IBM eNetwork Host
On-Demand: The beginning
of a new era for accessing

host information in a
Web environment

This paper describes software technology that
mabkes it possible to run host applications
seamlessly in a World Wide Web environment.
Web technology has opened up the potential for
unprecedented access of data and applications
by all types of users. Yet, the incompatibility
between host technology (e.g., 3270) and Web
technology (e.g., HTTP) has prevented Web users
from directly accessing hundreds of thousands of
host applications. The cost for re-implementing
these applications would be enormous, and the
effect to ongoing business would be disruptive.
Host On-Demand extends Web access to reach
existing host applications directly by using Java™
technology and provides a number of powerful
features including: emulation functions on
demand, persistent connections, customized
session windows, multiple sessions, platform
flexibility, and host security. This paper
summarizes these features, describes Java
implementation techniques, and outlines the
need for some new network computing services.

Web browsing is a simple client model that pro-
vides great flexibility and robust access from
many different sources. Because information is pub-
lished in the format of a Web page, how to include
the mass of valuable information sitting on various
host systems has been a major concern in the indus-
try. Until recently, there were two general ap-
proaches. One packages a 3270 emulator with the
browser. The other uses mapping software on the

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

0018-8670/98/$5.00 © 1998 IBM

by Y. S. Tan
D. B. Lindquist
T. O. Rowe
J. R. Hind

Web server to convert the 3270 data stream to Hy-
perText Markup Language (HTML) format. Sun’s
Java** technology makes a third approach possible:
using a Java 3270 emulation applet from a browser.
This paper describes IBM’s Host On-Demand Ver-
sion 1, a Java applet emulator that lets users access
host information from a browser. It also explains how
Host On-Demand represents a new generation of
networking tools and capabilities provided by
1BM’s eNetwork™ software business.

The Web browser model

Web technology' is based on HTML? and the Hyper-
Text Transfer Protocol (HTTP).?> HTML provides a
common representation for information, and HTTP
defines the common protocol for transferring infor-
mation between Web clients and Web servers. The
Web browser serves as the end-user interface; it is
responsible for sending user requests to the appro-
priate Web server (normally via a Web proxy gate-

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproductionis done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

TAN ET AL. 133

Figure 1 Web-browsing HTTP protocol

HTTP GET REQUEST" | .

way) and for formatting and displaying HTML data
streams returned to the client device.*

Normally (see Figure 1), a Web browser communi-
cates directly with a Web server (or proxy server)
over a Transmission Control Protocol (TCP) connec-
tion using HTTP. The user specifies a uniform re-
source locator (URL) to address the object requested.
This object may be a stored HTML text document or
an HTML data stream that is generated by a program.
In the latter case, the Web server invokes the pro-
gram via the Common Gateway Interface (CGI) that
is defined as part of the Web technology. The HTML
object returned to the Web browser client may con-
tain hyperlinks to other HTML objects and directly
embedded graphic (e.g., GIF or JPG) objects. It is the
responsibility of the browser to issue additional re-
quests for the embedded objects on behalf of the end
user until the entire document is complete.

If there is a need to access host information, the user
must open a tn3270 emulator window, separate from
the browser. Alternatively, the user could open a
Web page provided by 3270/HTML mapping software.
Let us examine these alternatives.

The stand-alone tn3270 emulator model

The stand-alone tn3270 emulator (see Figure 2) is
PC or workstation software installed locally on a cli-
ent. The emulator starts as a Windows** applica-
tion and communicates with the tn3270 server over

134 T1AN ET AL

: f'FiLES*HTMLDOC IMAGES ETG
OR
HE$ULTS OF A-CGI REQUEST (FORM, HEPORT ET C

a TCP connection using the Telnet protocol.’ The
user enters a command or presses a keyboard func-
tion key from a machine with an emulated terminal
screen. The emulator constructs a 3270 inbound (to
host) data stream to send to the tn3270 server over
the TCP connection. The tn3270 server unwraps the
data stream from the TCP transport format into a Sys-
tems Network Architecture (SNA) format and for-
wards the SNA transmission unit to the host. The host
responds with an outbound data stream, and the
reverse takes place. Some hosts have a tn3270 ser-
ver installed as part of the Transmission Control
Protocol/Internet Protocol (TCP/IP) connectivity soft-
ware. In that case, the TCP transport will be used end
to end, and SNA conversion is done only inside the
host.

