
Coordination and
collective mind in
software requirements
development

by K. Crowston
E. E. Kammerer

The purpose of this study was to understand
how the group processes of teams of software
requirements analysts led to problems and to
suggest possible solutions. Requirements
definition is important to establish the framework
for a development project. Researchers have
proposed numerous requirements development
techniques, but less has been done on managing
teams of requirements analysts. To learn more
about group processes within such teams, we
studied two teams of analysts developing
requirements for large, complex real-time
systems. These teams had problems ensuring
that requirements documents were complete,
consistent, and correct; fixing those problems
required additional time and effort. To identi@
sources of problems, we applied two theories of
collective action, coordination theory and
collective mind theory. Coordination theory
suggests that a key problem in requirement
analysis is identiwing and managing
dependencies between requirements and among
tasks. Most requirements methods and tools
reflect this perspective, focusing on better
representation and communication of
requirements. The collective mind perspective
complements these suggestions by explaining
how individuals come to understand how their
work contributes to the work of the group. This
perspective suggests that deficiencies in actors’
representations of the process and subordination
to collective goals limit the value of their
contributions.

0 ne of the hardest parts of system development
is deciding what the system should do, that is,

in determining the system requirements. In his clas-
sic essay “No Silver Bullet,” Frederick Brooks’ noted
that:

The hardest single part of building a software sys-
tem is deciding precisely what to build. No other
part of the conceptual work is as difficult as es-
tablishing the detailed technical requirements, in-
cluding all the interfaces to people, to machines
and to other software systems. No part of the work
so cripples the resulting system if done wrong. No
other part is more difficult to rectify later.

A Standish Group report’ identified clear require-
ments as the third most important factor for success-
ful project development; incomplete and changing
requirements as the second and third most impor-
tant factors leading to unsuccessful projects; and in-
complete requirements as the number-one factor for
canceled projects. Meyers3 suggested that more than
half the cost of developing systems could be attrib-
uted to decisions made during the development of
their requirements. Once one knows exactly what the
system should do and how it should behave, imple-
mentation is often simple by comparison.

For small projects, requirements analysis and devel-
opment are relatively unproblematic: an individual
analyst workingwith users can specify system require-
ments reasonably completely and consistently. This
person may also implement the system, so even if
there are problems with the specification, he or she

Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 0018-8670/98/$5.00 0 1998 IBM CROWSTON AND KAMMERER 227

can simply fix them as they arise with little danger
of damaging the integrity of the system.

Large systems, however, pose greater challenges. Re-
searchers have identified numerous problems that
arise for projects large enough to require a team of
requirements analysts who are unlikely to be the
users or implementers of the system. These prob-
lems include ensuring that the requirements:

Fit customers’ needs, even though it is difficult (and
sometimes impossible) for customers to under-
stand the requirements specifications as written by
the requirements analysts
Specify a system that can actually be built by the
developers
Are complete and consistent

These problems arise primarily because large sys-
tems require knowledge from more domains4 and
involve many more requirements than can be man-
aged by a single person, no matter how talented. Fur-
thermore, it is nearly impossible to create part of the
specification without interaction with other parts.
Designers attempt to decompose systems into pieces
that are not tightly coupled, but it is difficult to cre-
ate pieces both small enough for a single individual
to work on and having only limited interactions with
the rest of the system.

Therefore, large projects will always require coor-
dinated group effort. Requirements analysts must be
able to share their knowledge of the problem and
individual parts of the system with customers, de-
velopers, and other analysts to generate a complete,
correct, and consistent set of requirements. Numer-
ous techniques have been proposed to guide and
structure the development process. However, less at-
tention has been given to the processes within groups
of requirements developers.’ In this study, we show
how two theories could be used to identify the causes
of some problems that arise in requirements anal-
ysis and development and to suggest possible strat-
egies to eliminate or minimize them.

In our study we started with coordination theory,
which suggested ways to manage dependencies in
processes. Coordination theory provided some
strategies for managing requirements analysis, but
our research also probed the limitations of coordi-
nation theory. We therefore turned for additional
insight to collective mind theory.’

228 CROWSTON AND KAMMERER

Research setting

Before discussing the theories, however, we intro-
duce our research setting in more detail to explain
why these two theories seemed appropriate. We stud-
ied requirements development in two companies,
which we will refer to by the pseudonyms LGC and
TC. LGC was a large government information systems
contractor that developed requirements for air traf-
fic control systems; TC was a large multinational tele-
communications company at which we studied a
division that developed control software for tele-
communications switches.

We chose these two sites because the requirements
problems they faced were particularly difficult.

Both companies were actively involved in require-
ments definition for very large complex systems re-
quiring large development teams. The telephone
switching software at TC had about five million lines
of code, and 200 people were involved in require-
ments analysis. LGC had 300-400 employees in the
division we studied, and the government agency
for which the requirements were developed em-
ployed many more.
Both developed real-time software, which is par-
ticularly complex to specify because of the need
for strict timing and the unpredictable effects of
interactions among elements.
The systems included both software and nonsoft-
ware components such as humans, hardware, etc.
In Davis’s terms,8 they were systems rather than
pure software.
The systems comprise some new and many already
developed components, which constrained the de-
velopment process. Functional needs had to be
squared with requirements imposed by the exist-
ing technology and architecture.
The systems had to be tailored to provide the de-
sired functionality in various customers’ environ-
ments and to work with customers’ existing equip-
ment and processes.

About LGC. The group at LGC was involved in a sin-
gle project: integrating several existing and new pro-
totypes of future air traffic control systems and an
air traffic simulation into a single interactive simu-
lation. The overall result of the project was to be a
set of requirements for the real systems. In other
words, the prototypes were a way to test and refine
requirements rather than an end in themselves. How-
ever, the prototypes did have an immediate custom-
er: experimenters who were to test various system

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

configurations and capabilities to ensure that they
worked together and were useful. The final require-
ments document was then to be written based on
experience with the prototypes and given to another
contractor as a basis for systems development.

The group inherited much of the prototype code
from other groups and developed the remaining pro-
totype code themselves. Developing the require-
ments for a particular prototype involved determin-
ing which overall system requirements engaged that
component, specifymg which services the component
would provide to satisfy the requirements, and de-
termining the other components with which the pro-
totype interacted and exchanged data. For existing
prototypes, the newly specified services would then
be mapped to the already written code. As a par-
ticular prototype was specified, changes might be
made to the system-level requirements or to other
components.

One problem this group had was that the require-
ments documents inherited and developed needed
extensive editing for consistency when they were in-
tegrated. For example, different components made
different assumptions about when shared data would
be provided. The individuals developing parts of the
specification were not able to anticipate all the op-
portunities for inconsistency. Yet, it was not feasi-
ble for a single person to write the entire specifica-
tion.

About TC. The second company, TC, developed tele-
phone switching systems, which are essentially large
special-purpose computers. The division we studied
developed high-capacity switches for an international
market. The telephone switch hardware and software
were extensively customized to meet each custom-
er’s unique needs. The content of a particular switch
was expressed as a list of the features it included,
such as interfaces to the rest of the network (e.g.,
a particular communications line and signaling pro-
tocol), customer services (e.g., call waiting) and op-
erational support (e.g., customized reports or diag-
nostics). Features were described in detail in separate
specification documents and implemented in hard-
ware and software.

Unlike at LGC, the requirements process at TC was
executed for each customer. Every customer was dif-
ferent, and the group had several projects at various
stages of work at any time. Work was largely reac-
tive: typically, customers submitted requests for con-
tract proposals, usually through the sales force, and

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

the company would respond with a bid. The “front-
end” group that we studied used information in the
request to determine which features were needed in
the delivered product to satisfy the stated needs. A
typical product included many previously developed
features that were simply retested, some extensions
to existing features, and a handful of entirely new

Large systems require knowledge
from more domains and involve

many more requirements than can
be managed by a single person.

features (e.g., 10 new features out of 200 total). For
each new feature, a specification document was writ-
ten to guide the development of new hardware and
software.

