application server run-
ning Java is governed by a model called the IBM Net-
work Computing Framework (NCF) for e-business.

310 GoTTSCHALK

NCF is a Java-based model and set of services that
ties together the 1BM and Lotus Development Cor-
poration server offerings and provides a Java-based
set of server functionality that runs on all major
Java platforms. NCF integrates the use of Java as
the application programming environment with
Component Object Request Broker Architecture
(CORBA**) as the object-oriented infrastructure for
distributed computing.

Figure 2 illustrates major IBM components associ-
ated with the application server running Java. The
IBM VisualAge* tool makes it easier to use these
components when building enterprise Java applica-
tions and servlets. The actual components in each
layer will depend on the customer configuration; the
richness of function in each layer will vary from cus-
tomer to customer, depending on what products and
services the customer installs. Throughout the rest
of this paper, we discuss the components illustrated
in Figure 2 in more detail.

At the top of the figure are Java applications and
servlets that are used to bring enterprise informa-
tion to a wide audience via the Internet. Applications
and servlets operating in the Java environment are con-
structed using reusable components called JavaBeans
s0 as to make such applications easier to build. We
believe that the success of Java depends on IBM and

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 3 Java applications and JavaBeans

DATA.ACCESS SERVICES

APPLICATION

&z O D

TRANSPORT

SERVICES
® SAN FRAN.
* COLLAB.

JAVA

SERVICES

APPLICATIONS ® HTTP
ON JvM

«lIOP

® INDUSTRY

< * OTHER

o O O

e ETC.

TRANSACTION SERVICES

other Java suppliers providing JavaBeans compo-
nents to facilitate the construction of Java applica-
tions. JavaBeans are a part of IDK Version 1.1; they
provide a means of packaging functionality so that
it may be easily reused by multiple applications and
may easily communicate with other application func-
tionality. JavaBeans lower the skill level required to
assemble Java-enabled applications by allowing the
user of a tool such as VisualAge to assemble appli-
cations from parts through visual manipulation,
rather than having to do coding. The software-de-
velopment world has been looking for a long time
for a way to easily reuse components across multi-
ple environments, and we believe that JavaBeans
represent a major contribution toward solving this
problem.

Figure 3 is a bean-centric view of Java applications,
servlets, and applets. In Figure 3, Java programs
running on the client or on the application server
make use of many common services by means of
JavaBeans. These can include:

* Beans to access existing relational databases

* Beans to talk with other applications on the client
or server by means of HyperText Transfer Proto-
col (HTTP), Internet Inter-Orb Protocol (1IOP), or
another transport protocol

* Beans to access applications and data in transac-
tion monitors such as CICS* (Customer Informa-
tion Control System)

* Beans to access application services provided by
Lotus, San Francisco®, or other frameworks

By providing application services via JavaBeans, we
lower the skill level and experience required to write

iBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Java applications and applets. Since JavaBeans are
reusable components, they can be assembled into ap-
plications and applets using visual assembly tools,
rather than requiring programming to be the means
to achieve the desired result.

IBM development groups and other companies pro-
ducing Java applications have realized the potential
of JavaBeans and are developing new functions as
JavaBeans. Figure 2 lists some of the IBM-provided
server-side JavaBeans components. They are de-
scribed in more detail later in the section entitled
“IBM’s component approach and JavaBeans.”

IBM groups are also developing many types of server
application infrastructure components aimed at var-
ious types of applications. Figure 2 mentions the San
Francisco frameworks to support commercial appli-
cations, Lotus Domino** services supporting vari-
ous types of collaboration, and Component Broker
services for object-oriented business applications.
Some of these are implemented in Java and some
are not, but all provide interfaces to Java applica-
tions and servlets running on the application server.

IBM has added value to the base Java components
in the application server by providing a robust set
of server functions oriented toward the development
of business applications. At the Java application in-
frastructure layer, the San Francisco project consists
of a set of Java server-side frameworks that provide
the foundation for integrated business applications
for small and medium-sized enterprises. San Fran-
cisco includes building blocks and prefabricated tem-
plates that will be extended by IBM Business Part-
ners and independent software vendors (ISVs) to

GcotTscHALK 311

8661 ‘€ ON ‘€ TOA “TYNHNOr SWILSAS W8I

-dns paje1dosse pue UIYOBIA] [BNIIIA BAB[9} pUNOIE
P2I91USD JUSWUOIIAUS BART ® Ul uni suoneordde eaey
juar oy ‘suonedrjdde saarss uoneoridde yim oseo
o st sy ‘suoneorjdde wioped 2an1BU UM ISIX200
stuouodwod 93O SNJOT JO INO }[Ing ISOY) pur
syonpoid 10jeNUWS PUBUS(] UO ISOH SJAMI S yons
suoneordde eaef aind juasrad Q1 ‘uelpP 23 U

