170 NMAN

Enterprise modeling
advantages of San
Francisco for general
ledger systems

With the advent of San Francisco™, object
technology can seriously be considered for
commercial enterprise applications. Much more
work needs to be done in explaining why object
technology will be important to business users.
In accounting, for example, objects—and San
Francisco frameworks in particular—provide
elegant solutions to some of the problems
encountered in conventional accounting
information systems, particularly in the general
ledger area. They also support an approach for
generalizing accounting systems, allowing them
to become models of the business enterprise
rather than merely systems of accounts, ledgers,
and journals. Such systems will support a much
wider spectrum of management and analysis
needs than conventional systems.

A s object technology begins to meet the demands
of commercial enterprise application environ-
ments, there needs to be a clearer picture of what
it can do for users in the business world. This pic-
ture is currently obscured by the abstract nature of
the technology and by the fact that its impact is felt
more directly by software developers than by end
users. Some of the general benefits are often touted,
such as the broad reusability of business objects in
diverse contexts, the reconfigurability of object-ori-
enfed systems into new solutions, and the lower
maintenance costs. For the user these benefits trans-
late to earlier product availability and higher qual-
ity for less cost. These general benefits, however,
need to be supported by specific examples of what
users will gain. This paper will illustrate the use of
object technology in an enterprise application, spe-

0018-8670/98/$5.00 © 1998 IBM

by E. E. Inman

cifically in the general ledger portion of an account-
ing information system (AIS). These observations will
be based on what has been developed so far in IBM’s
San Francisco® frameworks.

IBM’s San Francisco project

The purpose of the San Francisco project is to make
it possible for application developers to take advan-
tage of the benefits of distributed objects without
having first to develop all of the underlying infra-
structure necessary to support object-oriented ap-
plications.! The San Francisco frameworks supply
not only the base set of distributed object infrastruc-
ture, but also much of the common application logic
that can be shared among applications and among
different providers of applications. This allows the
resources of application developers to be reserved
for the high-level features of the applications, where
competitive discrimination can take place.

The frameworks have three layers. The lowest layer,
or base, provides a distributed object environment
that runs on multiplatform networks. Above the base
is the common business objects layer. These busi-
ness objects are commonly used in a variety of ap-
plications, and they also facilitate interoperability be-

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

tween applications. The top layer of the frameworks
is the core business processes layer, which provides
the basic and default business logic for various “ver-
tical” domains, such as general ledger, accounts pay-
able, accounts receivable, warehouse management,
order management, etc. Applications can be built
on top of the core business processes, fleshing them
out into complete applications, or they can be built
directly on top of the common business objects layer
or the base.

General ledger

An accounting system, whether manual or auto-
mated, records the flow of value through an enter-
prise. Values are measured in terms of cash and are
classified as to whether they represent assets of the
enterprise or claims against those assets in the form
of liabilities or owners’ equity, where the total value
of the assets matches the sum of the liabilities and
owners’ equity. Further classification identifies var-
ious categories and subcategories of assets, liabili-
ties, and equity, such as cash and accounts receiv-
able, short- and long-term debt, capital and retained
earnings, etc. Additional classification might divide
values according to different divisions within the en-
terprise, different parties with whom the enterprise
does business, different products produced by the en-
terprise, etc. Each type of value is represented by an
account. Changes in values over various time peri-
ods are also classified into a system of revenue and
expense accounts. Two of the primary outputs of an
accounting system are the balance sheet and the in-
come statement, which show the main accounts of the
system and the values they represent.

Financial transactions are initially recorded chrono-
logically in a journal, listing each of the accounts in-
volved and the change in value that occurred for each
of those accounts, plus additional information de-
scribing the transaction. All transactions satisfy the
constraint that any change in the total value of as-
sets is matched by a corresponding change in the to-
tal value of liabilities and owners’ equity, thus keep-
ing the system balanced and giving rise to the
convention of double-entry bookkeeping. Various
types of commonly recurring transactions are typ-
ically handled by specialized journals that stream-
line the record keeping for the given type of trans-
action. Examples include special journals for cash,
accounts receivable, accounts payable, fixed assets,
payroll, etc.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

A ledger shows a list of accounts and the value
changes that occurred in each account. All transac-
tions appearing in a ledger were first recorded in a
journal. The ledger containing the accounts appear-
ing in the balance sheet and income statement is
called the general ledger.

