
Technical overview
of IBM’s Java initiatives

by K. D. Gottschalk

This paper gives an overview of some of
IBM’s major JavaTM efforts and sets forth a
structure that relates the individual Java efforts
to one another. The paper describes IBM’s
overall approach toward Java and describes how
ISM is exploiting Java to answer customer
requirements in such areas as server plafforms,
reusable components, and tools. This paper will
serve as an introduction to some of the other
papers that are included in this issue of the IBM
Systems Journal and that detail individual areas
of IBM’s focus on Java.

0 ver the last few years, IBM has seized upon the
Java* * programming language as a way to help

its customers meet today’s business challenges. In
IBM we believe that the simplicity, portability, scal-
ability, and security associated with Java will help
our customers to meet their customers’ needs. IBM’s
efforts with Java scale from the microchip to the en-
terprise and involve applications, infrastructure, and
tools.

One of the main reasons why IBM’s customers are
excited about the potential of Java is that IBM’s plans
for exploiting Java technology allow users to easily
access existing data, services, and applications re-
siding on IBM mainframe systems such as S/390*
(System/390*) andAs/400* (Application System/400*).
It is estimated that 70 percent of the critical busi-
ness data in the world reside on mainframe comput-
ers. Without Java, mainframe data and services can
be reached and extended to the new interconnected
world of the World Wide Web only by writing ap-
plications that deal with a myriad of proprietary ap-
plication programming interfaces (HIS). Java, with
its standardized APIS for invoking different system
services and data, serves as the glue to bind existing

data and applications to this new world. Thus, Java
enables our customers to have the best of both
worlds, combining the security and availability of sys-
tems that have been developed over many years with
the new reach and immediacy of information avail-
able through the Internet and the World Wide Web.

This issue of the ZBM Systems Journal describes sev-
eral major efforts by IBM in such areas as Java for
use in the enterprise, Java frameworks for applica-
tion development, Java components, and Java tools.
In this paper, we provide an overall picture of some
of IBM’S major Java efforts and point to some of the
other papers in the issue for more detail.

This paper assumes a basic familiarity with Java, the
Java Development Kit (JDK* *), the Java Virtual Ma-
chine (JVM), clientherver computing, and network
computing. There are many introductory books and
presentations on Java; for a good technical introduc-
tion to Java see Flanagan.’

IBM Java architecture overview

Figure 1 sets forth the overall architectural structure
of the IBM Java implementations. The architecture
is divided into three tiers: client, application server,
and datajtransaction server. The application server
and the client platform both execute programs writ-
ten in Java and are connected via an Internet or in-
tranet transport layer. The third tier consists of a data
server or transaction server, or both, that typically

Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

308 GOTLSCHALK 0018-8670/98/$5.00 0 1998 IBM IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

~ ~ ~~

Figure 1 IBM Java architecture overview
~ _ _ _ _ .. ~~~

provides non-Java services to Java applications re-
siding on the application server.

The multitier architecture illustrated in Figure 1, with
connections between tiers, incorporates a logical,
rather than a physical distinction. The three types
of components may be located on different physical
platforms, or they may all be located on the same
physical platform. Although Figure 1 shows one ap-
plication server and a single Java client, in reality
each application server will communicate with many
Java client platforms, and a single Java client plat-
form may communicate with multiple application
servers. Finally, multiple application servers may
communicate with one another.

In order to more readily understand the components
in the IBM view of Java, we have grouped them into
layers, as indicated in Figure 1. Within the applica-
tion server, the applications and servlets supporting
Java make use of reusable software components
called JavaBeans** that reside in the server Java

component layer. Below the component layer is the
server Java application infrastructure, an application-
oriented set of services that provide the Java appli-
cations with needed common functionality; an ex-
ample of such a service might be a framework
oriented toward the development of integrated bus-
iness applications.

Below the server Java application infrastructure is
the server Web infrastructure, consisting of a set of
services that provide general support for Java on the
application server. An example of such functional-
ity might be some classes to support the execution
of servlets in a Java environment.