‘wIojjeld 194198 ® 0] UBY) Iayel
JUSID B 0} Pa12alIp a1k jey) sjusuodod sey ing
7 2InS1,] ul PAjRISN[[I SINIONIISBIJUI JOAIIS UONED
-1idde oy} 01 Je[IUIIs ST OINJONIISRIJUT SIY, I, "0INJONI)S
-BIJUI JUSI[D BAR[91} JO MOIATOAO UE SOAIS ¢ 0InS1]

ainjongisequl Juai)

¢'onsst siy) Ul okeq Aq roded ay a9s
‘ToAxaS uonediddy axroydgqop INAI oY) UO uonew
-IOJUT 2JOUI 10, "SI9JAISS BAR[O} AJIJRUOIIOUNY UOII
Furpraoad sa0IAISS JO 195 B SOPN[OUL 1] "SIOAIIS qaM
Ansnpur Surpeo] Ioy10 SB [[om SB JOAIIS I OD) Sn)
-07T o3 107 110ddns 19]A10S BAR[SOpIA0Id , JOATIS UOT)
-eorjddy araydgqom WA 2y], “194e] 2InjonIseryul
uonedsrdde a1 ur suondUNJ oUIWIO(SNIOT Y3} JO SIS
-Bq oY) s1 pue wrojie[d 10AT0S G\ 1OUIOIUT SINEI SI
10D OUIWIO(T SN0 “IOAR] QINJONIISRIJUL QOM U1 IV

*/pe/wod gl aIemios mmm//:dny 1e a11sqam justdo
-[oaap uoneoridde W4l oy3 99s ‘19501 Judsuodwo))

INENGXV. | INSR0 Z/80 | INSMO SMOGNIM | NOLLVLS MHOMIIN

MvHOSLLOD ¢LE

O UONBWLIOJUI 9IOW IO "3I50[SSaUISng UO SNJ0Y
03 s1odojeasp smofre 1eq) [opouwr Surureidord jsnq
-o1 ® sapisoid pue ‘suoneoridde 103lqo paInqnsip
s[qesnaz Jo yuswrdoraaap uoneordde pider ojqeus 0)
1I[00) PUB SWIT) UNI B SOPNOUI 1901g Jusuoduro))
‘Gurunwrerdord suoneoridde poinqinsip 10l juowr
-uoliAuR Juowdo[aaap paseq-199{qo vau 00 ‘[ruonoe
-suer) ‘you e sapiaold jey) [opowr Surweisold pue
JUSWUOIIAUS SWI-UNI IDAIOS ® ST 19j0I1g jusuodwo))

SIJV BAR[BIA S}o[Alas pue suoneordde eaef
0] 9[qe[IRAR 218 3S9Y) JO [[® 3)9 ‘[lel ‘UOIIBIOQR[[0D
10§ syuauoduwos Jo A)atrea g sopiaoid ourmo(q snjo

27onssI SIY) W TR 19 uiqny Aq Iaded o) 9os
‘00SIOURI,] URS UO UOIIBULIOJUI SIOW 10, "00SIOURL]
ueg uo paseq suopeordde 1aio yym uoneigoju
Aseo pue ‘syromauresj Aousrmonnu ‘yioddns o3end
-ug[[BUOIIRU YSNOIY] YoB3I [2qO[S JUIUII[RUD JIoM
-JaU ‘SyIoMmate] 9jqipualxs wope(d-sso1o Fuiptaoid
£q sAsI 103 Atuniioddo joxrew suapeolq odsouRIy
ueS ‘pado[oAdPp SIYIOMIWEI] O} SE S[IOUN0D AIOSIAPR
ur Sunedonied s1omied ssoursng aIe oym oY) Jo
Aueur Y11M ‘poIusIO-ASI Yonul A19A SI 0ISIOURI] GRS

‘sy1IoMamIRI) 0ospuel] ues panjddns-wai
Jwes oy) Sulsn SIOPUSA JUSIQJIP WOIJ SUONEd
-nidde _ pas1q-Jo-159q,, JO uoneIgojul o) sofeInooua
0osIoueL] ueg 'sa1ns uonestdde pajerd3ajur apiaoad

NIHOVIN TWILLHIA VAVE

SH8SYI0MISN | SISVIO NOISNALXA QHVONVIS | S36EVI0 3400

dOLEmMEO IS0

SINANOJWOD

- SNY3E AXOHd
Lo YAYE ISIMAU3ING

aimonasesul JUdl eAer ainbiy

Figure 5 Java for the Enterprise

BUSINESS APPLICATIONS

| ENTERPRISE JAVABEANS

TRANSACTION
| MONITOR

porting classes. On the Java client, the Java foun-
dation classes for user interface components and
widgets make available extensive user interface ca-
pability. Of particular interest as components on the
Java client are the set of eSuite components from
Lotus. eSuite provides a lightweight set of produc-
tivity components implemented as JavaBeans that
facilitate the quick development of business appli-
cations. For a description of Lotus eSuite see the pa-
per by Briggs in this issue.*

As is the case with the application server, the IBM
Java client implementations are run on a variety of
platforms, both 1BM and non-IBM. In fact, because
the implementations are based on Java, they will run
on any client platform that implements the appro-
priate Java run-time environment.

