Technical note

Using the San Francisco frameworks
with VisualAge for Java

This technical note describes the advantages of
using the VisualAge™ for Java™ (VAJ) integrated
development environment when working with
the IBM San Francisco™ frameworks. It also
discusses minimum system requirements, how to
get started, and tips for using VAJ to exploit the
frameworks. To fully utilize the material, the
reader should be familiar with Java programming
and with the basic concepts of integrated
development environments.

VisualAge* for Java** (VAJ)' is an integrated de-
velopment environment (IDE) tailored for de-
signing and building Java programs.” It provides
visual project and class navigation, incremental com-
pilation, source-level debugging, visual program de-
sign, and version control. VAJ is a truly integrated
development environment that maximizes produc-
tivity while easing the learning effort, and is ideal for
developing large, complex programs or harnessing
large frameworks such as the IBM San Francisco*
frameworks (SFF),*” a distributed, Java-based set of
object-oriented business application frameworks.

This technical note provides some insights to assist
the developer in initially using VAJ and the SFF. It
does not discuss specifics related to the use of VAJ
nor the operation, configuration, and use of the SFF;
both topics are better left to the product manuals.
The emphasis here is on discussing the advantages
and the approach to using VAJ to work with the SFF.

VisualAge for Java features

The advanced features of the VAT IDE make it ideal
for use with the SFF.

With large frameworks such as the SFF, it is impor-
tant that the development environment provide fa-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

0018-8670/98/$5.00 © 1398 I1BM

by M. G. Polan

cilities to navigate through the large number of
classes that are provided, as well as help manage pro-
grams exploiting the frameworks as they evolve and
grow .

The VAJ Workbench. The heart of the VAJ IDE is the
Workbench (see Figure 1), the starting point for most
development activities. The VAJ environment pro-
vides three groupings for managing program com-
ponents. The first two are familiar to Java program-
mers—oclass and interface definitions that scope
methods and fields, and packages that are used to
collect and scope Java classes. The new and highest
grouping is that of a project, which may contain any
number of packages. For example, one project could
be used to collect all of the SFF classes, with perhaps
separate projects used to group programs exploit-
ing the framework.

The Workbench is used to manage information in
the current work space; program information in the
IDE will be in the work space when in use or archived
to the repository when not needed.

Workbench navigation. From the Workbench, it is
possible to visually navigate through the available
projects (for any user programs loaded or created
in the IDE, as well as those supplied with the IDE such
as the Java Development Kit [JDK] packages). Each
IDE object (project, package, class, interface, or
method) can be expanded (as indicated by a “+”
marker) to examine the information it contains

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

POLAN 215

Figure 1 The VAJ IDE Workbench showing the project and source views

(projects include packages that contain classes or in-
terfaces, which can contain methods and fields). Any
of these IDE objects can be opened for editing. For
example, a class definition can be opened by the class
browser (see Figure 2): to see its place in the entire
IDE class hierarchy; to examine and edit any of its
methods; to examine, update, and generate its bean
information; to add a new property; to add function
through visual construction; etc.

A powerful set of search and browsing tools is pro-
vided to assist in finding the IDE objects to examine
or edit. Since the IDE tracks all the IDE object re-
lationships within the work space, it can immediately
provide a list of objects matching a given search cri-

216 rPoLaN

terion from which the developer can select and open
in any context. For example, the search facility can
be used to obtain a list of all references to a Java
object or a particular method. The developer could
then examine or update each of those references.

Finally, in addition to its name or signature, or both,
each object within the IDE is tagged with an icon to
identity its type. Tagging allows one to identify at a
glance packages, projects, classes, interfaces, and
methods. Also visible is the scope of Java objects
(public, protected, or private), as well as any mod-
ifiers—whether a Java object or method is static, syn-
chronized, hand-coded, or generated by an applica-
tion builder, etc.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 2 The VAJ IDE class browser

Work space, repository, and version control. To help
the developer manage changes as program develop-
ment progresses, the VAJ IDE uses concepts of a sep-
arate work space and a repository to provide ver-
sion control and automatic edition creation.

The current edition (the current, active copy) of an
IDE object (that is, a project, package, class, or
method, as opposed to the Java definition of an ob-
ject) resides in the IDE work space and is directly
accessible by the developer. The IDE archives infor-
mation not currently needed into the repository. IDE
objects can be moved to or from the repository into
the work space as needed.

