156 BOHRER

Architecture of the
San Francisco
frameworks

The San Francisco™ project is an IBM initiative,
with over 130 independent software vendors, to
provide business process components that can
form the basis of rapidly developed distributed
solutions for mission-critical business
applications. This paper describes the original
objectives of the San Francisco project and
discusses the methodology, skills, and
architecture that were used to achieve those
objectives. The paper includes discussion of the
importance of design patterns, extension points,
and a well-defined programming model used in
the San Francisco components. Most topics are
touched on briefly to give an overview; some
knowledge of object-oriented development
techniques is assumed.

he San Francisco* project was conceived as a

way to help independent software vendors (ISVs)
deliver commercial, mission-critical business man-
agement systems that meet current and emerging
customer demands. These demands are dominated
by rapidly changing business requirements based on
the re-engineering that is being done in many com-
panies, and by the growing importance of distributed
applications for intranet, Internet, and extranet.'
Distributed object-oriented (00) technology was rec-
ognized by many of these vendors as a necessary base
for their future generation of applications. However,
good object-oriented skills are difficult to find, and
most of the design and programming skills available
in these development shops were for server appli-
cations written in RPG and COBOL.

The idea to have IBM collaborate with vendors, to
build a set of distributed object frameworks specit-
ically for targeted application domains, was the be-

0018-8670/98/$5.00 © 1998 1BM

by K. A. Bohrer

ginning of the San Francisco project. These frame-
works were to provide a substantial starting point
for new application development.

This paper does not describe the specific content of
the domain frameworks and only touches on a few
of the infrastructure capabilities. Instead, it describes
the specific objectives of the project and discusses
the methodology, skills, and architecture used to
achieve those objectives. Reader knowledge of ob-
ject-oriented development techniques is assumed.
Both successful and unsuccessful approaches are
mentioned. This includes discussion of the impor-
tance of design patterns, extension points, and a well-
defined programming model in the San Francisco
components. Topics are touched on briefly to give
an overview and to illustrate how they are impor-
tant to the architecture and to achieving the prod-
uct objectives. More detailed information is avail-
able in other papers in this issue and in other
publications, including the San Francisco Toolkit
documentation, available from the World Wide Web
at http://www.ibm.com/java/sanfrancisco.

Project objectives

Three major product objectives were established at
the start of product development.

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Objective 1: Offer easy entry into OO technology.
The first objective was to provide a product that of-
fered an easy entry into the effective use of object-
oriented technology to vendors that did not already
have 00 skills. More specifically, this objective was
to be achieved through providing:

« Approximately 40 percent of the application in a
reusable form (frameworks)

» Sample graphical user interfaces (GUIs) to exer-
cise all domain framework features

» Support for evolutionary use of the frameworks,
starting with existing applications and data

» Components that are easily extensible and mod-
ifiable

* Flexible persistent object storage

e An integrated set of tools for San Francisco de-
velopers

We decided that the frameworks would provide a
reasonably complete model of each chosen applica-
tion domain, but without the user interface. The
frameworks would provide the business objects that
encapsulated the persistent business data and bus-
iness processing of the domain, but leave the user
interface design and implementation to the ISV that
produced the completed application on the frame-
work base. However, in order to make the product
easier to use and understand, we also decided to pro-
vide GUI samples that allowed the function of the
frameworks to be executed and explored immedi-
ately after the product was installed. This was seen
as a substantial advantage over requiring ISVs to be-
come skilled enough to develop their own code be-
fore being able to execute the framework function-
ality.

Vendors knew they would not be able to replace their
entire suite of applications with San Francisco-based
applications at once, although complete replacement
was considered to be the eventual goal. So, while the
frameworks were designed for top-down new appli-
cation development, it was necessary to support in-
teroperability between new San Francisco applica-
tions and existing applications. From the beginning,
both San Francisco-based and non-San Francisco-
based applications were to share the same databases.
This requirement has grown stronger over time, lead-
ing to more emphasis on interfaces that support di-
rect interaction of applications, not just the sharing
of data.

Since the frameworks were to provide a base for
many different application solutions, they had to be

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

designed to be easily extended with additional bus-
iness processing and data, and the processes and data
provided by the frameworks needed to be easily mod-
ifiable. The frameworks had to be reusable world-
wide, allowing for country differentiation not only
in languages but, more importantly, in business rules.

We felt that the persistent storage for the objects
needed to allow for both relational databases and
object-oriented databases. Most vendors wanted to
use a relational database of their own choice. How-
ever, the San Francisco architects felt that there
would be increasing value in using object-oriented
databases, particularly the protected-mode object
support being built into the Operating System/400*
(0s/400*) system. Furthermore, the ability to use a
simple file system for persistent object storage is very
convenient for demonstrations, samples, and unit
testing.

Easy use of object-oriented technology, and of frame-
works in particular, is impossible without a good set
of development tools. The traditional integrated de-
velopment environment tools were needed; but we
also decided that “wizards” would be very useful in
guiding 1SV developers to the right places in the
framework to make modifications, and in providing
automatic code generation where possible. A cru-
cial decision in providing development tools was our
choice of the Java** language. Java was very well
accepted by the application programmers, while
C+ + was considered much too difficult and error-
prone.