A general ledger system is the portion of an AIS that
handles the chart of accounts, the general ledger, and
a basic set of journals. Specialized journals and sub-
sidiary ledgers are typically handled by other appli-
cations within the AIS, such as those for accounts pay-
able, accounts receivable, payroll, etc., and these
applications periodically transmit to the general led-
ger system summaries of the financial data that they
maintain. The general ledger system, then, is the one
place where all of the financial data of the enterprise
are represented, at least in summary form.

In complex organizations, the general ledger system
is relied on not only as a provider of a standard set
of financial reports, but also as a tool that allows the
financial data to be used for various analyses of the
enterprise and its operations. Questions such as those
regarding operating efficiency, product costing, etc.,
often require various segments of the historical fi-
nancial data for their answer, giving the general led-
ger system a very important role in supporting the
management of the enterprise.

Improving the model

If one were to examine many of the existing com-
mercial AISs and from these derive the purpose of
accounting, one might conclude that it is to main-
tain a chart of accounts and a set of journals and led-
gers in order to produce a balance sheet, income
statement, and other financial reports. More accu-
rately, the purpose of accounting is to record infor-
mation about the operations of an enterprise and its
environment, and then to make relevant views of that
information available to decision makers at the ap-
propriate time. Accounts, journals, ledgers, etc., are
tools that evolved when accounting was done man-
ually.

Starting as early as the 1960s, accounting research-
ers have been seeking ways to use computers to
extend “the conventional accounting model to ac-
commodate a broader spectrum of management in-
formation needs” and “to rethink some of the basic
constructs of traditional double-entry bookkeep-
ing.”? Researchers recognized the need to have data
that supported a wider variety of decision models

INnvaN 171

and were free of the layer of interpretation imposed
by conventional accounting.?

Research on extended accounting models has fo-
cused heavily on events accounting, introduced by
Ijiri* and Sorter.? Amer et al.’ state that events ac-
counting research resulting from Sorter is the larg-
est single body of research in the AIS discipline. Re-
search in object-oriented AIS (OOAIS) is also focused
on events accounting. Many of the highlights of this
research are traced by Adamson and Dilts.® The gist
has been to find a system that models an enterprise
and its operations rather than merely modeling the
artifacts of accounting. What kind of sculptor would

The San Francisco frameworks
supply the basic business
objects and the distributed

environment to support them.

create a three-dimensional likeness of a two-dimen-
sional portrait, rather than of the real person? Ac-
counting researchers are hoping AISs will eventually
model the enterprise directly instead of merely mod-
eling it through the conventional accounting model.

Integration of events accounting with traditional AISs
has progressed through a number of modeling ap-
proaches. First was data modeling from hicrar-
chical’ and relational® standpoints. Then came
entity-relationship modeling® and finally object
modeling.'"* Along the way, McCarthy®® pro-
posed a generalized accounting framework called
the REA (resources, events, and agents) account-
ing model, where activities are modeled in terms
of economic resources, economic events, and “in-
side” and “outside” economic agents.'® The collec-
tion of event/resource/agent tuples, such as imple-
mented in the prototype by Kandelin and Lin,"
directly models all varieties of the tangible compo-
nents of the enterprise and its operations without
stripping away information that does not fit in con-
ventional accounting models.

An events accounting system must still provide many
of the outputs of a conventional accounting system,
including reports showing figures that comply with

172 NmaN

generally accepted accounting principles, but this in-
formation must be derived from the events-oriented
data while at the same time preserving those data
for many other uses.

In examining a hierarchy of enterprise information
systems, McCarthy et al.”® point out that economic
tracking systems need to be supplemented by an or-
ganizing rationale. For traditional accounting sys-
tems that rationale is the equation, “assets = liabil-
ities + owners’ equity.” What is more desirable,
however, is a model centered around the “chain” of
value creation within the enterprise. Separated ac-
counting, manufacturing, distribution, and market-
ing applications, with minimal integration between
them, impede this view.

