
Architecture of the
San Francisco
frameworks

The San FranciscoTM project is an IBM initiative,
with over 130 independent software vendors, to
provide business process components that can
form the basis of rapidly developed distributed
solutions for mission-critical business
applications. This paper describes the original
objectives of the San Francisco project and
discusses the methodology, skills, and
architecture that were used to achieve those
objectives. The paper includes discussion of the
importance of design patterns, extension points,
and a well-defined programming model used in
the San Francisco components. Most topics are
touched on briefly to give an overview; some
knowledge of object-oriented development
techniques is assumed.

T he San Francisco* project was conceived as a
way to help independent software vendors (ISVS)

deliver commercial, mission-critical business man-
agement systems that meet current and emerging
customer demands. These demands are dominated
by rapidly changing business requirements based on
the re-engineering that is being done in many com-
panies, and by the growing importance of distributed
applications for intranet, Internet, and extranet.'
Distributed object-oriented (00) technology was rec-
ognized by many of these vendors as a necessary base
for their future generation of applications. However,
good object-oriented skills are difficult to find, and
most of the design and programming skills available
in these development shops were for server appli-
cations written in RPG and COBOL.

The idea to have IBM collaborate with vendors, to
build a set of distributed object frameworks specif-
ically for targeted application domains, was the be-

by K. A. Bohrer

ginning of the San Francisco project. These frame-
works were to provide a substantial starting point
for new application development.

This paper does not describe the specific content of
the domain frameworks and only touches on a few
of the infrastructure capabilities. Instead, it describes
the specific objectives of the project and discusses
the methodology, skills, and architecture used to
achieve those objectives. Reader knowledge of ob-
ject-oriented development techniques is assumed.
Both successful and unsuccessful approaches are
mentioned. This includes discussion of the impor-
tance of design patterns, extension points, and a well-
defined programming model in the San Francisco
components. Topics are touched on briefly to give
an overview and to illustrate how they are impor-
tant to the architecture and to achieving the prod-
uct objectives. More detailed information is avail-
able in other papers in this issue and in other
publications, including the San Francisco Toolkit
documentation, available from the World Wide Web
at http://www.ibm.com/java/sanfrancisco.

Project objectives

Three major product objectives were established at
the start of product development.

Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

156 BOHRER 0018-8870/98/55.00 0 1998 IBM IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Objective 1: Offer easy entry into 00 technology.
The first objective was to provide a product that of-
fered an easy entry into the effective use of object-
oriented technology to vendors that did not already
have 00 skills. More specifically, this objective was
to be achieved through providing:

Approximately 40 percent of the application in a
reusable form (frameworks)
Sample graphical user interfaces (GUIS) to exer-
cise all domain framework features
Support for evolutionary use of the frameworks,
starting with existing applications and data
Components that are easily extensible and mod-
ifiable
Flexible persistent object storage
An integrated set of tools for San Francisco de-
velopers

We decided that the frameworks would provide a
reasonably complete model of each chosen applica-
tion domain, but without the user interface. The
frameworks would provide the business objects that
encapsulated the persistent business data and bus-
iness processing of the domain, but leave the user
interface design and implementation to the ISV that
produced the completed application on the frame-
work base. However, in order to make the product
easier to use and understand, we also decided to pro-
vide GUI samples that allowed the function of the
frameworks to be executed and explored immedi-
ately after the product was installed. This was seen
as a substantial advantage over requiring ISVS to be-
come skilled enough to develop their own code be-
fore being able to execute the framework function-
ality.

Vendors knew they would not be able to replace their
entire suite of applications with San Francisco-based
applications at once, although complete replacement
was considered to be the eventual goal. So, while the
frameworks were designed for top-down new appli-
cation development, it was necessary to support in-
teroperability between new San Francisco applica-
tions and existing applications. From the beginning,
both San Francisco-based and non-San Francisco-
based applications were to share the same databases.
This requirement has grown stronger over time, lead-
ing to more emphasis on interfaces that support di-
rect interaction of applications, not just the sharing
of data.

Since the frameworks were to provide a base for
many different application solutions, they had to be

designed to be easily extended with additional bus-
iness processing and data, and the processes and data
provided by the frameworks needed to be easily mod-
ifiable. The frameworks had to be reusable world-
wide, allowing for country differentiation not only
in languages but, more importantly, in business rules.

We felt that the persistent storage for the objects
needed to allow for both relational databases and
object-oriented databases. Most vendors wanted to
use a relational database of their own choice. How-
ever, the San Francisco architects felt that there
would be increasing value in using object-oriented
databases, particularly the protected-mode object
support being built into the Operating System/400*
(OS/400*) system. Furthermore, the ability to use a
simple file system for persistent object storage is very
convenient for demonstrations, samples, and unit
testing.

Easy use of object-oriented technology, and of frame-
works in particular, is impossible without a good set
of development tools. The traditional integrated de-
velopment environment tools were needed; but we
also decided that “wizards” would be very useful in
guiding ISV developers to the right places in the
framework to make modifications, and in providing
automatic code generation where possible. A cru-
cial decision in providing development tools was our
choice of the Java** language. Java was very well
accepted by the application programmers, while
C+ + was considered much too difficult and error-
prone.

Objective 2: Enable applications that allow compa-
nies to be more competitive. The second objective
was to make sure that the framework components
provided a base that would produce applications with
significant added value over those of the previous
generation. The applications produced on San Fran-
cisco frameworks should allow companies that use
them to be more competitive. This, after all, is the
key reason for companies to buy new application soft-
ware. This objective was to be realized in the frame-
works through:

True object-oriented design, easily modifiable and
extendable
Support for clientherver and other distribution
models
Separation between the user interface and the bus-
iness objects, allowing multiple and replaceable
user interfaces

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 BOHRER 157

Separation between business objects, commands,

Support for development of additional compo-
and selections

nents

Object-oriented technology, and in particular, a good
object-oriented design, was to be used so that the
resulting applications would be easier to change in
response to business process changes within a com-
pany, would be easier to maintain, and would hide
the complexity of the variety of distributed environ-
ments supported.