Objective 2: Enable applications that allow compa-
nies to be more competitive. The second objective
was to make sure that the framework components
provided a base that would produce applications with
significant added value over those of the previous
generation. The applications produced on San Fran-
cisco frameworks should allow companies that use
them to be more competitive. This, after all, is the
key reason for companies to buy new application soft-
ware. This objective was to be realized in the frame-
works through:

¢ True object-oriented design, easily modifiable and
extendable

» Support for client/server and other distribution
models

¢ Separation between the user interface and the bus-
iness objects, allowing multiple and replaceable
user interfaces

BOHRER 157

» Separation between business objects, commands,
and selections

* Support for development of additional compo-
nents

Object-oriented technology, and in particular, a good
object-oriented design, was to be used so that the
resulting applications would be easier to change in
response to business process changes within a com-
pany, would be easier to maintain, and would hide
the complexity of the variety of distributed environ-
ments supported.

The business objects would be supported by an in-
frastructure that handled transactions, concurrency
control, and persistence as invisibly as possible. “Dis-
tribution points” would be designed into the frame-
works for optimum performance. The frameworks
could then be customized to distribute processing
and partition data across multiple servers and cli-
ents. A unique object accessing scheme would allow
application developers to make decisions on opti-
mistic vs pessimistic concurrency control, and local
or remote object execution, on a transaction basis
without any change to the business objects or the
frameworks.

The frameworks would be designed to support a
model-view-controller® application architecture.
This is necessary to allow the business objects to be
reused in different business processes with different
user interface requirements. For example, an HTML
(HyperText Markup Language) page might provide
the user interface to a business process delivered over
the Internet, while a traditional Microsoft Win-
dows** application GUI might be provided for in-
house business processes. In addition, we intended
to follow the more specific model-command-selec-
tion architecture that was used in Taligent’s Com-
monPoint**? product. During development, this was
modified somewhat, keeping the emphasis on com-
mands but dropping any explicit support for selec-
tions. The frameworks have been designed to encap-
sulate business tasks in “command” objects that can
be easily executed either as an independent trans-
action or as part of a larger transaction. Commands
can be designated to run on specific servers. These
commands offer a convenient target for invocation
from workflow logic. They also facilitate partition-
ing of workload across servers.

The ideal solution for rapid application development
may be to have a set of prebuilt components that
hook together through a visual development envi-

158 BOHRER

ronment with little or no coding required. The first
release of San Francisco does not provide such com-
ponents, but it does support development of these
components by others. In particular, components can
be built that use Visual Basic** controls or Java-
Beans** as the front end to the server-side San Fran-
cisco framework function.

Objective 3: Provide an open solution, allowing
trade-offs in cost, performance, and skill. The final
objective was to ensure that the resulting frameworks
allowed enough choices in operating system, hard-
ware, and application architectures to allow ISVs a
wide range of cost, performance, and skill trade-offs
in determining the nature of their final solutions.
Openness to a variety of application architectures
has become increasingly important. We wanted to
cover the spectrum from “thick” clients where both
the user interface and much of the business logic runs
on the client, to Internet applications that download
HTML pages and applets, to “thin” clients where the
business logic is on the server side, along with the
data manipulation. These are some of the primary
options the frameworks had to support:

* Operating system options for the client
— Windows 95** Windows NT**
— Any other Java client (in future releases)
* Operating system options for the server
— Windows NT, AIX* (Advanced Interactive Exec-
utive)
~ 0$/400, Solaris™*, HP-UX** (in future releases)
* Application architecture options
— HTML pages with applets
— HTML pages with servlets*
—Traditional applications and legacy applications
— Visual Basic controls or JavaBean components
as the front end to San Francisco objects

System structure

The San Francisco architecture and design were cre-
ated from the top down (sce Figure 1). Domain-spe-
cific frameworks, now called “core business process-
es,” provide the highest level of reuse for applications
in specific domains. The core business processes cur-
rently completed or in development are those for
basic business management systems: general ledger,
accounts receivable (AR) and accounts payable (AP)
ledgers, warehouse management, and order manage-
ment.

The next-lower level of the system, the common bus-
iness objects, is provided to achieve the objectives

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 1 San Francisco structure

BUSINESS OBJECT PROGRAMMING MODEL

FOUNDATION

for reusability, understandability, maintainability,
and interoperability of the core business processes.
The common business tasks and common design so-
lutions found during requirements modeling and
analysis of the core business processes are put in the
common business objects subsystem. The processes
and objects in this layer are then reused across mul-
tiple core business processes. This includes domain
object classes such as Company, Currency, Business-
Partner, etc. Also included are interfaces needed for
different core business processes to interoperate,
such as interfaces for posting entries to a general led-
ger application. There are also technology-level
classes in the common business objects layer that im-
plement design patterns that are reused in the de-
sign of the business processes. Design patterns are
discussed in more detail in a later section.

The lowest level of San Francisco is the foundation
infrastructure layer. The foundation includes the dis-
tributed object infrastructure and objects that are
generally needed in implementing business object
models. The foundation layer also includes utilities
associated with installing, configuring, administer-
ing, and deploying applications built on the infra-
structure.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

The function in the base infrastructure layer was de-
termined by the needs of the domain objects and re-
sulting applications. Where function was the same
as that standardized by Object Management Group’s
(OMG’s) CORBA** and COs** specifications, the San
Francisco infrastructure uses the same semantics and
similar interfaces. However, we made no attempt to
be OMG-compliant or to provide a complete set of
OMG-specified object services. Our emphasis on pro-
viding the essentials included defining a program-
ming model that hides as much of the infrastructure
services and function as possible. Other infrastruc-
tures could support the common business objects
and core business processes by implementing this
programming model. 1BM is doing this for its
OMG-compliant Component Broker Connector®
middleware.