The stand-alone tn3270 emulator model has the fol-
lowing characteristics:

* High performance: 3270 is an efficient data stream
designed to meet the subsecond response time ob-
jective (and support many hundreds of simulta-
1ICOUS USers).

* No browser integration: The tn3270 emulator runs
under a separate process in a separate window
from the browser. There is no interaction between
the browser and the emulator (beyond cut and
paste functions).

* Persistent session connections: Unlike the Web
model, the emulator is session-based. The emu-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

GEL v 13 NvL

‘SS900® ()LZ€ PUB GOM J10q
aaey 01 $195M01q I[drnu 11e3s OS[e ISNW A3Y T, “AJt
-S89 SUOISSIS 1SOY I1ay}) JO 9IS 9] 9S0] ULD SIS
‘uonediaeu Qo reuntou ysnory) paddoip aq ueo
o8ed Qo YL -SUONIIUUOI UOISSIS JUIISISIIAUON o

‘sofed qap Isylo uey)
A[JUSISPIP OU SJOB PUE JRULIO] TWLH Ul PIUIn)ol
SI UOT)RULIOJUT ISOY QU] -UOUDLIIIUL JISMOG [J1] o

-owr) asuodsar asearour
pue pesyI240 119sut uonouny Jurddews TWIH/()/,ZE
pue peay1dA0 [050101d dLIH dYJ, -2oUPULOLI] e

1SO1ISLI91ORIBYD
uimor[oy oY1 sey [epow 1oddew TWIH/QLZE YL

JUSIO JOSMOIQ oM 9]
0] WINJaI O] ULIO] TALLH Ue 91eIoudd o) pasn st ind
-1N0 U30108 350y JY I, “(IdVTTHH) 20eiru] Surwurerd
-01q uoneorddy afendueT [0A2T-ySIH lojernuuy
o) Sursn Ue9IOS IS0 ()LZE OUI YIIMm SIORISIUL 1T ‘1S0Y
31} 0] I9AIS Y} WOIJ IISN 9Y) JOJ PIYSI[QRISD UOIS
-s9s J0jR[NWR UR UOo s)1s Werdoid sy, -ooejIalul 190
a 1A werSo1d oy) SaYOAUT IOATIS (O AT, ‘weid
-01d 1addew oy £q paterouad si Jey) wealls eiep
TWLH ue 03 sjutod TN SIY], *ss2308 1507 1sanbai 0y

di/dOL MWW

8661 'L ON ‘€ TOA “TYNWNOr SWILSAS WaI

TIN © $OY109ds 198N I9SMOIq gOM UL, “paarasad st
1 9InG1{ AQ pa18IISN[]I SB [opPOW JI9SMO0IQ GO UL

‘syduios
190 pue ‘dLIH “TALH Suisn pajuswopdur Ajpesr
-d£1 ‘150U B pUR IoAIaS QO 91 UI9MIa(] PISURYIXD
swiean)s v1ep (7€ Woly A oy uo safed TWLH saje1o
-ua3 3B} IOAISS QOA\ B UO PI[BISUI 9IBMIJOS JRIP
-suuayut st (¢ 2InJry 99s) raddew TALH/QLZE UL

[opow Joddew JALH/0.2€ dUL

"(Armoas 10 spromssed ylom

-19U IO JUQT> AUE wWoIj 91eIedos) pasn are suonosa)

-01d (, 4OV H) A1[19E,] [01UO)) SS330Y IDINOSIY pue
piomssed uo-5o[10sn [BUOTIPEI] U], -AJLNIIS ISOL] o