Generation of feature lists was hampered by the com-
plexity of the products. There were literally thou-
sands of possible features, some required, some op-
tional, and many mutually exclusive. The primary
difficulty experienced by the front-end group was fea-
ture churn. Feature churn happened when the list
of required features turned out to be incorrect in
some way and had to be changed, e.g., by adding
missing features or replacing one feature with an-
other. Most significant were missed new features,
since these required additional programming work
that had to be fit into the development schedule. One
study done by the company identified 170 changes
to the feature lists for six projects in a six-week pe-
riod. The same study showed that changes could cost
up to 500 times as much when made late in a project
as in the beginning, and late changes were unfortu-
nately not uncommon-some coming as late as cus-
tomer delivery.

Table 1 summarizes the comparison of the two re-
search sites. In many ways our sites were atypical.
The projects were larger than most, the constraints
of the underlying technology were more important,
and user involvement was difficult to obtain, as dis-
cussed below, limiting the use of user-driven devel-
opment methodologies such as joint application de-
velopment technique (JADT). Furthermore, our study
is based on only two sites, further suggesting that gen-

CROWSTON AND KAMMERER 229

Table 1 Comparison of key features of research sites

eralizations should be made with caution. Neverthe-
less, we feel that the enormous complexity of these
systems makes these sites an extremely rich source
of data about the requirements analysis and devel-
opment process. Both companies were interested in
participating in this research because they felt that
requirements development was a fundamental prob-
lem that they had to learn to manage more effec-
tively.

Coordination theory

From our initial examination of the problem, it was
apparent that a major problem in developing require-
ments was coordination. Curtis, Krasner, and Iscoe’
identified this problem in a field study done to iden-
tify problems affecting software productivity and
quality in 17 large-systems development projects
(some successful and some not). The three problems
they considered most important because of the ad-
ditional effort or mistakes attributable to them were
“the thin spread of application knowledge,” “fluc-
tuating and conflicting requirements,” and “commu-
nication and coordination breakdowns.” They
concluded that large projects have extensive com-
munication and coordination needs that are not mit-
igated by documentation. They also found that
breakdowns were likely to occur at organizational
boundaries, but that coordination across these
boundaries was often extremely important to the suc-
cess of the project. These results suggested that it
would be valuable to study the kinds of coordina-
tion problems that arise in software requirements
development and the mechanisms available to ad-
dress these problems.

About coordination theory. Coordination theory pro-
vides a theoretical framework for analyzing complex
processes such as requirements analysis. We used
the model presented by Malone and Crowston,‘ who

230 CROWSTON AND KAMMERER

define coordination as “managing dependencies.”
They analyzed group action in terms of actors per-
forming interdependent tasks. These tasks might also
require or create resources of various types. For ex-
ample, in the case of software requirements devel-
opment, actors included the customers and various
employees of the software company. Tasks included
translating aspects of a customer’s problem into sys-
tem requirements and checking requirements for
consistency against other requirements. Finally, re-
sources included the information about the custom-
er’s problem, existing system functionality, and an-
alysts’ time and effort.

In this view, actors in organizations face coordina-
tion problems arising from dependencies that con-
strain how tasks can be performed. Dependencies
can be between tasks, between tasks and the re-
sources they need, or between the resources used.
Dependencies may be inherent in the structure of
the problem (e.g., components of a system may in-
teract with one another, constraining how a partic-
ular component is designed) or they may result from
the assignment of tasks to actors and resources (e.g.,
two engineers working on interacting components
face constraints on the designs they can propose with-
out interfering with each other).

To overcome these coordination problems, actors
must perform additional work, which Malone and
Crowston called coordination mechanisms. For ex-
ample, if particular expertise is necessary to perform
a particular task (a task-actor dependency), then an
actor with that expertise must be identified and the
task assigned to him or her. Important for this pro-
cess, dependencies between requirements (resource-
resource dependencies) must be actively identified
and their implications for the design assessed and
managed.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Coordination theory suggests that, given an organi-
zation performing some task, one way to generate
alternative processes is to first identify the partic-
ular dependencies and coordination problems faced
by that organization and then consider what alter-
native coordination mechanisms could be used to
manage them. Problems with the process may also
be caused by dependencies that are not managed.

Data collection and analysis. In each site, we wanted
to document the kinds of dependencies that con-
strain the requirements development process and
document the coordination mechanisms that were
used to manage these dependencies. Dependencies
are conceptualized as arising between tasks and re-
sources, so we started by ascertaining the tasks and
resources used in requirements analysis, then iden-
tifying dependencies and related coordination mech-
anisms. Since the tasks in requirements analysis are
entirely information-based, we adopted the informa-
tion processing view of organizations. 10”2

Given this perspective, the goal of the data collec-
tion was, in the terms of March and Simon, lo to un-
cover the programs used by the individual require-
ments analysts in the groups. March and Simon
suggest three methods for data collection to uncover
these programs: (1) interviewing individuals, (2) ex-
amining documents that describe standard operat-
ing procedures, and (3) observing individuals at work.
Although all three techniques were used, we relied
most heavily on semi-structured interviews. As
March and Simon point out, “most programs are
stored in the minds of the employees who carry them
out, or in the minds of their superiors, subordinates,
or associates. For many purposes, the simplest and
most accurate way to discover what a person does
is to ask him.”I3

We started the data collection by identifying differ-
ent kinds of actors in the groups. This identification
was done with the aid of a few key informants and
refined as the study progressed. Formal documen-
tation of the process was used as a starting point when
available. However, it was expected that the process
performed would differ from the formally docu-
mented process. It was the informal process (as well
as the formal process surrounding it) that we sought
to document.

Interview subjects were identified by the key infor-
mants, based on their job responsibilities. Interviews
were generally one to two hours long. When pos-
sible, both authors took part, one leading the inter-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

view while the other took notes. Because of concerns
about the confidentiality of the products being de-
veloped, few interviews were tape-recorded. Most
interviews were held at the companies’ engineering
headquarters, with some follow-up interviews con-
ducted by telephone.

At LGC we interviewed 14 individuals, including
managers and systems developers. At TC, we held
19 interviews with 22 individuals, including group

Since tasks in requirements analysis
are information-based, we adopted

the information processing view
of organizations.

managers, product managers, project managers, and
application engineers. We also sat in on several work
meetings and collected examples of documents cre-
ated and exchanged during the requirements devel-
opment process.

The initial focus of individual interviews was to iden-
tify the type of information received by each kind of
actor and the way each type was handled. For ex-
ample, we asked subjects: (1) what kinds of infor-
mation they receive; (2) from whom they receive it;
(3) how they receive it (e.g., from telephone calls,
memos, or computer systems); (4) how they process
the different kinds of information; and (5) to whom
they send messages as a result. When possible, these
questions were grounded by asking interviewees to
talk about items they had received that day, an “in-
basket methodology.”’4 Meetings were also held with
three different groups at TC (numbering 5,7, and 15
members, respectively) during which they identified
responsibilities of their group and the various roles
they performed or with which they interacted.

In addition to interviews, we collected data from par-
ticipant observation. One of the authors participated
in the development process at LGC for a period of
four months, which included the latter part of the
requirements analysis process and initial attempts
to use the requirements for further development. Ad-
ditionally, a former member of the software devel-

CROWSTON AND KAMMERER 231

Table 2 Comparison of experiences with coordination mechanisms in research sites, organized by type of
dependency

opment group at TC assisted in the data collection
and analysis.

Notes from the interviews and participant observa-
tion were analyzed by the authors to identify evidence
supporting or contradicting the theories used. Al-
though the process of moving from theory to data
and back was somewhat cyclical, in that the data were
used to critique the theoretical models, the analysis
was primarily deductive because the purpose was to
evaluate the applicability of the theories to the re-
quirements analysis process.