The business objects would be supported by an in-
frastructure that handled transactions, concurrency
control, and persistence as invisibly as possible. “Dis-
tribution points” would be designed into the frame-
works for optimum performance. The frameworks
could then be customized to distribute processing
and partition data across multiple servers and cli-
ents. A unique object accessing scheme would allow
application developers to make decisions on opti-
mistic vs pessimistic concurrency control, and local
or remote object execution, on a transaction basis
without any change to the business objects or the
frameworks.

The frameworks would be designed to support a
model-view-controller2 application architecture.
This is necessary to allow the business objects to be
reused in different business processes with different
user interface requirements. For example, an HTML
(HyperText Markup Language) page might provide
the user interface to a business process delivered over
the Internet, while a traditional Microsoft Win-
dows** application GUI might be provided for in-
house business processes. In addition, we intended
to follow the more specific model-command-selec-
tion architecture that was used in Taligent’s Com-
monPoint** product. During development, this was
modified somewhat, keeping the emphasis on com-
mands but dropping any explicit support for selec-
tions. The frameworks have been designed to encap-
sulate business tasks in “command” objects that can
be easily executed either as an independent trans-
action or as part of a larger transaction. Commands
can be designated to run on specific servers. These
commands offer a convenient target for invocation
from workflow logic. They also facilitate partition-
ing of workload across servers.

The ideal solution for rapid application development
may be to have a set of prebuilt components that
hook together through a visual development envi-

158 BOHRER

ronment with little or no coding required. The first
release of San Francisco does not provide such com-
ponents, but it does support development of these
components by others. In particular, components can
be built that use Visual Basic** controls or Java-
Beans* * as the front end to the server-side San Fran-
cisco framework function.

Objective 3: Provide an open solution, allowing
trade-offs in cost, performance, and skill. The final
objective was to ensure that the resulting frameworks
allowed enough choices in operating system, hard-
ware, and application architectures to allow ISVS a
wide range of cost, performance, and skill trade-offs
in determining the nature of their final solutions.
Openness to a variety of application architectures
has become increasingly important. We wanted to
cover the spectrum from “thick” clients where both
the user interface and much of the business logic runs
on the client, to Internet applications that download
HTML pages and applets, to “thin” clients where the
business logic is on the server side, along with the
data manipulation. These are some of the primary
options the frameworks had to support:

Operating system options for the client
- Windows 95* *, Windows NT**
- Any other Java client (in future releases)

-Windows NT, AIX* (Advanced Interactive Exec-

- OSi400, Solaris””, HP-UX** (in future releases)

- HTML pages with applets
- HTML pages with servlets4
-Traditional applications and legacy applications
- Visual Basic controls or JavaBean components

Operating system options for the server

utive)

Application architecture options

as the front end to San Francisco objects

System structure

The San Francisco architecture and design were cre-
ated from the top down (see Figure 1). Domain-spe-
cific frameworks, now called “core business process-
es,” provide the highest level of reuse for applications
in specific domains. The core business processes cur-
rently completed or in development are those for
basic business management systems: general ledger,
accounts receivable (AR) and accounts payable (AP)
ledgers, warehouse management, and order manage-
ment.

The next-lower level of the system, the common bus-
iness objects, is provided to achieve the objectives

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 1 San Francisco structure
"

BUSINESS OBJECT PROGRAMMING MODEL

for reusability, understandability, maintainability,
and interoperability of the core business processes.
The common business tasks and common design so-
lutions found during requirements modeling and
analysis of the core business processes are put in the
common business objects subsystem. The processes
and objects in this layer are then reused across mul-
tiple core business processes. This includes domain
object classes such as Company, Currency, Business-
Partner, etc. Also included are interfaces needed for
different core business processes to interoperate,
such as interfaces for posting entries to a general led-
ger application. There are also technology-level
classes in the common business objects layer that im-
plement design patterns that are reused in the de-
sign of the business processes. Design patterns are
discussed in more detail in a later section.

The lowest level of San Francisco is the foundation
infrastructure layer. The foundation includes the dis-
tributed object infrastructure and objects that are
generally needed in implementing business object
models. The foundation layer also includes utilities
associated with installing, configuring, administer-
ing, and deploying applications built on the infra-
structure.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

The function in the base infrastructure layer was de-
termined by the needs of the domain objects and re-
sulting applications. Where function was the same
as that standardized by Object Management Group's
(OMG'S) CORBA" * and COS* * specifications, the San
Francisco infrastructure uses the same semantics and
similar interfaces. However, we made no attempt to
be OMG-compliant or to provide a complete set of
OMG-specified object services. Our emphasis on pro-
viding the essentials included defining a program-
ming model that hides as much of the infrastructure
services and function as possible. Other infrastruc-
tures could support the common business objects
and core business processes by implementing this
programming model. IBM is doing this for its
OMG-compliant Component Broker Connector'
middleware.

Methodology

The methodology used for San Francisco develop-
ment is based on a combination of Jacobson and
Booch methodologies, with modifications specific to
producing reusable business frameworks rather than
specific application solutions.

BOHRER 159

Requirements. Development began with a team of
domain experts for the first targeted core business
process domains, with two experts in object technol-
ogy as leaders. The domain experts were asked to
write a requirements specification for a business ap-
plication in the target domain, organized by a break-
down of business processes and tasks within those
processes. This document became the basis for the
“real” requirements document, called the framework
requirements.

The domain experts were given education in object-
oriented concepts and use-case modeling. Both
Booch’s6 and Jacobson’s7 books were provided and
relevant chapters were suggested reading. But to pro-
vide more specific guidance, since the domain ex-
perts generally had no previous knowledge in object-
oriented development, the leaders produced a
requirements process document and a template for
the desired requirements documentation. The ob-
jective at this stage was not only to capture the do-
main function that would be provided, but to struc-
ture it in a way that would identify common business
processes and identify where the requirements var-
ied across application vendor or company solutions.
This would provide a requirements document that
would map well to the desired resulting framework
structure.