‘sopuapuadop uroperd onbrun

pue ‘soueudjuriew opeiddn ‘uonnquusip sSlem

-1j0s ‘uoneIn3yuod ‘uorejeisur Jonpoid JusIp [en
-praiput soInbal 1] :japoiu 1o01a5[1Ua10 [PUOIIPVL], o

“(S[opow IND SMOPUIA (o7eW J0U Op

nq) Aanonpoid 9ouBYUD 0] SOIOBUI PUR ‘SpIBOQ

-Koy “‘(s1nD) sooejrajul Iasn [esrydesd Jo ofuer
opim ® aferoas] suoneoydde (Lze Auanonpoid e

‘o s3o[1asn 2y} mun sisisiod 1BY) 150y

9} 01 JUSIP 9Y} WIOIJ UOISSAS B SAYSI[QRIS 1018]

SNOHVASHUOM dOLaYTHO Od

INZNO HOLVINNG

d
-

HANIS 02280}

SWY3HLS vivad 0lge

DLgeu}

SISOy 0] S5999€ JOJeINWS §LZEU} Suoje-puels g ainbig

Figure 3 3270/HTML mapper

EMULATOR s .
WEB SERVER . -

'HETP DATA STREAMS

% Loss of 3270 functionality: The browser does not
handle keyboard function keys and does not re-
ceive real-time screen updates from hosts. It also
cannot handle all the 3270 data attributes host ap-
plications use.

* Web-centric: The browser is the universal user in-
terface for network access to information.

* Browser security: The secured Web browser and
server provide user authentication and encryption
to prevent outside intrusion of sessions opened on
the server (though separate log-on IDs are still
needed).

The 3270/HTML mapper function provides a subset
of useful emulation function through a browser, at
the cost of performance and loss of 3270 function-

ality.

The 3270 Java applet model

One of the most exciting Web technologies is Java
and the Java applet model. In this model, an appli-
cation written in Java can be downloaded to a Web
user’s machine and started, while still maintaining
a secure link back to the data server. This enables
information servers to dynamically deliver their in-

136 TAN ET AL

WWW TCP/P

formation to Web users, independent of the unique
application protocols. Recognizing this capability, we
can blend terminal emulation with Web browsing
without sacrificing the performance and functional-
ity of the 3270 applications.

The Java applet model gives software developers a
variety of options to incorporate 3270 data stream
processing into the Web HTTP-based processing. By
embedding Java applet tags’ in an HTML document,
Java code segments can be pulled dynamically from
the Web server to heterogeneous clients to provide
interoperation with server applications. Pieces of tra-
ditional desktop emulation software can be imple-
mented as Java applets and downloaded to the Web
user’s computer when the user needs to access host
information. These applets can be as simple as re-
mote GUIs. Or an applet can handle complete 3270
data stream processing, like IBM’s Host On-Demand
(see Figure 4).

BMs Host On-Demand?® is an Internet-to-SNA
interconnectivity solution that provides 3270 appli-
cation access through the World Wide Web (Www).
IBM communications servers maintain Host On-De-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 4 3270 Java applet

mand, including new releases or upgrades. Web users
need not worry about typical installation, configura-
tion, distribution, and maintenance problems.

Host On-Demand has the following characteristics:

% High performance: It uses the native Telnet pro-
tocol, thus eliminating the overhead typically as-
sociated with HTML and HTTP; resulting response
time is close to the native emulator.

% Emulation function on demand: Users need no ad-
ditional software on their computers. Host On-De-
mand dynamically downloads its Java-based 3270
emulator to a user’s computer.

% Persistent session connections: It provides a true,
bidirectional session between the Web user and
3270 host applications, eliminating the interrup-
tions from navigating Web pages. Users receive
real-time host screen updates and can use their
keyboard, PF keys, and mouse.

* Customized session windows: It provides the choice
of opening 3270 windows within an existing Web-
browser window or as a new window. A user can
customize the appearance of his or her 3270 win-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

JAVA:ENABLED O/S

e

BM '
COMMUMNICATIONS
SERVER WITH
HOS

dow. A default window setting, menu bar, iconic
toolbar, keypad, and automatic scalable fonts are
provided.

