200 vAN DER SALM

Introducing shareable
frameworks into a
procedural development
environment

Typically, an IBM midrange-oriented independent
software vendor such as the Dutch company
Consist B.V. is not a leader in using new
technology. Such companies prefer to use stable,
proven technology environments to create and
sell their products rather than take the risk of
using new, unproven technologies. Consist B.V.
has been known for over 20 years in the Benelux
market for delivering stable applications and
investing only in proven technology. Why is it,
then, that they now invest large sums of money
in new technologies such as framework-based
development, Java™, CORBA™, and object-
oriented programming? This paper describes the
business reasons that influenced Consist B.V. to
make this shift in its strategy and the way in
which the traditional procedurally oriented
development organization is changed into an
object-oriented, framework-using software
factory. Apart from the technical implications and
the steep learning curve associated with using
these technologies, some attention is also given
to the human resource management aspects of
the organization.

If you do not create your destiny, you will have your fate
inflicted upon you.
—William Irwin Thompson

Vendors of standard software applications (inde-
pendent software vendors, or 1Svs) worldwide
find it more and more difficult to invest in modern-
izing their applications, for several reasons. In the
past, most standard applications took several years
to grow from being very simple and small, to be used
by one or just a few customers, to becoming large
applications. As the size and complexity of the ap-

0018-8670/98/$5.00 © 1998 1BM

by R. L. van der Salm

plications gradually increased, the investment accom-
panying the increase could be spread over several
years.

Because application technology is now changing
from procedural to distributed object solutions, ISVs
must make an important decision: Do they invest in
their current procedural applications and continue
with the strategy they have followed for years, or do
they invest in completely new applications with com-
pletely new technology to be able to survive in the
future? Both strategies have advantages and disad-
vantages. The easy choice is to maintain the old ap-
plications and offer more functionality in the exist-
ing modules. The investment needed is not very high,
and the short-term risk profile is low. However, the
longer-term risk in this scenario is extremely high.
If the demand for open systems really changes into
a demand for open applications, if object-oriented
technologies really become the standard of the fu-
ture, if the Java™* programming language really turns
out to be more than “hype,” if the network computer
really becomes the success that is predicted, and if
new technologies really keep on being created with
the speed with which they have been, then applica-
tions need to be rewritten with object technology
now, to keep pace with all these rapid developments.

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Deciding to rewrite existing applications so that they
are based on new technologies is not an easy choice.
The investment needed to create completely new ap-
plications that have at least the same functionality
as the existing applications is enormous.

At this moment, choosing an object-oriented lan-
guage that is multiplatform and supports all the other
trends listed above means choosing Java. This choice
increases the current risk because of the innovative
character of Java and the lack of stable tools and stan-
dards for the Java environment. Apart from such
technical risks, there is another very important risk
for 1SVs who choose to switch to using object tech-
nology and building completely new applications.
Switching from procedural development to object-
oriented development is not easy; it takes time, and
not everyone will be able to do it. Some of the 1SV
developers who are keeping the current product lines
up and running want to make the switch immedi-
ately, because they fear they will be left behind if
they do not learn to use the new paradigms as soon
as possible. Human resource management in the ISV
development organizations has an extremely impor-
tant part in keeping developers happy with what they
are doing, and seeing that key people are not lost
to competitors because they may think that they are
no longer important.

Like other 1Svs, the Dutch company Consist B.V.
faced these problems and had choices to make. Con-
sist B.V. chose a strategy based on using IBM’s San
Francisco* product, a shareable framework technol-
ogy. This paper describes the business reasons for
choosing San Francisco, the way in which the switch
from procedural to object-oriented development is
being made, the human resource management issues
that occur with these decisions, and the first program-
ming experiences with San Francisco. We begin with
some background information about Consist.

Consist B.V.

Consist B.V. has been selling financial and human
resource applications in the Dutch and Belgian mar-
ket for over 20 years. The environment in which it
delivered several generations of its applications has
always been the IBM midrange computing area. The
applications it produced grew or were rebuilt on plat-
forms such as the IBM System 3X and, since the late
1980s, on the As/400* (Application System/400%). Al-
though these platforms are, of course, quite differ-
ent from each other, the growth from one platform
technology to the next was always relatively easy and

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

natural. All environments had RPG (Report Program
Generator) as the main programming language, so
Consist developers could easily adapt to the next gen-
eration of computers. For an application vendor, this
is an extremely important issue. Not only were the
developers able to grow easily into a new technol-
ogy, but customers could do so also.

An application vendor such as Consist has two im-
portant assets. First is the customer base that is sta-
ble and large enough to make it possible to invest
in product lines to keep up with the changing en-
vironments; second is the knowledge possessed by
its employees. Developers who have functional
knowledge of basic customer needs and wants will
be in demand in the future, and those able to trans-
late these customer requirements into technical im-
plications are of great value to the company. It must
be clear that, whenever it is possible, both the cus-
tomer base and the developers must be cherished
and led to the next generation of technologies in
stages that are easily assimilated.

