An evolutionary
approach to application
development with object
technology

Although object-oriented programming (OOP) is
not new, it has only recently begun to gain
acceptance among independent software
vendors. Reasons for this acceptance vary, from
a need for basic data encapsulation, to the
promise of code reuse, through problem
abstraction as a way of dealing with complexity.
Despite the advantages inherent in OOP,
obstacles to integration with or replacement of
existing systems are significant. This is especially
true for Application System/400™ (AS/400™)
application vendors, because of a tradition begun
with the System/38™ of customers demanding
source code. Each independent software vendor
(ISV) must determine how to make the transition
from procedural to OOP languages in a cost-
effective way. This must be done for both ISVs
and customers, who have often invested heavily
in enhancing and modifying source code to meet
their business needs. Acacia Technologies has
studied the problem and has adopted a strategy
aimed at easing the transition by using a phased
approach, starting with encapsulation of AS/400
RPG/400™ functions, continued through
relocation of modules where appropriate into a
multitiered client/server architecture, with a

final target of object-oriented modules
communicating in a networked environment. This
paper will discuss our approach and the part the
San Francisco™ project is expected to play in its
implementation.

Ithough object-oriented programming (OOP)
was originally developed in the 1960s," its cur-
rent level of acceptance in the business community
is appropriately characterized by Bruce F. Webster:?2

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

0018-8670/98/$5.00 © 1998 IBM

by R. A. Henders

Object technology, as applied to production-grade
projects, is still a largely young and somewhat nar-
row field, especially compared with the well-ham-
mered and heavily used structured development
methodologies of the past 25 years—and there are
still controversies and arguments over those.

Reasons given for this slow acceptance include a lack
of appropriate and adequate tools,” concerns about
“the value of reuse,”*~¢ and resistance to paradigm
shift as described by David Taylor.” According to
Taylor, a paradigm is

an acquired way of thinking about something that
shapes thought and action in ways that are both
conscious and unconscious. Paradigms are essen-
tial because they provide a culturally shared model
for how to think and act, but they can present ma-
jor obstacles to adopting newer, better approaches.

Also from Taylor, a paradigm shift is

a transition from one paradigm to another. Par-
adigm shifts typically meet with considerable re-
sistance followed by gradual acceptance as the su-
periority of the new paradigm becomes apparent.
Object-oriented technology is regarded by many

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

HENDERS 181

advocates as a paradigm shift in software devel-
opment.

While each of these considerations is valid, our expe-
rience has been that a skilled and motivated group
of developers will work through tool shortages. This
was shown by their willingness to revert to DOS when
working with Java*®* in the Java Development Kit
(JDK), supplied by Sun Microsystems. These devel-
opers consistently produce good code on a timely
basis with or without object-oriented inheritance and
the code reuse it offers. Likewise, the potential for
career enhancement coupled with interest in new and
potentially better technologies seems to overcome
resistance to paradigm shift. Our experience has been
that the main obstacles in the path to OOP accep-
tance are (1) the challenge of integrating the new
environment with legacy code, at least until a total
changeover can occur, and (2) the lack of a foun-
dation of business objects upon which to build. Our
approach to dealing with these problems at Acacia
Technologies is the subject of this paper.

Our products and development environment

Like many independent software vendors (ISVs)
working in the Application System/400* (AS/400%)
market, Acacia Technologies has grown from a base
of System/38* programs in the early 1980s to mil-
lions of lines of code in thousands of programs on
the AS/400 today. Internal development and acqui-
sition have resulted in three main manufacturing-
oriented products under the Acacia Technologies
umbrella. The first is a system aimed primarily at en-
gineer-to-order® manufacturers. The second is aimed
at mixed-mode® manufacturing and operations with
large distribution networks. The third is a system that
controls all aspects of a warehouse as a stand-alone
system or integrated with the other manufacturing
products. Acacia Technologies products are instailed
in more than 2000 systems in 22 countries.

The market has demanded that we and most of our
competitors make available source code, which has
been modified, for a variety of reasons, by many of
our customers. This has typically been due to unique
customer requirements that needed to be satisfied
more quickly than we or our partners could react.
Over time, code-marking standards and source-com-
parison and -merging utilities have been developed
to synchronize our customers’ and our own changes
in a new software release. The majority of our code
remains RPG/400*, ILE (Integrated Language Envi-
ronment) RPG/400, and AS/400 CLP (Control Language

182 HENDERS

Programming). We have, however, taken advantage
of client/server opportunities as well as system APIs,
user spaces, and the User Interface Manager '’ where
appropriate. In addition, we have integrated personal
computer (PC)-based tools and programs utilizing
client/server technology and have implemented a
graphical user interface option for our customers.