Below the server Web infrastructure is the Java Vir-
tual Machine, or JVM, which supports Java compo-
nents on the application server with basic Java func-
tionality. The JVM is hosted on a server operating
system, which might be a UNIX** platform such
as AIX* (Advanced Interactive Executive), a Micro-
soft Windows* * platform, OS/400* (Operating Sys-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 GOTSCHALK 309

Figure 2 Application server running Java
~~~~ 

tem /400), Osi2* (Operating  System/2*), Osi390* (Oper- 
ating  System/390), or VMIESA* (Virtual  Machine/ 
Enterprise Systems Architecture*). 

A transport layer connects the application server and 
Java  client  platforms,  as  well  as the application  server 
and data  or transaction server platforms. 

The Java client platform provides the interface to 
the end user. In the Java environment, the client plat- 
form might be AIX, Os& a Windows platform, a net- 
work computer (NC), or any other platform running 
the JVM and having the  appropriate graphical user 
interface for communicating with the  end user. In 
the client, the JVM and other client run-time infra- 
structure support Java  client  applications and applets 
that facilitate interaction with the end user via the 
client browser or webtop. As can be seen from Fig- 
ure 1, layering of functionality on the Java  client gen- 
erally mirrors that on the application server. 

We next look in more detail at IBM's particular in- 
frastructure for the application server. 

Application  server  infrastructure 

IBM's implementation of the application server run- 
ning Java is governed by a model called the IBM Net- 
work Computing Framework (NCF) for e-business. 

31 0 GOTTSCHALK 

NCF is a Java-based model and set of services that 
ties together  the IBM and Lotus Development Cor- 
poration server offerings and provides a Java-based 
set of server functionality that runs on all major 
Java platforms. NCF integrates the use of Java as 
the application programming environment with 
Component Object Request Broker Architecture 
(CORBA* *) as the object-oriented infrastructure for 
distributed computing. 

Figure 2 illustrates major IBM components associ- 
ated with the application server running Java. The 
IBM VisualAge* tool makes it easier to use these 
components when building enterprise Java applica- 
tions and servlets. The actual components in each 
layer will depend on the customer configuration; the 
richness of function in each layer will  vary from cus- 
tomer to customer, depending on what products and 
services the customer installs. Throughout the rest 
of this paper, we discuss the components illustrated 
in Figure 2 in more detail. 

At the  top of the figure are Java applications and 
servlets that  are used to bring enterprise informa- 
tion to  a wide audience via the 1nternet.Applications 
and sewlets  operating  in  the  Java  environment are con- 
structed  using  reusable  components  called JavaBeans 
so as to  make  such  applications  easier to build.  We 
believe that  the success of Java depends on IBM and 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 3 Java  applications  and  JavaBeans 
. ~~ ~ ~~~~ ~~~~~ ~ ~~~ ~ 

other Java suppliers providing JavaBeans compo- 
nents to facilitate the construction of Java applica- 
tions. JavaBeans are  a  part of JDK Version 1.1; they 
provide a means of packaging functionality so that 
it  may be easily reused by multiple applications and 
may  easily communicate with other application func- 
tionality. JavaBeans lower the skill  level required to 
assemble Java-enabled applications by allowing the 
user of a tool such as VisualAge to assemble appli- 
cations from parts through visual manipulation, 
rather than having to  do coding. The software-de- 
velopment world has been looking for  a long time 
for a way to easily reuse components across multi- 
ple environments, and we believe that JavaBeans 
represent  a major contribution toward solving  this 
problem. 

Figure 3 is a bean-centric view  of Java applications, 
servlets, and applets. In Figure 3, Java programs 
running on the client or on the application server 
make use of many common services by means of 
JavaBeans. These can include: 

Beans to access  existing relational databases 
Beans to talk with other applications on the client 
or server by means of HyperText Transfer Proto- 
col (HTTP), Internet  Inter-Orb Protocol (IIOP), or 
another  transport protocol 
Beans to access applications and data in transac- 
tion monitors such as CICS* (Customer Informa- 
tion Control System) 
Beans to access application services provided by 
Lotus, San Francisco*, or  other frameworks 

By providing application services  via JavaBeans, we 
lower the skill  level and experience required to write 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

Java applications and applets. Since JavaBeans are 
reusable components, they  can  be  assembled into ap- 
plications and applets using  visual  assembly tools, 
rather than requiring programming to be the means 
to achieve the desired result. 

IBM development groups and other companies pro- 
ducing Java applications have realized the potential 