Coordination in requirements development. In this
subsection, we present the dependencies and coor-
dination mechanisms identified in our sites. This
analysis is summarized in Table 2. Malone and Crow-
ston listed several types of dependencies6 Our re-

search built on and contributed to this work by iden-
tifying additional coordination mechanisms that can
be used to manage the dependencies we identified.
We discuss four kinds of dependencies in the con-
text of software requirements analysis: producer-con-
sumer dependencies, task-subtask dependencies,
task-actor dependencies, and dependencies between
requirements.

Producer-consumer dependencies. Dependency anal-
ysis can be done at different levels of abstraction. At
a high level, a producer-consumer dependency ex-
isted among requirements analysis and tasks further
downstream, such as coding and testing, as shown
by the dashed lines in Figure 1. (The process rep-
resentation used in Figure 1 is modeled after that
used in the process handb00k.l~ The solid vertical
lines indicate decomposition of a task into subtasks.

232 CROWSTON AND KAMMERER IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

~

Figure 1 Dependencies between high-level tasks in software development
~~

Dashed horizontal lines indicate flow of a resource
from one task to another and thus a producer-con-
sumer dependency.) In other words, requirements
analysis produced an output-the requirements
(shown in italics in Figure 1)-that was used by cod-
ers and testers. The flow of this resource indicates
a producer-consumer dependency between the two
tasks (dashed line number 1). At a higher level of
abstraction, the requirements analysts were part of
the process of creating a system for the customer.
In other words, both requirements analysis and cod-
ing are subtasks of the systems development process
(indicated by solid lines in Figure l), and systems
development creates an output-the system-that
is used by some other task, creating a higher-level
producer-consumer dependency (indicated by
dashed line number 2). Further distinctions could
be made similarly if desired, e.g., between the needs
of the customers who commission and pay for the
system and the eventual end users of the system.

Malone and Crowston noted that producer-con-
sumer dependencies impose several constraints on
the producer, in particular usability-ensuring that
the output is of a form useful to the consumer, and
transfer-ensuring that the output is available to the
consumer when needed. In this case, usability
seemed to pose the key problem: requirements anal-
ysis is essentially a coordination mechanism for en-
suring that the system created is useful, that is, a way
to manage flow dependency number 2. Malone and
Crowston suggested alternative approaches6 to sat-
isfying usability dependencies including standardi-
zation (i.e., producing the output in an expected
form), asking the consumer for input, or involving
the consumer in a participatory design process. Each
mechanism will be considered in turn.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Standardization. If a standard product is satisfactory
for the user, requirements analysis is unnecessary af-
ter the product has been designed once. This ap-
proach is used for most packaged software, for ex-
ample. For LGC, however, it was the initial system
being developed; for TC, customers required highly
customized products. In both cases, therefore, stan-
dardization was not an appropriate way to manage
the usability dependency between systems develop-
ment and use (dependency number 2 in Figure 1).
Therefore, requirements analysts had to determine
from the users of the system what kind of system
would satisfy their needs.

Nonetheless, requirements were provided to devel-
opers in a standard format, e.g., using agreed-upon
representations for system functionality. In other
words, standardization was used to manage depen-
dency number 1 in Figure 1. In the companies we
studied, it seemed to be assumed that requirements
analysts understood the capabilities of the technol-
ogy and the development group because of training
or experience with the development process. There-
fore, communication among analysts and develop-
ers about the needs of the developers was indirect.

User involvement. A second strategy for managing us-
ability constraints is to ask consumers to state their
requirements or to somehow involve the consumer
in the design process. Indeed, many who have stud-
ied this problem in recent years have emphasized
the overwhelming importance of user involvement.
In both companies, requirements analysts did solicit
user input, e.g., by asking questions (sometimes
through an intermediary or by arranging face-to-face
meetings) or, in the case of LGC, by having air traffic
controllers work with the prototypes. Other input was

CROWSTON AND KAMMERER 233

also used; for example, in TC, if a system was required
to interface with unfamiliar equipment, a planner
might attempt to borrow samples of that equipment
to check the implementation.

Unfortunately, getting input from the end users was
quite difficult in both companies, and in neither case
was user input sufficient to solve the requirements
definition problem. At TC, users and developers
worked for different organizations and were typically
separated geographically and linguistically, since the
division specialized in international sales. The bid-
ding process also imposed further barriers, since in-
formation from the customer had to be provided to
all bidders equally, and interactions were typically
funneled through the sales staff as a check on what
the company promised. As a result, detailed tech-
nical information might become available only after
a contract was signed and requirements definition
was partially completed. Finally, because of the large
number of developers involved in creating require-
ments in both companies, it would have been impos-
sible for all of them to meet a user anyway (nor guar-
antee that they would all interpret the users in the
same way). Although these problems were more ex-
treme in our two sites, Davidson16 notes compara-
ble problems applying joint application development
technique (JADT) in three financial service compa-
nies.

More importantly, user input alone was insufficient
to ensure that the requirements were correct. For
air traffic control and telephone switching, making
a useful system required the application of special-
ized domain knowledge4 as well as information about
the particular user context. For example, at TC, cus-
tomer representatives did not always appreciate the
detail required (e.g., which of 24 kinds of call wait-
ing service was wanted, which standard functional-
ity was required, or the precise specification of the
trunk interfaces). At LGC, the ultimate users of the
system were air traffic controllers who are easily able
to provide input on how the system should interact
with them, but who did not have any information
about how the many systems that support their tasks
might interact.

In both companies, this kind of specific domain
knowledge was a central part of the developers’ com-
petency and, in a sense, was the product they offered.
Many members of the requirements development
groups were experts in their fields, in some ways more
expert than the customers. Developers used this ex-
pertise to make sense of the incomplete and ambig-

234 CROWSTON AND KAMMERER

uous input they received from customers and trans-
lated it to their own domains. In other words, in this
site a new coordination mechanism was used to man-
age usability, namely knowing as much or more about
the problem domain than the eventual user.

However, it should be noted that over-reliance on
this mechanism can easily lead to failure to listen to
the customer and development of the wrong prod-
uct. Tellingly, failures of this type of expertise were
at the root of a problem encountered by the devel-
opment group at LGC. The prototypes developed
failed to fully meet the needs of the immediate users,
the experimenters, because the developers did not
understand what experimenters needed from pro-
totypes (as opposed to what the eventual users of
the system needed from the system itself). In pre-
vious projects, requirements were derived from study
and experience; this project was one of the first to
use prototypes.

Tusk-subtusk dependencies. The previous subsection
considered dependencies with requirements analy-
sis taken as a whole. Of course, the process comprised
many detailed tasks; a possible partial decomposi-
tion is shown in Figure 2, using the same notation
as in Figure 1, where vertical solid lines indicate de-
composition of a task into subtasks, and horizontal
dashed lines indicate a flow of resources and there-
fore a producer-consumer dependency. The deter-
mination of individual requirements corresponds
roughly to what Davis’ called the problem analysis
stage, the goal of which is a “relatively complete un-
derstanding of the problem.” It is followed by the
problem description stage, during which analysts “re-
solve conflicting views and eliminate inconsistencies
and ambig~ities”’~ as they write a final requirements
document.

At TC, analysts created requirements by adding fea-
tures to the feature list. If an appropriate feature
could not be found, a detailed specification of a new
feature would have to be written. Alternatively, the
analyst might argue that the feature might not be
worth implementing. At LGC, the process was sim-
ilar, except that analysts created specifications for
an individual prototype by locating a piece of code
that already did what was required or by specifying
new functionality. Again, the high-level requirements
might be revised instead. Finally, the requirements
created were checked for consistency. (Of course,
individual requirements could also be checked for
consistency as they were developed.) As a result,
there are producer-consumer dependencies between

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 2 Decomposition of requirements analysis into specification of individual requirements and checking for
consistency

-~ ~ _ ~ _ _ _ . _ _ _ _ ~ ~ _ _ _

the creation of each requirement and the final check,
as indicated by the dashed lines in Figure 2.