So far Consist has done a good job of this, being the
market leader for financial and human resource ap-
plications aimed at middle-sized and large compa-
nics (defined as companies having over 100 employ-
ees), residing in the home market of Baan, with
neighbor SAP watching closely. Consist has 1200 mid-
dle-sized and large customers based mainly in the
Netherlands and Belgium. About 150 implementa-
tions are done elsewhere in Europe. Among these
1200 customers there have been about 1400 instal-
lations of Consist applications.

Although the above sounds like a very good base on
which to set the next small step of the technology
evolution—such as extending the client/server pos-
sibilities of its applications—two years ago the
Consist management made a difficult decision. The
technology strategy was shifted from using only
procedural languages such as RPG and Synon’s
Synon2/E to using object technology. The impact of
this decision was much greater than expected. Learn-
ing to use object technology is not easy for a group
of experienced RPG developers. In addition, although
the reuse that is possible in an object-oriented envi-
ronment may sound very good to a manager, many
developers have the “not invented here” syndrome,
and are not willing to change their old and proven
ways of working. A whole new approach to building
systems and a whole new set of skills and tools are
required. In addition, the investment costs of chang-
ing the way in which the software labs are now work-

VAN DER SALM 201

Figure 1 Integral application architecture

INTEROPERABILITY

LAYER

" TECHNOLOGY

ing and starting a new product line are very high.
Before Consist made the decision to enter this new
world, much research was done to investigate how
its environment would change in both the short term
and the longer term. After that, a plan for how to
act on these environmental changes was developed.

Business reasons for choosing San
Francisco

“Would you tell me, please, which way I ought to go from
here?” “That depends a good deal on where you want to
get to,” said the Cat. “I don’t much care where,” said Al-
ice. “Then it doesn’t matter which way you go,” said the
Cat. “So long as I get SOMEWHERE,” Alice added as an ex-
planation. “Oh, you’re sure to do that,” said the Cat, “if
only you walk long enough.”

—Lewis Carroll, Alice and the Cheshire Cat

In the information technology (1T) world, there is a
lot of hype for the most recent developments in com-
puting. Among such current developments are ob-
ject technology, the Internet, intranets, extranets,
Java, and the network computer. An ISV such as Con-
sist that has a large customer base can only proceed
slowly with these newly developed technologies. Only
if a technology is really becoming a trend, and it is

202 vAN DER SALM

LAYER

clear that a trend will become a standard, can the
technology be put into products. Therefore, it is ex-
tremely important to recognize developing technol-
ogies and trends, and to have an idea, or vision, of
where the market will be going. Using new technol-
ogies too soon may cause severe problems for ex-
isting customers, because a technology may be un-
proven and unstable. Adopting new technology too
late in a highly competitive market, such as the one
for financial and human resource applications, may
cause a competitive disadvantage. Consist now thinks
that the market for 1svs is changing as follows.

Complete vs specialized solutions. At this moment
there are two kinds of suppliers of standard appli-
cations. One kind includes the large vendors led by
SAP, Baan, Oracle Corp., and Peoplesoft. These ven-
dors offer their customers an integral solution for
all their information needs, a practice called ERP (en-
terprise resource planning). These applications con-
sist of several layers, as shown in Figure 1. The
application layer contains the functional solutions
offered by a supplier.

Although most suppliers suggest that they offer a so-
lution that is 100 percent complete for their custom-
ers, much work almost always has to be done before

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

an application is fully implemented. One of the rea-
sons for this discrepancy is that, although the large
ERP software vendors try to give their customers a
100-percent solution, they are never able to support
the local functionality, such as that required by the
laws, rules, and habits for each country in which they
are selling their products. Apart from that, each in-
dustry has its own specialized ways of working that
cannot be covered in these general-use ERP appli-
cations. So, although everyone is trying very hard,
a 100-percent solution can never be reached with the
standard integral applications. An application can
be changed through the interoperability layer to be-
have in the way a customer wants. This layer pro-
vides a set of application programming interfaces
(APIs) or business application programming inter-
faces (BAPIs) that make it possible to interact with
the data that are stored within the standard appli-
cation. These APIs do not really make the applica-
tion open. The technology of the application and the
complete structure of the integral application remain
closed. The technology that can be used for this is
defined in the fechnology layer. Most large ERP ap-
plication vendors have their own closed technology.
An example of such a closed technology is ABAP IV
from SAP.

Among the reasons that an organization decides to
buy an integral ERP application is the fact that it can
do business with only one supplier, and the infor-
mation systems that support several processes or
functions in the two organizations will all work in
the same way. The coupling between these different
information systems will be tight. The selection pro-
cess for an integral application is based on the fit
between the requirements of the organization and
the functionality an application offers. For obvious
reasons, when defining how close the fit should be,
the fit affecting the primary processes is the most im-
portant. Therefore, a chosen integral application fits
best with the primary processes; other processes of
the organizations do not each utilize a best-of-breed
application, but also use the chosen application.