of JavaBeans and  are developing new functions as 
JavaBeans. Figure 2 lists some of the IBM-provided 
server-side JavaBeans components. They are de- 
scribed in more detail later in the section entitled 
“IBM’S component approach and JavaBeans.” 

IBM groups are also developing many  types of server 
application infrastructure components aimed at var- 
ious  types of applications. Figure 2 mentions the San 
Francisco frameworks to support commercial appli- 
cations, Lotus Domino* * services supporting vari- 
ous types of collaboration, and Component Broker 
services for object-oriented business applications. 
Some of these are implemented in Java and some 
are not, but all provide interfaces to Java applica- 
tions and servlets running on the application server. 

IBM has added value to  the base Java components 
in the application server by providing a robust set 
of server functions oriented toward the development 
of business applications. At  the Java application in- 
frastructure layer, the San Francisco project consists 
of a set of Java server-side frameworks that provide 
the foundation for integrated business applications 
for small and medium-sized enterprises. San Fran- 
cisco  includes  building  blocks  and prefabricated tem- 
plates that will be extended by IBM Business Part- 
ners and independent software vendors (ISVS) to 

GOTTSCHALK 31 1 





Figure 5 Java for  the  Enterprise 

porting classes. On  the Java client, the Java foun- 
dation classes for user interface components and 
widgets make available  extensive user interface ca- 
pability. Of particular interest as components on  the 
Java client are  the set of eSuite components from 
Lotus. eSuite provides a lightweight set of produc- 
tivity components implemented as JavaBeans that 
facilitate the quick development of business appli- 
cations. For  a description of Lotus eSuite see the  pa- 
per by Briggs  in  this issue.4 

As  is the case with the application server, the IBM 
Java client implementations are run on a variety of 
platforms, both IBM and non-IBM. In fact, because 
the implementations are based on Java, they will run 
on any client platform that implements the  appro- 
priate Java run-time environment. 

Java  for the Enterprise  initiative  and the 
Network  Computing  Framework 

The IBM Java strategy for application servers is two- 
fold: 

1. To enable access to the broad range of IBM and 
Lotus server technology through the integrating 
model of NCF and Java APIs 

2. To exploit the Java for the  Enterprise initiative 
of JavaSoft (a division of Sun  Microsystems, Inc.) 
and the concept of a richer set of server Java APIs 
that this  implies. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

In this section, we  briefly describe the Java for the 
Enterprise initiative and describe the Network Com- 
puting Framework and how it  fits into this architec- 
ture. 

Java for the Enterprise initiative. The Java for the 
Enterprise initiative, announced by JavaSoft at  the 
JavaOne Conference in April 1997, consists of a set 
of standardized APIS for enterprise-level distributed 
Java applications and  a  set of extensions to  the Java- 
Beans architecture to allow enterprise applications 
to easily participate in important enterprise services. 
In  this  subsection, we describe the major components 
of this initiative at a high  level. 

Figure 5 illustrates the Java for the  Enterprise plat- 
form, focusing on Java APIS on the server and Java- 
Beans. 

Java enterprise M I S .  Working with  its Java part- 
ners, JavaSoft has recently defined several APIs that 
allow  client and server  applications, applets, and  serv- 
lets to access common server-side systems and sub- 
systems. This approach facilitates the creation, de- 
ployment, and management of scalable Java business 
applications. This architecture allows application de- 
velopers to focus on their business  logic without hav- 
ing to worry about the plumbing that makes the 
server environment so complex  today. These APIS are 
depicted in Figure 5. 

GOTTSCHALK 31 3 



In Figure 5 ,  JMAPI refers to  the Java Management 
AFT, which defines access to  a set of services for man- 
aging Java resources. JNDI, the Java Naming and Di- 
rectory Interface, is an API for accessing naming and 
directory services. JTS is the Java Transaction Ser- 
vice, an API for invoking transaction services. JIDL 
refers to Java interface definition language, an in- 
terface to  the CORBA set of services for distributed 
computing. JMS, the Java Message  Service,  is an API 
for invoking  asynchronous  message  delivery  services. 
Finally, JDBC* *, the Java Database Connectivity API, 
accesses data in  existing databases through a com- 
mon interface. 

Figure 5 shows that business applications may par- 
ticipate in subsystem  services  via Enterprise Java- 
Beans* *, a Java model for software components that 
encapsulate business  logic and  run  on an applica- 
tion server. Enterprise JavaBeans allow people to 
assemble applications that  run on the server and can 
take advantage of the Java enterprise services. Us- 
ing avisual assembly tool such as VisualAge for Java, 