The framework requirements included use-case
modeling of the business processes in order to iden-
tify primary, secondary, extension, common, and ab-
stract tasks. We modified Jacobson’s use-case mod-
eling methodology to add an “inherits” notion for
abstract tasks and to emphasize decomposition of
tasks within a process to the point where common
and abstract tasks across processes were recognized.
All user-interface detail was removed from the
framework requirements. Instead, the scope of the
system, for the purpose of the framework use cases,
was constrained to input and output data used by
the business tasks. Perhaps the most noticeable dif-
ference from traditional use-case-based require-
ments was our emphasis on classifying tasks as ei-
ther high, medium, or low volatility with respect to
different company or country requirements. This was
to identify early which tasks needed to be designed
to be easily extended by application developers. Ex-
amples of the variations in business rules, or other
required flexibility, were explicitly provided in the
framework requirements documents.

Object-oriented analysis. When the framework re-
quirements documents were almost completed, ad-

160 BOHRER

ditional developers with object-oriented analysis
skills were added to the teams. The domain experts
were given training in object-oriented analysis tech-
niques similar to Jacobson’s methodology. The ob-
ject-oriented experts were given training in the ap-
plication domains.

As was done in the requirements phase, the leaders
produced an analysis process document explaining
the steps to be followed and the expected analysis
results. In this case, the analysis was to be docu-
mented using the Rational ROSE** tool, with all the
analysis work captured in a ROSE model. The Booch
notation was augmented to allow objects to be iden-
tified as either “entity” or “control” as recommended
by Jacobson. Jacobson’s notion of interface objects
was expanded to “application” objects, which were
used to model classes that would not be part of the
frameworks but would represent an application’s use
of the frameworks.

This analysis process was used to produce the static
analysis object model, without any intermediate def-
inition of a simpler domain object model. This static
model captured the relationships between classes
and the cardinality of those relationships. Relation-
ships included inheritance, containment without
ownership, containment with ownership, and use.
The analysis object model was done without any con-
sideration of design constraints or infrastructure base
classes.

Dynamic modeling of the run-time messages be-
tween objects was not done at the analysis level. This
turned out to be a mistake. Initially it was thought
that the domain experts were so knowledgeable that
discussion of the dynamic business processing to be
performed by the identified objects was sufficient to
verify the static object model. We ended up redoing
the analysis model later, during dynamic modeling
at the design level. We now recommend doing both
static and dynamic object modeling at the analysis
level, before design and implementation constraints
are ever considered.

The stability of the domain or analysis model
throughout the product development life cycle is gen-
erally considered to be an indicator of the model’s
correctness. The San Francisco analysis models had
quite a bit of change over time. One factor was the
lack of dynamic modeling during the initial analysis
work, as just mentioned. Another was the lack of ob-
ject-oriented expertise in the initial analysis work and
a significant turnover in domain experts for the fi-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 2 Static dependencies (one-way) between class categories
” ~~ ~~~ ~~

nancial domains. Where there was continuity of per-
sonnel throughout requirements definition, analy-
sis, and subsequent development, the models were
more stable and development through design and
coding was, much more productive.

Subsystems and categories. Once analysis-level
classes had been identified, they were divided into
categories. Top-level categories, now called “pack-
age categories,” were created to represent the ma-
jor subsystems. The categories at this level map to
Java packages that contain the framework implemen-
tation code. Within each top-level category a hier-
archy of categories was defined, where the catego-
ries grouped together classes that had many
dependencies on each other and were primarily in-
volved in the same business tasks. Dependencies be-
tween categories were identified.

The overriding rule for assigning classes to catego-
ries was that categories could have only one-way de-
pendencies on each other, either directly or indi-
rectly. This ensured that the system could be built
in a bottom-up fashion, or top-down where stubs
could be used to temporarily satisfy dependencies.
This structure of one-way dependency also results
in a more modular system, with tight coupling within
categories and looser coupling between categories.
This makes it much easier to use part of the frame-

.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

work without being required to use, or pay for, the
potentially large overhead of parts that are not
needed. As an example, part of the category diagram
for common business objects is shown in Figure 2,
with the dependencies between categories. Notice
that the CF Business Partners category depends on
the CF Address category. (CF is the Java package
name, and the ROSE category prefix, for interfaces
and classes in the business object layer.) This is be-
cause the Businesspartner class has an address. How-
ever, the Address class has no dependencies on any
other class.

Breaking two-way dependencies between categories. In
some cases the domain required two-way dependen-
cies, making it difficult to find any reasonable par-
titioning of the classes. An example of this is the re-
lationship between the Company category and the
Business Partners category. In this domain it is of-
ten necessary to find all business partners associated
with a company. Therefore the static model shows
a 1-n relationship between the Company class and
the Businesspartner class. (See Figure 3.) There is
also a 1-1 relationship from the business partner to
the company with which it is doing business.

Situations like this one between the Company and
Businesspartner classes arose frequently in the anal-
ysis models. On closer examination, it was recognized