The other kind of application vendor delivers a spe-
cialized application for a horizontal or vertical mar-
ket. Examples of these kinds of applications are fi-
nancial, human resource management, fixed asset,
logistic, and local government solutions. These ap-
plications are not integral because they support only
part of the information needs of an organization.
Technically these applications are built on generally
available technologies such as RPG, COBOL, Oracle,
Synon2/E, and Progress. The interoperability layer,

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

depicted in Figure 2, is very open, because it is im-
portant that the applications be able to connect to
other applications. As a consequence, the integra-
tion between different applications is loose.

An organization that decides not to buy an integral
application but to buy several applications and con-
nect them through interfaces, creates the possibility
that it will buy the best-of-breed application for each
vertical process in the organization. In cases where
a global integral ERP supplier is not able to support
all the local functionality in its applications, such as
that for laws and habits, this local functionality will
be supported in these specialized applications. This
makes the implementation much easier, because the
standard application does not have to be changed
very much to fit the needs of the customer. How-
ever, the interfaces between the separate applica-
tions will be loose, and the user interfaces of the sep-
arate applications will not necessarily have the same
“look and feel.”

It can be seen from the above discussion that both
approaches to delivering standard applications have
typical advantages and disadvantages. Depending on
the size and the organizational structure of the cus-
tomer organization, one of the approaches will be
chosen.

However, the way in which the standard application
industry works will change. Application vendors have
to make a choice. All vendors, even the large ones
like SAP, Baan, and Oracle, have discovered that they
cannot supply the market with 100-percent complete
solutions. Deutsche Morgan Grenfell Technology
Group describes that situation as follows: “Expand-
ing the scope of coordination further into the en-
terprise and across midsize enterprises will require
overcoming major technology hurdles. It means
evolving the applications to include a flexible back-
bone that others can build on and extend as the ap-
plications’ reach continues to expand. Every company
has its own unique requirements that cannot be fully
anticipated by a single vendor.”*

Another view of how the role of the standard ap-
plication vendor will change is given by Martin Healy,
an IT industry watcher who writes his own column
for some IT magazines:

There is a real problem in implementing standard
applications. A standard application reduces the
programming work an organization has to do but
that’s all. Applications also need to be imple-

VAN DER sALM 203

Figure 2 Specialized application architecture

TECHNOLOGY

ARCHITECTURE

mented. Implementing still demands a design,
knowledge, skills, training, etc. The level of inte-
gration is overexaggerated. In all cases after buy-
ing a standard application a lot of work has to be
done to implement an almost always incompat-
ible application. The real answer for this is reus-
able code, where a complete suite of reusable bus-
iness objects is available and applications are being
built by using the necessary modules. To realize
this, a rigorous definition of the functionality that
these objects should be doing is necessary. This
development has already been started and will
continue. In ten years we won’t be using standard
applications anymore. At that time we will develop
our own applications again, but with reusable,
modular technology.?

Future requirements. In the future, customers will
require the following:

1. An application must be able to be tailored to the
customer’s unique requirements.

2. Tailoring must be done in a rapid implementa-
tion through easy-to-use technologies.

3. The integration of specialized software from other
vendors must easily adapt to the industry’s and
customers’ specific needs.

204 VAN DER SALM

APPLICATION
LAYER

INTEROPERABILITY
LAYER

TECHNOLOGY
LAYER

These needs can be summarized in view of the mar-
ket’s requirements for backbone technology. Back-
bones will be the base layer of tailor-made, industry-
specific information systems. A main reason for
tailor-made information systems is to give compa-
nies the ability to obtain a competitive advantage
from their information systems. When every com-
pany in the world uses exactly the same ERP system,
it will be difficult to differentiate a company from its
competitors based on the use of its information re-
sources.

The need for backbone technology has already been
acknowledged by the application vendors. Although
at this moment no backbones incorporating reuse
are available, they are being created. The structure
of the industry will therefore change. Earlier in this
section, two kinds of application vendors in the cur-
rent industry structure were defined: the integral ERP
application vendor and the specialized application
vendor. Both types of vendors will change the way
in which they work. The large integral ERP applica-
tion vendors will change their goals of delivering 100-
percent complete solutions for their customers, to
delivering a 70-percent solution that can be brought
up to 100 percent through tailoring of the available
backbone. This will be done by using customized soft-

iBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 3 Closed backbone technology

DATA GATEWAYS

INTEROPERABILITY
LAYER

BACKBONE

LAYER

TECHNOLOGY

ware and by integrating specialized software from
other vendors.

This change means that the ERP vendors will deliver
their own backbone, based on their own existing tech-
nology of reusable components. Through the in-
teroperability layer, this backbone can be tailored
to the specific needs of a customer. This backbone
can be defined as a closed backbone, because the
technology that is used is from one vendor and is
not a common one, as shown in Figure 3. Only the
very large ERP application vendors are able to de-
velop their own backbone. Specialized vendors can
adapt the backbone and integrate their specialized
application to the backbone of one specific backbone
vendor. In doing so, these specialized vendors be-
come dependent on one backbone vendor.