users will be able to utilize Enterprise JavaBeans to 
do such tasks as  accessing  existing data and defining 
transactions without having to write code, thereby 
realizing a major  promise of the Java enterprise tech- 
nology-giving companies the tools they need to di- 
rectly define their company policies in terms of ap- 
plications that  are responsive to those policies, 
without having to acquire complex programming 
skills. 

Figure 5 shows a transaction monitor intimately as- 
sociated  with the enterprise MIS and Enterprise Java- 
Beans. IBM products that provide a transaction-pro- 
cessing environment and plan to  support  Enterprise 
JavaBeans include CICS, Component Broker, and 
TXSeries". 

The IBM strategywith respect to  the Java for the  En- 
terprise initiative is simple: IBM will provide the nec- 
essary  linkages between enterprise APIs and IBM sub- 
systems that perform the  appropriate services. IBM 
will supply Enterprise JavaBeans support in its ma- 
jor subsystems for these services.  Finally, the IBM Vi- 
sualAge for Java tool will include support allowing 
Java application writers to easily  access appropriate 
functions and information using these APIs, includ- 
ing Enterprise JavaBeans support  for  these APIs. 

The  Enterprise Server for Java (ESJ) specification 
spells out how IBM is bringing the Java for the  En- 
terprise initiative to IBM platforms. The ESJ speci- 
fication prescribes specific APIS, services, and  Enter- 

31 4 GOTECHALK 

prise JavaBeans support  at  the application-infra- 
structure and Web-infrastructure layers of the  ap- 
plication server running Java that, when adhered to, 
transform such an application server into an Enter- 
prise Server for Java. For more information on IBM's 
efforts  with respect to Java for the  Enterprise, see 
the article by Brackenbury et al. in this issue.6 

The  Network Computing Framework. The Network 
Computing Framework (NCF) for e-business, which 
was announced in April 1997, represents IBMs ap- 
proach to providing Java-oriented services and ca- 
pabilities to facilitate electronic business over the 
Web. Figure 6 illustrates a major idea behind NCF, 
which  is to provide a coordinated set of IBM soft- 
ware servers centered  around Java APIS and Java- 
Beans (including Enterprise JavaBeans), and  pro- 
vide Java applications with  access to major services 
of the underlying server. With use of NCF technol- 
ogy and associated tools, Java applications can eas- 
ily be built on the server to take full advantage of 
the powerful and robust system  services that IBM has 
developed over the years. 

NCF consists of the following components: 

An open, pluggable framework centered on Java 
A set of software servers that  are accessed through 

A set of clients that exploit just-in-time download- 

Tools that exploit the JavaBeans component stan- 

Standard technologies to link components, such 

A set of built-in groupware solutions and a  foun- 

A set of connectors to existing data  and transac- 

standard protocols and Java interfaces 

able components such as those in eSuite 

dard 

as HTTP and IIOP 

dation for e-business applications 

tions on the third tier 

Figure 7 illustrates NCF services. NCF provides for a 
Web server and Java Virtual Machine together with 
Java interfaces to many  services. NCF provides ap- 
plication programming support in the form of de- 
velopment tools and support for JavaBeans, applets, 
and servlets. The Web server and Java-oriented ap- 
plication programming environment are base ser- 
vices of the NCF. 

Additional optional components of NCF include soft- 
ware-server towers for community (mail and related 
services), collaboration, storing, and retrieving data 
located in relational databases and distributed files, 
transaction support,  and delivery  services. IBM's im- 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 6 NCF and JavaBeans 

Figure 7 NCF services 

DATA  AND  TFIANSACTBN  CONNECTORS t! - 
SUPPORT 

plementations of these towers are based on appro- Finally, NCF includes optional systems management 
priate IBM and Lotus technology, including the en- services that may  be  used to manage all of the above 
tire collection of Domino services and CICS; server components. 
towers  access the appropriate underlying data stores. 
As has been stated previously, a major thrust of NCF NCF supports both e-business applications written in 
is that these services are made available to Java ap- programming languages such as C and C+ + and ap- 
plications by means of Java APIs and JavaBeans. plications written in Java. Java applications access 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 GOTTSCHALK 31 5 



NCF services by means of Java APIs and JavaBeans. 
Accessing NCF services  in this way greatly reduces 
the complexity required to build applications in the 
enterprise server environment and reduces the like- 
lihood of making mistakes, thereby enhancing reli- 
ability. 

IBM has already made available  many servers and 
components conforming to  the NCF model. The  En- 
terprise Server for Java‘ incorporates many of the 
ideas of NCF, whereas the IBM Websphere Appli- 