Between the high-level task of performing require-
ments analysis and the lower-level task of writing in-
dividual requirements were task-subtask dependen-
cies. These dependencies were managed in this case
by selecting subtasks that accomplish the desired
task. In other words, requirements analysis is in es-
sence a planning task, in which the high-level task
is clear (write the requirements) and even the range
of possible lower-level tasks is largely known (e.g.,
at TC, most features already exist), but an appropri-
ate set of lower-level tasks must be chosen to achieve
the high-level task. We were particularly interested
in analyzing planning mechanisms, since they had
not been discussed in detail by Malone and Crow-
ston.‘j

Davis claimed that the difficulty in problem analysis
is “organizing all the information, relating different
people’s perspectives, surfacing and resolving con-
f l i c t~ , ’ ’~~ i.e., developing a consistent set of require-
ments. However, according to our interviews, a large
part of the problem was simply determining what the
often incomplete and ambiguous customer state-
ments meant for the requirements. (As discussed
above, it was not always possible to simply ask users
for clarification, nor would this always have been suf-
ficient to resolve the issue.)

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

At TC, analysts read customers’ proposal requests
and determined which features were required; at
LGC, analysts read the overall system requirements
and determined which were related to their partic-
ular prototype. Both required an understanding of
the goals of the system and knowledge about the ca-
pabilities of the technology. An analyst who did not
know which features already existed, for example,
would have been hard-pressed to understand what
a customer was asking for, much less how to accom-
plish it.

At TC, analysts had access to a database of features,
although it was difficult to search and was reported
to be out-of-date. They could also ask engineers for
advice in picking features. In some cases, however,
they would simply miss a requirement or pick the
incorrect feature, misunderstanding the customer’s
needs. Fixing these errors caused feature churn. In
most cases, however, analysts seemed able to make
sense of the task and decompose it to specifics. Un-
fortunately for our goal of characterizing the steps
in coordinating these requirements, analysts were not
able to easily articulate how they did this decompo-
sition.

Task-actor dependencies. The next class of depen-
dencies we consider are task-actor dependencies.
Tasks require resources, if only the effort of an ac-
tor to perform the task. An important class of co-
ordination processes manages the assignment of re-

CROWSTON AND KAMMERER 235

sources to tasks. Crowston” suggested four steps to
such resource assignments: identifying the type of
resources needed, identifying available resources, se-
lecting the resources, and making the assignment.
Most work on resource assignment (e.g., in econom-
ics, organization theory, or computer science) has
focused on the middle steps, that is, techniques for
identifying or selecting available resources. By con-
trast, in the requirements analysis process, the first
step-identifying what resources are needed to per-
form a particular task-seems at least as important.

Analysts could easily refer problems to one another
and for the most part seemed to know who had ex-
pertise in which particular areas. Before they could
refer a problem, however, they had to first determine
what expertise was required to solve the problem,
or even what the problem was. One approach is to
consult everyone about everything that might be rel-
evant, whether one-to-one, in small groups review-
ing a section of the requirements, or in large status
meetings. All three techniques seem to be used at
both LGC and TC, although analysts for the most part
seemed to know to whom to talk.

Dependencies between requirements. The final class
of dependencies are those between requirements. In-
teractions among requirements are often a problem
in large real-time systems. In a telephone switch, for
example, call waiting and call forwarding on busy
specify different actions for an incoming call when
the person being called is already on the phone. If
both features are active, the requirements must give
one or the other priority, or the system behavior will
be undefined. This interaction is fairly obvious; much
more subtle interactions are possible.

To manage these dependencies, they first had to be
identified, and harmful dependencies had to be elim-
inated by changing one or the other of the require-
ments. For the processes we studied, identifying de-
pendencies seemed to be a key factor. Analysts had
to determine how the features they specified inter-
acted with every other feature in the system to en-
sure that they were complete and consistent with one
another and with prior decisions about the system.
Because there were hundreds of features, each sup-
ported by different people, these interactions were
difficult to detect. Modifying the software for one
feature could affect other features in ways that were
unanticipated by the analyst specifying the modifi-
cation. Those in charge of the affected feature might
not become aware of the changes until their feature
“broke.”

236 CROWSTON AND KAMMERER

LGC attempted to control these interactions by hav-
ing prototypes interact only through message pass-
ing. Where dependencies were necessary, analysts
would negotiate an acceptable interface from one
prototype to another. As it turned out, however, the
prototypes (some of which had been created sepa-
rately and for different purposes) still interacted in
unexpected ways, often because they made differ-
ent assumptions about such things as the situation
being simulated or the order in which they would
obtain data. For example, there might be a piece of
information about the environment that one simu-
lation needed to know when it started, but which the
central simulation manager did not (at least orig-
inally) provide until later. Progress reviews focused
on the functionality and status of each module, but
as the project manager reported, “Those were the
wrong questions.” To catch these interactions, she
suggested instead a focus on the flow of control be-
tween modules (e.g., as a simulated flight is passed
from one system to another). Fixing these depen-
dencies required extra work.

In TC, ensuring that requirements (i.e., feature lists)
were consistent required considerable additional ef-
fort. Specified features might conflict in nonobvious
ways, and these dependencies required additional
work to detect and correct. (Detection of feature in-
teractions in telecommunications systems has be-
come an active research area, although most re-
searchers are focusing on detecting or preventing
interactions when features are executed rather than
during design.) Various analysts reviewed the fea-
ture list at several different points in the process to
uncover these dependencies, apparently based on
their knowledge of the characteristics of the features.
Because of time pressures, however, these checks
were often cursory, since in practice most features
did not interact. In addition, the feature database
reportedly did not represent dependencies reliably.
Both factors led to feature churn caused by missed
dependencies (or in the worst case, a system that be-
haved incorrectly).

Tools and techniques for coordinating requirements
development. Coordination theory suggests problems
arise when dependencies go unmanaged. Implicitly,
most published approaches to requirements analy-
sis are consistent with a coordination theory ap-
proach, providing ways to communicate requirement
information and to manage dependencies or even
to reduce and eliminate them. The dependencies dis-
cussed above are: usability dependencies between
requirements analysts and between users and re-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

quirements analysts and developers; task-subtask de-
pendencies; task-actors dependencies; and depen-
dencies between requirements. Of these, usability
dependencies and dependencies between require-
ments seem to be addressed best.

Strategies for managing dependencies between an-
alysts and requirements users include more efficient
ways to communicate information from users to re-
quirements analysts and from analysts to develop-
ers. Techniques for eliciting requirements have been
surveyed by Powers et a1.,20 Davis,21 and Birrell and

Most modeling methods allow
the system to be described in

several ways to provide a sufficiently
comprehensive view of the system.

among others. Davis discussed numerous ap-
proaches to defining requirements, including listing
all inputs and outputs, listing major functions, struc-
tured requirements definition (SRD), structured anal-
ysis and design technique (SADT), structured
analysis and system specification (SASS), modern
structured analysis, PSLIPSA, and object-oriented
problem analysis. Davis also provided several ex-
tended examples of applying these technique^.^^
Many of these techniques also structure the process
of decomposing a system into subunits, addressing
task-subtask dependencies.

Although these techniques are certainly useful, they
do not explicitly address how an understanding of
the system is developed to address the higher-level
usability dependency between systems development
and system use. Instead, they provide a structured
way to present and refine such an understanding. By
contrast, Joint Application Development Technique
(JADT), developed by IBM, provides a method for an-
alysts to obtain information from and negotiate with
clients in intensive workshop sessions. Unfortunately,
JADT would have been difficult to apply in our sites
because of restricted access to knowledgeable users,
as discussed above.

Strategies for managing dependencies between re-
quirements include techniques to reveal system in-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

terdependencies, such as formal representations or
prototyping. Techniques for modeling systems are
used to represent information gathered in a way that
reveals potential problems. The methods are typi-
cally graphical, although physical and simulation
models are occasionally used. Davis listed four no-
tations for problem analysisx-data-flow diagrams,
data dictionaries, entity-relation diagrams, and load
object diagrams-and Birrell and Ould added struc-
tured English, Petri nets, and finite-state machines. 22

Most modeling methods allow the system to be de-
scribed in several ways to provide a sufficiently com-
prehensive view of the system. For example, a model
might include interfaces to external entities, func-
tions to be performed, data transformations, struc-
ture of input/output data, relationships among in-
formation, and system behavior.24 An example of
preventing dependencies is the decomposition of the
system into decoupled components with well-defined
interfaces or using design methodologies that only
allow certain kinds of interactions, both with the goal
of allowing dependencies only in well-known chan-
nels. As mentioned above, such techniques were tried
in our sites, albeit with limited success.