Each saved change to an object on which the IDE
operates results in the creation of a new edition of
that object, and a dated copy of the previous edition
is automatically archived into the repository. When-
ever necessary, it is possible to revert back to any of
the archived (and presumably working!) editions of
that object.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

New IDE objects representing Java source code may
be created in the work space using the IDE editor or
SmartGuides (see next subsection). Source or byte
code can be imported directly from files in the file
system. Projects can be imported from metafiles pre-
viously exported from a VAJ IDE into the repository,
and any portion of those projects can then be moved
back into the work space.

At appropriate points in the development cycle, new
versions of projects, packages, or classes can be cre-
ated from the most current editions. The meta-data
associated with those versions can be exported from
the IDE. A version could then be used by other de-
velopers (perhaps working on other components of
the same program) or archived for recovery pur-
poses, or a version may simply mark a checkpoint
or milestone in the development cycle.

At any time in the cycle, source code or compiled
Java byte code can be exported for use within any
other JDK, IDE, or Java run-time environment (JRE).

PoLAN 217

Figure 3 Creating a new method using SmartGuide

Developing, editing, and compiling programs. The
IDE provides a Java-aware, context-sensitive text ed-
itor as well as a visual composition editor (VCE). The
text editor provides visual feedback on language con-
structs and is integrated with the Java incremental
compiler to highlight syntax errors. The VCE com-
bines the drag-and-drop and WYSIWYG (what-you-
see-is-what-you-get) paradigms that dramatically
simplify the layout of graphical user interface (GUI1)
components and the interconnection of program
components (especially when interconnecting Java-
Beans**° using the java.awt delegation event model
or JavaBeans events and listeners). The VCE uses the
JavaBeans component model that allows any class
library compliant with JavaBeans to be used. The
developer may also construct JavaBeans for use with
this or any other builder that is compliant with Java-
Beans. Because the JavaBeans model allows for the
use of any Java class, whether or not it actually im-
plements the model, any available Java class or in-
terface may be used in the composition of a program.

Program components built within the VCE can be di-
rectly modified with the source editor, yet can stiil
be reloaded into the VCE for further modification
and regeneration. Source changes outside the ed-
itor are preserved.

In addition, the following SmartGuides are available
to help create a program:

218 Poan

* Project and package SmartGuides for creating new
project and package structures

* Class, interface, and applet SmartGuides for cre-
ating new class or interface definitions within a
package. When the new class is derived from an ex-
isting class or set of interfaces, these guides can op-
tionally generate stubs (placeholder empty methods
with the correct signature) for all required methods.

* A method SmartGuide (see Figure 3) for adding
methods and constructors and for specifying
method modifiers (static, final, abstract, native, syn-
chronized) and visibility (public, protected, private)

¢ BeanInfo SmartGuides for easy creation of Java-
Beans. The guides provide automatic addition of
properties, with the appropriate get and set meth-
ods, data member, and event support if the prop-
erty is bound, etc. Also generated is the bean
information support class, including the customi-
zation of the information presented to the bean
users.

When developing use of the VCE, a single “test” but-
ton is available that automatically generates, com-
piles, and then launches the program to allow an im-
mediate test of any modifications. This feature is
extremely useful when fine-tuning the appearance
and behavior of the program.

The incremental compiler is invoked automatically
whenever a new Java class, interface, or method is

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 4 Finding and fixing problems

created (including those automatically generated or
created as the result of an import action) or a change
is made and saved to an existing Java object. The
compiler is invoked for the changed object as well
as any other object within the work space affected
by that change.

There is immediate visual feedback of any compile
errors found in the source, including interface dit-
ferences between classes, interfaces, or methods, or
when required methods are missing from derived in-
terfaces or class definitions. The compiler verifies
consistency between all Java object definitions and
usage within the work space. These problems can
be corrected immediately or be left for later reso-
lution. The “Unresolved Problems” tab in the Work-
bench (see Figure 4) will navigate directly to any
problems, at which time the developer can directly
edit the source. Saved corrections will be immedi-
ately reflected throughout the IDE.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

The incremental compiler will provide information
related to the impact of changes made to the pro-
gram, or the impact of moving to a new version of
an externally provided software component. When
the developer deletes or redefines a method, or im-
ports a new class, interface, or package, the compiler
immediately flags any inconsistencies created by that
change. Again, the Unresolved Problems view allows
the developer to find and update the affected source
code immediately. Should the problems related to
the change prove too difficult to resolve, the devel-
oper can use the repository return to the previous
edition, thus undoing the changes.