BOHRER 161

Figure 3 Supporting ”loose” two-way dependencies
dynamically

~~~~~~ _______ . ~~~ . ~~ 

that  the relationship in one direction was for finding 
or grouping objects of a class “A” (e.g., Business- 
Partner) associated with objects of another class “B” 
(e.g., Company), where “B” (Company) did not re- 
ally  have to be designed with  any particular business 
logic  knowledge of “ A 7  (Businesspartner). That is, 
nothing in the behavior of a company  object depends 
on business partner objects.  Business partner objects 
on  the  other hand do modify their behavior and at- 
tributes based on the company object to which they 
are associated. 

To be able to have  one-way dependencies between 
class categories, we support  a technique where re- 
lationships  can be dynamically added between  classes 
at run time through the use ofproperties. The prop- 
erty mechanism  is described in more detail in the 
subsequent section on extension points. 

In the case above, the association from Company to 
Businesspartner would be dynamically created as a 
property on Company  whenever an application used 
Businesspartner. However, classes  in the Company 
category would  have no knowledge or code aware 
of Business Partners category classes. 

Prototyping. Prototyping was done  at several points 
in the project to discover or verify development deci- 
sions. The first prototype was  actually done  at  the 
very  beginning of the project. While the domain ex- 
perts were working on  the application requirements 
document, a team of programmers from IBM and 
from two of the ISV partners was formed. The ob- 
jective of this team was to build a prototype of an 
object-oriented application to verify the usability of 

162 BOHRER 

th le development tools and to learn how to merge 
the development cultures of the  three different  com- 
panies that would  be  working on the project together. 

Soon after this, infrastructure prototyping was ini- 
tiated to determine whether the object  services  avail- 
able within IBM at  that time would be adequate and 
to learn how best to use these services. A third pro- 
totype was done by the object-oriented designers 
while  analysis  work  was  in progress. This prototype’s 
objective was to discover and verify  design patterns 
that would be applied when converting the analysis 
model into  a design model. A second infrastructure 
prototype was done after the switch to  a Java-based 
object infrastructure. 

One more prototype was done about halfway through 
the first release development cycle. This occurred 
after what we hoped would be the last major iter- 
ation on the programming model. The objective  was 
to verify our programming model by prototyping the 
application transaction models that it  was designed 
to  support. This included the applications’ structur- 
ing of transactions with the user interface code. This 
turned  out  to be a difficult area because of the way 
the Java AWT (Abstract Windows Toolkit) GUI li- 
brary uses threads. 

The prototypes were  useful,  but in general were  given 
inadequate time for completion. So, although the 
pattern prototype identified  some  initial patterns and 
helped set the programming model, pattern discov- 
ery continued during design. The C+ + infrastruc- 
ture prototype was never completed because of the 
switch to Java. The final application prototype was 
useful in confirming the programming model, but it 
should  have been more widely  publicized to the team. 
That would  have helped more members of the team 
understand how the frameworks  were to be  used,  sav- 
ing misunderstandings and leading to sample code 
for more application structures. 

Object-oriented  design. Following the completion of 
the initial analysis model and the  pattern prototype, 
the size of the development team was dramatically 
increased as domain programmers and object-ori- 
ented designers and programmers were added. The 
composition of the frameworks team (not including 
the infrastructure team) became about 25 percent 
domain experts, 25 percent domain programmers, 
40 percent object-oriented programmers, and 10 per- 
cent object-oriented designers. 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



Design  involved  refining both the use-case task de- 
scriptions and  the analysis model. Each task  was 
turned  into  one  or more scenarios, which included 
details of the business  logic to be implemented, with 
explicit references to classes  used in that implemen- 
tation.  The scenarios were captured in HTML doc- 
uments with a fairly  rigid format. All scenarios shared 
the same terminology for common actions such as 
creation, deletion, validation, etc. Scenarios speci- 
fied input (either mandatory or optional), output, 
and detailed processing. The domain experts wrote 
the scenarios. 

During design, the analysis model became more de- 
tailed. At this point the programming model and its 
required base classes were introduced. Dynamic 
modeling was done using the object interaction di- 
agrams in ROSE. The object-oriented designers cre- 
ated object interaction diagrams for the scenarios 
specified by the domain experts. Analysis-level 
classes were augmented, generally according to de- 
sign patterns, to support easy modification of vol- 
atile business processes. Design-level  classes that 
were specifically meant to facilitate extension were 
named with a special prefix that identified them as 
extension points. Each extension point identified in 
the OOD (object-oriented design) model follows a 
design pattern. (Design patterns  are discussed  in a 
later section.) 

The result of design modeling was not  a new ROSE 
model, but the augmentation of the original analysis- 
level ROSE model. To the original analysis-level  class 
diagrams, new  class diagrams were added, showing 
the design-level detail. Thus the ROSE model could 
be viewed at either  the analysis or design  level. State 
diagrams were used for objects that had an unusual 
or complex  life  cycle. Module diagrams were not 
used, as the top-level  categories corresponded to Java 
packages, and each object had its own Java inter- 
face and class  file in the package for its category. 

Because extensive reuse of someone else’s code is 
notoriously difficult, we developed and applied de- 
sign patterns so that similar  analysis models would 
map to designs and implementations that had a high 
degree of commonality.  Two  design pattern books9,10 
were used  as references and as a  starter set of al- 
ready-established patterns. In addition, all  designs 
were reviewed by the two object-oriented expert 
team leaders. They were responsible for ensuring 
that the agreed-upon patterns were being applied 
appropriately, and for developing new patterns as 
necessary.  New  design patterns were documented in 

IBM SYSTEMS  JOURNAL, VOL 37, NO 2, 1998 

a ROSE model, and sometimes in on-line HTML doc- 
umentation as well.  Many  of the design patterns sim- 
plify  modification or extension of the frameworks. 