cation Server3 implements many server elements of 
the NCF model. 

In this section we have looked at the architecture 
and some of the major components of  NCF. For more 
information on NCF, see the IBM e-business website 
(http://www.software.ibm.com/ebusiness) and the pa- 
per by Bayeh  in this issue.3 

IBM’s component approach and  JavaBeans 

IBM’S customers have for many years been seeking 
productivity breakthroughs that they  believed  could 
be obtained through large-scale software reuse. They 
want ways to produce reusable components that can 
be used in arbitrary combinations to  create user ap- 
plications. The availability of such components and 
tools to manipulate them would  lower the skill  level 
and experience required to  create applications that 
are responsive to  the customers’ needs. Instead of 
having programmers create applications, business 
policymakers could utilize visual development en- 
vironments to “wire together” collections of reus- 
able components to meet their exact needs. 

Until the advent of JavaBeans, only modest progress 
had been made toward achieving this goal. IBM’S Vi- 
sualAge tool provides the capability to  create and 
manipulate reusable components in various pro- 
gramming environments, such as C+ + and Small- 
Talk, but the resulting objects and programs run  only 
in certain limited environments. With JavaBeans, 
IBM has the opportunity to  at last achieve its  goal 
and give customers the benefits of visual comput- 
ing. Applications composed  wholly or in part of Java- 
Beans can be run on any Java-enabled platform. 

JavaBeans takes Java’s “write once, run anywhere” 
capability and extends it to include “reuse every- 
where.” JavaBeans are reusable components. Com- 
ponents are combined from disparate sources to cre- 
ate applications quickly and easily. To streamline the 
development process, programmers build  small, re- 

31 6 GOTTSCHALK 

usable pieces called JavaBeans and  then wire them 
together with the help of a visual builder program, 
such  as  VisualAge for Java or Lotus BeanMachhe* * 
(described later in  this paper under “Tools over- 
view”). 

Figure 8 illustrates the promise of JavaBeans. As 
shown in the figure, the customer can use beans ob- 
tained from a variety of sources to quickly create  a 
customized application that meets his or her needs 
exactly. Beans range from small programs that  per- 
haps encapsulate company-specific  business rules, to 
large generic application components, such as word 
processors and spreadsheets. The customer would 
use a tool such as  VisualAge or Lotus BeanMachine 
to assemble the application  visually. The components 
themselves could be produced using a variety of IBM 
and nOn-IBM tools. Once assembled, the 100 percent 
pure Java application can be run  on any platform 
that supports the Java Virtual Machine. 

IBM JavaBeans development efforts. There  are four 
types of IBM development efforts  going on with re- 
spect to JavaBeans: 

1. Tools for creating and consuming JavaBeans 
2. Helper beans for helping the user get at system 

3. Beans providing client and server business func- 

4. Support for Enterprise JavaBeans 

An  overview of the IBM tools used for writing Java- 
Beans is presented later in this paper. 

An example of helper beans is the bean extender 
technology that has been put into VisualAge for Java. 
Bean extenders provide capabilities that enable tools 
groups to provide better beans-they are JavaBeans 
that consume and produce beans in such operations 
as  aggregation,  collection,  inspection,  invocation,  dis- 
assembly, and behavior modification. Another ex- 
ample is the Taligent Webrunner  beans for access- 
ing Internet files and sending and receiving Internet 
mail. 

The JavaBeans that  are being shipped as part of the 
eSuite product from Lotus are  an example of beans 
providing  business  functionality. eSuite includes pro- 
ductivity components for e-mail, spreadsheets, word 
processing, charting, data access, presentation graph- 
ics, and project scheduling. They come with a com- 
munications infrastructure called InfoBus and an in- 
frastructure for a common “look and feel” called 

services and existing data 

tionality 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Infocenter.  For  more information on eSuite,  see the 
paper by Briggs in this  issue.4 

IBM server platform approach 

This  section  describes how the IBM server  platforms 
are  enabling themselves to work with Java. 

The IBM Centre  for Java  Technology  Development, 
working in partnership with the  appropriate  platform 
development  groups,  has  “ported”  the Java  refer- 
ence  implementation  from  JavaSoft to each of the 
major IBM server  platforms (OSi390, AIX, OS/2,OS/400, 
VM). The  centre is now focusing on improving the 
performance of the Java  implementations  running 
on these  platforms, so that they will be  “best of 
breed” in their  competitive  spaces. 

In order  to  obtain best-of-breed  performance  from 
the  Java  Virtual  Machine  and associated class librar- 
ies, it is necessary  for the  platform organizations to 
modify certain  pieces of the  reference-implementa- 