Execution and debug. Any valid Java object with a
main method can be started at any time without re-
striction. Also, any class derived from java.applet. Ap-
plet can be launched in the provided applet viewer.
The VCE provides a “test” button that will generate,
compile, and launch the program under construc-

POLAN 219

tion automatically. Finally, a scrapbook is provided
that will allow execution of any code fragment within
a Java object context. The scrapbook instantiates the
specified Java class, then executes the indicated code;
this is useful for testing new methods or source
changes, etc. The IDE allows multiple execution
threads to be active at any time.

A powerful source-level debugger is included within
the IDE, allowing the developer to set breakpoints
anywhere within the program. The debugger can also
be invoked after the program is started. The “De-
bug” button is selected, then the thread(s) to be de-
bugged is chosen. The debugger will halt that thread
and show the current execution point. Alternatively,
the source to be debugged can be found by using the
class browse or method search; then the right mouse
button menu can be used to set a breakpoint on the
line where the program is to be halted. The program
is then forced to execute a path that contains the
breakpoint (perhaps by using the user interface of
the program or the scrapbook). The debug window
will appear automatically when the breakpoint is en-
countered. Breakpoints are removed in the same
fashion, or the breakpoint window can be used to
examine, disable, or remove breakpoints. Once a
thread has been suspended in the debugger, its ex-
ecution can be canceled, resumed, or single-stepped
into or over methods.

Once execution is stopped at a breakpoint, the de-
veloper may use the debugger to inspect the execu-
tion stack, any local data, active Java object data
members (fields), etc., using the symbolic inspection
facilities.

The features of the debugger should be familiar to
users of any advanced development environment.
However, the VAT debugger goes further: Once the
cause of the problem is determined, the offending
source code can be modified from within the debug-
ger window and thread execution resumed. Any
thread running within the IDE will immediately pick
up the changes (made here or in any of the other
edit windows), allowing the developer to move im-
mediately to the next problem.

Java object field values can be examined by select-
ing the target from the debugger window or by high-
lighting the field and bringing up an inspector win-
dow (available from the right mouse button pop-up
menu).

220 POLAN

Getting up to speed. Learning a large framework
such as SFF, the structure of applet and application,
VAIJ, or even the Java language and programming
interface itself can be difficult for a new developer.
Of course, VAT provides a help facility available from
anywhere within the IDE, “Getting Started” and
“How Do I” support, and complete manuals for the
IDE as well as for the JDK packages. The help engine
is based on Hypertext Markup Language (HTML),
allowing easy integration of any program documen-
tation into the IDE (by adding bookmarks) that fol-
low the javadoc’ conventions that are the standard
for most Java applications and libraries.

The various views provided by the IDE can quickly
show the structure of packages and Java object hi-
erarchies. The search facilities can uncover relation-
ships among classes, interfaces, and packages.

The WySIWYG and incremental nature of the IDE and
visual composition editor ensures that there is im-
mediate feedback when changes are made to an ap-
plet or application, shortening the learning curve
considerably. Should the purpose or definition of a
class or its properties be unclear, the vAJ Smart-
Guides can be used to create a program using that
class, and the developer can then observe directly
how different property settings affect the object be-
havior. Similarly, the scrapbook can be used to call
an unclear method with various parameter settings
to understand how parameter values will affect be-
havior.

Installing VisualAge for Java. Installation is quite
straightforward; simply follow the instructions pro-
vided with the VAT setup program. Minimum system
requirements are any Pentium** processor, 0S/2
Warp* Version 4, Windows 95%%, or Windows NT**
4.0 or later, 32 MB (megabytes) of memory, 30 MB
of paging space, and 70 MB free space for VAI. For
use with the SFF, the recommended machine con-
figuration of a Pentium 166 MHz (megahertz) pro-
cessor and 128 MB of physical memory should be con-
sidered a minimum. An additional 400 MB of free
disk space is necessary above that required for the
installation of the SFF (see the following section).