Java for the Enterprise initiative and the
Network Computing Framework

The 1BM Java strategy for application servers is two-
fold:

1. To enable access to the broad range of IBM and
Lotus server technology through the integrating
model of NCF and Java APIs

2. To exploit the Java for the Enterprise initiative
of JavaSoft (a division of Sun Microsystems, Inc.)
and the concept of a richer set of server Java APIs
that this implies.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

In this section, we briefly describe the Java for the
Enterprise initiative and describe the Network Com-
puting Framework and how it fits into this architec-
ture.

Java for the Enterprise initiative. The Java for the
Enterprise initiative, announced by JavaSoft at the
JavaOne Conference in April 1997, consists of a set
of standardized APIs for enterprise-level distributed
Java applications and a set of extensions to the Java-
Beans architecture to allow enterprise applications
to easily participate in important enterprise services.
In this subsection, we describe the major components
of this initiative at a high level.

Figure 5 illustrates the Java for the Enterprise plat-
form, focusing on Java APIs on the server and Java-
Beans.’

Java enterprise APIs. Working with its Java part-
ners, JavaSoft has recently defined several APIs that
allow client and server applications, applets, and serv-
lets to access common server-side systems and sub-
systems, This approach facilitates the creation, de-
ployment, and management of scalable Java business
applications. This architecture allows application de-
velopers to focus on their business logic without hav-
ing to worry about the plumbing that makes the
server environment so complex today. These APIs are
depicted in Figure 5.

GOTTSCHALK

313

In Figure 5, IMAPI refers to the Java Management
API, which defines access to a set of services for man-
aging Java resources. INDI, the Java Naming and Di-
rectory Interface, is an API for accessing naming and
directory services. JTS is the Java Transaction Ser-
vice, an API for invoking transaction services. JIDL
refers to Java interface definition language, an in-
terface to the CORBA set of services for distributed
computing. JMS, the Java Message Service, is an API
for invoking asynchronous message delivery services.
Finally, IDBC**, the Java Database Connectivity API,
accesses data in existing databases through a com-
mon interface.

Figure 5 shows that business applications may par-
ticipate in subsystem services via Enterprise Java-
Beans**, a Java model for software components that
encapsulate business logic and run on an applica-
tion server. Enterprise JavaBeans allow people to
assemble applications that run on the server and can
take advantage of the Java enterprise services. Us-
ing avisual assembly tool such as VisualAge for Java,
users will be able to utilize Enterprise JavaBeans to
do such tasks as accessing existing data and defining
transactions without having to write code, thereby
realizing a major promise of the Java enterprise tech-
nology— giving companies the tools they need to di-
rectly define their company policies in terms of ap-
plications that are responsive to those policies,
without having to acquire complex programming
skills.

Figure 5 shows a transaction monitor intimately as-
sociated with the enterprise APIs and Enterprise Java-
Beans. IBM products that provide a transaction-pro-
cessing environment and plan to support Enterprise
JavaBeans include CIcS, Component Broker, and
TXSeries*.

The IBM strategy with respect to the Java for the En-
terprise initiative is simple: 1BM will provide the nec-
essary linkages between enterprise APIs and IBM sub-
systems that perform the appropriate services. IBM
will supply Enterprise JavaBeans support in its ma-
jor subsystems for these services. Finally, the IBM Vi-
sualAge for Java tool will include support allowing
Java application writers to easily access appropriate
functions and information using these APIs, includ-
ing Enterprise JavaBeans support for these APIs.

The Enterprise Server for Java (ESJ) specification
spells out how IBM is bringing the Java for the En-
terprise initiative to IBM platforms. The ESJ speci-
fication prescribes specific APIs, services, and Enter-

314 coTTscHAaLK

prise JavaBeans support at the application-infra-
structure and Web-infrastructure layers of the ap-
plication server running Java that, when adhered to,
transform such an application server into an Enter-
prise Server for Java. For more information on IBM’s
efforts with respect to Java for the Enterprise, see
the article by Brackenbury et al. in this issue.®

The Network Computing Framework. The Network
Computing Framework (NCF) for e-business, which
was announced in April 1997, represents IBM’s ap-
proach to providing Java-oriented services and ca-
pabilities to facilitate electronic business over the
Web. Figure 6 illustrates a major idea behind NCF,
which is to provide a coordinated set of IBM soft-
ware servers centered around Java APIs and Java-
Beans (including Enterprise JavaBeans), and pro-
vide Java applications with access to major services
of the underlying server. With use of NCF technol-
ogy and associated tools, Java applications can eas-
ily be built on the server to take full advantage of
the powerful and robust system services that IBM has
developed over the years.