Smalltalk effort. Three years ago we began explor-
ing alternative technologies for dealing with the com-
plexities of today’s manufacturing control and plan-
ning activities. An important strategic decision for
our company, which has for a number of years had
an emphasis on manufacturing control and planning
software, was to develop an advanced planning and
scheduling tool to enhance the product line. Because
of the complex nature of this type of system, as well
as the dependence on machine-cycle-intensive pro-
cesses, we decided to develop it using OOP tools and
position it on a PC platform.

Smalltalk, from ParcPlace-Digitalk (now Object-
Share), was selected as the language for develop-
ment. Data were to be downloaded from an AS/400
into an object-oriented database. Objects were to be
manipulated on the PC, then updated data sent back
to the As/400. Significant effort was expended in map-
ping objects from a relational database to an object
database and, via transactions and database triggers,
back to a relational database. The results of these
efforts were very positive, giving us confidence that
the same work could be done in other environments.
The product was announced as being generally avail-
able in August 1996.

Conversion effort. While the development effort was
in full stride for the scheduling tool, we were also
examining applications on the As/400. We hoped to
move to an architecture that would take advantage
of the emerging ILE RPG/400 programming model.
Emphasis was given to isolating common business
processes from a number of programs and placing
them in reusable modules, which were aimed at re-
ducing complexity and strengthening the integrity of
the database. Business rules and referential integ-
rity tests were encapsulated in these modules, which
acted as servers and were accessible from other
AS/400 and PC programs. Currently available servers
include: !

* Customer Order Server. This transaction server
contains all the validation and manipulation
needed to add, change, or delete customer orders.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

* Product Structure Server. This master file trans-
action server processes global bill of material re-
quests.

* Purchase Order Server. This extract server con-
solidates supply and demand information for dis-
play.

¢ Trading Code Server. This master file server con-
tains all the validation and data manipulation that
is performed against the trading code file.

» Vendor Master Server. This master file server con-
tains all the validation and data manipulation per-
formed against the vendor master file.

As time progressed, efficiencies in reuse, encapsu-
lation, and performance (when using ILE/RPG static
binding) became apparent. Additional functions
were added as new servers outside of the database.
A generalized date server was added to assist in ful-
filling Year 2000 compliance and a currency conver-
sion and display server were planned. Wherever pos-
sible, protocols for parameter passing were modeled
after the messaging model described by the Open
Applications Group (OAG)."? Acacia Technologies
maintains board-level membership in OAG and is
committed to adhering to its openness standard.

The two development efforts also brought numer-
ous benefits, reducing development time and com-
plexity, and made us start exploring ways to apply
them more broadly across the product line. The
ILE/RPG initiative, though important, was limited to
common server routines invoked from programs fol-
lowing a traditional program model such as RPG or
a client-based development language. The greatest
advantage was to be gained in expanding to a fully
object-oriented environment.

While the internally developed tools and utilities
mentioned earlier have been valuable in our normal
operations and may have some ultimate use in a tran-
sition to OOP (legacy programs may need to be
changed to communicate with objects), we felt that
they would not help in implementing a mapping from
modules to objects. It was expected that the major-
ity of work involved in moving to OOP would be man-
ual (with some use of automated design and documen-
tation tools). We also felt that, before embarking on
such an ambitious project, we should reexamine our
choice of OOP language and environment.

Although we saw the advantages of OOP, our expe-
rience with Smalltalk made us concerned that there
could be scalability issues:

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

1. Smalltatk evolved for ease of use, hiding complex-
ity in a way that makes it difficult to enhance per-
formance. The design and workings of the Small-
talk virtual machine were not readily available nor
was information on platform-dependent inter-
faces.

2. Smalltalk’s dependence on a base image for an
application made upgrades tied to use of an ob-
ject-oriented database difficult, even with the use
of Smalltalk link libraries. In addition, version-
ing tools were not available for the database we
had selected.

3. The Smalltalk programming environment is
unique, requiring significant effort for develop-
ers undergoing retraining and a premium for new
hires.