An HTML browser is required in order to read the
on-line documentation and use the on-line help fea-
ture. A Transmission Control Protocol/Internet Pro-
tocol (TCP/IP) configuration is recommended or a
stand-alone TCP/IP loopback must be configured for
systems that are not connected to a network. This

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

configuration will be required for using both the vAJ
help facilities and the San Francisco servers.

More information can be found on the Internet at
http://www.software.ibm.com/ad/vajava.

Loading the San Francisco frameworks

A minimum service level for VAJ is required to suc-
cessfully load and run the SFF in VAJ. Details are
available in the VisualAge for Java service at http:
/fwww.software.ibm.com/ad/vajava.

Tip: At the time of this writing, it is necessary to
manually update the vaJ ide.ini file to import the
SFF. In the [vM Options] section of the file
ide\program\ide.ini (found in the directory into which
VAJ was installed), the memory limit should be
changed from maximumMemoryLimit=64000000
to maximumMemoryLimit=128000000.

The SFF consist of a number of packages containing
the various classes and interfaces in the framework.
Importing the frameworks into VAJ can take a con-
siderable amount of time, depending on the machine
type and the amount of available memory. It is pos-
sible that a vAJ interchange file that already contains
the SEF may be available by the time this technical note
is published. Check the vAJ or the San Francisco Web
sites (http://www.ibm.com/Java/ Sanfrancisco) for the
latest information. The interchange files have a . DAT
file extension.

To import an interchange file:

1. Select the menu file—import.

2. Choose “Import an interchange file.”
3. Select the provided .DAT file(s).

4. Press “Finish.”

Once the interchange file has been imported, move
the SFF from the repository:

5. Select add project from the “All Projects” win-
dow pop-up menu.

6. Choose “from repository.”

7. Select the San Francisco project(s) and the ap-
propriate editions (consult any provided docu-
mentation),

8. Press “OK.”

If the interchange files are not used, the San Fran-

cisco byte code and source code can be imported in-
stead directly from the SFF installation. It will typ-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

ically take longer than importing from an interchange
file, the difference being the time it takes for vAJ to
process each individual class (byte code or source)
file.

To import the San Francisco packages:

9. Use the right mouse button on the project area
of the Workbench “All Projects” page to select
the “Add Project.”

10. Add aproject called “San Francisco” (or another
name as preferred).

11. Select this project.

12. Select the file—import menu item.

13. Select “Class Files” and move to the next page.

14. Click the Browse button.

15. Navigate the file system to select the root direc-
tory of the SFF installation.

16. Select the COM directory.

17. Select OK.

18. Select Finish.

Tip: If using a system with limited memory, import-
ing the packages should be done in steps for effi-
ciency. Importing sets of packages allows VAJ to re-
solve dependencies on related components without
the need to load and resolve the entire framework.
Import the COM.ibm.sf.gf and COM.ibm.sf.util
packages together, followed by the COM.ibm.sf.cf,
COM.ibm.sf.cffi, COM.ibm.sf.ui, and COM.ibm.sf.gl
packages.

Once the import of the SFF is complete, the VAT work-
space should be saved. To simplify re-importing the
frameworks for use by any other developers on the
project, or if VAJ is reinstalled, a new version of the
SFF should be created. It is done by bringing up the
project pop-up on the SFF project and choosing “cre-
ate version.” When complete, the SFF project can be
exported as a VAJ interchange file. Again, because
of the size of the project, this will take some time
(though less time than importing the SFF byte code
files into the IDE).

Once the SFF byte code has been imported, the avail-
able San Francisco source files may be optionally im-
ported. The procedure is similar to that outlined
above; however, choose “Java Files” instead of “Class
Files,” and select the directory of the source files you
wish to import (e.g., COM\ibm\sf\samples). The
source of some of the San Francisco packages is also
provided in the COM\ibm\sf\source directory.

Tip: Tt is not advisable to import only the source files.
The byte code files must be imported because var-

POLAN 221

ious compiler-generated stub and skeleton classes
are required to execute San Francisco within VAJ;
source for these classes has not been provided in the
SFF installation. Importing the necessary byte code
files later results in a large number of compile er-
rors discovered during the initial source import.

Building a program

Once San Francisco has been brought into the IDE,
program development may begin. Use of the Visual
Composition Editor is explained by the VAJ man-
uals; specifically, in the “Concepts” and “Tasks” sec-
tions. However, San Francisco provides a number
of samples. The fastest progress will likely be made
by first ensuring that the samples run, then by mod-
ifying or reusing parts of those samples to incremen-
tally develop a program. A few tips might facilitate
this effort:

* Create the applications in a separate project and
package. Group related classes in packages and
related applications in projects.