Methodology

The methodology used for San Francisco develop-
ment is based on a combination of Jacobson and
Booch methodologies, with modifications specific to
producing reusable business frameworks rather than
specific application solutions.

BOHRER 159

Requirements. Development began with a team of
domain experts for the first targeted core business
process domains, with two experts in object technol-
ogy as leaders. The domain experts were asked to
write a requirements specification for a business ap-
plication in the target domain, organized by a break-
down of business processes and tasks within those
processes. This document became the basis for the
“real” requirements document, called the framework
requirements.

The domain experts were given education in object-
oriented concepts and use-case modeling. Both
Booch’s® and Jacobson’s” books were provided and
relevant chapters were suggested reading. But to pro-
vide more specific guidance, since the domain ex-
perts generally had no previous knowledge in object-
oriented development, the leaders produced a
requirements process document and a template for
the desired requirements documentation. The ob-
jective at this stage was not only to capture the do-
main function that would be provided, but to struc-
ture it in a way that would identify common business
processes and identify where the requirements var-
ied across application vendor or company solutions.
This would provide a requirements document that
would map well to the desired resulting framework
structure.

The framework requirements included use-case
modeling of the business processes in order to iden-
tify primary, secondary, extension, common, and ab-
stract tasks. We modified Jacobson’s use-case mod-
eling methodology to add an “inherits” notion for
abstract tasks and to emphasize decomposition of
tasks within a process to the point where common
and abstract tasks across processes were recognized.
All user-interface detail was removed from the
framework requirements. Instead, the scope of the
system, for the purpose of the framework use cases,
was constrained to input and output data used by
the business tasks. Perhaps the most noticeable dif-
ference from traditional use-case-based require-
ments was our emphasis on classifying tasks as ei-
ther high, medium, or low volatility with respect to
different company or country requirements. This was
to identify early which tasks needed to be designed
to be easily extended by application developers. Ex-
amples of the variations in business rules, or other
required flexibility, were explicitly provided in the
framework requirements documents.

Object-oriented analysis. When the framework re-
quirements documents were almost completed, ad-

160 BOHRER

ditional developers with object-oriented analysis
skills were added to the teams. The domain experts
were given training in object-oriented analysis tech-
niques similar to Jacobson’s methodology. The ob-
ject-oriented experts were given training in the ap-
plication domains.

As was done in the requirements phase, the leaders
produced an analysis process document explaining
the steps to be followed and the expected analysis
results. In this case, the analysis was to be docu-
mented using the Rational ROSE** tool, with all the
analysis work captured in a ROSE model. The Booch
notation was augmented to allow objects to be iden-
tified as either “entity” or “control” as recommended
by Jacobson. Jacobson’s notion of interface objects
was expanded to “application” objects, which were
used to model classes that would not be part of the
frameworks but would represent an application’s use
of the frameworks.

This analysis process was used to produce the static
analysis object model, without any intermediate def-
inition of a simpler domain object model.® This static
model captured the relationships between classes
and the cardinality of those relationships. Relation-
ships included inheritance, containment without
ownership, containment with ownership, and use.
The analysis object model was done without any con-
sideration of design constraints or infrastructure base
classes.

Dynamic modeling of the run-time messages be-
tween objects was not done at the analysis level. This
turned out to be a mistake. Initially it was thought
that the domain experts were so knowledgeable that
discussion of the dynamic business processing to be
performed by the identified objects was sufficient to
verify the static object model. We ended up redoing
the analysis model later, during dynamic modeling
at the design level. We now recommend doing both
static and dynamic object modeling at the analysis
level, before design and implementation constraints
are ever considered.

The stability of the domain or analysis model
throughout the product development life cycle is gen-
erally considered to be an indicator of the model’s
correctness. The San Francisco analysis models had
quite a bit of change over time. One factor was the
lack of dynamic modeling during the initial analysis
work, as just mentioned. Another was the lack of ob-
ject-oriented expertise in the initial analysis work and
a significant turnover in domain experts for the fi-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 2 Static dependencies (one-way) between class categories

nancial domains. Where there was continuity of per-
sonnel throughout requirements definition, analy-
sis, and subsequent development, the models were
more stable and development through design and
coding was, much more productive.

Subsystems and categories. Once analysis-level
classes had been identified, they were divided into
categories. Top-level categories, now called “pack-
age categories,” were created to represent the ma-
jor subsystems. The categories at this level map to
Java packages that contain the framework implemen-
tation code. Within each top-level category a hier-
archy of categories was defined, where the catego-
ries grouped together classes that had many
dependencies on each other and were primarily in-
volved in the same business tasks. Dependencies be-
tween categories were identified.

The overriding rule for assigning classes to catego-
ries was that categories could have only one-way de-
pendencies on each other, either directly or indi-
rectly. This ensured that the system could be built
in a bottom-up fashion, or top-down where stubs
could be used to temporarily satisty dependencies.
This structure of one-way dependency also results
in a more modular system, with tight coupling within
categories and looser coupling between categories.
This makes it much easier to use part of the frame-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

work without being required to use, or pay for, the
potentially large overhead of parts that are not
needed. As an example, part of the category diagram
for common business objects is shown in Figure 2,
with the dependencies between categories. Notice
that the CF Business Partners category depends on
the CF Address category. (CF is the Java package
name, and the ROSE category prefix, for interfaces
and classes in the business object layer.) This is be-
cause the BusinessPartner class has an address. How-
ever, the Address class has no dependencies on any
other class.