The other application vendors have to make a choice.
Do they adapt to the closed backbone of one of the
large vendors, or do they adapt to a more open in-
dustry standard? One of the approaches used to cre-
ate an open backbone is available from the Object
Management Group (OMG). If an OMG standard can
be created, this open backbone will provide about

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

LAYER

40 percent of the functionality needed for an appli-
cation. This 40 percent consists of reusable compo-
nents or frameworks. Application vendors can build
their specialized functionality on this base.

Because of its open architecture, an open backbone
gives vendors that use this architecture the possibil-
ity of having their applications interface with one an-
other through the technology base layer illustrated
in Figure 4. In turn, the interfacing between appli-
cations from different vendors can become much
tighter than it is now. Therefore, customers have the
chance to choose the best-of-breed application per
vertical process and still have the horizontal integra-
tion that an integral application offers.

Some years ago the need for open platforms was re-
sponsible for a shift in the way the IT industry was
structured and how the power in the industry was
divided. Because of the Java revolution, the birth of
backbone technology, and the need for mass customi-
zation of customers’ standard applications, the drive
for open platforms will grow into a demand for open
applications in the coming years. Consist considers
IBM’s San Francisco to be the most promising tech-
nology to fulfill this demand.

VAN DER SALM 205

Figure 4 Open backbone technology

Implementing a framework strategy in an
RPG environment

The significant problems we face cannot be solved at the
same level of thinking where we were when we created
them.

—Albert Einstein

The strategy that Consist B.V. intends to follow may
be surmised from the above discussion. Consist had
to choose a backbone technology, build a new prod-
uct line based on that technology, and then sell it.
Of course, life is not as simple as that statement. Con-
sist has much experience in building RPG-based ap-
plications. Working in such an environment differs
completely from working in an object-oriented envi-
ronment. Currently, a small group of developers at
Consist has object-oriented experience, but the ma-
jority is procedure-oriented. The way Consist imple-
mented this strategy is shown in Figure 5.

Forming the shareable frameworks department.
Upon concluding that the new Consist product line
will be framework-based, multiplatform, and object-
oriented, and, after some research based on San
Francisco, Consist created a special department, the
shareable framework department. Its goal is to de-

206 vAN DER SALM

velop a new product line for Consist, based on frame-
work technology to make sure Consist will survive
in the longer term. From the moment of its creation,
90 percent of the developers decided that they should
work for the new department. The challenge of work-
ing with object technology, Java, San Francisco, etc.,
attracts almost every developer who likes the pro-
fession. Not being within the first group working with
these new technologics may give developers the idea
that they are not important to the company. Of
course, this is not true. Developers who work for a
standard applications vendor are a special breed. In
addition to having the necessary technical skills, they
also build up much functional experience. The in-
vestment needed to transform these procedural de-
velopers to object-oriented, framework-using devel-
opers is high, but the investment needed to hire new
developers and transform them into application de-
velopers who have the necessary functional skills is
much higher. Thus, the developers’ fear of being con-
sidered unimportant over the longer term is un-
founded.

The first group of developers within Consist for the
shareable framework department consists of highly
experienced employees. A number of top develop-
ers from other areas of the company were moved to

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 5 Consist B.V. San Francisco strategy implementation process

OBJECT-ORIENTED'
A
SAN FRANCISCO

'CUSTOMER

SAN FRANCISCO
FRAMEWORKS

'EDUCATION "

the department. Although other developers might
be jealous of them, everyone can accept the fact that
the top developers should go first, because of their
successes in past projects. The main reason for choos-
ing these developers is to ensure that the project is
likely to succeed. The working environment in which
object orientation, Java, San Francisco, CORBA™*
(Common Object Request Broker Architecture),
workflow, etc., are used is, of course, very risky. An
initial small group of good developers can create a
roadmap to ease the way for later groups of devel-
opers entering the new technology environment.

The learning curve. Domain experts are needed for
the functional part of such a large object-oriented
project. For Consist, a domain expert is not defined
as an experienced system designer or system ana-
lyst, but is someone who knows the functional do-
main well and has many contacts in the business and
academic world. From these contacts it is possible
to obtain the views of other people, including those
from other disciplines, on how a functional area will
change in the future. The people who are able to
fulfill this role for Consist are application consul-
tants. These employees do not have many technical
skills, nor do they have any development experience.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

They do have much functional knowledge. Three of
the most experienced consultants were selected to
fill this important role. Their tasks within the proj-
ect are to define the functional needs, model the use
cases, write scenarios, and create the high-level class
diagrams. It was a bit paintul for the established de-
partments to lose such highly experienced people to
the shareable framework department. But because
everyone understands that expertise gained through
experience is needed to build a new product line,
the situation is accepted by their colleagues.

Although it might be expected that this task would
be impossible for anyone without training in design-
ing an information system and without experience
in using traditional techniques such as information
engineering, data flow diagramming, and data mod-
eling, it is not the case. Of course, some training is
needed on object-oriented analysis and design, some
mentoring is needed on the structure of use case doc-
umentation, and some experienced persons have to
evaluate the class diagrams. However, because ob-
ject-oriented modeling is much closer to the real
world than procedural modeling, the learning curve
for the domain experts is relatively short. The qual-
ity of the analysis work of the domain expertsis very

VAN DER SALM 207

good. The lack of design experience that may have
been a big problem turns out to be an advantage,
because the domain experts do not have to rid them-
selves of any procedural design paradigms that they
might have learned in their former work. The area
in which the domain experts do have much to learn
is understanding what is offered by the San Fran-
cisco frameworks. The implementation and use of
frameworks is technical, but San Francisco offers
much functionality with many great advantages. This
functionality can only be put to use when the domain
experts understand what is offered. Gaining this un-
derstanding takes much time because the San Fran-
cisco documentation is technology-oriented instead
of being functionally oriented.