» Use the SmartGuides to create classes that extend
the SFF. This will allow stubs for required meth-
ods to be generated automatically.

* Use the VCE rather than handcrafted code to build
GUI components to leverage the WYSIWYG layout
capabilities of the IDE.

» Use the VCE to interconnect objects that utilize
the JavaBeans event models to ease the task and
to help ensure compliance with the JavaBeans
design pattern.

* Use the IDE SmartGuides to create beans that will
signal events, and the Beanlnfo page of the Smart-
Guides to customize JavaBeans (i.e., add proper-
ties, methods, and events) to ease the task and
ensure compliance with the JavaBeans design pat-
tern.

» Use the “Event to script” feature to add and in-
voke non-GUI function to the program (use this
feature to incorporate the code copied from the
SFF examples) to separate the visual from the non-
visual portions of the program. This is often much
easier to manage than making source modifications
to the generated code.

It is not necessary to complete an entire program
before beginning unit testing; indeed a feature of VAJ
is to allow for incremental development, unit test-
ing each part of the program as the implementation
progresses. Java is ideal for allowing each class to
be tested individually; a main or Applet.init method

222 POLAN

can be added to each class being developed, or the
scrapbook can be used to test each class.

Another good practice is to lay out the GUI of the
program using the Visual Builder early in the im-
plementation phase. A number of advantages result,
including:

1. Early validation of the user interface with the in-
tended users/customers

2. Advanced prototypes with method stubs to en-

able carly testing of program flow and perfor-

mance

Creation of a useful unit test structure

Easy incremental and iterative development

. Early separation of the view (GUI) from the in-
ternal model (behavior)

Db

Since the San Francisco GUI applications were not
constructed with the VCE, it is best to use the non-GUIL
sample as a base, even when constructing GUI cli-
ents using VAI This procedure will allow as much
of the code as possible to be generated, as the San
Francisco GUI applications cannot be modified within
the vAJ Visual Builder.

Starting San Francisco servers

The SFF requires a run-time environment to support
its function. Servers provide infrastructure such as
naming, security, and factory services, and distrib-
uted business logic execution. Business logic exploit-
ing SFF may execute within the calling client program
or within the SFF servers. Working with server res-
ident (or remote) objects requires that the SFF serv-
ers be started within the VAJ IDE run-time environ-
ment.

To start the SFF servers, select the SFF project in the
Workbench window, then the “Run” button. Choose
“run main(),” then selecting the appropriate class
from the presented list will cause the “run” dialog
for setting the startup parameters to be presented.
Parameters can be saved and will be recalled when
that class is run again.

The program to be tested is started in the same fash-
ion. Each separately started class runs in its own vir-
tual machine (VM).

Tip: For frequently started programs, create a sep-
arate class that specifies the necessary parameters
as arguments, which are then passed by calling the
main(String[] args) method of the target class. Any

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 5 Sample source for starting the naming server

additional startup handling can also be included us-
ing this technique. The new class can then be run
using the IDE run button rather than respecifying the
parameters each time—particularly useful when con-
tinually starting processes using the same class but
with different parameters, such as the SFF servers.

For example, to start the naming server see the sam-
ple in Figure 5.

Execution environment

The VAJ IDE, the Sun JvM, and the San Francisco
servers are relatively large programs for today’s sys-
tems. They tend to use a lot of memory and CPU re-
sources, so a little planning can help the response
time of the applications within VAJ.

First, the servers should be run either within the IDE
or on a different system. They must be run from

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

within the IDE if it is necessary to debug code run-
ning within the server.

Attempting to run the servers using a Java virtual
machine (VM) other than the VAJ IDE is possible by
using the startup tools provided by the SFF instal-
lation. It is likely, however, that a stand-alone sys-
tem will spend much time swapping between the IDE
and the server JVM processes, unless a large amount
of real memory (256M or more) is available. Mem-
ory requirements are reduced when the servers run
within vAJ. Running the servers on a different sys-
tem reduces system requirements even further.

When running applets within the VAT IDE, they must
be permitted to access the project text resources of
the San Francisco classes resident in the file system.
Use the applet menu to set the applet security level
to “unrestricted.”