Coding and unit test. Coding was begun by the com- 
mon business objects team. This was a small team 
of four, or sometimes five, programmers. Unlike the 

The  designers created 
object  interaction diagrams 

for the scenarios created 
by the domain experts. 

other domain frameworks teams, members of this 
team knew C+ + and had some level of object-ori- 
ented design capability. This team influenced and 
verified the programming model that was concur- 
rently being designed and documented. The model 
included the use of collections, the creation pattern 
for objects, and the accessing of objects. 

The programmers of the  other teams were given ed- 
ucation in C+ + and in CORBA-based IDL (interface 
design language) and object services. The domain 
programmers had much trouble using C+ + and IDL 
productively. It was not unusual to  do 20 compila- 
tions before  the C+ + code compiled cleanly. In ad- 
dition, the general education provided for object ser- 
vices left the programmers overwhelmed and 
wondering when and how to use the various services. 
Remember  that object-oriented programming was 
new to many of these programmers, and  the use of 
distributed objects was  new to all of them. It was nec- 
essary to simplify the programming  task  dramatically 
in order  to achieve the  dates planned for product 
shipment. 

Four major changes were made early  in the coding 
cycle to increase productivity: (1) C+ + was replaced 
by Java, a simpler language and a more productive 
development environment, (2) an explicit program- 
ming  model  was provided, covering  all OOD relation- 
ships and hiding object services, (3) a code gener- 
ator was provided that  read  the OOD model as input 
and adhered  to  the programming model when gen- 
erating  output, and (4) the programmers were re- 

BOHRER 163 



educated on Java and the programming model, as 
needed, for framework coding. 

Java was found to be a much easier language and 
development environment than C+ + and IDL. Java 
has garbage collection and does not have pointers. 
This eliminates a major source of errors in C+ + pro- 
grams. It also eliminates the confusion caused by 
pointer manipulation and dereferencing. The Java 
development environment we used, with RMI (re- 
mote method invocation) rather than an IDL-based 
distributed object infrastructure, is simpler because 
it  is not necessary to deal in two “languages” (IDL 
and an implementation language such as C+ + or 
Java). 

A programming model was developed and docu- 
mented that hid  as  much of the object service infra- 
structure as  possible. It specified how OOD relation- 
ships should be implemented in the code. The 
programming model also  specified how to  create, 
find, and access objects within the framework code. 
Persistence, transactions, concurrency, security, and 
notification services were all  implicitly supported, 
freeing framework programmers from these con- 
cerns. 

A “wizard” was produced to convert the ROSE OOD 
model into Java source code that followed the pro- 
gramming model. This wizard implemented many 
of the required methods and added collection ob- 
jects where needed for 1-n relationships. During its 
development, it  was  discovered that some additional 
information could be added  to  the ROSE model that 
would make the wizard even more useful; for exam- 
ple, directives for the type of collection class to be 
generated could be added. This led to  another it- 
eration on the design model, adding wizard direc- 
tives and increasing the model’s  consistency. 

Finally, the Java education was  much more focused 
than  the earlier education. We did not teach all of 
Java, its JDK (Java Development Kit) libraries, and 
RMI.  Instead, we taught the Java basics needed for 
programming the business object frameworks, and 
we taught the San Francisco programming model. 
This was  much more successful than  the earlier ap- 
proach with standard courses on specific technolo- 
gies. 

Design  patterns 

As mentioned earlier, design patterns were rigor- 
ously developed and applied whenever  possible. De- 

164 BOHRER 

sign patterns provide ,a  “canned” solution to reoc- 
curring problems, in this case, how to best organize 
a set of classes to perform a business process and 
still  allow the required extensibility. This is analo- 
gous to using prefabricated hardware or preframed 
doors in house construction. Not everyone needs to 
understand the best way to design and create  a lock, 
or  the best way to  frame and hinge a door. Design 
patterns facilitate the understanding of  how a piece 
of software works,  maximize reuse of both the code 
and design solutions, and therefore minimize main- 
tenance. 

Some of the design patterns used  in the frameworks 
come from published works, particularly Gamma. 
These include: 

Abstract Factory (supports substitution of derived 
classes  with extended subclasses) 
Strategy (separatesvolatile business rules from the 
class of the decision maker, allowing  multiple strat- 
egies to be used) 
Chain of Responsibility (allows  any object in a 
chain to provide the necessary behavior) 
Adapter (maps from one interface to another) 
Composite (supports hierarchies of objects  viewed 
as a single object) 

Several  new  design patterns were developed specif- 
ically for our business object frameworks. They ap- 
pear to be generally useful  in commercial business 
processes. These are: 

Keyables (supports construction of a key  from  mul- 
tiple attributes) 
Atomic Entity Update (supports updates whose 
validity depends on multiple loosely coupled ob- 
jects) 
Encapsulated Chain of Responsibility (hides the 
chain of responsibility [COR] from the client  in a 
simple method call) 
Extensible Item (supports the dynamic addition of 
behavior [methods] to an object) 
Aggregating Entity Controller (collects objects at 
different levels of the company hierarchy, allow- 
ing  lower-level companies to see a composite view 
of parents) 
Shared Entity Attributes (allows some object at- 
tributes to be different for lower-level companies, 
and some attributes to be shared by all companies) 
COR-Driven Strategy (uses COR to find the  appro- 
priate business  policy [strategy]) 
Dynamic Identifier (supports dynamically extend- 
ing  valid  values for domain data [types]) 

IBM SYSTEMS JOURNAL, VOL 37. NO 2, 1998 



Identifier-Driven  Strategy  (chooses the  correct 
strategy  based on  an identifier  argument) 
Life Cycle (allows the life cycle defined  for an  ob- 
ject to  be changed statically or dynamically, includ- 
ing the  permitted  state transitions, and allows ad- 
ditional  behavior to  be associated with various 
states) 

Extension  mechanisms and extension  points 

The frameworks are designed to  be  extended.  The 
extension  mechanisms are limited to a small num- 
ber  that  can  be  learned  and applied  over and over 
in building  a  completed  application  from the  frame- 
works. Some of the design model classes were  added 
to provide  a  clear  and easy way to  extend  the bus- 