We subsequently investigated and experimented with
C+ + and felt that it offered performance gains and
a more traditional development and delivery envi-
ronment, but carried with it the potential for in-
creased complexity and a longer learning curve and
development cycle for an expanded pool of devel-
opers. This held the threat of increasing the time to
adoption of a technology (OOP) that offered signif-
icant advantages.

Moving to San Francisco

We began examining Java (independent of the San
Francisco* project, which is built on a Java base),
and saw its potential as a marriage of the best parts
of the two generally available object-oriented lan-
guages (Smalltalk and C++):

1. The Java language is relatively open, which al-
lows the underlying function to be exploited. This,
in turn, gives developers more potential for con-
trol and flexibility.

2. Although performance has been and continues
to be an issue with Java, indications are that prob-
lems in this area will be solved.

3. Development in Java, as carried out in currently
available integrated development environments, **
is more like traditional PC development environ-
ments than Smalitalk development.

4. JDBC** support was offered with JDK 1.1, and sev-
eral object-oriented database vendors have indi-
cated current or future support for Java.

5. The exploding popularity of the language holds
the promise of availability of developers with Java
skills.

HENDERS

183

Figure 1 Integrating existing programs with San Francisco

EVOLUTIONINTEGRATION -~

As we learned about the reference group™ of the
San Francisco project, we felt that their commitment
to Java for base objects and frameworks was key to
our involvement. As described elsewhere in this pub-
lication, the San Francisco project has been a com-
bined effort of 1BM and 1Svs to provide an object-
oriented infrastructure with a framework for basic
application logic. A design goal has been the deliv-
ery of approximately 40 percent of the code for a
completed application, with an opportunity for ISvs
to provide product-differentiating features in the re-
maining code. Since we have always had a commit-
ment to the AS/400 as our server platform (and con-
tinue to state this as our direction), we were not as
interested in the portability of Java or the San Fran-
cisco project as we were in the object-oriented lan-
guage® and basic objects and frameworks.

The prospect that base business objects and frame-
works would be supplied was particularly important
because it supported the basic objectives of the OAG.
Without this, domain developers would spend time
developing objects that would be essentially the same
as the objects built independently by other develop-
ers. Spending effort creating common objects, such
as business partner, bank, chart of accounts, etc.,
would be like starting with a graphical point object,
expecting that the finished application would have
a sophisticated common graphical user interface. It
could be done, but the effort, even with code shar-
ing, would be significant and the result would prob-
ably be different for each team that started with the
same point object.

184 HENDERS

Of equal weight in our decision was the San Fran-
cisco objective for coexistence with existing (legacy)
applications. Writing a basically stand-alone appli-
cation, with ties to the As/400 database via applica-
tion programming interfaces wrapped in objects (as
we did with the advanced planning and scheduling
tool), was recognized as significantly less complicated
than moving a full enterprise application to OOP. A
complete rewrite to OOP on an enterprise scale, while
holding the promise of better response to market de-
mands in the future, adds little short-term value. This
significant consumption of resources with little or no
immediate return is difficult, if not impossible, to jus-
tify. The only economically viable approach is the
coexistence of parts of the old and new systems in
a controlled migration. Our concerns were answered
at several of the reference group meetings.

Figure 11¢ shows the San Francisco project’s com-
mitment to integration of existing programs into the
general model. Note that Java (San Francisco) and
non-Java (existing) applications can coexist, and that
stored data can be either persistent objects or in a
relational file system. This coexistence is key for tran-
sition to OOP in a managed and reasonable fashion
over some period of time.

Conversion methodology. Our basic methodology for
converting from traditional programs to OOP is de-
scribed by the following stages:

1. Traditional programs are examined (manually, by
automation, or a combination) for sequences of

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

operations that should be considered for isola-
tion and reuse.

2. After a minimum number of current and antic-
ipated uses are projected for a particular sequence
of operations, a new module is designed and
changes indicated for existing programs.

3. Newmodules are created, interfaces documented,
and existing programs changed in a coordinated
test environment aimed at future release.

4. Traditional programs are again examined and
unique business functions (that cannot be placed
in reusable modules) are highlighted to ensure
that they are carried forward.

5. Elements of both reusable modules and tradi-
tional programs are included in a model to en-
sure consistent implementation and discover ad-
ditional reuse opportunities.

6. The model is implemented in a phased approach
as a combination of a decreasing number of tra-
ditional programs and an increasing number of
objects.