The learning curve for domain experts to enter the
object-oriented world might be steep, but is apt to
be relatively easy if those selected have the proper
background. The learning curve for developers is
very steep and very difficult to overcome. An expe-
rienced object-oriented developer can, of course,
learn Java in a relatively short period, understand
the working of the San Francisco frameworks in a
couple of weeks to a few months, and then start build-
ing applications. For the average AS/400 RPG pro-
grammer, the challenge is enormous. Apart from
learning and understanding the object-oriented pro-
gramming paradigm, learning a language like Java
that differs completely from RPG is very difficult. Pro-
grammers who surmount that obstacle understand
the use of design patterns but need much time to
implement them. The lack of mature Java tools does
not make the task any easier. After the San Fran-
cisco programming model is understood, which again
takes some time, much research is required to un-
derstand what San Francisco offers as functionality
and how it can be used.

Besides the learning curve for object orientation,
there is a very important mind-set that developers
need to have before becoming good San Francisco
developers. Using frameworks instead of building ev-
erything by yourself means getting rid of the “not
invented here” syndrome. A developer who does not
reuse a lot of code will never be a good object-ori-
ented developer. To implement reuse, special atten-
tion is needed from a project manager’s point of view.

Structure evolution. Why is it more difficult to turn
an RPG developer into a San Francisco developer
than it is to turn a developer for PC programs or a
developer of applications based on Oracle, for ex-
ample, into a San Francisco developer? This can be

208 vAN DER SALM

explained by the evolution of the framework con-
cept as defined by Taligent.® Taligent states that
there are three stages in the evolution of applica-
tion programming structures, as shown in Figure 6.

In the earliest stage, the procedural approach, the
programmer provides all code for flow of control.
The operating system has libraries with procedures
that perform certain tasks that can be called. The
program flow is controlled sequentially, and the sys-
tem takes action only when the program calls it.

The second stage, the event loop approach, was in-
troduced with the development of the graphical user
interface. End users started to interact with appli-
cations in a different way. A sequential flow no longer
could accommodate a user’s choices. The user trig-
gers an event by clicking the mouse or using a key-
board, etc. The event loop calls sections of the ap-
plication program that handle the action the user
requests. After the event loop call, the programmer
is again responsible for the flow of control of the ac-
tions to be taken.

The third stage is the framework approach. The
framework environment takes care of almost all flow
of control and calls the programmer’s code only when
necessary.

RPG programmers typically use the procedural ap-
proach in their work. When they begin to work with
the framework approach, they miss the evolution-
ary step of the event loop approach. Developers
working with Oracle programs or writing PC appli-
cations who have never used object technology are
used to giving some of the flow of control to the sys-
tem. For them the step up to the framework ap-
proach is therefore smaller.

Experience has shown that it takes at least a half year
before an experienced procedural developer is com-
pletely comfortable with the object-oriented, frame-
work method of developing applications.* Then a
developer is able to create his or her own object-ori-
ented solutions, understands the way design patterns
work, and is able to use some design patterns in
programs.’® After a while a team of trained and
experienced object-oriented developers produce
a “greenhouse effect.” This means that learning the
needed skills is easier for new team members because
they can gain knowledge from the experience of their
predecessors.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 6 Evolution of programming structures

OPERATING 8YSTEM

Goals for the shareable framework
department

A thought which does not result in an action is nothing
much, and an action which does not proceed from a
thought is nothing at all.

—Georges Bernanos

To make the learning curve as short as possible, to
keep developers happy so that they continue to work
for Consist, and to make it possible for existing cus-
tomers to grow into these new technologies, the goal
for the shareable framework department is not just
to build a new product line without looking at what
the rest of the organization is doing or, even more
important, without looking at what the current cus-
tomer base is doing.

It is important for the different development labs
within Consist to do their work by using the same
methods. Therefore, the shareable framework de-
partment obtains some developers from other de-
partments and trains them to work in an object-
oriented, Java environment. Afterwards these
developers go back to their own departments and
continue working there in this new way. This ap-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

proach is a signal to all developers that it does not
matter in which development lab someone is work-
ing; everyone will grow proficient in the new tech-
nologies. The second advantage of this approach is
that new modules for the current product lines are
developed based on the same technologies that the
shareable framework department uses. Therefore,
current customers also learn about the new kinds of
applications Consist will deliver and can follow an
evolving path to the new product offerings. Third,
in this way, the learning of new programming par-
adigms is evolutionary for the organization. This
gradual change is of great importance for the sta-
bility of the development labs.