tion  code so as to  take  advantage of features  inher- 
ent in their individual platforms. To obtain maximum 
utilization  from the  reference  implementation  and 
to  ensure  that  there is minimal deviation,  each  plat- 
form  organization is working closely with the  cen- 
tre.  The starting  point  for all modifications is the  cen- 

tre’s porting of the Java  reference  implementation 
of any particular  version of the JDK. The program- 
mers  responsible  for  adding  Java to each  platform 
review upcoming features of each new JDK version 
with the  centre  and  decide  under  the guidance of 
the  centre which pieces will need to  be reworked  for 
that  platform.  To  ensure  that it is a valid implemen- 
tation of the JDK, eachplat$onn implementation  must 
pass  the appropriate JavaSoft  compliance test  suite  be- 
fore it is made generally available to  customers. 

In  order  for Java to  be a pervasive platform  tech- 
nology in the industry, IBM is cooperating with Java- 
Soft and  other  major players in the Java arena  to 
ensure  that JavaSoft receives maximum benefit from 
IBM’S experience in the server world and  can  improve 
the JDK and associated services based on the results 
of IBM’S experience.  Working with the  centre,  each 
platform  group identifies  technology that it has  that 
might help  the Java  community in general,  and IBM 
works with JavaSoft to make  this  technology  gen- 
erally available. 

The  centre  has  standard  performance  benchmarks 
that  are  run against the  platform  implementations, 
so that IBM may make  interplatform comparisons and 
know better how to advise customers  when  it  comes 
to platform  choice. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 GOTTSCHALK 31 7 



Figure 9 Java  client/server  communications 

IBM’s approach to Java transport  and 
distributed  objects 

We  now present the IBM strategy with respect to 
clientherver communications and distributed objects 
in the Java environment. We first describe the var- 
ious ways  of distributing information and services in 
the Java environment and  then give some guidelines 
as to when to use  which  services. 

Clientherver communications overview. In this sub- 
section we  discuss the major ways in which Java ap- 
plets or applications running on a client machine can 
communicate  with  Java or non-Java  applications run- 
ning on a server. 

Figure 9 illustrates the various methods for client/ 
server communications in a Java environment. In the 
figure, a person at  a Java client platform is  using the 
client to communicate with application code on an 
application server. Note  that  there  are two major 
styles of communication. In  one case, the person is 
using a Web  browser to communicate with the server 
via the HyperText Transfer Protocol (HTTP). HTTP 
is the original transport protocol for the World Wide 
Web. The Web  browser has HyperText Markup Lan- 
guage (HTML) support and communicates either via 

the Web  server  with an HTML document at the server, 
or via the Internet Common  Gateway Interface (CGI) 
with an application running on the server. If the  ap- 
plication is set up  to  do so, it  may retrieve existing 
enterprise  data from a mainframe computer or  data 
server and return  the  data  to  the  applet via the 
HTTP-CGI mechanism. Applications written to work 
with CGI are  often written in a scripting language, 
such as the Practical Extraction and  Reporting Lan- 
guage (PERL) or  a UNIX shell script, but such appli- 
cations may also be written in C  or C+  + . 
Figure 9 also illustrates a recent alternative to CGI 
called the Java servlet. Servlets run in a Java envi- 
ronment on  the server and are somewhat analogous 
to applets running on a client. Like CGI applications, 
servlets  can  access  and return datavia HTTP, but serv- 
lets also benefit from the portability and security 
characteristics of the Java environment. As  is  illus- 
trated in Figure 9, servlets can access JavaBeans, 
including Enterprise JavaBeans. The Java  servlet de- 
velopment kit  is part of JDK 1.2. For  more infor- 
mation on servlets, see  the  paper in this issue by 
Bayeh. 

As the right side of Figure 9 illustrates, the person 
may also use a Java applet or application on the cli- 

31 8 GOTTSCHALK IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



ent  to provide an object-oriented style of commu- 
nicating with the application server code.  The  ap- 
plet in the client in Figure 9 contains aproxy, or stub, 
that is  communicating  with a remote JavaBeans func- 
tion on the server via one of two object-oriented APIs: 
the interface definition language (IDL) of CORBA or 
the  remote method invocation (RMI) of JavaSoft. 
CORBA IDL uses a protocol standard,  the  Internet In- 
ter-Orb Protocol (IIOP), whereas RMI uses either the 
proprietary Java Remote Method Protocol (JRMP) 
or IIOP. IBM advocates the use of RMI over IIOP when 
doing distributed programming in Java, whether the 
target object is written in Java or in another language 
such as C+ +. These protocols, which are described 
in more detail in the next subsection, allow  client ap- 