Finally, none of the techniques seems to directly ad-
dress the problem of finding an appropriate require-
ments engineer to work on a particular problem.
Consideration of this issue led us to expand our study,
as we discuss in the rest of this paper.

Limitations of coordination theory. After our ini-
tial analysis of data from our two sites, it seemed that
coordination theory did illuminate some of the prob-
lems of requirements analysis on large projects, but
it provided only one approach to the problems of
requirements development. Better ways for analysts
to coordinate were certainly important, but it seemed
equally necessary for group members to develop
shared understandings of customers’ needs and to
anticipate what actions would contribute to the pro-
cess. In other words, the requirements analysis pro-
cess seemed as much a matter of development of
shared understandings and collective sensemakingZ5
as of communicating and coordinating. The key to
the successful coordination of the requirements de-
velopment seemed to be that analysts mostly “just
knew” which features were needed, whom they had
to consult for advice on which features to pick, whom
to ask to write a specification or check a dependency,
etc. The question then became, “How did they know
that?”-a question that coordination theory was not
designed to answer.

CROWSTON AND KAMMERER 237

Collective mind theory

As we were trying to understand how the analysts
learned what they need to know to determine re-
quirements and manage their dependencies, we were
introduced to Weick and Roberts’s theory of collec-
tive mind.7 This theory describes how individual
members of a group can act in ways that produce
overall reliability in the face of complexity, especially
when lack of comprehension can lead to disastrous
consequences. The major claim of collective mind
theory is that individuals develop shared understand-
ings of the group’s tasks and of one another that fa-
cilitate group performance. Collective mind theory
was adopted because it addressed what had become
for us the key question, namely how group members
came to know how to contribute to the overall group
performance.

Previous conceptions of group mind have been con-
troversial because they seemed to imply the exis-
tence of some super-individual entity.*‘j By contrast,
collective mind is described as an individual’s “dis-
position to heed,” hence an emphasis on “heedful”
behaviors. If each member of a group has the desire
and means to act in ways that further the goals and
needs of the group (i.e., ‘‘heedfully’’), then that group
would exhibit behavior that might be described as
collectively intelligent, even though it is the individ-
uals who are intelligent, not the group. However, var-
ious group processes are crucial for building and
maintaining these “heedful” dispositions and capac-
ities, and these processes are the foci of the theory.

We began using collective mind theory approxi-
mately one-third of the way into our data collection.
Therefore, we were able to modify our interview out-
lines to cover aspects suggested by collective mind
theory for the remaining two-thirds of our interviews.
We also reanalyzed earlier interviews from this per-
spective.

Applicability of the collective mind to requirements
definition. Weick and Roberts originally described
the collective mind in aircraft carrier flight deck op-
erations. More generally, they listed three features
of organizational environments that make the de-
velopment of collective mind beneficial: (1) the need
for high reliability, (2) nonroutine work, and (3) in-
teractive complexity (the combination of complex in-
teractions with a high degree of coupling). When
some of the three are absent, it may be possible to
satisfy organizational needs more easily, for exam-
ple, through better training or increased specializa-

238 CROWSTON AND KAMMERER

tion. However, when all three factors are present,
it becomes essential for each individual to have a so-
phisticated conceptualization of the work, the peo-
ple doing it, and his or her own place in the process.
In the remainder of this section, we argue that these
three features apply to software requirements de-
velopment, making this theory applicable.

High reliability vs trial and error organizations. Errors
early in the development process may not be as life-
threatening as errors on an aircraft carrier, the orig-
inal setting for collective mind theory, but they
quickly become expensive and time-consuming to fix.
In the case of mission-critical software, “minor” bugs
and inconsistencies can create life-threatening haz-
ards, such as malfunctioning 911 emergency tele-
phone lines or air traffic control software that fails
to adequately separate aircraft. Cost and schedule
overruns are common in the software industry; these
problems are often attributed to the costs of fixing
problems that should have been caught during re-
quirements definition. Therefore, software compa-
nies, and our two sites in particular, need to be highly
reliable.

Nonroutine work. Early software development orga-
nizations do not routinely face unpredictable life and
death crisis situations such as those studied by
Weick and Roberts, but requirements definition does
require a certain amount of creativity and improvi-
sation. Each new software project has its own unique
problems and characteristics, and the day-to-day
ways in which developers respond to those can have
enormous scheduling and budget implications.

Interactive complexity. The software systems devel-
oped by our sites were probably as complex as the
aircraft carrier flight decks that served as the orig-
inal setting for collective mind theory. Early software
development for such software projects is too large
a task for a single individual and yet too interrelated
to be divided arbitrarily. Developers try to hierar-
chically decompose systems into pieces small enough
to be handled by a single person and with minimal
interactions with other pieces. Unfortunately, it is
never possible to eliminate the need for interaction.
Also, some types of software, including the products
of the companies we studied, either require or would
benefit from higher integration than is possible to
develop under conditions requiring a minimum of
interaction. For such organizations, a highly devel-
oped collective mind may permit better coordinated
actions and thus better products.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Table 3 Comparison of collective mind features in research sites

Collective mind in requirements development.
Weick and Roberts identified three individual be-
haviors’ that epitomize group tasks: (1) contribution
(an individual member of a group contributes to the
group outcome), (2) representation (an individual
builds internal models of the group), and (3) sub-
ordination (an individual puts the group’s goals
ahead of individual goals).

These actions go on in any group setting. The issue
for collective mind is how “heedfully” (to use Weick
and Roberts’s term) they are done; are they done
carefully, appropriately, intelligently? To the extent
they are, the group will display collective mind. Al-
though conceptualized separately, these three con-
cepts overlap and reinforce one another to some de-
gree. It is difficult to imagine heedful contributions
from even highly talented and motivated individu-
als with weak representations of the group’s needs
and structure. Similarly, one cannot build an accu-
rate representation without the contributions of oth-
ers, nor can one heedfully subordinate without an
accurate representation of the group’s goals.

At TC, the collective mind seemed weak. In the in-
terviews, we did not find robust understandings of
how individual work fit the big picture, a failure of
representation. At LGC, we found that requirements
were determined by a smaller and much more tightly
knit group. Most of the analysts had a fairly good
understanding of the whole project and their place
in it. However, disagreements about the approach
to be used hampered individuals’ subordination to
the group, again resulting in a weak collective mind
and reduced effectiveness. In the remainder of this
section, we discuss the three aspects of collective

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

mind at our sites. This analysis is summarized in Ta-
ble 3.

Contribution. Contribution is the individual’s input
to the system. Individuals contribute when they per-
form a task, such as generating a requirement or in-
terpreting a user’s request, make a decision, or par-
ticipate in the social processes that build the
collective mind as discussed below. These contribu-
tions can be performed more or less heedfully in that
individuals can perform tasks conscientiously, make
decisions intelligently, coordinate their contributions
with those of others, and so forth.

In TC, we found little contribution from individuals
toward building the collective mind (as opposed to
contributing toward the final product of the group).
Such work was difficult to accomplish because of the
segmentation of the organization and the lack of en-
couragement to overcome these obstacles or even
recognition that doing so might be important or use-
ful. Although meetings were held and information
exchanged through many channels, this information
appeared to focus primarily on the work products.
(It is possible that efforts were made at times other
than our visits, but results of such efforts were not
apparent.) Since the collective mind was weak, con-
tributions to the final product were lessened.