Breaking two-way dependencies between categories. In
some cases the domain required two-way dependen-
cies, making it difficult to find any reasonable par-
titioning of the classes. An example of this is the re-
lationship between the Company category and the
Business Partners category. In this domain it is of-
ten necessary to find all business partners associated
with a company. Therefore the static model shows
a 1-» relationship between the Company class and
the BusinessPartner class. (See Figure 3.) There is
also a 1-1 relationship from the business partner to
the company with which it is doing business.

Situations like this one between the Company and
BusinessPartner classes arose frequently in the anal-
ysis models. On closer examination, it was recognized

BOHRER 161

Figure 3 Supporting "loose" two-way dependencies
dynamically

that the relationship in one direction was for finding
or grouping objects of a class “A” (e.g., Business-
Partner) associated with objects of another class “B”
(e.g., Company), where “B” (Company) did not re-
ally have to be designed with any particular business
logic knowledge of “A” (BusinessPartner). That is,
nothing in the behavior of a company object depends
on business partner objects. Business partner objects
on the other hand do modify their behavior and at-
tributes based on the company object to which they
are associated.

To be able to have one-way dependencies between
class categories, we support a technique where re-
lationships can be dynamically added between classes
at run time through the use of properties. The prop-
erty mechanism is described in more detail in the
subsequent section on extension points.

In the case above, the association from Company to
BusinessPartner would be dynamically created as a
property on Company whenever an application used
BusinessPartner. However, classes in the Company
category would have no knowledge or code aware
of Business Partners category classes.

Prototyping. Prototyping was done at several points
in the project to discover or verify development deci-
sions. The first prototype was actually done at the
very beginning of the project. While the domain ex-
perts were working on the application requirements
document, a team of programmers from IBM and
from two of the 1Sv partners was formed. The ob-
jective of this team was to build a prototype of an
object-oriented application to verify the usability of

162 BOHRER

the development tools and to learn how to merge
the development cultures of the three different com-
panies that would be working on the project together.

Soon after this, infrastructure prototyping was ini-
tiated to determine whether the object services avail-
able within IBM at that time would be adequate and
to learn how best to use these services. A third pro-
totype was done by the object-oriented designers
while analysis work was in progress. This prototype’s
objective was to discover and verify design patterns
that would be applied when converting the analysis
model into a design model. A second infrastructure
prototype was done after the switch to a Java-based
object infrastructure.

One more prototype was done about halfway through
the first release development cycle. This occurred
after what we hoped would be the last major iter-
ation on the programming model. The objective was
to verify our programming model by prototyping the
application transaction models that it was designed
to support. This included the applications’ structur-
ing of transactions with the user interface code. This
turned out to be a difficult area because of the way
the Java AWT (Abstract Windows Toolkit) GUI li-
brary uses threads.

The prototypes were useful, but in general were given
inadequate time for completion. So, although the
pattern prototype identified some initial patterns and
helped set the programming model, pattern discov-
ery continued during design. The C++ infrastruc-
ture prototype was never completed because of the
switch to Java. The final application prototype was
useful in confirming the programming model, but it
should have been more widely publicized to the team.
That would have helped more members of the team
understand how the frameworks were to be used, sav-
ing misunderstandings and leading to sample code
for more application structures.

Object-oriented design. Following the completion of
the initial analysis model and the pattern prototype,
the size of the development team was dramatically
increased as domain programmers and object-ori-
ented designers and programmers were added. The
composition of the frameworks team (not including
the infrastructure team) became about 25 percent
domain experts, 25 percent domain programmers,
40 percent object-oriented programmers, and 10 per-
cent object-oriented designers.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Design involved refining both the use-case task de-
scriptions and the analysis model. Each task was
turned into one or more scenarios, which included
details of the business logic to be implemented, with
explicit references to classes used in that implemen-
tation. The scenarios were captured in HTML doc-
uments with a fairly rigid format. All scenarios shared
the same terminology for common actions such as
creation, deletion, validation, etc. Scenarios speci-
fied input (either mandatory or optional), output,
and detailed processing. The domain experts wrote
the scenarios.

During design, the analysis model became more de-
tailed. At this point the programming model and its
required base classes were introduced. Dynamic
modeling was done using the object interaction di-
agrams in ROSE. The object-oriented designers cre-
ated object interaction diagrams for the scenarios
specified by the domain experts. Analysis-level
classes were augmented, generally according to de-
sign patterns, to support easy modification of vol-
atile business processes. Design-level classes that
were specifically meant to facilitate extension were
named with a special prefix that identified them as
extension points. Each extension point identified in
the 00D (object-oriented design) model follows a
design pattern. (Design patterns are discussed in a
later section.)

The result of design modeling was not a new ROSE
model, but the augmentation of the original analysis-
level ROSE model. To the original analysis-level class
diagrams, new class diagrams were added, showing
the design-level detail. Thus the ROSE model could
be viewed at either the analysis or design level. State
diagrams were used for objects that had an unusual
or complex life cycle. Module diagrams were not
used, as the top-level categories corresponded to Java
packages, and each object had its own Java inter-
face and class file in the package for its category.