plets and applications to invoke server functionality 
as if it were local through use of an object request 
broker (ORB). This object-oriented style of commu- 
nication is  used between servers, as  well  as between 
servers and clients. 

In Figure 9, the application server itself  might be a 
mainframe computer (an  arrangement called two- 
tier clientherver computing) or it might be commu- 
nicating with a mainframe (three-tier clientherver 
computing). In either case, the ability to access these 
data from any machine running the JVM greatly in- 
creases its usefulness. 

Distributed objects overview. There  are  three ma- 
jor ways  of communicating among distributed ob- 
jects in a distributed environment: 

RMI API with JRMP or IIOP 
IDL-defined APIS with IIOP 
Distributed Component Object Model (DCOM**) 

RMI is a set of Java services that was developed by 
JavaSoft to allow applications or applets running in 
a Java  environment  to  invoke  services (methods) that 
are provided by objects running remotely in  Java ap- 
plications or applets. RMI is provided as a service of 
JDK Version 1.1. RMI could be used for both client- 
server and server-server communications among 
Java applications and applets. RMI is a scheme for 
pure Java invocation of remote services. 

The IDL API and IIOP are provided by the Common 
Object Request Broker Architecture, or CORBA. 
CORBA is a set of object interoperability standards 
that has been developed over many years by mem- 
bers of the Object Management Group  (OMG). Java- 
Soft has incorporated IDL and IIOP into Version 1.2 
of the JDK so as to make them available to Java  users. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3,  1998 

In addition to HOP, CORBA has many other services 
associated with  it that have been developed over the 
years. CORBA provides a relatively  heavyweight set 
of services compared to RMI and is more complex 
to deal with. Yet, through the use of IDL for defin- 
ing method interfaces provided by objects, CORBA 
is language-neutral, supporting distributed objects 
that  are written in  many languages, including C, 
C+ + , and Java. Thus, incorporation of IDL into Java 
allows  Java applications to seamlessly  invoke remote 
services that  are written in a variety of languages, 
running on a variety of platforms. This complements 
the standard Java API for accessing  local  objects  writ- 
ten in other languages, the Java Native Interface 
(JNI). 

DCOM is  Microsoft’s proprietary protocol for f a d -  
itating remote invocation of COM objects. COM ob- 
jects are Microsoft’s component objects, analogous 
to JavaBeans. For  more information on COM and 
DCOM, see Sessions.’ 

In addition to IDL support, JDK 1.2 includes an 
RMI API that works  with an IIOP transport layer. This 
approach combines the best features of both the Java 
and the CORBA support for distributed-object com- 
puting and is a good model of how Java may  work 
with other CORBA capabilities in the  future. This ap- 
proach is recommended by IBM for distributed Java 
computing. 

The above is  of necessity a very  high-level  discus- 
sion. To  obtain  a  greater depth of the details of dis- 
tributed computing using  Java and CORBA, the au- 
thor recommends the book by Orfali and Harkey as 
a good starting point.’ 

Tools overview 

The IBM strategy for Java tools is centered  around 
a new Java-oriented version of the VisualAge inte- 
grated development environment. 

The overall IBM approach with respect to Java tools 
is  twofold: 

1. Provide a robust, enterprise-oriented integrated 
development environment that will facilitate the 
development of enterprise applications written in 
Java and rapid application development using 
JavaBeans 

2. Provide  lightweight tools for rapid application de- 
velopment using JavaBeans 

G O ~ S C H A L K  31 9 



8661 ‘E ON ‘LE 1OA ‘1VNHnOr SW31SAS W81 



testing and debugging DB2* (DATABASE 2*) appli- 
cations 
VisualAge Webrunner  for Java productivity tools 
and JavaBeans 
Netscape Navigator** Web browser 

VisualAge  e-business  provides  Web developers with 
one place to go for  a complete set of tools for build- 
ing e-business applications. 

For more information on VisualAge for Java En- 
terprise, see the paper by Chamberland et al. in  this 
issue. For more information on VisualAge  in gen- 
eral and VisualAge e-business in particular, see 
the IBM application development website (http:// 
www.software.ibm.com/ad). 

Java  security  overview 

Because Java applets were designed to be down- 
loaded from a remote server and executed on  a lo- 
cal client, security has always been a major focus for 
the architects of Java, and they  have designed a high 
level of security into  the Java environment. The Java 
run-time environment includes a ByteCode Verifier 
that ensures that compiled code is properly format- 
ted and does not violate certain security restrictions, 
a ClassLoader that determines how and when Java 
code is loaded and prevents applets from replacing 
system  level components dynamically, and  a Secur- 
ity Manager that enforces restrictions on applet ac- 
cess to client  system resources. Java also provides 