NCF consists of the following components:

s An open, pluggable framework centered on Java

s A set of software servers that are accessed through
standard protocols and Java interfaces

s A set of clients that exploit just-in-time download-
able components such as those in eSuite

s Tools that exploit the JavaBeans component stan-
dard

» Standard technologies to link components, such
as HTTP and IIOP

s A set of built-in groupware solutions and a foun-
dation for e-business applications

» A set of connectors to existing data and transac-
tions on the third tier

Figure 7 illustrates NCF services. NCF provides for a
Web server and Java Virtual Machine together with
Java interfaces to many services. NCF provides ap-
plication programming support in the form of de-
velopment tools and support for JavaBeans, applets,
and servlets. The Web server and Java-oriented ap-
plication programming environment are base ser-
vices of the NCF.

Additional optional components of NCF include soft-
ware-server towers for community (mail and related
services), collaboration, storing, and retrieving data
located in relational databases and distributed files,
transaction support, and delivery services. IBM’s im-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 6 NCF and JavaBeans

HTTPAIOP

Figure 7 NCF services

| E-BUSINESS APPLICATIONS

DATA AND TRANSACTION CONNECTORS

APPLICATION
PROGRAMMING
SUPPORT

* DEVELOPMENT TOOLS
© JAVABEANS

® APPLETS, SERVLETS

® JAVA APis

|| SOFTWARE SERVERS

1 & COMMUNITY

I » COLLABORATION

| s RELATIONAL DATABASE
/| ® TRANSACTION

| & DISTRIBUTED FILE 7
. » DELIVERY SERVICES

WEB SERVER W/OBJECT REQUEST BROKER

plementations of these towers are based on appro-
priate IBM and Lotus technology, including the en-
tire collection of Domino services and CICS; server
towers access the appropriate underlying data stores.
As has been stated previously, a major thrust of NCF
is that these services are made available to Java ap-
plications by means of Java APIs and JavaBeans.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

INFRASTRUCTURE W/JAVA, DIRECTORY, AND SECURITY.

Finally, NCF includes optional systems management
services that may be used to manage all of the above
components.

NCF supports both e-business applications written in
programming languages such as Cand C+ + and ap-
plications written in Java. Java applications access

GOTTSCHALK 315

NCF services by means of Java APIs and JavaBeans.
Accessing NCF services in this way greatly reduces
the complexity required to build applications in the
enterprise server environment and reduces the like-
lihood of making mistakes, thereby enhancing reli-
ability.

IBM has already made available many servers and
components conforming to the NCF model. The En-
terprise Server for Java® incorporates many of the
ideas of NCF, whereas the IBM WebSphere Appli-
cation Server® implements many server elements of
the NCF model.

In this section we have looked at the architecture
and some of the major components of NCF. For more
information on NCF, see the IBM e-business website
(http://’www.software.ibm.com/ebusiness) and the pa-
per by Bayeh in this issue.?

IBM’s component approach and JavaBeans

IBM’s customers have for many years been seeking
productivity breakthroughs that they believed could
be obtained through large-scale software reuse. They
want ways to produce reusable components that can
be used in arbitrary combinations to create user ap-
plications. The availability of such components and
tools to manipulate them would lower the skill level
and experience required to create applications that
are responsive to the customers’ needs. Instead of
having programmers create applications, business
policymakers could utilize visual development en-
vironments to “wire together” collections of reus-
able components to meet their exact needs.

Until the advent of JavaBeans, only modest progress
had been made toward achieving this goal. IBM’s Vi-
sualAge tool provides the capability to create and
manipulate reusable components in various pro-
gramming environments, such as C++ and Small-
Talk, but the resulting objects and programs run only
in certain limited environments. With JavaBeans,
IBM has the opportunity to at last achieve its goal
and give customers the benefits of visual comput-
ing. Applications composed wholly or in part of Java-
Beans can be run on any Java-enabled platform.

JavaBeans takes Java’s “write once, run anywhere”
capability and extends it to include “reuse every-
where.” JavaBeans are reusable components. Com-
ponents are combined from disparate sources to cre-
ate applications quickly and easily. To streamline the
development process, programmers build small, re-

316 coTTSCHALK

usable pieces called JavaBeans and then wire them
together with the help of a visual builder program,
such as VisualAge for Java or Lotus BeanMachine**
(described later in this paper under “Tools over-
view”).

Figure 8 illustrates the promise of JavaBeans. As
shown in the figure, the customer can use beans ob-
tained from a variety of sources to quickly create a
customized application that meets his or her needs
exactly. Beans range from small programs that per-
haps encapsulate company-specific business rules, to
large generic application components, such as word
processors and spreadsheets. The customer would
use a tool such as VisualAge or Lotus BeanMachine
to assemble the application visually. The components
themselves could be produced using a variety of IBM
and non-IBM tools. Once assembled, the 100 percent
pure Java application can be run on any platform
that supports the Java Virtual Machine.

IBM JavaBeans development efforts. There are four
types of IBM development efforts going on with re-
spect to JavaBeans:

1. Tools for creating and consuming JavaBeans

2. Helper beans for helping the user get at system
services and existing data

3. Beans providing client and server business func-
tionality

4. Support for Enterprise JavaBeans

An overview of the IBM tools used for writing Java-
Beans is presented later in this paper.