% Multiple sessions: It provides multiple concurrent
host access sessions.

* Platform flexibility: Host On-Demand supports any
Java-enabled client platform such as Windows
3.x** Windows 95** Windows NT**, Operating
System/2* (0s/2*), Advanced Interactive Executive
(AIX*), UNIX**, and Mac™*. It can be downloaded
from any standard Web server such as Windows
NT, AIX, 0S/2, MVS, Netware**, and UNIX.

* Host security: Persistent connections deny unau-
thorized connection to an authorized session, such
as the exposure found in the HTML mapper or re-
mote GUI implementations. Traditional host com-
puter mechanisms such as RACF and Advanced
Communications Function/2 (ACF2) are available.

% Investment protection: It leverages existing client-
side computing power to deliver host application
access and leverages customer investment in dis-
tributed computing power. Contrast it with the
HTML mapper (and some Java clients) approach
that uses server cycles to provide host application
access.

AN ET AL 137

Figure 5 Establish persistent session

 WEBUSER

WEB SERVER .

| rrowe
DIRECTORY
DR

‘ _{'.2.

BOOKMARKS _]|
HODURL

‘” JOD CLASSES <)

3270 SESSIO’:J

NETWORK OF

Host On-Demand implementation of the
Java applet model

Host On-Demand is implemented using Java tech-
nology and its applet download capability. Tradi-
tional 3270 emulation client function is completely
re-implemented in Java as a Java applet. A new pro-
cessing structure breaks the traditional model into
several discrete, self-contained objects. These objects
are implemented as Java classes, and the entire class
library is installed on a server path pointed to by the
Web server home directory structure. The Web ad-
ministrator sets up a URL pointing to a default Host
On-Demand applet initial HTML page. When Web
users open this URL, the server initiates the down-
load of Host On-Demand Java-class files that run in
the Web user’s computer memory to automatically
establish a session from Web user to host. The ses-
sion has the same end-to-end persistent character-
istics as those established from a resident emulation
package to conventional tn3270 servers. Host On-
Demand requires no modifications of the network
or server environment.

Figure 5 illustrates the flows involved in establish-
ing persistent sessions. The numbers in parentheses
here correspond to the numbers shown in the fig-
ure. The Host On-Demand Java applet is stored on
the server at a resource location (1). A user selects
this URL (2) to cause the Host On-Demand applet
download and execution (3) on the user’s machine.
This opens a socket (4) and establishes a persistent
end-to-end session to a host (5).

138 AN ET AL

HOSTS

Figure 6 depicts the main components of Host On-
Demand. At the center is the core process of host
access that establishes the session. The GUI process-
ing and run-time environment processing are log-
ically separated from the host access session process-
ing. The GUI processing (on the right) consists of
several classes used to construct a visual display of
the session on the user’s workstation. The run-time
environment processing (on the left) provides a de-
fault run-time control that initiates sessions, main-
tains session limit, tracks user GUI options, and re-
solves file references. The entire solution is based
on Java technology, and the same piece of code runs
on any Java-enabled platform. These components
are further discussed in the following sections.

Core 3270 emulation

Figure 7 shows the structure of the main classes of
the “host access” component (center column of Fig-
ures 6 and 7). At the bottom is the transport class,
which is responsible for session negotiation, termi-
nation, and flowing of 3270 data streams over sock-
ets. Outbound 3270 data streams (from host to user)
are parsed in the data stream class into discrete
pieces and passed on to the presentation space class
that processes these pieces and maintains a virtual
3270 screen in memory, storing all data fields and
attributes. The presentation space class also takes
user input, updates the virtual screen, and initiates
inbound 3270 data stream flows (from user to host).
Inbound data streams are -assembled in the data

IBM SYSTEMS JOURNAL, VOL. 37, NO 1, 1998

Figure 6 Host On-Demand main components

RUN-TIME
ENVIRONMENT
PROCESSING

HOST ACCESS
SESSION
PROCESSING

USER INTERFACE
PROCESSING

Figure 7 Host access detailed flows

' HOST
ACCESS

SESSION
2

APPLET

@

INITIATION

PRESENTATION SPACE

6{ BUFFER |(3)] FIELD

HOST SESSION
INITIATION SCREEN

stream class with information from the presentation
space class, and passed on to the transport class.
These classes are glued together by the session class
to represent the complete state of a session. Mul-
tiple host connections are created by multiple instan-
tiations of the session class. The result is a self-con-
tained session object structure that forms the basis
of a persistent session from the user to host.