iness logic in the framework. Such classes are des- 
ignated  as  extension  points, and  are identified in the 
OOD model by an “E<xy>-” prefix on  their class 
name.  Extension  points clearly identify  where the 
frameworks are  meant  to  be  extended. In addition 
to  the extension  points,  some  extension  mechanisms 
are applicable to all business  object classes, or  to all 
business  object classes that  inherit  from  Property- 
Container. 

All business  object classes, unless  otherwise  noted, 
can be  extended by building a subclass that  adds new 
attributes  (as instance variables or computed values), 
adds new methods,  or  overrides existing methods  to 
modify the business logic in those  methods.  Care 
must be taken to maintain the “contract” of any over- 
ridden  method  and not to require  initialization val- 
ues for  any new instance  variables on creation.  The 
new subclass can  then  be configured  into the system 
as  the  implementation  to  be used  instead of the orig- 
inal  framework class. This is an application of the 
Abstract  Factory  pattern. 

Any business  object class that inherits  from  Prop- 
ertycontainer  can  be  extended with new attributes 
or relationships at run  time,  without modifying the 

, class source or creating  a new subclass. This is be- 
cause any Propertycontainer can  hold an  arbitrary 
number of objects,  each with an  associated  name. 
Properties  are objects that can be  added  to  the  Prop- 
ertycontainer with a  name  and  retrieved by that 
name.  Properties can be owned (or  not) by their 
Propertycontainer.  As  an example of using a  prop- 
erty to establish  a  relationship,  consider  a  ChaseLet- 
ter class. An object of this class could add itself to 
an object of the  DebtItem class in order  to establish 
the fact that  the  debt  item  had  been “chased.” The 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 

DebtItem class does  not  need  to  be rewritten to know 
about “chase letter” processing. 

Business objects are all created with static  creation 
methods on a  corresponding  factory class. For ex- 
ample,  an  Account class would be  paired with an Ac- 
countFactory class. The factory class may be sub- 
classed.  This subclass would then  be configured  into 
the system. The static  creation  methods  on  the orig- 
inal  factory class will “delegate”  to an instance of 
the subclass. This allows the subclass to change,  for 
example, the primary key used with the new object, 
or  to change the persistent server location of the new 
object. In this way, substitute  factories  aid in par- 
titioning  objects  across  servers  based on instance 
data, or mapping objects to legacy databases. If there 
is no  substitute factory class, then  the provided  fac- 
tory class uses the default  configuration  information 
to decide, on a class basis, where  to  create  the new 
object,  and assigns a  unique  identifier to  be its  pri- 
mary key. 

Most of the explicit extension  points in the OOD 
model  are policy classes. These classes encapsulate 
some  particular  business  rule.  There  are different 
types of policy classes. In  some cases the  framework 
is designed to work with one  particular policy, and 
although  this policy can be replaced,  a  default is pro- 
vided in the framework. In  other cases, the  frame- 
work is designed to work with multiple policy classes 
that  can  be applied either company-wide or system- 
wide, or found  through  a  chain of objects or  through 
a  separately  supplied  strategy. The last case is really 
a policy that is used to find policies. In  the case of 
multiple policies, policy subclasses would be created 
to serve as  additional classes to  be used at run  time, 
rather  than  as a  replacement subclass for  the  frame- 
work-supplied policy. The policy extension variations 
are  summarized below: 

Replace  a  default policy 
Add  additional policy choices to  be used in selected 

Change  the object  chain by which a policy is se- 
processes 

lected  for  a  process 

Another  common extension  mechanism in the 
frameworks is the use of the Dynamic  Identifier  pat- 
tern to represent basic application data types. There 
is often  a  need in business  applications to define  a 
set of values that  are valid for  a  particular  attribute. 
The set of values  often  depends on the final appli- 
cation, or even on  the company in which the appli- 
cation will be  deployed.  Sometimes an application 

BOHRER 165 



should allow run-time additions of new values. Ex- 
amples might be valid transaction types  in a finan- 
cial  system,  valid routing destinations of documents, 
supplier categorizations, etc. Because the valid  val- 
ues are not known at compile time, an  enumerated 
type, or fixed static values, cannot be used. The 
frameworks use a common set of classes that make 
up the Dynamic Identifier pattern. These classes are 
provided in the common business objects layer of 
the system. 

Other extension mechanisms include changing the 
behavior of an object based on its life-cycle state, 
defining  new summaries of data  to  be calculated and 
cached if desired, and adding new  keys for quickly 
accessing objects from within a collection. 

Business object programming  model 

Aprogramming-model document was begun  as a way 
to educate the teams that were to implement the bus- 
iness  objects  in the ROSE design  model. The program- 
ming model also became the specification for the 
function and public interfaces of the infrastructure. 
This was  very important in  giving the infrastructure 
developers a clear vision of what they were building 
and how it  would be used. The programming-model 
interfaces were divided into  three  broad categories, 
based on programming requirements. The client  pro- 

166 BOHRER 

gramming model describes interfaces needed when 
using  business  objects. The business  object  developer 
programming model describes interfaces needed to 
implement business objects, and  the administration 
interfaces are needed for tuning, configuring, and 
administering the San Francisco  frameworks and the 
applications built upon them. 

Client  programming  model. The client  programming 
model interfaces specify  how a program or applica- 
tion  uses  business object classes. This includes cre- 
ating, deleting, copying, and accessing objects. The 
client programming model also  covers  working  with 
groups of objects, querying a group or a subgroup, 
or iterating through a group of objects. In order to 
support robust, commercial applications, all persis- 
tent business objects in San Francisco are accessed 
and modified from within a transaction. The client 
programming model supports defining the transac- 
tion scope and choosing various access options, such 
as locking mode and execution location. 

The basic  business object types are introduced rel- 
ative to their use (see Figure 4). Two base classes, 
Entity and Dependent, provide support for business 
objects that primarily encapsulate data and the as- 