An example of helper beans is the bean extender
technology that has been put into VisualAge for Java.
Bean extenders provide capabilities that enable tools
groups to provide better beans—they are JavaBeans
that consume and produce beans in such operations
as aggregation, collection, inspection, invocation, dis-
assembly, and behavior modification. Another ex-
ample is the Taligent Webrunner beans for access-
ing Internet files and sending and receiving Internet
mail.

The JavaBeans that are being shipped as part of the
eSuite product from Lotus are an example of beans
providing business functionality. eSuite includes pro-
ductivity components for e-mail, spreadsheets, word
processing, charting, data access, presentation graph-
ics, and project scheduling. They come with a com-
munications infrastructure called InfoBus and an in-
frastructure for a common “look and feel” called

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 8 JavaBeans in IBM’s strategy

S
+PART COMMUNICATION

InfoCenter. For more information on eSuite, see the
paper by Briggs in this issue.*

IBM server platform approach

This section describes how the 1BM server platforms
are enabling themselves to work with Java.

The 1BM Centre for Java Technology Development,
working in partnership with the appropriate platform
development groups, has “ported” the Java refer-
ence implementation from JavaSoft to each of the
major IBM server platforms (08/390, AIX, 0S/2, 0S/400,
VvM). The centre is now focusing on improving the
performance of the Java implementations running
on these platforms, so that they will be “best of
breed” in their competitive spaces.

In order to obtain best-of-breed performance from
the Java Virtual Machine and associated class librar-
ies, it is necessary for the platform organizations to
modify certain pieces of the reference-implementa-
tion code so as to take advantage of features inher-
ent in their individual platforms. To obtain maximum
utilization from the reference implementation and
to ensure that there is minimal deviation, each plat-
form organization is working closely with the cen-
tre. The starting point for all modifications is the cen-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

tre’s porting of the Java reference implementation
of any particular version of the JDK. The program-
mers responsible for adding Java to each platform
review upcoming features of each new JDK version
with the centre and decide under the guidance of
the centre which pieces will need to be reworked for
that platform. To ensure that it is a valid implemen-
tation of the IDK, each platform implementation must
pass the appropriate JavaSoft compliance test suite be-
fore it is made generally available to customers.

In order for Java to be a pervasive platform tech-
nology in the industry, IBM is cooperating with Java-
Soft and other major players in the Java arena to
ensure that JavaSoft receives maximum benefit from
IBM’s experience in the server world and can improve
the JDK and associated services based on the results
of 1BM's experience. Working with the centre, each
platform group identifies technology that it has that
might help the Java community in general, and IBM
works with JavaSoft to make this technology gen-
erally available.

The centre has standard performance benchmarks
that are run against the platform implementations,
so that IBM may make interplatform comparisons and
know better how to advise customers when it comes
to platform choice.

GOTTSCHALK 317

Figure 9 Java client/server communications

IBM’s approach to Java transport and
distributed objects

We now present the IBM strategy with respect to
client/server communications and distributed objects
in the Java environment. We first describe the var-
ious ways of distributing information and services in
the Java environment and then give some guidelines
as to when to use which services.

Client/server communications overview. In this sub-
section we discuss the major ways in which Java ap-
plets or applications running on a client machine can
communicate with Java or non-Java applications run-
ning on a server.

Figure 9 illustrates the various methods for client/
server communications in a Java environment. In the
figure, a person at a Java client platform is using the
client to communicate with application code on an
application server. Note that there are two major
styles of communication. In one case, the person is
using a Web browser to communicate with the server
via the HyperText Transfer Protocol (HTTP). HTTP
is the original transport protocol for the World Wide
Web. The Web browser has HyperText Markup Lan-
guage (HTML) support and communicates either via

318 corrscHalk

the Web server with an HTML document at the server,
orvia the Internet Common Gateway Interface (CGI)
with an application running on the server. If the ap-
plication is set up to do so, it may retrieve existing
enterprise data from a mainframe computer or data
server and return the data to the applet via the
HTTP-CGI mechanism. Applications written to work
with CGI are often written in a scripting language,
such as the Practical Extraction and Reporting Lan-
guage (PERL) or a UNIX shell script, but such appli-
cations may also be written in C or C++.

Figure 9 also illustrates a recent alternative to CGI
called the Java servlet. Servlets run in a Java envi-
ronment on the server and are somewhat analogous
to applets running on a client. Like CGI applications,
servlets can access and return data via HTTP, but serv-
lets also benefit from the portability and security
characteristics of the Java environment. As is illus-
trated in Figure 9, servlets can access JavaBeans,
including Enterprise JavaBeans. The Java servlet de-
velopment kit is part of JDK 1.2. For more infor-
mation on servlets, see the paper in this issue by
Bayeh.?