The previous discussion may give one the idea that
the Consist shareable framework department is just
a research department that does not have to deliver
any software products to the market. That impres-
sion would not be true. Implementations done by
isolated research groups that explore new technol-
ogies almost always lead to poor choices. Because
there is no process for utilizing only a few parts of
an entire project when choosing technologies, the
mapping of scientific choices on the requirements
of the manufacturing process is poor.® Therefore,

VAN DER SALM 209

exploring new technologies is done in cooperation
with IBM, other partners, and with the knowledge net-
work for object orientation from Roccade. Roccade
is the holding company that owns 50 percent of Con-
sist (the other 50 percent is owned by IBM). Roccade
also owns many other Dutch IT companies. These
companies share knowledge through the existence
of knowledge networks.

In the shareable framework department, the chosen
technologies with their subsequent work environ-
ment are used in the projects of the department.
These projects must deliver either San Francisco-
based applications or, at least, Java-based applica-
tions that are connected to the existing product line
and can be sold to the existing customer base.

To set the right expectations about what can be done
at this moment within a shareable framework envi-
ronment and in a Java environment, it is very im-
portant that all departments and employees (not to
forget the management team) are informed onareg-
ular basis about the progress made and about the
possibilities offered by the technology.

Working with shareable frameworks

The journey of a thousand miles begins with one step.
—ILao Tzu

The way in which Consist works in building appli-
cations based on the San Francisco frameworks’ is
completely different from the way it is accustomed
to building applications. Every new San Francisco
developer first has to have much training in object-
oriented analysis and design, Java, Rational ROSE**,
San Francisco, etc. After that, he or she has to build
some Java programs based on a predefined problem
to learn how to use Java, some design patterns, and
the programming standards Consist uses in this envi-
ronment. Then the developer starts working in a
small team that is building a prototype. Describing
the training and the learning stage of a new San Fran-
cisco developer is not the intent of this paper. Whole
books can be written about that subject. This sec-
tion of the paper concentrates on how to work in a
situation with a trained team of object-oriented de-
velopers.

At its initiation, a project is not concerned with the
possibilities that San Francisco offers. The first stage
was meant to define the trends that could be rec-
ognized in the market from a functional and a tech-
nical point of view. In order to have these trends well-

210 VAN DER SALM

defined, about 10 project teams were organized so
that each had a specific question about the future
of Consist customers and business partners. An ex-
ample of such a question is: “How does a current
Consist customer work in the year 2005 in the area
of finance?” Each team had three members who
could be from any single department, including con-
sultants, sales representatives, or developers. What
was important in choosing people was their exper-
tise in a specific area. These teams worked part time
to define the trends in their area and delivered a pa-
per on their view of the future. In this way, a picture
of the growth expected in general requirements for
Consist products of the future was formed. The sec-
ond stage was called the system model stage. In this
stage, the results of the first stage were organized,
and a plan was made to determine in which order
parts should be developed. After that the actual de-
velopment process began.

Defining the goals. This process is really iterative.
The first project chosen was rather simple. The cri-
teria for the project were: it must be doable; it must
have a measurable return on investment; and it must
leverage the strengths of object technology. During
the first three days of the project, the entire project
team was confined to a room where the goal was to
have the project defined, the way of working defined,
and the project plan created by the whole team; do-
main experts, developers, and the project manager
had to work together for the first time. The goals
that were defined were differentiated for the mile-
stones in the project. There are goals for the end of
the project (in about a year’s time), goals for the end
of the year, when a proof-of-concept prototype must
be up and running, and goals for two months, when
the initial prototype must be ready. The development
method that was chosen is that of evolutionary pro-
totyping,® shown in Figure 7. With this approach,
designing and analyzing the most prominent parts
of the program in a prototype are done first, then
additions and refinements are made to the proto-
type until it is finished.

Mapping requirements. After the general require-
ments have been defined, the requirements mapping
is started. For this the “use case technique” is used.’
This activity is mainly done by the domain experts.
The developers have to define the technical require-
ments. Here the added value of San Francisco be-
comes clear for the first time. Instead of defining the
complete technical architecture in which the appli-
cation has to run, the San Francisco infrastructure
is chosen. This means, for instance, that there already

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 7 Evolutionary prototyping

is an interface to map the objects to a relational da-
tabase, so no time is spent thinking about how this
should be done or how to use serialization. There
are no worries about which object request broker
(ORB) to use and whether this is the right choice.
The lowest San Francisco layer has an ORB in it. In
the first release this is remote method invocation
{RMI). When another ORB is chosen for future scal-
ability reasons, for example, the San Francisco-based
applications will keep on running without worrying
about this changed ORB, another benefit of San Fran-
cisco. An application builder such as Consist must
add its own value to topics that it is good at, such
as building excellent applications. The more tech-
nical activities, such as ORB implementations, can
be better left to other companies that are very good
at that level.

When a stable integrated development environment
(IDE) for Java has to be chosen to build upon the
San Francisco frameworks, a little problem arises.
All IDEs and all Java development tools are either
in beta stage or support an old Java version.