In the case of LGC, we saw a somewhat different sit-
uation. In addition to producing work products, in-
dividuals also worked to develop one another’s un-
derstanding of who was doing what and how the
pieces fit together. There was an organizational em-
phasis on sharing information among team members
and throughout the organization through small and

CROWSTON ANO KAMMERER 239

large meetings as well as widely disseminated pro-
gress reports and working papers. Members were en-
couraged to and frequently gave presentations on
their work in progress, which were well attended both
by group members and outsiders. Members fre-
quently took the time to meet with other interested
parties to explain what they were doing and how they
were doing it. Although doing this extra work to de-
velop the collective mind took time, the work en-
abled individuals to more efficiently direct their ef-
forts when working on their projects.

Representation. Representation is the group’s input
to the system that is assimilated to varying degrees
by each individual. As individuals do and say things,
those actions are interpreted and synthesized by oth-
ers who use that information to build their own in-
ternal model of the group. This model enables them
to visualize how they fit in, how others will act, and
how their actions will affect others. It embodies their
ideas about the goals of the group and how they may
be accomplished. Representations are created and
acted upon more or less heedfully in that individ-
uals’ models can be more or less similar to others’
models, individuals’ models can be more or less sim-
ilar to reality, and organizations can engage in pro-
cesses that disseminate the information necessary to
build the models more or less conscientiously.

The important point is that individuals need to de-
velop models of what others do and a shared under-
standing of the problem they are working on. In par-
ticular, developers need to understand one another
and the users’ needs in order to be able to develop
systems that solve their problems. Walz et al. sim-
ilarly noted the importance of building “shared mod-
els of the problem under consideration and poten-
tial solution^."^^ Such representations might include
what Fischer et al. described as domain models,
which they noted were “socially constructed over
time by communities of practice.”28

As a result of the problems discussed above, the
group at TC seemed to have undeveloped represen-
tations. In our interviews, for example, we found dif-
ferent understandings about how the feature list was
developed. Different interview subjects had differ-
ent ideas about who was ultimately responsible for
the list, the steps necessary or desirable to ensure
its completeness and consistency, or who would be
affected by problems with the feature list. In one case,
an engineer who prepared bids reported that he had
learned from a more-or-less chance meeting that his
work overlapped the work of planners later in the

240 CROWSTON AND KAMMERER

process. In this case, this lack of understanding re-
sulted in duplicate work. The engineer knew how to
do his job, but not how what he did could be reused
by others.

In the case of LGC, we found that individuals gen-
erally had fairly well-developed representations. In-
terviewees had little or no trouble identifying who
was responsible for various aspects of the tasks in
which they were involved. Furthermore, although
they could not describe the details of someone else’s
software, they frequently could give an accurate over-
view of its scope and approach. They also reported
that they generally had little difficulty correctly iden-
tifying persons whose software would be affected by
changes they wished to make in their own code.

Subordination. Finally, subordination involves the re-
liance of the individual on the system. Individuals
subordinate when they trust others to provide needed
information, when they obey superiors, and when
they make decisions based on the needs of the sys-
tem above and beyond their own personal needs. The
act of heedful subordination separates organizations
with highly developed collective minds from struc-
tures like markets in which the whole is held together
by many individuals acting purely in their own best
interests. Subordination can be performed more or
less heedfully in that trust can be built on strong or
shaky foundations, individuals’ representations of the
system to which they are subordinating can be more
or less accurate, and individuals may or may not
choose their own interests over those of the system.

At TC, it was difficult to assess the extent of subor-
dination because of the problems with representa-
tion. Individuals did their jobs in the way they be-
lieved they contributed best, but they did not always
know the overall goal. At LGC, what was particularly
lacking from a collective mind perspective was sub-
ordination. Our interviews suggested that the group
had split into four factions, which caused friction and
delays within the group. One faction consisted of the
“old-timers” who had been with the company for
many years and had extensive experience with air
traffic control systems but less with coding large soft-
ware development projects, such as the prototypes.
Another consisted of relative newcomers to the com-
pany, who had more experience and education in
software development techniques, but less with air
traffic control systems. Management had much in
common with the old-timers, but was focused on
management issues and dealing with the government
sponsor. Finally, there was an experimenters’ fac-

IBM SYSTEMS JOURNAL. VOL 37, NO 2, 1998

tion that used the prototype system to run controlled
experiments. Most experimenters had extensive
experience with air traffic control systems and with
analysis, but not with software development.

Even though the collective minds were quite well-
developed within these groups, subordination
seemed not to cross the borders. One example of
this was when the newcomers wanted to use object-
oriented methods to specify the system requirements.
The old-timers did not like this idea because they
were not familiar with the techniques and because
it would be difficult to retrofit inherited software (the
majority of the system) to the new paradigm. The
newcomers, however, were a majority and were more
cohesive as a group. Because of their software ex-
pertise, they managed to convince enough people
that this approach was the right solution. The group
struggled with the new methods, but in the end, with-
out the full support and expertise of everyone, they
gained few of the benefits while essentially wasting
much time.

In this case, each faction was willing to understand
what was happening, but only from the point of view
of the faction. The old-timers were unable and un-
willing to take advantage of the newcomers’ exper-
tise in new methods for large-scale software devel-
opment, whereas the newcomers were unable and
unwilling to take advantage of the old-timers’ famil-
iaritywith the software and domain knowledge. Thus,
representation was good, but it did not extend far
enough. In addition, there were not enough individ-
uals in either faction who were able to put aside their
own assumptions and biases long enough to really
examine the problem and what it demanded, a fail-
ure of subordination.

Tools and techniques for developing collective mind.
As we mentioned above, many requirements anal-
ysis techniques and tools seem to have been designed
to improve communications and coordination. How-
ever, collective mind theory suggests improving per-
formance by actively supporting the development
of representation, contribution, and subordination
within the group. In both companies, we believe that
a more developed collective mind could have solved
some of the problems the group experienced as they
developed system requirements.

First, tools and techniques might directly support the
development of representation, provide a channel
for contributions, or help users understand group
needs. Walz et al. note many problems that arose

IEM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

because of difficulties creating a shared m e m ~ r y . ~
However, developing shared representations re-
quires more than simple communications. As Bo-
land and Tenkasi put it, “the problem of integration
of knowledge in knowledge-intensive firms is not a
problem of simply combining, sharing, or making
data commonly available. It is a problem of perspec-
tive taking in which the unique thought worlds of
different communities of knowing are made visible
and accessible to each other.”29 They went on to de-
scribe several systems for building and sharing rep-
resentations of work. Atwood et al. described a sys-
tem, called Design Intent, for facilitating the
development of, “shared problem understandings
across problem stakeholders which is the source of
the system requirement^."^^

Besides directly supporting these processes, systems
might help by supporting the development of the col-
lective mind. Weick and Roberts suggested three
types of social processes that underlie the building
of collective mind: socialization, conversation, and
recapitulation.

Socialization. Collective mind theory suggests that
it is important to pay attention to how new mem-
bers are socialized into a group. People joining a
group need to understand how they fit into the pro-
cess being performed (i.e., their contribution and
subordination). They need to be encouraged and ed-
ucated to interact with one another to develop a
strong sense of “howwe do things around here” (i.e.,
representation). The richer the social environment,
the richer the understanding can be. The socializa-
tion of newcomers is especially important, because
in the act of explaining the situation to others, vet-
erans have an opportunity to critically reflect on that
situation and change it, effectively resocializing them-
selves in the process.

Socialization seems obvious, but did not seem to be
done well at TC. Individuals who had moved to dif-
ferent positions within the group reported that they
encountered a whole new view of the process and
their responsibilities within it and had to discover
for themselves how best to contribute. In some cases,
these roles were new, requiring the new people to
define for themselves what they should do, rather
than being socialized or trained.

Socialization at LGC, in contrast, was better devel-
oped. A strong, almost elitist sense of what it meant
to work at LGC was promoted at virtually every level
from the moment an employee entered the organi-

CROWSTON AND KAMMERER 241

zation. Document and presentation formats, even
for internal distribution, were strictly defined and en-
forced-and they always included the LGC logo
prominently displayed. Sharing of one’s work and
knowledge was not only encouraged, but required.