7. As the transition is being completed, newer
emerging technologies are being examined for fu-
ture integration.

At the present time we are not actively investigating
the location of modules in a multitiered environment.
Our experience with the request broker provided
with San Francisco is that this will be more a tuning
than a design issue.

We are actively involved in three separate stages of
the methodology. Stage 3 is nearing completion as
existing server opportunities are implemented, while
Stages 4 and 5 are operating in parallel. A high-level
example of our methodology for converting from a
server to an object is the replacement of our vendor
master server by an appropriate San Francisco ob-
ject.

Conversion example. Our vendor master server deals
with inquiries against and changes to our vendor mas-
ter file. Valid functions exposed in the server are:

ADDVND—AJdd vendor master record
CHKVND—Check vendor master record existence
UPDVND—Update vendor master record
VALVND—Validate vendor master record

Each function takes and returns different parame-
ters depending on what action is to be performed.
The CHKVND function, for instance, uses the follow-
ing passed fields:

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

CMPNO—Company number
CORPR—Corporation number
PLTNO—Plant number
VNDNO—Vendor number
MODE—Check type (ADD or UPD)

If the mode is ADD, a message will be returned if the
vendor already exists. If the mode is UPD, a message
will be returned if the vendor does not exist.

The UPDVND function uses a large number of fields,
which are checked for individual validity as well as
referenced against other files for referential integ-
rity. Among other data passed to the server program
are:

VNAME—Vendor name
vADD1—Vendor address line 1
VADD2—Vendor address line 2
VADD3—Vendor address line 3
VCONT—Vendor contact name
VCRCD—Currency code

We expect to map vendor master records to the San
Francisco common business objects using the Busi-
nessPartner class with customer supplier data. The
class structure provided is particularly appropriate
and intuitive, because much of the information that
is commonly collected for a supplier (vendor) or cus-
tomer is similar. In addition, it is not unusual for a
business partner to fill both roles simultaneously. Ba-
sic documentation for the BusinessPartner class def-
inition from the second early driver is shown in Fig-
ure 2.

We expect that this class will be usable as provided.
For other classes we will extend or subclass when
necessary. A common approach used with San Fran-
cisco’s supplied classes is to use properties to add flex-
ibility to a class, so that there will be less need to
change, extend, or subclass it. Properties are imple-
mented as a keyed table (hash table), associated with
a class, that can be modified without changing the
class definition. We are hesitant to use properties,
even though they would allow for the fewest changes
to the supplied classes. Our concern is that the use
of properties could lead to direct manipulation of
data associated with (encapsulated in) an object
rather than access through the methods of that ob-
ject. The DescribableDynamicEntity class mentioned
in Figure 2 extends the DynamicEntity class, which
in turn extends the PropertyContainer class de-
scribed in Figure 3.

HENDERS 185

Figure 2 Class definition for BusinessPartner

Interface ibmsf.of BusinessPartner

public interfacé BusingssPartner

extends Object

extends DescribableDynam:cEnmy, Shared Distmgusshabie

adding attributes as keyed propames

Purpose: Provides for each business partner the bas‘c information, for exarripli cantact infcnna:iun

Description: The BusinessPartner class pmvrded by CBOF is implemented by individial busméss pe
organizatioh business partners. The class i isd DeseribableDynamicEntity and supports descnptmns an

Note: Chaining behavior of contained Pmperﬁes wsli follow this path: (1) Properties dvracﬂy conta}
(2) properties directly contained by the associated BusinessPartnerSharedData object; 8 propent
contained on the nmmednate pamnt BusinessPartner object (within the same' Company) one exis

Figure 3 Class definition for PropertyContainer

Interface ibmst.gf. ‘Prdﬁe&yCoﬁtémef :
public interface Propartycontainer :
extends Object

Purpose Deﬁnes the interface of a pmperty containing object

next FmpertyContamer in the cham e

Although support for a queryable keyed collection
is important, direct public access to an object’s at-
tributes could lead to misuse. A property container
exposes the following methods:

¢ addDirectlyContainedPropertyBy(Object, String)
Adds either an unowned Entity, owned Depen-
dent, or owned String property to this Property-
Container, keyed by the given property key

 addDirectlyOwnedPropertyBy(Entity, String)
Adds an owned entity to this property container
keyed by the given property key

* directlyContainsPropertyKey(String)
Determines if property key is contained directly
within this property container

¢ getDirectlyContainedPropertyBy(String)
Retrieves the property found directly within this
property container with identifier matching prop-
erty identifier

* getPropertyBy(String)
Retrieves the first property found in the chain of
responsibility with identifier matching property
identifier

186 HENDERS

Our concern is that adding and getting properties
directly by key could foster a tendency to use these
methods directly from other objects. Logic used to
determine the validity of a property would then be
embedded in objects not directly containing that
property, but rather in any number of objects com-
municating with it. We expect that most of our ex-
tensions will be the result of subclassing. This will
mean adding new variables and methods as well as
overriding methods where appropriate, which is
more in concert with traditionally accepted OOP tech-
niques.