Activity-based costing (ABC) and activity-based man-
agement (ABM) conventions'® mitigate some of the
distorting effects that traditional transaction track-
ing and costing schemes have on enterprise models,
but they lack full value-chain organization and anal-
ysis. Some enterprise resource planning (ERP) sys-
tems contain enterprise value-chain models but are
monolithic and inflexible. *

Commercially available AlSs are, for the most part,
based on relational database technology. In some
cases, a move to OOAISs is underway. Business ob-
jects are needed in order to implement an enterprise
value-chain perspective that can be casily adapted
to individual enterprises and their various ways of
doing business.

The San Francisco frameworks supply the basic bus-
iness objects and the distributed object environment
required to support them. The San Francisco gen-
eral ledger core business process provides the basis
for a general ledger system that can be much more
flexible and adaptable in modeling an enterprise
from a value-chain perspective. These features will
be illustrated by examining the new levels of flex-
ibility found in the San Francisco chart of accounts,
and also by examining how financial transaction data
are modeled when they are associated with some of
the nonfinancial data that are part of the enterprise
model. The San Francisco chart of accounts is es-
pecially interesting because of its ability to be de-
fined in reference to other business objects within
the model.

The chart of accounts

The chart of accounts and the system of account
codes have been highly problematic for developers

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 1 Simple account code

Description

of financial applications, because users need to have
the diverse structures found in complex enterprises
reflected in the structure of the chart of accounts.
The capabilities of object technology have added new
levels of flexibility to that typically available through
relational database (RDB) technology.

The basic idea of a chart of accounts is very simple.
Table 1 shows an example of a simple chart of ac-
counts. It is simply a list of accounts, each identified
by an account code, which is sometimes referred to
as the account number. For much of the processing
in an accounting system, no further structure is re-
quired. Using RDB technology, this structure is eas-
ily implemented with an account table using the ac-
count code as the primary key. The account code is
represented as a character string of a limited length.
Some accounting systems for small operations allow
as few as four digits or characters in the account code.
Figure 1 shows a relational schema for account and
transaction tables under this approach.

Even for small operations, the structure of the chart
of accounts is more than a flat list. The accounts are
grouped into the categories of assets, liabilities, eq-
uity, revenues, and expenses. They are often further
subdivided into smaller categories at different lev-
els of detail. The structure is really a hierarchy, even
though the system, for the most part, sees it as a flat
list. The hierarchy may be reflected merely in the
values of the account codes, with account codes hav-
ing the same prefix being in the same group. Sum-
mary or heading accounts are also included. The re-
porting system then uses these cues to reflect the
account hierarchy in printed output.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Larger operations require charts of accounts with
more accounts, more categories, and more levels in

Table 1 Example of a chart of accounts

INMAN 173

Figure2 Segmented account code

AdctCodeseg?

Acctcodesegn | Description -

| AéttCodeseg2

Accicodesegn

Figure 3 Segmented account code, number of segments, and segment lengths variable between charts of accounts,

but not between accounts within the same chart

Description

| segmentNo

the hierarchy, resulting in the need for longer ac-
count codes. Eventually account codes become so
long that segmentation is desired. An account code
might be broken up into three segments, one for a
company code, one for a cost center code, and the
last for an account number. Each of these segments
might altow its own hierarchy of values. Figure 2
shows a relational schema for this approach. Seg-
mentation not only makes long account codes eas-
ier to handle for the user, but also allows certain seg-
ments—those for company code, for example—to
be validated against other data in the system, such
as the list of companies.

Two problems arise at this point with respect to RDB
technology: code lengths and differing segmentation

174 WNmaN

requirements. Field lengths in general are a prob-
lem with standard RDB technology. All fields, such
as account codes or account code segments, must
have a uniform length and that length must be large
enough for the longest value to be stored. In cases
where most values will be relatively short but some
will be very long, a great deal of space will be wasted.
When designing a packaged business application, the
field length must satisfy not only a single enterprise,
but all the enterprises in the targeted market.