At a more detailed level, however, there were some
breakdowns. As described above, we found that fac-
tions had developed. The separation was particularly
evident in the socialization of new group members.
If a new group member was younger or more soft-
ware-oriented, he or she would be primarily taken
under the wings of other young, software-oriented
people (the “newcomers”). If a new group member
was older or more domain-oriented, he or she would
be primarily socialized by the “old-timers” and man-
agement. Thus, whatever differences existed among
the factions were perpetuated and perhaps intensi-
fied by this process.

Socialization might be enhanced through organiza-
tional arrangements such as mentors or co-ops. LGC
recruited many employees from its co-op program,
which has the advantage that new employees arrive
already knowing something about the organization.
Lave and Wenger7s31 notion of legitimate peripheral
participation may also be useful here. Socialization
can also be promoted through computer tools. For
example, the Design Intent system3’ allows design-
ers to share information about the project and about
themselves with the explicit goal of fostering social-
ization as well as communicating important design
information.

Conversation. Second, Weick and Roberts stress the
importance of conversation.7 It is difficult to build
a collective mind if people do not talk to one an-
other somehow. Meetings, social events, hallway con-
versations, and electronic mail or conferencing are
all ways in which group members can get in touch
with what others are doing and thinking.

One problem with the groups in TC was simply that
individuals had few opportunities to talk to one an-
other because of the volume of work and the divi-
sion of the process into discrete subtasks performed
by different groups. Strikingly, one subject reported
benefits simply from being on the same committee
as others in the group, consistent with Walsh’s ob-
servation that “some minimal level of social contact
(about anything) in an organization may be neces-
sary to maintain an alert organization mind.”26 Alack
of conversation was a particular problem for the
groups we were studying because they typically could

242 CROWSTON AND KAMMERER

not deeply involve the users in the design, a key suc-
cess factor suggested by many requirements analy-
sis techniques.

At LGC, there was a very high level of conversation
within factions and some (though not nearly as much)
across factions. Of the factions, the newcomers ap-
peared to have much higher levels of conversation.
Not only did they work together, often helping each
other solve difficult software problems, they fre-
quently had lunch together, played on departmen-
tal athletic teams together, and socialized together
after work. There were even several relationships and
a few marriages that came out of this group! Com-
munication within other factions was also good,
though it was somewhat more likely to be formal
(e.g., through memo or meeting) and far less likely
to include recreational tasks. Unfortunately, estab-
lishing communication between management and
the other groups was difficult. Management was of-
ten off-site, in meetings with government sponsors,
and therefore unavailable. Also, management often
did not convey all the details of the interaction with
the sponsor. Although this was a reasonable tactic
given the sponsors’ proclivity to frequently change
requirements, it created a situation where nonman-
agement personnel were unable to form a robust un-
derstanding of the sponsors’ needs.

Conversation might be enhanced through various ar-
rangements such as widely distributed progress re-
ports or periodic group meetings. Allen3’ showed
how the physical arrangement of office space and
equipment can increase interaction. Conversation
might also be supported with computer tools, such
as computer conferences. For example, several com-
puter companies support computer conferences on
work and nonwork topics as a way to promote in-
teraction. Walz et al. suggest training group mem-
bers in dialectic techniques to promote fuller dis-
cussion of potentially problematic issues, again
improving communications.

Recapitulation. Finally, Weick and Roberts stress the
importance of recapitulati~n.~ To keep the collec-
tive mind strong and viable, important events must
be “replayed” and reanalyzed and shared with new-
comers. The history that defines who we are and how
we do things in an organization must be continually
reinforced, reinterpreted, and updated.

Of the three processes, this was the most difficult to
detect and probably the least well-developed. At LGC
there was some evidence of recapitulation. Individ-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

uals tended to know the histories of others they
worked with, for example, knowing that one person
had previously worked on a related project or that
another had been a pilot or air traffic controller in
a previous job. Certain stories were told over and
over again, especially humorous anecdotes about life
in control towers. Certain working papers and re-
ports were also shared to communicate the core of
the project. Some of these were out-of-date but still
useful because they described the group’s origins.

Recapitulation might be promoted by encouraging
debriefing (or “bull”) sessions, where individuals re-
count their perspectives on recent event^.'^ Such ses-
sions could prove valuable as a way to socialize newer
members of the group, even if they do not directly
educate listeners on how to behave. Recapitulation
might also be supported by computer tools. Many
design tools allow developers to replay decisions, to
understand what has been done before and why, as
suggested by Walz et al.4 For example, Boland and
Tenkasi describe what they call task narrative forums,
in which members of the community can create and
share narratives. As they note, “through narrative,
the community constructs its practices and its social
world by building and restoring its sense of the ca-
n ~ n i c a l . ” ~ ~

Conclusions

Our initial interviews suggest that the combination
of coordination theory and collective mind illumi-
nate some of the problems in requirements analy-
sis. Coordination theory suggests that actors must
identify and manage dependencies inherent in the
process, whereas the collective mind describes how
individuals may learn how to act in ways that enhance
the reliability of the group.

Coordination theory seemed to be useful in focus-
ing on the cause of some problems, although less use-
ful in identifying solutions. For example, interdepen-
dencies between requirements caused problems, so
it was necessary for analysts to identify dependen-
cies or conflicts and manage them. To develop cor-
rect and complete requirements, information must
be obtained about the needs of users and the abil-
ities of developers, who may or may not be available
for consultation. More specifically, we would recom-
mend that TC ensure that the database of feature in-
teractions is kept up-to-date to eliminate at least the
most obvious conflicts.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Although coordination theory suggested that these
were problems and described what analysts needed
to know and do to manage them, it did not clarify
for us how members of the team learned what they
did. To be fair, sources of this “knowing how” are
not a central concern of coordination theory; as Ma-
lone and Crowston pointed out,‘ coordination de-
pends on underlying processes of decision-making,
communication, and perception of shared objects,
but these are not part of the theory itself.

At these levels, the collective mind theory provided
a useful adjunct to coordination theory. In a sense,
a well-developed collective mind is an alternative co-
ordination mechanism. A group member who can
successfully anticipate what others are likely to do
can spend less time checking or asking. Without such
an understanding, coordination becomes more dif-
ficult and time-consuming. Constantine described a
similar phenomenon in what he calls the synchro-
nous or harmonious alignment paradigm for group
o rgan i~a t ion ,~~ but noted that static performances
“tend not to be highly responsive or adaptive to
changing requirements.” By contrast, a well-devel-
oped collective mind should allow group members
to anticipate how to react even in novel situations,
such as the crises studied by Weick and Roberts.’

More specifically, we would recommend that TC di-
rectly address the development of collective mind
within and across the requirements development
group. Opportunities for socialization, conversation,
and recapitulation could be strengthened, for exam-
ple, by providing time and space for social interac-
tions and by consciously reflecting as a group on suc-
cesses and difficulties near the end of each project.
Such interactions might even be supported by a com-
puter-conferencing system. LGC, where the collec-
tive mind was generally stronger, might benefit from
the increased participation of two groups: manage-
ment, who could provide a wider perspective on the
goals of the project, and the experimenters, who were
the immediate users of the simulation.

More generally, it may be that too much specializa-
tion may lead to less intelligent action. People need
to understand what the other people do and how they
do it. Perhaps it is not essential for them to be able
to actually take over another position, but they do
need to understand well enough to predict how their
own actions will affect everyone else and how they
are likely to be affected by others. Smaller groups
are often thought to be more effective for software
development but are not practical for the large

CROWSTON AND KAMMERER 243

projects worked on by the companies we studied.
However, coordination and collective mind theory
taken together suggest what it is about small groups
that makes them work better: small groups more eas-
ily develop a collective mind, thus facilitating the co-
ordination of requirements development.