POLAN 223

Deploying a program

It must be remembered that the VAJ IDE is a devel-
opment environment; it is not intended (in this re-
lease) as a production environment. However, since
applications are developed using Java, they will de-
ploy with little or no effort onto any compliant Java
VM (currently at JDK 1.1), available today for most
operating systems.

The program source can be exported from the
VAJ IDE for deployment in a number of different
ways:

* As javafiles containing Java source for a separate
build outside of the IDE

* As .class files containing compile Java byte code
into a user’s class path for immediate execution

* Aspublished projects so that the project resources

will be included in the exported materials

As a JAR (Java ARchive) file® containing all of a

user’s classes for easy download into a browser cli-

ent for use as applets

As interchange files for backup and recovery or

exchange with other team members or between

machines

There will be a considerable increase in program per-
formance; the advantages of the VAJ IDE come with
a performance penalty (though that penalty will be
considerably reduced in the future). If, during de-
velopment, performance becomes a concern, the de-
veloper should remember to measure performance
after exporting and testing outside of the VAJ IDE
before restructuring the program.

Concluding remarks

VAJis a powerful new IDE that considerably reduces
the learning curve and increases developer produc-
tivity. Its advanced features, listed below, make it ide-
ally suited for managing large application frame-
works such as the SFF.

Powerful project, package, class, and method hi-
erarchical navigation. All IDE components are ob-
jects with specific associated actions. This approach
is very helpful in managing large frameworks and
projects.

Source-level debugging with update in place (no
need to navigate through large amounts of source)
and instant effect (programs need not be restart-
ed).

Workspace-based incremental compilation—im-

224 PoLAN

pact of source changes on dependent classes and

interfaces (usage or derivation) is seen immedi-

ately.

Syntax-sensitive text editor and incremental com-

pilation. They allow source code to be checked for

clean compilation before being saved in the IDE
work space.

* Repository-based, automated version control with
automatic backup of modified code for configura-
tion management.

» Powerful search facilities to find the definition or

locations of reference of all IDE objects, including

classes, interfaces, methods, and fields. Searches
are completed quickly by the IDE by using the work
space class meta information.

Class creation SmartGuides. They allow all re-

quired method stubs to be generated automatically.

This greatly simplifies the task of extending appli-

cation frameworks, by generating the stubs nec-

essary for implementing the concrete instance of
an abstract class or interface (in any combination).

Acknowledgments

My thanks to Dan Geort and Randy Baxter who were
fundamental in helping me understand SFF and have
it run on my system, and to Marcio Marchini, who
with a few simple tips increased my VAJ productivity
one hundredfold.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Intel Corporation, or Microsoft Corporation.

Cited references and notes

1. For information related to VAJ, see the URL on the Internet
at http://www.software.ibm.com/ad/vajava.

2. For information on the Java environment, languages, and prod-
ucts, see http://www.javasoft.com.

3. For information on the SFF, see http://www.ibm.com/Java/
Sanfrancisco.

4. A. Thomas, “San Francisco: IBM’s Business Object Frame-
work,” Patricia Seybold Group’s Distributed Computing Mon-
itor (September 1997).

5. D. Andrews and M. A. DeGiglio, IBM’s San Francisco Proj-
ect: Java Building Blocks for Business Application Developers,
White Paper: Progress Report, D. H. Andrews Group (July
1997).

6. JavaBeans is the standard component model defined by the
JavaSoft Corporation to allow the interconnection of Java com-
ponents from different software vendors. Java classes from any
vendor that comply with the JavaBeans specification can be
used directly in any development environment from other ven-
dors that is compliant with JavaBeans.

7. A tool provided with the JDK used to generate HTML-style
documentation directly from a Java source file.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

8. For more about JAR files, see http:/www.javasoft.com:
81/docs...orial/post].0/whatsnew/jar.html.

Accepted for publication January 12, 1998.

Michael G. Polan IBM Canada Ltd. Laboratory, 1 Park Center,
895 Don Mills Road, Don Mills, Ontario, Canada M3C 1W3 (elec-
tronic mail: polan@ca.ibm.com). Mr. Polan is a senior document
analyst at the IBM Canada Laboratory and was the team lead for
the VisualAge for Java and the VisualAge for C+ + Data Access
Builder component.

Reprint Order No. G321-5674.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

POLAN 225

[[Page 226 is blank]]