Numerous methods are supplied with the Business-
Partner class:

* addDirectlyOwnedAddressBy(Address, String)
Adds an address to the collection of addresses by
the specified key

* containsAddress(Address)

Checks if the address exists in the collection of ad-
dresses

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

* getAddressBy(String)
Gets the address associated with the specified key
¢ getBusinessPartnerCustomerData()
Returns the business partner customer data, cop-
ied from the handle
* getBusinessPartnerSupplierData()
Returns the business partner supplier data, cop-
ied from the handle
¢ getDirectlyOwnedAddressBy(String)
Gets the specified address from those addresses
directly owned by this business partner
 getLegalName()
Retrieves the legal name for this business partner
* setAddresses(EntityOwningMap)
Sets the collection of addresses

Many of these methods will easily map from our Ven-
dor module to the BusinessPartner class. The UPDVND
function described earlier uses a parameter list with
a number of fields, which in turn are checked for va-
lidity, and impact on referential integrity could be
replaced by a series of method invocations. A pre-
liminary mapping for the VNAME passed field uses
the getLegalName() and setLegalName methods;
for the VCONT passed field the preliminary mapping
uses the getAddressBy(String) and setAddresses(En-
tityOwningMap) methods.

Although getting and setting addresses by strings sug-
gests the use of properties within a business part-
ner, the encapsulation of properties (if this is the im-
plementation) is proper within the BusinessPartner
class. Use of these methods does not run counter to
our intent not to use properties to enhance classes.
It would only be in conflict if we attempted to di-
rectly manipulate the addresses.

Future direction. We expect to continue to directly
map as many servers as possible to IBM-supplied com-
mon business objects. The extent of this, as well as
opportunities for new servers, will depend on a thor-
ough investigation of updated descriptions from the
final release version of San Francisco as well as other
opportunities provided by newer versions of the Java
Development Kit. A reexamination of earlier efforts
will also be needed because of upgrades to both the
JDK and San Francisco. We expect, for instance, that
the currency server mentioned earlier may be
mapped to the Locale class delivered with JDK 1.1.

New objects outside of the common business objects
framework and our current server structure are also
being modeled, and we feel that it is important to
remain current in Java trends. This has led us to ex-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

plore JDK 1.2 and its additions to the abstract win-
dows toolkit, as well as Java Electronic Commerce.
By using new or extending existing tools, client pro-
grams that now access servers may be modified to
work with objects. Some of these objects will ulti-
mately replace our servers.

An additional consideration is the frameworks and
functions that are now or will be part of the San Fran-
cisco project. This is particularly important because
of our connection with OAG and holds significant
promise both for us and our customers. Interoper-
ability between modules will expand opportunities
for 18vs and provide customers with more choices
between nonproprietary vendors who are attempt-
ing to create the “best-of-breed” solution to a prob-
lem. As initially delivered, the San Francisco frame-
works emphasize financial interfaces (which is
appropriate for a new initiative that is expected to
evolve). We expect to use frameworks more exten-
sively as more manufacturing-oriented functions be-
come available.

Since the beginning of our involvement on the San
Francisco project, an additional technology (the
AS/400 ToolBox for Java'®) has become available. This
allows Java to be used to execute client/server func-
tions via Java classes wrapping client-access API calls.
Although we have and will continue to experiment
with this approach, we feel that the “100 percent pure
Java” initiative has significant value, and we expect
a significant return on investment from our involve-
ment with the San Francisco project.

Conclusion

OOP holds the promise of better products deployed
by ISVs in less time. Common objects will speed the
acceptance of the new technology, and San Francisco
adds a new level of ease to integration between ISv-
and customer-developed products. The San Fran-
cisco project is important in making this paradigm
shift an orderly evolution for both ourselves and our
customers.