With object technology, however, field lengths are
not an issue. Different objects can have different
lengths for a given value without producing a lot of
empty space. Although with RDB technology there
are ways to ameliorate the field length issue, this is

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure4 Segmented account code, number of segments, and segment lengths variable between accounts,

surrogate key required

an example of something that is easy with object tech-
nology but very difficult with RDB technology.

Even with an issue as trivial as field lengths, object
technology provides a benefit that affects end users.
When implementing an object-oriented system, it is
no longer necessary to agonize over the absolute
maximum length that will be required for a given
field, nor is there any fear of eventually encounter-
ing data that must be entered into the system but
will not fit inside the maximum field length.

The second problem that arises with RDB technol-
ogy is the problem of differing segmentation require-
ments. One company might want account codes di-
vided into three segments. Another company might
want four segments, or three segments but with
lengths different from those of the first company.
Some accounting applications have predefined seg-
mentation: a fixed number of segments with prede-
termined lengths for each segment. An enterprise
already using a different segmentation scheme would
have to either change its system account codes or do
extensive customization of the accounting applica-
tion.

A more advanced implementation of account code
segmentation allows the segmentation to be user-
defined. The user can determine the number of seg-
ments and the length of each. Figure 3 shows a re-
lational schema of the account, transaction, and
segment tables using this approach. The last table
simply contains a list of segment lengths that define
how the account codes stored in the account and

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

transaction tables are segmented. All account codes
are segmented in the same way.

Even with user-defined segmentation, existing im-
plementations require that the same segmentation
scheme be used for all accounts. It may be desirable,
however, for different accounts to have different seg-
mentation. The sales division of a company, for ex-
ample, may want to use account segments to track
sales by product, region, and vertical market seg-
ment, while the manufacturing division may want to
track certain expenses by plant and production unit.
Rather than try to define a fixed segmentation
scheme that satisfies such varied requirements, it is
better to vary the segmentation by account.

Figure 4 shows a diagram for an account table, a
transaction table, and an account code segment ta-
ble in which each account can have its own segmen-
tation scheme. One of the penalties for this is that
the account code no longer serves as a key in the
tables. Instead, a surrogate key is required, referred
to as the account key in this case. The surrogate key,
unknown to the user, is created “behind the scenes”
by the system as a way to tie an account to its vari-
able number of account code segments. The surro-
gate key is used in the account and transaction ta-
bles in place of the account code, and in the account
code segment table it is used along with segment
numbers to index the various segments of the account
code. At this point, however, the account informa-
tion is no longer accessible by the account code us-
ing conventional querying methods, since the account
code now occupies several rows in the table that links

INvAaN 175

Figure5 The primary San Francisco classes for the chart of accounts

Figure 6 Segmented account code using analysis groups and codes as in San Francisco, number of segments and
segment lengths variable between accounts, surrogate key required

1 Groupid

Groupld

| pescription

it to the surrogate key. Thus RDB technology cannot The San Francisco implementation. These require-
support a fully flexible account code structure with- ments for flexible account segmentation can be sat-
out sacrificing the account code as a convenient isfied easily using objects, and this is the case under
means of accessing account data. the San Francisco general ledger core business pro-

176 iNmaN IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

cess. Using San Francisco terminology, accounts are
identified by posting combinations, representing the
account codes discussed previously. A posting com-
bination consists of a set of analysis codes, where each
analysis code represents a segment of the account
code.

Analysis codes are drawn from various analysis
groups. One analysis group might contain an anal-
ysis code for each company, another group for de-
partments, another for products, another for regions,
etc. There is no limitation on the character length
of posting combinations or analysis codes, nor on the
number of analysis codes in a posting combination.
Figure 5 shows a portion of the class diagram for
this approach. A chart of accounts holds a number
of analysis codes and a number of posting combi-
nations. Each analysis code belongs to only one anal-
ysis group, but may be part of more than one post-
ing combination. Figure 6 shows a relational schema
supporting this approach, but again, surrogate keys
are required. While this degree of flexibility is very
difficult to achieve using RDB technology, it is merely
a straightforward use of object technology.