sociated business  logic for those data.  One of these 
would be  the base class for any object in the OOD 
model that is an entity,  in Jacobson terminology. The 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



Dependent class was introduced  for lightweight ob- 
jects, generally representing  abstract  data types, that 
would normally be  implemented as  nondistributed 
Java objects. However,  they need  to  be  able  to hold 
persistent  data of other, particularly  entity,  objects 
and  they need  to  be  able  to  be passed on remote 
method calls to entity  objects. An Entity subclass is 
used  for  persistent  business  objects  that may need 
to  be concurrently  shared,  independently  recover- 
able in a  transaction, globally shared, or remotely 
invoked. 

The Command  base class is a  specialization of De- 
pendent  and  intended  for  control logic that  performs 
business  tasks  not  belonging in any particular  entity. 
Any control  object in the OOD model  would be im- 
plemented  as  a  command  object.  When  a  command 
object is created it can be  targeted  to execute “near” 
any persistent  business  object.  This  causes  the  com- 
mand  to  be  shipped to the server  process of that bus- 
iness  object, and executed in that process. A com- 
mand can  be  run  as  a single transaction or  as  part 
of a  larger  transaction.  When  a  command is run  as 
a single transaction,  the  Command class establishes 
the  transaction scope  and  handles any rollback 
needed  for  “uncaught” exceptions. 

The client  programming  model  provides  clear  rules 
for  dealing with business  objects  derived from  each 
of the base types. For example, any instance of a  sub- 
class of Dependent is passed by value with “copy” 
semantics.  Any  instance of a subclass of Entity is 
passed by reference. 

The concepts of transaction  scope,  transient vs per- 
sistent  objects,  owned vs unowned  objects, and 
shared vs nonshared  objects  are explained by the 
model  documentation. The programming  model 
hides  most of the distributed  object services. How- 
ever, some service interfaces are  needed when us- 
ing business objects. In particular, copying, deleting, 
and accessing an object  and  controlling  transaction 
scope are  part of the client  programming  model. 
These interfaces are  made  as easy to use as possible 
with methods,  either on the  object itself, or on a  base 
factory class designed as a  singleton I’ for  each  pro- 
cess. This  singleton is accessed through  a  static 
method,  and  it  delegates  to  the  appropriate local or 
remote service objects as necessary. 

Business object developer programming model. Ad- 
ditional  interfaces  were  defined  for the  programmer 
developing  a new business  object class or extending 
an existing one.  These  make up the business  object 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 

developer  programming  model.  This  model includes 
the  methods  that must  be  provided in the subclasses 
of the  three  major  base classes: Dependent, Entity, 
and  Command.  Documentation  for  this  model ex- 
plains which methods must be  overridden, which  may 
be optionally  overridden,  and  what new methods 
must be defined. Wherever possible, methods are im- 
plemented in the  base class so they do  not have to 
be  overridden in subclasses. 

The business  object  developer  programming  model 
also specifies how attributes  and  relationships shown 
in the OOD model  should be  implemented.  The im- 
plementation of relationships  varies with the  cardi- 
nality of the relationship: 0-1, 1-1, 0-n, and 1-n. 
This  also  varies  depending on whether  the  relation- 
ship involves ownership of the  related object(s). Re- 
lationships with cardinality of 0-1 or 1-1 are imple- 
mented in the  same way as  attributes.  In  order to 
improve  performance  and  decrease  resource  usage, 
entity  objects are  not  declared directly within con- 
taining or related  objects.  Instead,  a Handle class is 
used  (see  Figure 4). 

Every entity  object  has  a  handle  object that  can  be 
retrieved,  stored,  and  later used to retrieve its en- 
tity. The handle  stores  the entity’s unique  identity, 
hiding its details  from  the  programmer. Since per- 
sistent  references to  other business  objects are im- 
plemented by storing  them in a  handle,  the  infra- 
structure  can delay activating referenced  entity 
objects  until  they are  needed,  rather  than when  a 
related  object is activated. For example,  a  business 
partner object might hold  a list of addresses. An  ap- 
plication  might access this  object to  get  the  name of 
this  business partner.  It would be  unfortunate if all 
the  addresses held by this  business partner were  also 
activated.  Having  persistent  references to entity  ob- 
jects  encapsulated in a  handle  also  makes  it possible 
for  the  infrastructure to implement  reference  counts 
to prevent  deletion of entities still in use.  This  “safe” 
deletion capability is not in the  current  product,  but 
we plan to add it in the  future. 

Although  relationships to entity  objects are imple- 
mented with a  handle, client programmers access the 
entity directly. The get(name)  method in the con- 
taining  object uses the  stored  handle  to retrieve  its 
associated  entity, which is then  returned. 

In order  to avoid a  proliferation of collection classes, 
collections are not  subclassed to define 0-n or 1-n 
relationships or collection-element types. Instead,  a 
concrete  collection,  supplied by the  infrastructure, 

BOHRER 167 



is  used as an implementation detail of a business ob- 
ject that has a 0-n or 1-n relationship to  other  ob- 
jects. The aggregating  business object provides type- 
safe methods for manipulating the n objects. These 
methods delegate to corresponding non-type-safe 
methods on  the collections. Set, list, and map col- 
lections are provided. Elements in collections are 
identified either by iteration, by query, or by a key 
value if the collection type  is a map. Naming con- 
ventions for methods are explained in the documen- 
tation, such as get<name>  and  set<name> meth- 
ods for attributes of an object, or add<name>, 
replace<name>, etc., for 0-n or 1-n relationships. 

Early in our development cycle, the infrastructure 
developers identified scalability and performance 
problems with the initial collection interfaces. These 
interfaces could not be  easily mapped onto relational 
database tables to speed up queries. A solution was 
needed that allowed optimal use of relational da- 
tabase tables for object storage, but did not make 
the persistence choice explicit to the application or 
business object developer. That is, the framework 
and business objects needed to be persistent-stor- 
age neutral and continue to present the domain 
model with  minimal exposure of the new constraints 
being imposed for efficiency. 

The result was a new  type of concrete collection  class, 