Because extensive reuse of someone else’s code is
notoriously difficult, we developed and applied de-
sign patterns so that similar analysis models would
map to designs and implementations that had a high
degree of commonality. Two design pattern books 1
were used as references and as a starter set of al-
ready-established patterns. In addition, all designs
were reviewed by the two object-oriented expert
team leaders. They were responsible for ensuring
that the agreed-upon patterns were being applied
appropriately, and for developing new patterns as
necessary. New design patterns were documented in

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

a ROSE model, and sometimes in on-line HTML doc-
umentation as well. Many of the design patterns sim-
plify modification or extension of the frameworks.

Coding and unit test. Coding was begun by the com-

mon business objects team. This was a small team
of four, or sometimes five, programmers. Unlike the

The designers created
object interaction diagrams
for the scenarios created
by the domain expers.

other domain frameworks teams, members of this
team knew C++ and had some level of object-ori-
ented design capability. This team influenced and
verified the programming model that was concur-
rently being designed and documented. The model
included the use of collections, the creation pattern
for objects, and the accessing of objects.

The programmers of the other teams were given ed-
ucation in C+ + and in CORBA-based IDL (interface
design language) and object services. The domain
programmers had much trouble using C+ + and IDL
productively. It was not unusual to do 20 compila-
tions before the C+ + code compiled cleanly. In ad-
dition, the general education provided for object ser-
vices left the programmers overwhelmed and
wondering when and how to use the various services.
Remember that object-oriented programming was
new to many of these programmers, and the use of
distributed objects was new to all of them. It was nec-
essary to simplify the programming task dramatically
in order to achieve the dates planned for product
shipment.

Four major changes were made early in the coding
cycle to increase productivity: (1) C++ was replaced
by Java, a simpler language and a more productive
development environment, (2) an explicit program-
ming model was provided, covering all OOD relation-
ships and hiding object services, (3) a code gener-
ator was provided that read the 0OD model as input
and adhered to the programming model when gen-
erating output, and (4) the programmers were re-

BOHRER 163

educated on Java and the programming model, as
needed, for framework coding.

Java was found to be a much easier language and
development environment than C++ and IDL. Java
has garbage collection and does not have pointers.
This eliminates a major source of errors in C+ + pro-
grams. It also eliminates the confusion caused by
pointer manipulation and dereferencing. The Java
development environment we used, with RMI (re-
mote method invocation) rather than an IDL-based
distributed object infrastructure, is simpler because
it is not necessary to deal in two “languages” (IDL
and an implementation language such as C++ or
Java).

A programming model was developed and docu-
mented that hid as much of the object service infra-
structure as possible. It specified how 00D relation-
ships should be implemented in the code. The
programming model also specified how to create,
find, and access objects within the framework code.
Persistence, transactions, concurrency, security, and
notification services were all implicitly supported,
freeing framework programmers from these con-
cerns.

A “wizard” was produced to convert the ROSE OOD
model into Java source code that followed the pro-
gramming model. This wizard implemented many
of the required methods and added collection ob-
jects where needed for 1-n relationships. During its
development, it was discovered that some additional
information could be added to the ROSE model that
would make the wizard even more useful; for exam-
ple, directives for the type of collection class to be
generated could be added. This led to another it-
eration on the design model, adding wizard direc-
tives and increasing the model’s consistency.

Finally, the Java education was much more focused
than the earlier education. We did not teach all of
Java, its JDK (Java Development Kit) libraries, and
RMI. Instead, we taught the Java basics needed for
programming the business object frameworks, and
we taught the San Francisco programming model.
This was much more successful than the earlier ap-
proach with standard courses on specific technolo-
gies.

Design patterns

As mentioned earlier, design patterns were rigor-
ously developed and applied whenever possible. De-

164 BOHRER

sign patterns provide a “canned” solution to reoc-
curring problems, in this case, how to best organize
a set of classes to perform a business process and
still allow the required extensibility. This is analo-
gous to using prefabricated hardware or preframed
doors in house construction. Not everyone needs to
understand the best way to design and create a lock,
or the best way to frame and hinge a door. Design
patterns facilitate the understanding of how a piece
of software works, maximize reuse of both the code
and design solutions, and therefore minimize main-
tenance.

Some of the design patterns used in the frameworks
come from published works, particularly Gamma.’
These include:

* Abstract Factory (supports substitution of derived
classes with extended subclasses)

* Strategy (separates volatile business rules from the
class of the decision maker, allowing multiple strat-
egies to be used)

* Chain of Responsibility (allows any object in a
chain to provide the necessary behavior)

* Adapter (maps from one interface to another)

* Composite (supports hierarchies of objects viewed
as a single object)

Several new design patterns were developed specif-
ically for our business object frameworks. They ap-
pear to be generally useful in commercial business
processes. These are:

* Keyables (supports construction of a key from mul-
tiple attributes)

* Atomic Entity Update (supports updates whose
validity depends on multiple loosely coupled ob-
jects)

* Encapsulated Chain of Responsibility (hides the
chain of responsibility [COR] from the client in a
simple method call)

* Extensible Item (supports the dynamic addition of
behavior [methods] to an object)

* Aggregating Entity Controller (collects objects at
different levels of the company hierarchy, allow-
ing lower-level companies to see a composite view
of parents)

* Shared Entity Attributes (allows some object at-
tributes to be different for lower-level companies,
and some attributes to be shared by all companies)

* COR-Driven Strategy (uses COR to find the appro-

priate business policy [strategy])

Dynamic Identifier (supports dynamically extend-

ing valid values for domain data [types])