To satisty differing needs between sales and man-
ufacturing, under a San Francisco implementation
analysis groups could be set up for products, regions,
vertical market segments, plants, and production
units. The analysis group for products would con-
tain an analysis code for each product, and the other
analysis groups would follow the same pattern. A
sales transaction would post to an account with a
posting combination that included the analysis code
for the product sold, the analysis code for the re-
gion where it was sold, and the analysis code for the
vertical market segment that was represented by the
customer. Certain manufacturing expense transac-
tions would post to an account with a posting com-
bination that included an analysis code for the plant
and one for the production unit. Sample values for
analysis groups and analysis codes are shown in Ta-
ble 2. These can be combined to make up the post-
ing codes shown in Table 3. This degree of flexibility
actually pushes the idea of account coding to the
background and replaces it with the idea of freely
tagging each transaction with whatever items of in-
formation are relevant for its classification.

The use of objects for account code segmentation
provides a great deal more than flexible formatting.
In this case, each segment stands for more than just
a series of characters. It “knows” about the under-
lying object that is represented by the code. Con-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Table 2 Sample analysis groups and analysis codes

Cold Roﬂed Sheet
Pipe

500° Galvanized Sheet B
“P600 Long Pmducts “

‘R1 Eastem
Fey R2Central

: “IR3 Westem R
Sl R4 Intematxonal SR

e MIOD Aummmwe
- M200 Oil'and Gas'
S N300 Apphance
X M400 Bmldmg

»."F1-Notthesst WGV
- F2 Great Lakes
 F3 Gulf Works |

U220 Tandem C‘old le} 5
U50 Continuous Anncaimg i
U60 Temper Mill -2
{70 Finishing Ling

Table 3 Sample accounts (posting comblnatlons)

Desnriptmni ~‘"

_Sales, Cold Rc;lled Shseg West,’ :
Automotive " .
Sales, Pipe; Cextral, Oil & Gas
" Sales, Long Products, East, et
‘ Bmldmg

RS Matamal Expense, Northe[
Tandem Cold Mill

. ‘Material Expense, Great L
Temper Mill ’”
Material’ Expense, Gulf [

. Finishing Lme :

sider, for example, the account code “010-23-400-
3800,” made up of several segments encoded as
numbers. The first segment might be the company
number, the second the cost center number, the third

INVMAN 177

the analysis code for “sales,” and the fourth the prod-
uct number. On seeing the account code displayed,
a user might from time to time need help in remem-
bering what some of the numbers refer to. The user
might recall that “23” refers to a cost center, but can-
not remember which one. As for “3800,” the user
might not be able to recall whether it refers to a prod-
uct number or a sales region. Ideally the user could
point to the segment in question and get a full de-
scription of what the code represents and what group
it is a part of.

With San Francisco this feature can easily be imple-
mented using properties of the analysis group and
analysis code objects. Analysis codes can maintain
a link to the business objects that they represent, and
the business objects can be defined to support a com-
mon interface for supplying descriptive information.
Many of the San Francisco business object classes,
such as Company, BusinessPartner, and Area, are
extensions of the base class Describable, which
means that they provide a string description of them-
selves in response to the getDescription() method
call. In the example just described, the account may
need to show additional company information, cost
center information, or product information, yet it is
not necessary for the account or the general ledger
to have facilities for obtaining and displaying these
different types of information. The account merely
requests the information from the desired account
code segment, and the logic for making this request
is the same regardless of which of the code segments
is involved.

Thus the general ledger can provide access to the
information and functions of business objects that
are represented by the account code segments with-
out containing its own logic to handle these differ-
ent classes of business objects. In fact, it will sup-
port new classes of business objects that are defined
after the general ledger application is completed. The
close linkage of account code segments to the bus-
iness objects that they represent has the effect of
identifying an account less in terms of an encoded
account number and more in terms of the set of bus-
iness objects with which it is associated.