EntityOwningExtent, that from a domain model per- 
spective:  gains  new elements by having them created 
in the collection, cannot have already existing ob- 
jects added  to it, and always  owns its elements, so 
removal  is  always deletion. In addition, an element’s 
key  must be composed from attributes of the ele- 
ment. 

These semantic changes to  the already defined Map 
collection class were sufficient to allow a collection 
of this new  type to be associated with a table in a 
database where all elements could be assumed to be 
in that table. Also, all  rows  with an optionally spec- 
ified partition-key value could be assumed to be part 
of the collection. Whether  an extent collection is ac- 
tually mapped to a  database  table  and  partition key 
can be specified  in configuration information and 
does not have to be coded into  the business object 
classes, collection class, framework, or application 
software. 

The business object programming model is designed 
to maximize the number of environments and  ap- 
plications in  which the business objects can  be re- 
used. In particular, business  objects are implemented 

168 BOHRER 

without any  knowledge of how their persistent data 
are  stored.  Separate schema-mapping information 
is provided through configuration tools when a  re- 
lational database is used for persistent storage. It is 
also  possible to use the file  system for persistent stor- 
age, or, in the  future, an object-oriented database. 
Entities are implemented without determination of 
transaction scope. So, they can be reused in what- 
ever transaction scope is appropriate  to each par- 
ticular business task or process as defined by com- 
mands or by the application. 

San Francisco uses “standard” access-mode objects 
within business objects that must  access other ob- 
jects, in order  to allow  locking and execution  choices 
to be made by the application or command object. 
The application or command  can  configure the “stan- 
dard” access  modes to be the desired lock modes and 
execution locations. For example, one task can set 
the “normal” access mode to optimistic lock mode 
and local location. This would cause objects to be 
locked  optimistically and a working  copy instantiated 
in the local process of the caller. Another task might 
set the  “normal” access mode to be read lock mode 
and home location. This would cause pessimistic 
read/write locks to  be used and  a proxy to  the  re- 
mote object would be instantiated in the local pro- 
cess of the caller. 

Complete information on the San Francisco pro- 
gramming model is  in the product documentation 
programming guide. A good introduction can be 
found in Object  Magazine. l2 

Conclusion 

This paper presented the overall objectives, devel- 
opment methodology, architecture, and some of the 
more interesting design points of the San Francisco 
project. Of course, there is much more to know about 
San Francisco. Information on obtaining the San 
Francisco Toolkit or  an evaluation version is  avail- 
able on the Web site at http://www.ibm.com/java/ 
sanfrancisco. 

The architecture and development of application do- 
main-specific frameworks that can be easily  extended 
and modified for use  in  many different applications 
presented many challenges. The continual focus on 
the end result, driving  design from the  top down, en- 
listing domain experts who  would eventually build 
applications using the system, were key to meeting 
the objectives in a timely fashion. 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of Sun Microsystems, Inc., 
Microsoft Corporation, Taligent, Inc., Hewlett-Packard Company, 
Object Management  Group, or Rational Software Corporation. 

tive Executive) operating system development and object-oriented 
development related  to OMG (Object Management Group)  ser- 
vices and Taligent frameworks. She received a B.S.  in electrical 
engineering from Rice University. Ms. Bohrer was chief archi- 
tect for the current, first release of the  San Francisco product. 
She currently divides her time between San Francisco technical 
strategy and providing consulting services to ISVs. 

Cited references and notes 

1.  An  extranet links intranets to each other  and to  the Internet. 
2. The model-view-controller (MVC) architecture separates  the 

management of information (model)  from its visual repre- 
sentation (view). The controller provides the  means by which 
changes are triggered in either the model or the view, and 
is separate from  both. 

3. A discussion of the model-command-selection architecture 
is available at http://m.rs6000.ibm.com/aix-resource/Pubs/ 
redbooks/htmlbooks/sg244474.00/447402ll.htrnl. 

4. Like an applet,  a servlet is a small Java application. Unlike 
an  applet, which  is designed to  run within a  Web  page in a 
browser, a servlet is designed to  run on a Web server. 

5. See http://m.internet.ibm.com/news/25c2.html. 
6. G. Booch, Object-Oriented Design with Applications, The 

BenjaminiCummings Publishing Co., Redwood City, CA 
(1991). 

7. I. Jacobson, M. Christerson, P. Jonsson,  and G. Overgaard, 
Object-Oriented  Software  Engineering: A Use  Case  Driven Ap- 
proach, ACM Press, Addison-Wesley Publishing Co., Read- 
ing, MA (1992). 

8. In Jacobson’s methodology, the domain model consists of ob- 
jects  that have real-world counterparts in the problem do- 
main. The analysis model adds objects for  interacting with 
the domain objects from outside the system, and for sequenc- 
ing these interactions. 

9. E. Gamma, R. Helm, R. Johnson,  and J. Vlissides, Design 
Patterns: Elements of Reusable  Object-Oriented Software, Ad- 
dison-Wesley Publishing Co., Reading, MA (1995). 

10. J. Coplien and  D. Schmidt, Pattern LanguagesofProgram De- 
sign, Addison-Wesley Publishing Co., Reading,  MA (1995). 

11. A class that  produces  a singleton allows only one such object 
to be created. 

12. K. Bohrer, “Middleware Isolates Business Logic,” ObjectMag- 
azine 7, No. 9 (November 1997); also available at http: 
//www.sigs.com/publications/objm/97llibohrer.html. 

General references 

V. D. Arnold, R. J. Bosch, E. F. DumstorE, P. J. Helfrich, T. C. 
Hung, V. M. Johnson,  R. F. Persik, and P. D. Whidden,  “IBM 
Business Frameworks: San Francisco  Project Technical Over- 
view,” IBM  Systems  Journal 36, No. 3, 437-445  (1997). 
R. C. Martin, Designing  Object-Oriented C+ + Applications: Us- 
ingthe Booch Method, Prentice Hall, Englewood Cliffs, NJ (1995). 
0. Sims, Business  Objects: Delivering Cooperative  Objects for Client- 
Server, McGraw-Hill Book Company Europe, Maidenhead, Berk- 
shire, England (1994). 

Accepted for publication December 11, 1997. 

Kathy A. Bohrer IBMASI400 Division,  I1400  Burnet  Road, Aus- 
tin,  Texas  78758  (electronic  mail: bohrer@us.ibm.com). Ms. Bohrer 
joined IBM in 1974 and is an  IBM Distinguished Engineer.  She 
has held lead architectural positions in AIX (Advanced Interac- 

Reprint Order No. G321-5669. 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 