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

* Identifier-Driven Strategy (chooses the correct
strategy based on an identifier argument)

» Life Cycle (allows the life cycle defined for an ob-
ject to be changed statically or dynamically, includ-
ing the permitted state transitions, and allows ad-
ditional behavior to be associated with various
states)

Extension mechanisms and extension points

The frameworks are designed to be extended. The
extension mechanisms are limited to a small num-
ber that can be learned and applied over and over
in building a completed application from the frame-
works. Some of the design model classes were added
to provide a clear and easy way to extend the bus-
iness logic in the framework. Such classes are des-
ignated as extension points, and are identified in the
00D model by an “E<xy>_" prefix on their class
name. Extension points clearly identify where the
frameworks are meant to be extended. In addition
to the extension points, some extension mechanisms
are applicable to all business object classes, or to all
business object classes that inherit from Property-
Container.

All business object classes, unless otherwise noted,
can be extended by building a subclass that adds new
attributes (as instance variables or computed values),
adds new methods, or overrides existing methods to
modify the business logic in those methods. Care
must be taken to maintain the “contract” of any over-
ridden method and not to require initialization val-
ues for any new instance variables on creation. The
new subclass can then be configured into the system
as the implementation to be used instead of the orig-
inal framework class. This is an application of the
Abstract Factory pattern.

Any business object class that inherits from Prop-
ertyContainer can be extended with new attributes
or relationships at run time, without modifying the
. class source or creating a new subclass. This is be-
cause any PropertyContainer can hold an arbitrary
number of objects, each with an associated name.
Properties are objects that can be added to the Prop-
ertyContainer with a name and retrieved by that
name. Properties can be owned (or not) by their
PropertyContainer. As an example of using a prop-
erty to establish a relationship, consider a ChaseLet-
ter class. An object of this class could add itself to
an object of the Debtltem class in order to establish
the fact that the debt item had been “chased.” The

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

DebtlItem class does not need to be rewritten to know
about “chase letter” processing.

Business objects are all created with static creation
methods on a corresponding factory class. For ex-
ample, an Account class would be paired with an Ac-
countFactory class. The factory class may be sub-
classed. This subclass would then be configured into
the system. The static creation methods on the orig-
inal factory class will “delegate” to an instance of
the subclass. This allows the subclass to change, for
example, the primary key used with the new object,
or to change the persistent server location of the new
object. In this way, substitute factories aid in par-
titioning objects across servers based on instance
data, or mapping objects to legacy databases. If there
is no substitute factory class, then the provided fac-
tory class uses the default configuration information
to decide, on a class basis, where to create the new
object, and assigns a unique identifier to be its pri-
mary key.

Most of the explicit extension points in the OOD
model are policy classes. These classes encapsulate
some particular business rule. There are different
types of policy classes. In some cases the framework
is designed to work with one particular policy, and
although this policy can be replaced, a default is pro-
vided in the framework. In other cases, the frame-
work is designed to work with multiple policy classes
that can be applied either company-wide or system-
wide, or found through a chain of objects or through
a separately supplied strategy. The last case is really
a policy that is used to find policies. In the case of
multiple policies, policy subclasses would be created
to serve as additional classes to be used at run time,
rather than as a replacement subclass for the frame-
work-supplied policy. The policy extension variations
are summarized below:

* Replace a default policy

» Addadditional policy choices to be used in selected
processes

* Change the object chain by which a policy is se-
lected for a process

Another common extension mechanism in the
frameworks is the use of the Dynamic Identifier pat-
tern to represent basic application data types. There
is often a need in business applications to define a
set of values that are valid for a particular attribute.
The set of values often depends on the final appli-
cation, or even on the company in which the appli-
cation will be deployed. Sometimes an application

BOHRER 165

Figure 4 Client programming interfaces

should allow run-time additions of new values. Ex-
amples might be valid transaction types in a finan-
cial system, valid routing destinations of documents,
supplier categorizations, etc. Because the valid val-
ues are not known at compile time, an enumerated
type, or fixed static values, cannot be used. The
frameworks use a common set of classes that make
up the Dynamic Identifier pattern. These classes are
provided in the common business objects layer of
the system.

Other extension mechanisms include changing the
behavior of an object based on its life-cycle state,
defining new summaries of data to be calculated and
cached if desired, and adding new keys for quickly
accessing objects from within a collection.

Business object programming model

A programming-model document was begun as a way
to educate the teams that were to implement the bus-
iness objects in the ROSE design model. The program-
ming model also became the specification for the
function and public interfaces of the infrastructure.
This was very important in giving the infrastructure
developers a clear vision of what they were building
and how it would be used. The programming-model
interfaces were divided into three broad categories,
based on programming requirements. The client pro-

166 BOHRER

gramming model describes interfaces needed when
using business objects. The business object developer
programming model describes interfaces needed to
implement business objects, and the administration
interfaces are needed for tuning, configuring, and
administering the San Francisco frameworks and the
applications built upon them.

Client programming model. The client programming
model interfaces specify how a program or applica-
tion uses business object classes. This includes cre-
ating, deleting, copying, and accessing objects. The
client programming model also covers working with
groups of objects, querying a group or a subgroup,
or iterating through a group of objects. In order to
support robust, commercial applications, all persis-
tent business objects in San Francisco are accessed
and modified from within a transaction. The client
programming model supports defining the transac-
tion scope and choosing various access options, such
as locking mode and execution location.