The chart of accounts also benefits from some of the
design patterns used by the frameworks. Design pat-
terns are used extensively throughout the frame-
works. Some of them, such as Abstract Factory,
Proxy, Chain of Responsibility, and Command, are
described by Gamma et al.?® Other authors, such as
Fowler*! and Hay,* have defined business patterns

178 INmaN

especially useful for accounting, and the San Fran-
cisco project has done this as well.” An interesting
example is the framework’s implementation of sum-
mary accounts through the use of cached balances
and the Keyables design pattern.

A cached balance is an account total that is always
kept up to date (as opposed to requiring a query over
the journals each time its value is desired). Groups
of cached balances are stored in cached balance sets,
and the set of all cached balance sets is the cached
balance set collection. Cached balances are selected,
either singly or in sets, through the use of keys. Keys
can also be used in other contexts.

There are two kinds of keys: access keys and spec-
ification keys. An access key selects a single item; a
specification key selects a group of items. Keys are
defined to examine a specified list of attributes, re-
ferred to as “keyables,” when making the selection.
For cached balances, keys can be used to examine
the analysis codes of the accounts that are associ-
ated with the balances. Access keys specify a spe-
cific value for each keyable, for example, warehouse
“5” and product code “1234.” Specification keys
specify various types of ranges or sets of values for
cach keyable, for example, all warehouses and prod-
uct codes 1000 to 1999. Thus summary totals can be
obtained for virtually any grouping of accounts, and
an overlapping set of hierarchies can be supported
as well.

Thus in a San Francisco implementation, the chart
of accounts, defined by its collections of analysis
groups and analysis codes, has much greater flexi-
bility for reflecting diverse structures and relation-
ships within the enterprise. More importantly, it
arises naturally as a set of groupings of the business
objects within the information system.

Combined financial activities

In a typical enterprise system with several integrated
applications, different applications record different
types of financial activities. The purchasing applica-
tion records purchases, the payroll application re-
cords payroll disbursements, and so on. Each of these
applications records the financial aspect of these ac-
tivities as well as other information, depending on
the type of activity. For example, for each purchase
there is information regarding what was purchased
and who the vendor was. For each payroll disburse-
ment there is information identifying the employee
and time period involved, and so on. At some point

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

these different applications feed all of the financial
information (some of it summarized) to the general
ledger. Once this is done, the general ledger can pro-
vide a view at a certain level of all financial activities
within the enterprise, regardless of which applica-
tions originally recorded them. While this approach
has made it possible to use RDB technology to han-
dle several types of transactions in a single, integrated
system, it has some shortcomings as well.

First of all, while the general ledger application pro-
vides access to all of the financial data, those data
are not available until the originating applications
feed the data to the general ledger. Once the data

While RDB technology
is strongly oriented
toward uniformity, object
technology supports diversity.

are in the general ledger, they are redundant, since
the data now reside both with the originating appli-
cation and in the general ledger. Users wanting ac-
cess to cross sections of financial data that cross the
boundaries of these different applications must be
cognizant of the timing of the flow of the data into
the general ledger. Search criteria that rely on more
information than is transferred to the general led-
ger cannot be used. Furthermore, the complexity of
the system is increased because of the requirement
to maintain consistency between redundant sets of
data. It would be better to have all financial activ-
ities stored in a single location and accessible for use
in the general ledger as well as in the applications
focusing on certain types of activities. This would be

difficult with RDB technology but straightforward with -

object technology.

RDB technology is oriented toward uniform data. All
the items in a table must be described by the same
set of columns. If two types of activities are repre-
sented by two different tables, each including col-
umns for financial data, processing the financial data
from each table would require two different proce-
dures, or at least two different versions of the same
procedure. With objects, however, the financial ac-
tivities represented in a collection can be different,

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

with each activity containing financial data plus any
additional information required by its activity type.
Processing the financial data from each activity can
be done in the same way regardless of the activity
type. Thus while RDB technology is strongly oriented
toward uniformity, object technology supports diver-
sity. Elements can be grouped that have similarities
while at the same time having significant differences.