On the user interface side, San Francisco offers great
support with a graphical user interface (GUI) frame-
work and a user interface style guide. Currently this
style guide supports a Windows**-like user interface
standard. In the future an HTML (HyperText Markup
Language) standard will also be needed, but for now
the GUI style guide and the framework are excellent.

The next step is to identify the application scenar-

ios, provide an abstract for them, and reference the
requirements. Each application scenario will be fur-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

ther detailed during the analysis and design activ-
ities.

Providing framework support. After the use cases
and the requirements for the application scenarios
are defined, there first has to be a check of how these
requirements map to the San Francisco frameworks.
The objective of this activity is to evaluate the cov-
erage and required deviations under the San Fran-
cisco framework for all listed application scenarios.
The coverage can range from no framework support
to full support. Ideally this mapping should be done
by the domain experts. However, since the San Fran-
cisco documentation is rather technically oriented
and the domain experts are absolutely not techni-
cally oriented, there is a problem. Two solutions are
available. The first one is to train the domain experts
to understand all the technical aspects of the doc-
umentation. We absolutely do not want to do that,
because the domain experts have to think creatively
about what the customer wants on the functional
side. If we confront the domain experts with the tech-
nical implications of what they design, that may re-
strict their creativity in the future, because they might
feel limited by the technical possibilities. We do not
want that to happen. The second solution is to have
some developers with the right functional knowledge
fulfill a kind of intermediate position between the
domain experts and the developers. That solution
has been chosen by Consist. Questions that have to
be answered during this first mapping process fol-
low:

1. Are San Francisco framework tasks or scenarios
available to support the desired application sce-

VAN DER SALM 211

narios? This may require some navigation through
the San Francisco framework documentation.

2. Ifone or more San Francisco framework tasks or
scenarios are available, to what extent do they
cover the desired application scenarios? Differ-
ent cases may occur ranging from no San Fran-
cisco framework support to full coverage by the
San Francisco frameworks.

3. If the San Francisco framework does not cover
or only partially covers the application scenario,
what type of deviations are required? The impact
is analyzed for:

—-Required user interfaces (changes or new)

—Required business logic (changes or new)

—-Required information (extra or changed at-
tributes)

-Other requirements, e.g., legacy interface

This impact analysis will serve as input for workload
definition and planning.

Based on the technical and functional requirements,
the use case definitions, and the application scenario
definitions, the project plan is written.

During the next step the domain experts and the proj-
ect team together define the first version of the class
diagram. Although this version will change consid-
erably in the future, this step is extremely important
to make both domain experts and developers think
in the same way about what it is that has to be de-
veloped. Because the technical implementation de-
tails are not important for the domain experts, these
are discarded.

An application scenario can be defined as a respon-
sibility or usage (“mini” use case) of the system. The
list of application scenarios covers all usages of the
system. Application scenarios will be gradually com-
pleted and refined. This implies that the mandatory
fields and level of detail will change in going from
requirements mapping to analysis to design. A de-
cision may be made to keep separate versions for
each phase or let the application scenario evolve dur-
ing the project. Again a mapping of the results of
the analyses is done on the possibilities offered by
the San Francisco frameworks. The objective of this
activity is to extend the San Francisco framework
class model so that it can support the services re-
quired by the application scenarios. These classes and
their responsibilities can be derived from the appli-
cation scenarios. During the analysis phase it is im-
portant to focus on business classes. At this stage no

212 vAN DER SALM

user interface classes or design classes should be
added.

An important part of the scenarios in the commu-
nication between domain experts and developers is
the description of the user interface. We use Mi-
crosoft Powerpoint** to quickly define how the di-
alogue should work and what the screens should
roughly look like. The real details of the screen de-
sign are made during the programming stage.

After the analysis stage we start with the design. It
is hard to draw a clear line between analysis and de-
sign. For us the line occurs when a domain expert
is modeling; we call it the analysis stage. When a de-
veloper is leading, we call it the design stage.

In the first prototype we built, we let the domain ex-
perts create the object interaction diagrams. We dis-
covered that this helped them to understand how the
system should be working but that they were not able
to go into enough detail for the developers. As are-
sult, only the developers are now creating object in-
teraction diagrams per use case. For design scenar-
ios it is important to obtain a level of detail that
includes:

« Exception handling

~ Reference to used classes

~ Reference to scenarios

~ Indication of passed arguments

~ Pseudocode-like business logic

~ Gets/sets

» Interface to legacy systems (if relevant)

The design stage is done almost entirely by the de-
velopers. The domain experts are asked regularly
about some details that are not completely clear. The
design process describes how to translate the anal-
ysis model into a design model, taking into account
the technical environment, technical architecture (for
example, the San Francisco programming model),
and performance issues.