The basic business object types are introduced rel-
ative to their use (see Figure 4). Two base classes,
Entity and Dependent, provide support for business
objects that primarily encapsulate data and the as-
sociated business logic for those data. One of these
would be the base class for any object in the 0oD
model that is an entity, in Jacobson terminology. The

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Dependent class was introduced for lightweight ob-
jects, generally representing abstract data types, that
would normally be implemented as nondistributed
Java objects. However, they need to be able to hold
persistent data of other, particularly entity, objects
and they need to be able to be passed on remote
method calls to entity objects. An Entity subclass is
used for persistent business objects that may need
to be concurrently shared, independently recover-
able in a transaction, globally shared, or remotely
invoked.

The Command base class is a specialization of De-
pendent and intended for control logic that performs
business tasks not belonging in any particular entity.
Any control object in the 00D model would be im-
plemented as a command object. When a command
object is created it can be targeted to execute “near”
any persistent business object. This causes the com-
mand to be shipped to the server process of that bus-
iness object, and executed in that process. A com-
mand can be run as a single transaction or as part
of a larger transaction. When a command is run as
a single transaction, the Command class establishes
the transaction scope and handles any rollback
needed for “uncaught” exceptions.

The client programming model provides clear rules
for dealing with business objects derived from each
of the base types. For example, any instance of a sub-
class of Dependent is passed by value with “copy”
semantics. Any instance of a subclass of Entity is
passed by reference.

The concepts of transaction scope, transient vs per-
sistent objects, owned vs unowned objects, and
shared vs nonshared objects are explained by the
model documentation. The programming model
hides most of the distributed object services. How-
ever, some service interfaces are needed when us-
ing business objects. In particular, copying, deleting,
and accessing an object and controlling transaction
scope are part of the client programming model.
These interfaces are made as easy to use as possible
with methods, either on the object itself, or on a base
factory class designed as a singleton! for each pro-
cess. This singleton is accessed through a static
method, and it delegates to the appropriate local or
remote service objects as necessary.

Business object developer programming model. Ad-
ditional interfaces were defined for the programmer
developing a new business object class or extending
an existing one. These make up the business object

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

developer programming model. This model includes
the methods that must be provided in the subclasses
of the three major base classes: Dependent, Entity,
and Command. Documentation for this model ex-
plains which methods must be overridden, which may
be optionally overridden, and what new methods
must be defined. Wherever possible, methods are im-
plemented in the base class so they do not have to
be overridden in subclasses.

The business object developer programming model
also specifies how attributes and relationships shown
in the 0OD model should be implemented. The im-
plementation of relationships varies with the cardi-
nality of the relationship: 0-1, 1-1, 0-n, and 1-n.
This also varies depending on whether the relation-
ship involves ownership of the related object(s). Re-
lationships with cardinality of 0—1 or 1-1 are imple-
mented in the same way as attributes. In order to
improve performance and decrease resource usage,
entity objects are not declared directly within con-
taining or related objects. Instead, a Handle class is
used (see Figure 4).

Every entity object has a handle object that can be
retrieved, stored, and later used to retrieve its en-
tity. The handle stores the entity’s unique identity,
hiding its details from the programmer. Since per-
sistent references to other business objects are im-
plemented by storing them in a handle, the infra-
structure can delay activating referenced entity
objects until they are needed, rather than when a
related object is activated. For example, a business
partner object might hold a list of addresses. An ap-
plication might access this object to get the name of
this business partner. It would be unfortunate if all
the addresses held by this business partner were also
activated. Having persistent references to entity ob-
jects encapsulated in a handle also makes it possible
for the infrastructure to implement reference counts
to prevent deletion of entities still in use. This “safe”
deletion capability is not in the current product, but
we plan to add it in the future.

Although relationships to entity objects are imple-
mented with a handle, client programmers access the
entity directly. The get(name) method in the con-
taining object uses the stored handle to retrieve its
associated entity, which is then returned.

In order to avoid a proliferation of collection classes,
collections are not subclassed to define 0-x or 1-n
relationships or collection-clement types. Instead, a
concrete collection, supplied by the infrastructure,

BOHRER 167

is used as an implementation detail of a business ob-
ject that has a 0—~ or 1-n relationship to other ob-
jects. The aggregating business object provides type-
safe methods for manipulating the n objects. These
methods delegate to corresponding non-type-safe
methods on the collections. Set, list, and map col-
lections are provided. Elements in collections are
identified either by iteration, by query, or by a key
value if the collection type is a map. Naming con-
ventions for methods are explained in the documen-
tation, such as get<name> and set<name> meth-
ods for attributes of an object, or add<name>,
replace<<name>>, etc., for 0—» or 1-# relationships.

Early in our development cycle, the infrastructure
developers identified scalability and performance
problems with the initial collection interfaces. These
interfaces could not be easily mapped onto relational
database tables to speed up queries. A solution was
needed that allowed optimal use of relational da-
tabase tables for object storage, but did not make
the persistence choice explicit to the application or
business object developer. That is, the framework
and business objects needed to be persistent-stor-
age neutral and continue to present the domain
model with minimal exposure of the new constraints
being imposed for efficiency.

The result was a new type of concrete collection class,
EntityOwningExtent, that from a domain model per-
spective: gains new elements by having them created
in the collection, cannot have already existing ob-
jects added to it, and always owns its elements, so
removal is always deletion. In addition, an element’s
key must be composed from attributes of the ele-
ment.