In San Francisco, the commonality of transactions
is provided by the Journal and Dissection classes,
where the term “dissection” refers to the associa-
tion of a value with an account. One or more trans-
actions are represented by a journal, and the jour-
nal contains a dissection object for each posting to
an account. The Dissection class can be as special-
ized as desired, so that a dissection object can con-
tain additional information about the particular
transaction that is involved. Because its class is an
extension of the Dissection class, it will still be us-
able as a simple dissection by the general ledger im-
plementation.

As the trend continues from managing vertically to
managing horizontally, " financial information needs
to be freed from its vertical orientation. It needs to
be grouped according to business activities and pro-
cesses without first being stripped of its auxiliary in-
formation by a conventional general ledger system.
Addressing this problem eventually leads not only
to refinements of conventional accounting, but also
to a new underlying accounting model.

Conclusion

San Francisco frameworks and object technology in
general have a lot to offer, not only to developers
who are seeking more powerful ways of expressing
their business solutions, but also to end users, who
will see a new generation of applications that are
more compliant to their view of their enterprises.
One area where the frameworks provide these ben-
efits is the chart of accounts, where the frameworks
allow full flexibility in allowing account structures
to exactly mirror the structure of a given enterprise
and its information requirements, regardless of the
number and variations in levels of complexity. The
San Francisco general ledger frameworks also sup-
port tighter integration of financial data that orig-
inate from other applications within the system. The
San Francisco frameworks will be a valuable tool for
crafting information systems that not only track fi-
nancial transactions but also provide a clear view of
the value chain of an enterprise.

INMAN 179

Acknowledgments

I would like to thank Joel Jorgenson, Marketing Fi-
nancial Products Specialist, and Brad Preston, Tool
Development Manager, of Lawson Software for their
assistance in identifying some of the more challeng-
ing general ledger issues being encountered in to-
day’s market.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. V. D. Arnold, R. J. Bosch, E. F. Dumstorff, P. J. Helfrich,
T. C. Hung, V. M. Johnson, R. F. Persik, and P. D. Whidden,
“IBM Business Frameworks: San Francisco Project Techni-
cal Overview,” IBM Systems Journal 36, No. 3, 437-445 (1997).

2. W. E. McCarthy, “The REA Accounting Model: A Gener-
alized Framework for Accounting Systems in a Shared Data
Environment,” The Accounting Review 57, No. 3, 554578 (1982).

3. G. H. Sorter, “An ‘Events’ Approach to Basic Accounting
Theory,” The Accounting Review 44, No. 1, 12-19 (1969).

4. Y. Ijiri, The Foundations of Accounting Measurement, Prentice-
Hall, Inc., New York (1967).

5. T. Amer, A. D. Bailey, Jr., and P. De, “A Review of the Com-
puter Information Systems Research Relating to Account-
ing and Auditing,” Journal of Information Systems 1, No. 2,
3-28 (1987).

6. 1.L. Adamson and D. M. Dilts, “Development of an Account-
ing Object Model from Accounting Transactions,” Journal
of Information Systems 9, No. 1, 43-64 (1995).

7. C. S. Colantoni, R. P. Manes, and A. Whinston, “A Unified
Approach to the Theory of Accounting and Information Sys-
tems,” The Accounting Review 46, No. 1, 90-102 (1971); and
A. Z. Lieberman and A. B. Whinston, “A Structuring of an
Events-Accounting Information System,” The Accounting Re-
view 50, No. 4, 246-258 (1975).

8. G. C.Everest and R. Weber, “A Relational Approach to Ac-
counting Models,” The Accounting Review 52, No. 2 (1977).

9. W. E. McCarthy, “An Entity-Relationship View of Account-
ing Models,” The Accounting Review 54, No. 4 (1979); and
W. E. McCarthy, “Construction and Use of Integrated Ac-
counting Systems with Entity-Relationship Modeling,” Entity-
Relationship Approach to Systems Analysis and Design, P. P.
Chen, Editor, New Holland, New York (1980).

10. C.Muiand W. E. McCarthy, “FSA: Applying Al Techniques
to the Familiarization Phase of Financial Decision Making,”
IEEE Expert 2, No. 3, 33-41 (1987).