We build further on the analysis deliverables using
the same techniques. We focus on the requirements
needed to use the ROSE-to-Java generator to create
Java classes from the design documentation in Ra-
tional ROSE. The activities in this stage are:

» Extending the application scenarios with design-
specific information

« Designing user interfaces

~ Creating a design class model by adding design-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

specific classes, relationships, and methods to the
analysis model (for example, commands, control-
lers, collections, and helper classes)

¢ Restructuring the model to meet the requirements
of the technical architecture

¢ Creating design interaction diagrams to show the
dynamic behavior of the application and to vali-
date the design class model

An important part here is the integration with leg-
acy databases: San Francisco frameworks provide for
the use of a schema mapper to allow developers to
map San Francisco objects to relational databases
as their persistent storage mechanism. Also impor-
tant is the interoperability of legacy code with San
Francisco objects: using legacy applications in bus-
iness objects and using business objects in legacy ap-
plications. For Consist, the AS/400 legacy code and
databases are extremely important. At the time this
paper was written Consist did not have a San Fran-
cisco version available that already had this AS/400
legacy mapping. Instead, we used the 0s/400* (Op-
erating System/400*) Java Toolkit™*. Using the tool-
kit, we had no problem in going from our San Fran-
cisco or Java code to legacy databases and RPG code
on the AS/400.

Starting from the design class model (design class
diagram, design object interaction diagram, method
specifications), we can create and generate the ap-
plication code (e.g., via the San Francisco Code Gen-
erator). Code can be generated from the design
model through the use of the Code Generator. In
this case the necessary tags have to be added to the
classes and methods. Coded classes should go
through a unit test (feature test) and code review
before they are available for integration testing.

Summary and conclusions

The learning curve that an organization has to fol-
low before it is able to use San Francisco is apt to
be long and steep, especially when a company has
no experience in working in an object-oriented way.
Before choosing San Francisco, a company needs to
have a vision of its future and needs to think about
the business reasons for making that choice. The
main business reason for choosing San Francisco is
the expectation that the IT industry and especially
the standard application builders will mature in the
next few years. As a result, there will be backbones
on which all application vendors will build their ap-
plications. This means that where application build-
ers now develop almost everything they need for

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

themselves, in the future they will buy components
from other vendors and use them in their own ap-
plications. San Francisco provides a backbone that
is very flexible because, worldwide, thousands of ap-
plications will be built on this framework. For cus-
tomers, the added value is that they can choose the
best-of-breed applications for their business out of
an enormous suite of applications that will be avail-
able on the market. These applications will be con-
nected to one another through the San Francisco
base layers.

An organization that chooses San Francisco needs
to organize its development labs in such a way that
there will be time for developers to pursue the learn-
ing curve. Apart from that, the organization should
focus on strong human resource management to
keep the developers who are not yet working with
San Francisco happy. A thorough plan has to be de-
veloped indicating what should be done to prepare
a development lab to use object technology and San
Francisco frameworks.

San Francisco provides a roadmap that describes how
to create a San Francisco-based application. Besides
the learning curve, the most difficult point is to map
the system requirements to the San Francisco frame-
works. This cannot be done by domain experts be-
cause of the technical character of the San Francisco
documentation.

This paper has given an overview of why Consist B.V.
in the Netherlands is using San Francisco, what the
business reasons for this are, and how the project is
organized. It is intended to provide the reader with
a high-level understanding of these topics and to
show the experience of one ISV in using San Fran-
cisco.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Object Management Group, Rational Software Corporation, or
Microsoft Corporation.

Cited references

1. Software’s Industrial Revolution, Enterprise Applications Become
the New Backbone of Business, Deutsche Morgan Grenfell
Technology Group, New York (January 14, 1997).

2. M. Healy, “Applicatiepaketten,” Computable 29, 37 (July 18,
1997), in Dutch.

3. Taligent, The Power of Frameworks, Addison-Wesley Publish-
ing Co., Reading, MA (1995).

VAN DER SALM 213

4. G.Booch, Object Solutions: Managing the Object-Oriented Proj-
ect, Addison-Wesley Publishing Co., Reading, MA (1996).

5. E.Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley Publishing Co., Reading, MA (1995).

6. M. Iansiti and J. West, “Technology Integration—Turning
Great Research into Great Products,” Harvard Business Re-
view 79, No. 3, 69-79 (May—June 1997).

7. Based on E. Callebaut and A. Nilsson, San Francisco Road-
map, IBM Corporation (1996).

8. S. McConnell, Rapid Development Taming Wild Software Sched-
ules, Microsoft Press, Redmond, WA (1996).

9. 1. Jacobson et al., Object-Oriented Software Engineering: A Use
Case Driven Approach, ACM Press, Addison-Wesley Publish-
ing Co., Reading, MA (1992).

Accepted for publication December 10, 1997.

Rob L. van der Salm Consist B.V., Nevelgaarde 20, P.O. Box
500, 3430 AM Nieuwegein, Netherlands (electronic mail:
robvds@xs4all.nl). Mr. van der Salm is manager of a department
that develops standard software applications based on Java and
San Francisco technology and is a member of the Consist man-
agement team. He is responsible for the development of new prod-
uct lines. Previously he worked for SSA Benelux as a technology
presales consultant and as project manager for other system com-
panies. Mr. van der Salm studied information science and com-
puter science in the Netherlands before receiving an MBA from
Heriot Watt University in Edinburgh, United Kingdom.

Reprint Order No. G321-5673.

214 VAN DER SALM IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