Acknowledgments

The author would like to thank Hank Ternes and
Norm Baran for their input on advanced planning
and scheduling and Linda Nelson for her insights on
Acacia Technologies’ server technology; thanks also
to Paula Richards and Hal Frye of IBM for their as-
sistance throughout Acacia Technologies’ involve-
ment in the San Francisco project.

HENDERS 187

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references and notes

1. I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,
Object-Oriented Software Engineering, Addison-Wesley Pub-
lishing Co., Reading, MA (1992).

2. B.F. Webster, Pitfalls of Object-Oriented Development, M& T
Books, New York (1995).

3. A H.Lindsey and P. R. Hoffman, “Bridging Traditional and
Object Technologies: Creating Transitional Applications,”
IBM Systems Journal 36, No. 1, 32-48 (1997).

4. T. E. Potok and M. A. Vouk, “The Effects of the Business
Model on Object-Oriented Software Development Produc-
tivity,” IBM Systems Journal 36, No. 1, 140-161 (1997).

5. D. A. Taylor, “The Use and Abuse of Reuse,” Object Mag-
azine 6, No. 2, 16-18 (April 1996).

6. P. G. Basset, “The Paradox of Reuse,” Object Magazine 6,
No. 2, 58-63 (April 1996).

7. D.A.Taylor, Object-Oriented Technology: A Manager’s Guide,
Addison-Wesley Publishing Co., Reading, MA (1991).

8. According to the APICS Dictionary, published by the Amer-
ican Production and Inventory Control Society, Inc. (1987),
engineer-to-order products are “products whose customer
specifications require unique engineering design or signifi-
cant customization. Each customer order then results in a
unique set of part numbers, bills of material, and routings.”

9. According to the APICS Dictionary, with mixed-mode man-
ufacturing “the system supports coexistent manufacturing ca-
pabilities of repetitive, process, and discrete manufacturing,”
where repetitive means “production of distinct units, planned
and executed to a schedule, usually at relatively high speeds
and volumes,” process means production that “adds value by
mixing, separating, forming, and/or chemical reactions,” and
discrete means “production of distinct items such as automo-
biles, appliances, or computers.”

10. System APIs (application programming interfaces), user
spaces, and the User Interface Manager are available as part
of the 0S/400™ operating system,

11. References to servers and server protocols are from Acacia
Technologies Application Servers Users’ Guide, Release 8.4
(October 1995); available from Acacia Technologies.

12. The Open Applications Group (OAG) was formed in 1995
as a nonprofit organization dedicated to promoting open ap-
plications integration (connectivity and multiple-source in-
tegration among enterprise software applications). For more
information, see Open Applications Group Integration Spec-
ification; available from http://www.openapplications.org.

13. In conjunction with our investigation of Java and our involve-
ment with San Francisco, we have used J++™ from Mi-
crosoft, Visual Cafe™ from Symantec, JBuilder™ from Bor-
land, and VisualAge™ for Java from IBM, as well as JDK
from SunSoft, versions 1.0.2 through 1.1.3.

14. The San Francisco reference group consists of ten software
vendors who have collaborated with the San Francisco de-
velopers and are early adopters of the frameworks.

15. We did, however, see this as an advantage in the develop-
ment cycle. We were involved in testing two external drivers
(early versions of San Francisco) and were comfortable as-
suming that development effort expended in working in Mi-
crosoft’s Windows NT™ would be transferable to an AS/400
platform when the Java Virtual Machine was available there.

188 HENDERS

16. This figure is adapted from a presentation provided by Paula
Richards of IBM, when she was project manager for the San
Francisco project.

17. For more information, see http:/www.sun.com/products/
commerce/jecf_arch_intro.html.

18. For more information, see http:/www.as400.ibm.com/
products/software/javatool/javabeta.htm.

Accepted for publication January 8, 1998.

Richard A. Henders Acacia Technologies, Computer Associates
International, Inc., 2400 Cabot Drive, Lisle, Illinois 60532 (elec-
tronic mail: henri03@mail.cai.com). Mr. Henders is currently a
software specialist with Acacia Technologies. He began his data
processing career with IBM in Chicago, after completing service
as an artillery officer in the United States Marine Corps during
the Vietnam War. He received a B.S. degree, with majors in both
mathematics and American literature, from Blackburn College,
Carlenville, Illinois, in 1967. A member of ACM and IEEE,
Mr. Henders has held a variety of software development and man-
agement positions in private industry, consulting firms, and soft-
ware development firms.

Reprint Order No. G321-5671.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