As the right side of Figure 9 illustrates, the person
may also use a Java applet or application on the cli-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

ent to provide an object-oriented style of commu-
nicating with the application server code. The ap-
pletin the client in Figure 9 contains a proxy, or stub,
that is communicating with a remote JavaBeans func-
tion on the server via one of two object-oriented APIs:
the interface definition language (IDL) of CORBA or
the remote method invocation (RMI) of JavaSoft.
CORBA IDL uses a protocol standard, the Internet In-
ter-Orb Protocol (110P), whereas RMI uses either the
proprictary Java Remote Method Protocol (JRMP)
or ITIOP. IBM advocates the use of RMI over I1OP when
doing distributed programming in Java, whether the
target object is written in Java or in another language
such as C+ +. These protocols, which are described
in more detail in the next subsection, allow client ap-
plets and applications to invoke server functionality
as if it were local through use of an object request
broker (ORB). This object-oriented style of commu-
nication is used between servers, as well as between
servers and clients.

In Figure 9, the application server itself might be a
mainframe computer (an arrangement called two-
tier client/server computing) or it might be commu-
nicating with a mainframe (three-tier client/server
computing). In either case, the ability to access these
data from any machine running the JVM greatly in-
creases its usefulness.

Distributed objects overview. There are three ma-
jor ways of communicating among distributed ob-
jects in a distributed environment:

& RMI API with JRMP or IIOP
s IDL-defined APIs with IIOP
» Distributed Component Object Model (DcomM**)

RMI is a set of Java services that was developed by
JavaSoft to allow applications or applets running in
a Java environment to invoke services (methods) that
are provided by objects running remotely in Java ap-
plications or applets. RMI is provided as a service of
JDK Version 1.1. RMI could be used for both client-
server and server-server communications among
Java applications and applets. RMI is a scheme for
pure Java invocation of remote services.

The IDL API and IIOP are provided by the Common
Object Request Broker Architecture, or CORBA.
CORBA is a set of object interoperability standards
that has been developed over many years by mem-
bers of the Object Management Group (OMG). Java-
Soft has incorporated IDL and IIOP into Version 1.2
of the JDK so as to make them available to Java users.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

In addition to 110P, CORBA has many other services
associated with it that have been developed over the
years. CORBA provides a relatively heavyweight set
of services compared to RMI and is more complex
to deal with. Yet, through the use of IDL for defin-
ing method interfaces provided by objects, CORBA
is language-neutral, supporting distributed objects
that are written in many languages, including C,
C+ +, and Java. Thus, incorporation of IDL into Java
allows Java applications to seamlessly invoke remote
services that are written in a variety of languages,
running on a variety of platforms. This complements
the standard Java ApI for accessing local objects writ-
ten in other languages, the Java Native Interface
(INT).

DCOM is Microsoft’s proprietary protocol for facil-
itating remote invocation of COM objects. COM ob-
jects are Microsoft’s component objects, analogous
to JavaBeans. For more information on COM and
DCOM, see Sessions.’

In addition to IDL support, JDK 1.2 includes an
RMI API that works with an 1TOP transport layer. This
approach combines the best features of both the Java
and the CORBA support for distributed-object com-
puting and is a good model of how Java may work
with other CORBA capabilities in the future. This ap-
proach is recommended by 1BM for distributed Java
computing.

The above is of necessity a very high-level discus-
sion. To obtain a greater depth of the details of dis-
tributed computing using Java and CORBA, the au-
thor recommends the book by Orfali and Harkey as
a good starting point.®

Tools overview

The 1BM strategy for Java tools is centered around
a new Java-oriented version of the VisualAge inte-
grated development environment.

The overall 1BM approach with respect to Java tools
is twofold:

1. Provide a robust, enterprise-oriented integrated
development environment that will facilitate the
development of enterprise applications written in
Java and rapid application development using
JavaBeans

2. Provide lightweight tools for rapid application de-
velopment using JavaBeans

GOTTSCHALK 319

8661 ‘C ON ‘€ TOA "TVNHNOr SWALSAS WAi

J10J UONIPPY 5.10dOTeA(] ,9SBqRIR(] [BSIPAIUN) Zdd
SOIISqOM

1SnqoI FUNSOY JOJ ., JOAIISOA OO OUTWIO(] SIOT
9pod Sunum noym sjusuodwod

woij s1ofdde eaer 3unears 10] QUIYIBIAUBIY SNIOT o
Sumysiiqnd pue ‘uSisop ‘Fur

-pIing 931SqoM S1)BWIOINE 10 ., UOISNY S103[qOI1ON

:S]00] SUIMO[[O] 2U3 SIPN[OUT SSOU
-1SNQ-2 99V[BNSIA ‘BAR[I0] 98V [BNSIA SOPIS("S1IS
QoA Sururejurew pue Surping JIoj sjoo} jo jos 9391d
-TI0D ® 1M BAB[JOF 98 ENSIA $91eIF0IUl JBY) SSoU
-1SNQ-23 93 [eNSIA WAI PI[[B $]00] JO 198 P2I1RISIIUL
ue sopraoid WdI ‘eae[10J a8y[ensIA 0} UOTIPPE U]

suoneorjdde pue ‘suonoesuel; ‘elep
I9A19s 3UNSIXa 0] SJUSID BAR[SUNOUUOD SIJRIITIOR]
pue ‘aaoqe A[2eipawwl ydeidered oy) ur paquios
-op siuouodwod 2y} JO ([SOPN[OUT—aISLUAIIUT o
UOISISA [BUOIS
-50J01d 29U} JO UOISIOA UMOP-PI[BIS ‘901 B—ANUT o
1op[ing uonesrdde [ensia pue ‘resmoiq
‘7083nqap ‘I0NIPS 9y} SUIBIUOD —[DUOISS2JOL] o