Figure 7 also illustrates several detailed flows. First
described is the detailed flow of session initiation,

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

where the plain numbers in the figure correspond
to the numbers in parentheses here. A user opens
the URL to initiate applet download and start exe-
cution (1). The applet instantiates the session class,
which in turn instantiates the host access classes (2),
and instantiates and attaches GUI classes (3). The
transport class instantiation opens a socket connec-
tion to the tn3270 server port, sets up a continuous
socket read loop, and performs session negotiation
(4). When the negotiation is complete, the host sends
a “welcome to host” logo data stream that is passed

TAN ET AL. 139

on to the data stream class (5). The data stream class
parses the data stream and invokes presentation
space methods to store the information in the pre-
sentation space class structures (buffer and field) (6).
When the data stream processing is complete, the
presentation space class invokes the GUI processing
to paint the “welcome to host” logo screen (7). The
session initiation is then complete. Host On-Demand
is now ready to handle user input and host appli-
cation output.

Before getting into more discussions of the input and
output processing, it is necessary to mention briefly
the 3270 data stream architecture. The 3270 data
stream® is a well-defined architecture transmitting
data between an application program and a display
with a keyboard, typically used by mission-critical
business applications. The data stream is further di-
vided into outbound and inbound formats. An out-
bound data stream is sent from the application pro-
gram to the display device and consists of commands,
orders, control characters, attributes, and data. An
inbound data stream is sent from the display device
to the application program and consists of an atten-
tion identifier (AID) followed by data. The nondata
portion of the data stream defines the action to be
performed on the data.

An example of an outbound data stream for writing
a message to the bottom of a 3270 screen may look
like this: an Erase/Write command to clear the screen
and write new data, followed by a write control char-
acter to reset the keyboard after the write operation
is complete, followed by an order to set the starting
position to the last line of the screen, followed by
another order to create a field at the starting posi-
tion with field attributes (input and displayable), and
finally the message character string to be written.
Note that every piece of required information is
packed in the data stream for the device to process
in one shot to display on the screen. In contrast, an
HTTP stream may traverse back and forth between
client and server several times when displaying a sin-
gle page. This is why 3270 host technology is so ef-
ficient and has been in good demand for driving crit-
ical business applications.

In Figure 7 the detailed flow of inbound 3270 data
traffic is shown, with the circled numbers in the fig-
ure corresponding to the numbers in parentheses
here. The user enters data and a function key from
the screen (1), which are routed to the host access
session class and handed over to the presentation
space class (2). The presentation space class updates

140 TAN ET AL

the buffer and field classes and invokes the data
stream class for inbound send (3). The data stream
class assembles the inbound 3270 data stream (4),
then invokes the transport class to send it as a socket
(opened for this session) output stream (5) that flows
to the host (6). The tn3270 server at the other end
receives it as a socket input stream and extracts the
3270 data stream to pass it on to the host applica-
tion.

Figure 7 also illustrates the detailed flow of outbound
3270 data traffic, the same processing as painting the
“welcome to host” logo screen, except that the data
streams could be more complicated. The numbers
insquares in the figure represent the outbound flow,
in which the host application sends a data stream
over the socket opened for this session to the user
workstation (1), which is received by the transport
class (in its continuous read loop) (2). The transport
class extracts the 3270 data stream and invokes the
data stream class for an outbound receive (3). The
data stream class parses the 3270 data strcam by
looping through the 3270 commands, orders, con-
trol characters, attributes, and data sequences and
stores the results in the presentation space classes
(4). Since multiple 3270 data streams could be em-
bedded in a single socket stream, the presentation
space class invokes the GUI processing at the end of
each 3270 data stream to repaint the host applica-
tion output screen (5).