Our study also has implications for those hoping to
develop distributed groups that interact primarily or
only through electronic media. Because development
of collective mind depends on processes of social-
ization, conversation, and recapitulation, it will prob-
ably be difficult for such a group to develop a strong
collective mind. It may be that a strong collective
mind is unnecessary for the group’s tasks, e.g., if the
information needed is all relatively unambiguous and
at-hand. However, if a strong collective mind would
be beneficial or necessary, managers may wish to en-
sure that the group has opportunities for socializa-
tion, conversation, and recapitulation, even if they
meet face-to-face only rarely.

In this study, we used coordination and collective
mind theory to diagnose problems in software re-
quirements analysis and suggest possible remedies.
We did not formally test either theory, and we do
not claim to have “proven” either one. Rather, we
have demonstrated that both can be useful in un-
derstanding these situations. Much work remains be-
fore these theories can be formally tested using stan-
dard research techniques. A necessary first step is
to develop useful measures, e.g., for the various forms
in which collective mind is displayed (contribution,
representation, and subordination). Perhaps a more
appropriate test, though, would be to apply the clin-
ical research per~pect ive.~~ We believe that the two
theories provided suggestions for improving the per-
formance of the organizations we studied. This claim
can be tested by using our results as a basis for an
intervention in these companies. Following this path,
we hope at some future date to be able to report on
the outcomes of our attempts to improve collective
mind and coordination in organizations.

Acknowledgments

The authors wish to thank the two companies in-
volved for their generous support of this research.
The paper has also benefited from discussions with
Karl Weick and comments from anonymous review-
ers.

244 CROWSTON AND KAMMERER

Cited references

1. F. P. Brooks, Jr., The Mythical Man-Month: Essays on Soft-
ware Engineering, Addison-Wesley Publishing Co., Reading,
MA (1975), p. 17.

2. The Standish Group, Chaos, The Standish Group, Dennis,
MA (1995).

3. W. Meyers, “MCC Planning the Revolution in Software,”
IEEE Software 2, No. 6, 68-73 (November 1985).

4. D. B. Walz, J. J. Elam, and B. Curtis, “Inside a Software De-

5

6

7.

8.

9.

10.

11.

12.

13.
14.

15.

16.

17.
18.
19.

20.

21.

22.

23.
24.

25.

sign Team: Knowledge Acquisition, Sharing and Integration,”
Communications of the ACM 36, No. 10, 63-77 (1993).
L. A. Macaulay, “Requirements as a Cooperative Activity,”
RE’93: IEEE Symposium on Requirements Engineering, IEEE,
San Diego, CA (1993).
T. W. Malone and K. Crowston, “The Interdisciplinary Study
of Coordination,”ComputingSuweys 26, No. 1,87-119 (1994).
K. Weick and K. Roberts, “Collective Mind in Organizations:
Heedful Interrelating on Flight Decks,” Administrative Sci-
ence Quarterly, 357-381 (1993).
A. M. Davis, Software Requirements Analysis and Specifca-
tion, Prentice Hall, Englewood Cliffs, NJ (1990).
B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the
Software Design Process for Large Systems,” Cornmunica-
tions of the ACM 31, No. 11, 1268-1287 (1988).
J. G. March and H. A. Simon, Organizations, John Wiley &
Sons, Inc., New York (19.58).
J. R. Galbraith, Organization Design, Addison-Wesley Pub-
lishing Co., Reading, MA (1977).
M. Tushman and D. Nadler, “Information Processing as an
Integrating Concept in Organization Design,” Academy of
Management Review 3, 613-624 (1978).
J. G. March and H. A. Simon, p. 142.
J. M. Dukerich, F. J. Milliken, and D. A. Cowan, “In-Basket
Exercises as a Methodology for Studying Information Pro-
cessing,” Simulation and Gaming 21, No. 4,397-410 (1990).
T. W. Malone et al., “Tools for Inventing Organizations:
Toward a Handbook of Organizational Processes,” Proceed-
ings of Second Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, IEEE Computer Society
Press, Morgantown, WV (1993), pp. 72-82.
E. Davidson, JointApplication Design (JAD) in Practice, Uni-
versity of Hawaii (1997).
A. M. Davis, p. 20.
Ibid, pp. 54-55.
K. Crowston, Towards a Coordination Cookbook: Recipes for
Multi-Agent Action, unpublished doctoral dissertation, MIT
Sloan School of Management, Cambridge, MA (1991).
M. Powers, D. Adams, and H. Mills, Computer Information
Systems Development: Analysis and Design, South-Western,
Cincinnati, OH (1984).
W. S. Davis, Systems Analysis and Design, Addison-Wesley
Publishing Co., Reading, MA (1983).
N. D. Birrell and M. A. Ould,A Practical Handbook for Soft-
ware Development, Cambridge University Press, Cambridge
(1985).
W. S. Davis, pp. 100-170.
J. W. Brackett, “Software Requirements,” SEI Curriculum
Module SEI-CM-19-1.2 (January 1990). Reprinted in Stan-
dards, Guidelines, and Examples on System and Software Re-
quirements Engineering, M. Dorfman and R. H. Thayer, Ed-
itors, IEEE Computer Society Press, Los Alamitos, CA
(1990).
K. E. Weick, Sensemaking in Organizations, Sage Publications,
Thousand Oaks, CA (1995).

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

26.

27.
28.

29.

30.

31

32.

33.

34.
35.

36.

J. P. Walsh, “Managerial and Organizational Cognition: Notes
from a Trip Down Memory Lane,” Organization Science 6,
No. 3, 280-321 (1995).
D. B. Walz et al., p. 63.
G. Fischer, S. Lindstaedt, J. Ostwdld, M. Stolze, T. Sumner,
and B. Zimmermann, “From Domain Modelling to Collab-
orative Domain Construction,” in DIS ’95, G. M. Olson and
S. Schuon, Editors, ACM Press, Ann Arbor, MI (1995), pp.

R. J. Boland and R. V. Tenkasi, “Perspective Making and
Perspective Taking in Communities of Knowing,” Organiza-
tion Science 6, No. 4, 350-372 (1995), p. 359.
M. E. Atwood, B. Burns, D. Gairing, A. Girgensohn, A. Lee,
T. Turner, S. Alteras-Webb, and B. Zimmermann, “Facili-
tating Communication in Software Development,” in DIS ’95,
G. M. Olson and S. Schuon, Editors, ACM Press, Ann Ar-
bor, MI (1995), pp. 65-73.
J. Lave and E. Wenger, Situated Learning: Legitimate Periph-
eral Participation, Cambridge University Press, Cambridge
(1991).
T. J. Allen, ManagingtheFlow ofTechnology, MITPress, Cam-
bridge, MA (1977).
J. Orr, “Narratives at Work,” Field Service Manager, 47-60
(1987).
R. J. Boland and R. V. Tenkasi, p. 367.
L. L. Constantine, “Work Organization: Paradigms for Proj-

ACM 36, No. 10, 35-43 (1993).
ect Management and Organization,” Communications ofthe

E. H. Schein, “Lessons for Managers and Consultants,” Pro-
cess Consultation, Addison-Wesley Publishing Co., Reading,
MA (1987), p. 64.

75-85.

Accepted for publication Janualy 6, 1998.

Kevin Crowston Syracuse University, School oflnfomation Stud-
ies, 4-206 Centre for Science and Technology, Syracuse, New York
13244-4100 (electronic mail: crowston@syr.edu). Dr. Crowston re-
cently joined the School of Information Studies. He received his
Ph.D. in information technologies from the Sloan School of Man-
agement, Massachusetts Institute of Technology (MIT) in 1991.
Before moving to Syracuse, he was a founding member of the
Collaboratory for Research on Electronic Work at the Univer-
sity of Michigan and the Centre for Coordination Science at MIT.
His current research focuses on new ways of organizing made pos-
sible by the extensive use of information technology.

Ericka Eve Kammerer University ofMichigan Business School,
701 Tappan, Ann Arbor, Michigan 48109-1234 (electronic mail:
eek@umich.edu). Ms. Kammerer is a doctoral student. In her dis-
sertation research, she is using narrative techniques to study the
development of community in Usenet discussion groups.

Reprint Order No. G321-5675.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 CROWSTON AND KAMMERER 245