'SUOISIoA 921y} Ul padeyord s eae[10] 98y[ensiA

-suonedijdde Juipjing ur isisse 03 sjuouodwod
SuBaRAR[JO 10§ B PUE I9[1dW0D BAR[[RIUSUIOIOUL UB
aIe vAR[10] 98V[BNSIA Ul PIPN[OUL OS[Y "9POd BAR[
Sunips pue ‘Suiddnqop Teoydesd ‘sossep Fursmoiq
‘syoaford SuiSeuew 10y sjool Suipnpur Quowdo
-[2A9p uoneoidde pider 10] sj00) Jo 195 pajeISoul

7001 INFWHOTIASC VAV Waj

MIVHOSLLOD ()€

A1yS1y e sepupour os[e eae[10 28y[ensiA ‘suoneord
-de pue ‘suorjoesue ‘ejep asudIajue o3 suonesdde
BAR[JO UOI)IUTOD 9] S3JBWOINE JBY) IOP[ING SSI008
osudiojus ue se [jom se ‘suedgeae[wolj suonesrd
-de Jo uonONIISUOD [BNSIA 3Y) SARI[IOR] Jel) Iap[Ing
uopneordde [ensia e soInjed) eae[10J 2FY[BNSIA
‘syuauodwos pue suoneosrdde eaer jo juswdoaasp
PU2-01-pus 10J sjoo} Juswidojaasp pojeIdajurjojase
JO SISISUOS eAR[10] a8yTensip "A89)e1ls S[00) BAR[
sJAMI JO 9001d191U90 913 SI BAR[10] 9FV[BNSIA SJNCI

"pazifealr 9q ued juawdoraasp uonesidde pidex
pue syuouodwod a[qesnal Jo asmwoid [my oyl Aem
s1y) uy "[oo) yuswdoraaap uoneoridde pide sjqedeo
-BAR[1910 AUk 10 [00) W4l 9Y) 0} Indur se papraosd
—pasnal aq ued saonpoid 11 sueageaey oy [‘sueog
-BAR[JO U2UINSUOD B PUR 420npo.4d ©)OQq SN[} ST [00)
ay L 'sueageaer mou pue ‘suonjestjdde eaef ‘sjo[a1os
pue s3o[dde eae[9pod 1930 pue suBdq 259y} WOIJ
Sunpold pue—Ndl JO ‘SIQWOISND ‘SASI—SI0INOS
Jo fjoues B wWoOIl 2w0d AWl JBY} SuedgeAef
(Surunsuoo 10) indur se Juryel st (001 juswdoraa
-op W4I Ue QI3 QT 2InS1{ Ul pajensnyyr se ‘sjuou
-odwoo sueageARl 918310 PUB SWNSUOD S[00} WHI

uowrdoasap uoneosrdde
pide1 10] sueageAR[JO 9sn 9} UO A[1ARSY SNO0J AU T,
"Blep pUe SUIISASqNS STIRIJUTRUI $S3008 0) SUBIGRAR[
pue sidv eae[plepuels Jo uonelojdxe o1 ySnoy
JUSWUOIIAUS 12AT0s oy} ul SurwwerSoid Jo A
-xo1dwoo ay) 9onpa1 A3y, ‘suonnjos asudiaiua pring
Appomb 03 eAR[981 01 TOWOISND Y} A[RUS S[00) NI

19onpoud pue Jawnsuod sueageaer g} a4nbi4

testing and debugging DB2* (DATABASE 2*) appli-
cations

* VisualAge Webrunner for Java productivity tools
and JavaBeans

* Netscape Navigator** Web browser

VisualAge e-business provides Web developers with
one place to go for a complete set of tools for build-
ing e-business applications.

For more information on VisualAge for Java En-
terprise, see the paper by Chamberland et al. in this
issue.® For more information on VisualAge in gen-
eral and VisualAge e-business in particular, see
the 1IBM application development website (http://
www.software.ibm.com/ad).