cryptographic and digital signature services, and with 
JDK 1.2, the earlier robust but somewhat inflexible 
scheme for controlling access to protected functions 
based on policy has evolved to a very  flexible secur- 
ity mechanism for controlling access to protected 
functions based on user- or installation-administered 
security. 

Although Java already contains robust security ser- 
vices, more functionality is needed to provide en- 
terprise-level  security to Java. More needs to be done 
in such areas as deploying Java applications securely 
and running multiple Java applications on a single 
JVM securely. For  a detailed discussion of Java se- 
curity features and additional security requirements, 
see the  paper by Koved et al. in  this issue.” 

Conclusion 

In this paper, we  have described IBM’S approach to 
providing best-of-breed Java capabilities for its cus- 
tomers. IBM is taking an organized approach to Java, 

IBM SYSTEMS JOURNAL, VOL 37. NO 3, 1998 

providing  basic Java facilities on all IBM platforms 
as well as frameworks, components, and tools that 
make it easier  to build robust Java applications. IBM 
is  also  making  it easier to hook new Java applica- 
tions into customers’ existing applications, sub- 
systems, and data so as to provide the best possible 
leveraging of existing customer investment in the new 
world of e-business. The comprehensive set of Java 
capabilities being provided by IBM will  allow  its  cus- 
tomers to combine the robust reliability, availabil- 
ity, and security characteristics of enterprise services 
that have been developed over many years with the 
exciting  new Web-based capabilities of e-business, 
thus giving customers the best of both worlds. 

To  keep  up  to  date  on IBM’S ongoing Java develop- 
ment and technical activities, visit the IBM Java web- 
site (http://www.ibm.com/java). This  site  includes  sec- 
tions on news, Java-based applications, developer 
tools, developer assistance, Java events (trade shows 
and conferences), the Java community (including 
user groups and commentary), and education (in- 
cluding white papers, courses, book reviews, and  a 
glossary of Java terms). 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of Sun Microsystems, Inc., 
The  Open  Group, Microsoft Corporation,  Object  Management 
Group, Lotus  Development  Corporation,  NetObjects, Inc., and 
Netscape  Communications  Corporation. 

Cited references 

1. D. Flanagan, Java in a Nutshell: A Desktop  Quick Reference, 
2ndEdition, ISBN 1-56592-262-X, O’Reilly & Associates, Se- 
bastopol, CA (1997). 

2.  B. S. Rubin, A. R. Christ, and K. A. Bohrer, “Java and the 
IBM San Francisco Project,” ZBM Systems Journal 37, No. 3, 
365-371 (1998, this issue). 

3. E. Bayeh, “The  Websphere Application Server Architecture 
and Programming Model,” ZBM Systems Journal 37, No. 3, 
336-348  (1998, this issue). 

4.  B. Briggs, “Lotus eSuite,” IBMSystems Journal 37, No. 3,372- 
385 (1998, this issue). 

5. This figure is taken  from an illustration on  the Sun Micro- 
systems website http://java.sun.comlarketing/enterprise/ 
enterprise.htm1. 

6. I. F. Brackenbury, D. F. Ferguson, K. D. Gottschalk, and 
R. A. Storey, “IBM’s Enterprise Server for Java,” ZBM Sys- 
tems Journal 37, No. 3,  323-335  (1998, this issue). 

7. R. Sessions, COM and DCOM: Microsoft’s Vision for Distrib- 
uted Objects, Second Edition, ISBN 0-471-24578-X, John 
Wiley & Sons, Inc., New York (1998). 

8. R. Orfali and D. Harkey, ClientlServerPrograrnmingwithJava 
and CORBA, 2nd Edition, ISBN 0-471-24578-X, John Wiley 
& Sons, Inc., New York (1998). 

9. L. A. Chamberland, S. F. Lymer, and A. G. Ryman, “IBM 
VisualAge for Java,” IBM Systems Journal 37, No. 3, 386- 
408  (1998, this issue). 

GOITSCHALK 321 



IO. L. Koved, A. J. Nadalin, D. Neal, and T. Lawson, “The Evo- 
lution of Java Security,” IBMSystems Journal 37, No. 3,349- 
364  (1998, this issue). 

Accepted for publication April 24, 1998. 

Karl D. Gottschalk IBMNetwork Computing Software Division, 
P.O. Box 12195,  Research  Triangle  Park, North Carolina  27709 
(electronic mail: karlgott@us.ibm.com). Mr.  Gottschalk is a  sen- 
ior software engineer focusing on IBM’s technical strategy for 
Java. He has been heavily involved in the definition and use of 
IBM Java tools and  components for building and  running enter- 
prise applications. Prior  to working on Java, he worked for many 
years on IBM’s systems and network management products; he 
was the chief designer for several releases of IBM’s NetView prod- 
uct.  Mr.  Gottschalk  joined  IBM in 1968 and has  held positions 
in the  areas of program design, program development, program 
maintenance, and information development. He received a Mas- 
ter of Arts  degree in English literature  from  the University of 
Mississippi in  1965, a  Master of Science in computer science from 
the University of North  Carolina at Chapel Hill in 1976, a  Master 
of Business Administration from Duke University in 1983, and 
a  Master of Arts in liberal studies  from Duke University in  1988. 

Reprint Order No. G321-5678. 

322 GOTTSCHALK IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 