11. N. A. Kandelin and T. W. Lin, “A Computational Model of
an Events-Based Object-Oriented Accounting Information
System for Inventory Management,” Journal of Information
Systems 6, No. 1 (1992).

12. P. C. Chu, “An Object-Oriented Approach to Modeling Fi-
nancial Accounting Systems,” Accounting, Management, and
Information Technology 2, 39-56 (1992).

13. U.S. Murthy and C. E. Wiggins, Jr., “Object-Oriented Mod-
eling Approaches for Designing Accounting Information Sys-
tems,” Journal of Information Systems 7,No. 2,97-111 (1993).

14. 1. L. Adamson and D. M. Dilts, “Development of an Account-
ing Object Model from Accounting Transactions,” Journal
of Information Systems 9, No. 1, 43—64 (1995).

15. W. E. McCarthy, “The REA Accounting Model: A Gener-
alized Framework for Accounting Systems in a Shared Data

180 NmaN

Environment,” The Accounting Review 57, No. 3, 554-578
(1982).

16. G. Geerts and W. E. McCarthy, “Modeling Business Enter-
prises as Value-Added Process Hierarchies with Resource-
Event-Agent Object Templates,” in Business Object Design
and Implementation, J. Sutherland and D. Patel, Editors,
Springer-Verlag, Inc., New York (1996).

17. N. A. Kandelin and T. W. Lin, “A Computational Model of
an Events-Based Object-Oriented Accounting Information
System for Inventory Management,” Journal of Information
Systems 6, No. 1 (1992).

18. W. E. McCarthy, J. S. David, and B. S. Sommer, “The Evo-
lution of Enterprise Information Systems—From Sticks and
Jars Past Journals and Ledgers Toward Interorganizational
Webs of Business Objects and Beyond,” Michigan State Uni-
versity, September 27, 1996, presented at OOPSLA’96 Work-
shop on Business Object Design and Implementation II, http:
/Awww.tiac.net/users/jsuth/oopsla96/mccarthy.htmi.

19. 1. A. Miller, Implementing Activity-Based Management in Daily
Operations, John Wiley & Sons, New York (1996).

20. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley Publishing Co., Reading, MA (1995).

21. M. Fowler, Analysis Patterns, Addison-Wesley Publishing Co.,
Reading, MA (1997).

22. D. Hay, Data Model Patterns: Conventions of Thought, Dor-
set House, New York (1996).

23. K. Bohrer, “Architecture of the San Francisco Frameworks,”
IBM Systems Journal 37, No. 2, 156-169 (1998, this issue).

Accepted for publication January 6, 1998.

Eric E. Inman World Enterprise Software Corporation, 5871
Oxford Street, Shoreview, Minnesota 55126 (electronic mail:
inman002@gold.tc.umn.edu). Eric Inman, a software architect and
development manager, received his B.A. degree in computer sci-
ence from the University of Minnesota in 1980. He led the de-
velopment of functional specifications for the orbital mechanics
and radar imaging portions of a space object identification sys-
tem for the North American Aerospace Defense Command (NO-
RAD). He later operated a small business for developing bus-
iness applications, primarily for cost accounting in the
telecommunications industry. He then led the development of
requirements analysis and human factors engineering tools used
in FAA (Federal Aviation Administration) air traffic control sys-
tem and NASA (National Aeronautics and Space Administra-
tion) space station projects. He then spent five years in Indone-
sia on the island of Java, where he led the development of a
production management system for an integrated steel mill and
also provided consulting and management assistance for a con-
struction accounting system. At Lawson Software, a provider of
business enterprise application software, he was first in charge
of the CASE (computer-assisted software engineering) and re-
pository tool development. He later accepted the position of man-
ager of technology planning in order to examine new technol-
ogies to be used in Lawson Software products. Beginning in 1995
he became a member of the advisory group and later the refer-
ence group for the IBM San Francisco project, providing input
to IBM on the requirements for a commercially viable distrib-
uted object environment and development platform for enter-
prise applications. In 1998 he founded World Enterprise Soft-
ware Corporation to build enterprise applications using San
Francisco frameworks.

Reprint Order No. G321-5670.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