Java security overview

Because Java applets were designed to be down-
loaded from a remote server and executed on a lo-
cal client, security has always been a major focus for
the architects of Java, and they have designed a high
level of security into the Java environment. The Java
run-time environment includes a ByteCode Verifier
that ensures that compiled code is properly format-
ted and does not violate certain security restrictions,
a ClassLoader that determines how and when Java
code is loaded and prevents applets from replacing
system level components dynamically, and a Secur-
ity Manager that enforces restrictions on applet ac-
cess to client system resources. Java also provides
cryptographic and digital signature services, and with
JDK 1.2, the earlier robust but somewhat inflexible
scheme for controlling access to protected functions
based on policy has evolved to a very flexible secur-
ity mechanism for controlling access to protected
functions based on user- or installation-administered
security.

Although Java already contains robust security ser-
vices, more functionality is needed to provide en-
terprise-level security to Java. More needs to be done
in such areas as deploying Java applications securely
and running multiple Java applications on a single
JVM securely. For a detailed discussion of Java se-
curity features and additional security requirements,
see the paper by Koved et al. in this issue.'

Conclusion

In this paper, we have described IBM’s approach to
providing best-of-breed Java capabilities for its cus-
tomers. IBM is taking an organized approach to Java,

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

providing basic Java facilities on all IBM platforms
as well as frameworks, components, and tools that
make it easier to build robust Java applications. IBM
is also making it easier to hook new Java applica-
tions into customers’ existing applications, sub-
systems, and data so as to provide the best possible
leveraging of existing customer investment in the new
world of e-business. The comprehensive set of Java
capabilities being provided by 1BM will allow its cus-
tomers to combine the robust reliability, availabil-
ity, and security characteristics of enterprise services
that have been developed over many years with the
exciting new Web-based capabilities of e-business,
thus giving customers the best of both worlds.

To keep up to date on IBM’s ongoing Java develop-
ment and technical activities, visit the IBM Java web-
site (http://www.ibm.com/java). This site includes sec-
tions on news, Java-based applications, developer
tools, developer assistance, Java events (trade shows
and conferences), the Java community (including
user groups and commentary), and education (in-
cluding white papers, courses, book reviews, and a
glossary of Java terms).

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
The Open Group, Microsoft Corporation, Object Management
Group, Lotus Development Corporation, NetObjects, Inc., and
Netscape Communications Corporation.

Cited references

1. D. Flanagan, Java in a Nutshell: A Desktop Quick Reference,
2nd Edition, ISBN 1-56592-262-X, O’Reilly & Associates, Se-
bastopol, CA (1997).

2. B. S. Rubin, A. R. Christ, and K. A. Bohrer, “Java and the
IBM San Francisco Project,” IBM Systems Journal 37, No. 3,
365-371 (1998, this issue).

3. E. Bayeh, “The WebSphere Application Server Architecture
and Programming Model,” IBM Systems Journal 37, No. 3,
336-348 (1998, this issue).

4. B.Briggs, “Lotus eSuite,” IBM Systems Journal 37,No. 3,372-
385 (1998, this issue).

5. This figure is taken from an illustration on the Sun Micro-
systems website http://java.sun.com/marketing/enterprise/
enterprise.html.

6. 1. F. Brackenbury, D. F. Ferguson, K. D. Gottschalk, and
R. A. Storey, “IBM’s Enterprise Server for Java,” IBM Sys-
tems Journal 37, No. 3, 323-335 (1998, this issue).

7. R. Sessions, COM and DCOM: Microsoft’s Vision for Distrib-
uted Objects, Second Edition, ISBN 0-471-24578-X, John
Wiley & Sons, Inc., New York (1998).

8. R.Orfali and D. Harkey, Client/Server Programming with Java
and CORBA, 2nd Edition, ISBN 0-471-24578-X, John Wiley
& Sons, Inc., New York (1998).

9. L. A. Chamberland, S. F. Lymer, and A. G. Ryman, “IBM
VisualAge for Java,” IBM Systems Journal 37, No. 3, 386—
408 (1998, this issue).

GOTTSCHALK 321

10. L. Koved, A. J. Nadalin, D. Neal, and T. Lawson, “The Evo-
lution of Java Security,” IBM Systems Journal 37, No. 3, 349—
364 (1998, this issue).

Accepted for publication April 24, 1998.

Karl D. Gottschalk IBM Network Computing Software Division,
P.O. Box 12195, Research Triangle Park, North Carolina 27709
(electronic mail: karlgott@us.ibm.com). Mr. Gottschalk is a sen-
ior software engineer focusing on IBM’s technical strategy for
Java. He has been heavily involved in the definition and use of
IBM Java tools and components for building and running enter-
prise applications. Prior to working on Java, he worked for many
years on IBM’s systems and network management products; he
was the chief designer for several releases of IBM’s NetView prod-
uct. Mr. Gottschalk joined IBM in 1968 and has held positions
in the areas of program design, program development, program
maintenance, and information development. He received a Mas-
ter of Arts degree in English literature from the University of
Mississippi in 1965, a Master of Science in computer science from
the University of North Carolina at Chapel Hill in 1976, a Master
of Business Administration from Duke University in 1983, and
a Master of Arts in liberal studies from Duke University in 1988.

Reprint Order No. G321-5678.

322 GOTTSCHALK IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