These semantic changes to the already defined Map
collection class were sufficient to allow a collection
of this new type to be associated with a table in a
database where all elements could be assumed to be
in that table. Also, all rows with an optionally spec-
ified partition-key value could be assumed to be part
of the collection. Whether an extent collection is ac-
tually mapped to a database table and partition key
can be specified in configuration information and
does not have to be coded into the business object
classes, collection class, framework, or application
software.

The business object programming model is designed
to maximize the number of environments and ap-
plications in which the business objects can be re-
used. In particular, business objects are implemented

168 BOHRER

without any knowledge of how their persistent data
are stored. Separate schema-mapping information
is provided through configuration tools when a re-
lational database is used for persistent storage. It is
also possible to use the file system for persistent stor-
age, or, in the future, an object-oriented database.
Entities are implemented without determination of
transaction scope. So, they can be reused in what-
ever transaction scope is appropriate to each par-
ticular business task or process as defined by com-
mands or by the application.

San Francisco uses “standard” access-mode objects
within business objects that must access other ob-
jects, in order to allow locking and execution choices
to be made by the application or command object.
The application or command can configure the “stan-
dard” access modes to be the desired lock modes and
execution locations. For example, one task can set
the “normal” access mode to optimistic lock mode
and local location. This would cause objects to be
locked optimistically and a working copy instantiated
in the local process of the caller. Another task might
set the “normal” access mode to be read lock mode
and home location. This would cause pessimistic
read/write locks to be used and a proxy to the re-
mote object would be instantiated in the local pro-
cess of the caller.

Complete information on the San Francisco pro-
gramming model is in the product documentation
programming guide. A good introduction can be
found in Object Magazine."

Conclusion

This paper presented the overall objectives, devel-
opment methodology, architecture, and some of the
more interesting design points of the San Francisco
project. Of course, there is much more to know about
San Francisco. Information on obtaining the San
Francisco Toolkit or an evaluation version is avail-
able on the Web site at http://www.ibm.com/java/
sanfrancisco.

The architecture and development of application do-
main-specific frameworks that can be easily extended
and modified for use in many different applications
presented many challenges. The continual focus on
the end result, driving design from the top down, en-
listing domain experts who would eventually build
applications using the system, were key to meeting
the objectives in a timely fashion.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Microsoft Corporation, Taligent, Inc., Hewlett-Packard Company,
Object Management Group, or Rational Software Corporation.

Cited references and notes

1. An extranet links intranets to each other and to the Internet.

2. The model-view-controller (MVC) architecture separates the
management of information (model) from its visual repre-
sentation (view). The controller provides the means by which
changes are triggered in either the model or the view, and
is separate from both.

3. A discussion of the model-command-selection architecture
is available at http://www.rs6000.ibm.com/aix_resource/Pubs/
redbooks/htmlbooks/sg244474.00/44740211.html.

4. Like an applet, a servlet is a small Java application. Unlike
an applet, which is designed to run within a Web page in a
browser, a servlet is designed to run on a Web server.

5. See http://www.internet.ibm.com/news/25¢2.html.

6. G. Booch, Object-Oriented Design with Applications, The
Benjamin/Cummings Publishing Co., Redwood City, CA
(1991).

7. L Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven Ap-
proach, ACM Press, Addison-Wesley Publishing Co., Read-
ing, MA (1992).

8. InJacobson’s methodology, the domain model consists of ob-
jects that have real-world counterparts in the problem do-
main. The analysis model adds objects for interacting with
the domain objects from outside the system, and for sequenc-
ing these interactions.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley Publishing Co., Reading, MA (1995).

10. J. Coplien and D. Schmidt, Pattern Languages of Prograrm De-
sign, Addison-Wesley Publishing Co., Reading, MA (1995).

11. A class that produces a singleton allows only one such object
to be created.

12. K. Bohrer, “Middleware Isolates Business Logic,” Object Mag-
azine 7, No. 9 (November 1997); also available at http:
/www.sigs.com/publications/objm/9711/bohrer.html.

General references

V. D. Armold, R. J. Bosch, E. F. Dumstorff, P. J. Helfrich, T. C.
Hung, V. M. Johnson, R. F. Persik, and P. D. Whidden, “IBM
Business Frameworks: San Francisco Project Technical Over-
view,” IBM Systems Journal 36, No. 3, 437-445 (1997).

R. C. Martin, Designing Object-Oriented C++ Applications: Us-
ing the Booch Method, Prentice Hall, Englewood Cliffs, NJ (1995).
O. Sims, Business Objects: Delivering Cooperative Objects for Client-
Server, McGraw-Hill Book Company Europe, Maidenhead, Berk-
shire, England (1994).

Accepted for publication December 11, 1997.

Kathy A. Bohrer IBM AS/400 Division, 11400 Burnet Road, Aus-
tin, Texas 78758 (electronic mail: bohrer@us.ibm.com). Ms. Bohrer
joined IBM in 1974 and is an IBM Distinguished Engineer. She
has held lead architectural positions in AIX (Advanced Interac-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

tive Executive) operating system development and object-oriented
development related to OMG (Object Management Group) ser-
vices and Taligent frameworks. She received a B.S. in electrical
engineering from Rice University. Ms. Bohrer was chief archi-
tect for the current, first release of the San Francisco product.
She currently divides her time between San Francisco technical
strategy and providing consulting services to ISVs.

Reprint Order No. G321-5669.

BoHRER 169