Concurrent sessions are supported via multithread-
ing. Each transport instance runs on its own thread.
Therefore, the user will not be tied up by a single
host data traffic path when working with multiple
hosts simultaneously.

By separating the core host access processing from
other aspects, Host On-Demand has paved the way
for new Web applications to use host information
in a way not previously used. The 1BM eNetwork Host
On-Demand Host Access Class Library is provided
in Host On-Demand Version 2, which started ship-
ping in September 1997. Customers can write their
own Java applets and applications to interact with
host applications without displaying 3270 screens.

3270 GUI

Host On-Demand GUI consists of an applet initia-
tion (HTML) page and a 3270 screen display window.
The applet initiation page contains simple options
that auser can select to start a host session. The 3270

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 8 Host On-Demand with Netscape Navigator 3.0

IBM Host On-Demand - Netscape

screen display can be opened in its own window or
in the window of the browser. If it is in its own win-
dow, the applet initiation page sets up a hyperlink
pointing to the 3270 screen display window. Figure 8
is a Host On-Demand screen shot when it is opened
as an embedded window inside a Netscape™** browser.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

The 3270 screen display window is similar to the IBM
Personal Communication (PCOMM) product. It con-
sists of a menubar, toolbar, keypad, OIA, and screen.
OIA, the operator intervention area, is a specific term
used in terminal emulation software for displaying
session status, such as when the system is in a wait

TAN ET AL. 141

Figure 9 Theme-based GUI processing

HOST
ACCESS

L4 -5 | session
RESOURCES: i

CONFIGURATION

0la3270

SCREEN

state or inhibited for input. Users can control the
display of the toolbar and keypad, size the screen
window, duplicate a session window, and jump be-
tween session windows. All GUI elements are imple-
mented in the Java AWT (Abstract Windowing Tool-
kit) classes. The session class provides the container
for holding the GUI subcomponents. It calculates the
dimension required for each subcomponent that is
showing and aligns it properly in its resize() method.

Host On-Demand contemplates the fact that users
may prefer to use the interfaces they are familiar
with. For example, browser users may not be famil-
iar with the green-screen look and feel of the em-
ulator interface and instead prefer a browser-like in-
terface. The GUI processing allows easy OEM (original
equipment manufacturer) modifications by employ-
ing “theme-based” GUI class structures. The term
“theme-based” means that GUI elements such as
menubar items, toolbar icons, and coloring schemes
are set according to the style and terminology of a
specific application, such as PCOMM. The Host On-
Demand default is an emulator “theme-based” GUI
modeled after PCOMM.

A real example of the application of this concept is
the Netscape theme-based GUI shipped with the ver-

142 7AN ET AL

sion of Host On-Demand in Netscape Communica-
tor Professional Edition**."* It uses a different set
of menu item names and toolbar icons and shows
fewer toolbar items. The GUI is based on Netscape’s
user interface conventions. The specific theme is de-
fined in a Java class that maps GUI elements to in-
ternal GUI processing function calls. (It could be a
file, but Host On-Demand chooses to use Java class.)
The map also includes settings to control the enabling
and disabling of GUI elements. The function calls re-
main constant. The theme can be mapped to a sub-
set of the function calls. Each theme selects its own
terms and images.

Figure 9 illustrates the flow of the GUI processing.
The theme is set at applet or application initiation
time, based on how Host On-Demand is packaged,
and in the applet configuration processing the con-
figuration class (1) instantiates the theme class prior
to session initiation (2). The theme class is used when
the session class is instantiated to draw the GUI pre-
sentations (3). The session class instantiates the GUI
classes (menubar, toolbar, keypad, 01A3270, and
screen) and obtains the GUI subitems to add (to the
menubar, toolbar, and keypad) from the configura-
tion class. The configuration class (1) takes into ac-
count the enablement bit settings and skips the items

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

that do not fit the current environment. When a user
clicks on the GUI items (4), they are converted into
an internal function code and processed in the host
access component (5).

The GUI process also detects environmental differ-
ences and dynamically enables and disables GUI el-
ements at session startup time. This is a useful fea-
ture to support the “write once, run anywhere” Java
capability. As an example, the Host On-Demand help
information is HTML-based, which requires a
browser. If Host On-Demand is not running in a
browser context, such as running under the applet
viewer or as an application, help information requests
will cause errors. Host On-Demand automatically
detects the environment and disables the help-infor-
mation-related menu items and buttons in that sit-
uation. Another application of this concept is the au-
tomatic adjustment of the Host On-Demand toolbar
icons for help-related information. If the applet is
opened in its own window, the help information is
accessible from the menu items, and therefore, the
related icons are disabled from the toolbar. When
the applet is opened in the browser window, no menu
items are available, and these toolbar icons are en-
abled.

It is not unusual for Windows applications to pro-
vide some degree of end-user GUI customization.
Most leading emulator products allow users to tai-
lor their individual iconic toolbars. Host On-Demand
uses a different approach for customization by pro-
viding theme-based and “canned” GUI packages that
automatically adjust to the run-time environment.
The customization is at the OEM level, through a sim-
ple Java class definition.

Applet environment

The third main component of Host On-Demand is
the applet run-time environment support. Its func-
tion is to keep other components from having to di-
rectly interface with the surrounding Web environ-
ment, keep track of session configurations, maintain
hot session links, and preserve the persistent session
state.

Figure 10illustrates the class instantiation flow when
the applet is loaded. With the arrow pointers indi-
cating direction, the applet instantiates the session
configuration class, then the session class, and so on,
to start the entire Host On-Demand processing. The
run-time environment classes are listed outside the
session rectangles. These classes control an applet-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

wide configuration, including the active session
count, access to system services such as tracing, helps,
and National Language Support (NLS), and are re-
sponsible for masking complexities associated with
the different operational environments. For exam-
ple, graphical images are retrieved differently when
running in Java applet and application contexts. This
is because different getImage() methods are provided
based on whether it is an applet or application. The
Java applet class has a getImage() method for re-
trieving images, whereas an application must use the
getlmage() method from the default Java Toolkit
class.

The configuration object class (he3270cf) is used to
keep track of user selections made for a session. Each
session instance has one configuration object. If the
session needs to obtain an external file, such as when
a user clicks on a help menu item, the session class
will invoke the configuration class methods to ob-
tain the help HTML file. The configuration class also
controls the drawing of GUI elements. The code seg-
ment in Figure 11 illustrates how GUI processing uses
configuration class methods to create the graphical
toolbar.

The function of preserving persistent sessions is im-
plemented using the session vector class (heldrcf).
Unfortunately, for persistent 3270 sessions, Web
browsing is a stateless environment. If a user is brows-
ing the Web while a host session is active, the applet
page may be refreshed or reloaded during Web nav-
igation. The state of the active session would be lost.
Host On-Demand saves active session objects in a
global structure that survives applet instantiations.
When an applet is first initiated, the session vector
is created and stored in a static (global) object vari-
able. Active sessions are tracked in the session vec-
tor. If the applet HTML page is reloaded in the
current browser session, the session vector is reas-
sociated with the new instance of the applet. There-
fore, active sessions are not disrupted and continue
to operate under the new instance of applet.

Host On-Demand dynamically maintains hot links
on the applet HTML page to link the page directly
to the active session windows. Users can leave their
host sessions at any time to navigate the Web. They
can return to the sessions with a simple point and
click from their applet page.

We have discussed the main components of Host On-
Demand. Host On-Demand also provides NLS and

TAN ET AL. 143

Figure 10 Host On-Demand classes

CLASS brmsgsen
EXTENDS OBJECT

CLASS emmsgsen
| EXTENDS OBJECT _

CLASS brmsgsfr
E BJECT

CLAé ermmsgsir
EXTENDS OBJECT

CLABS fiemsgsen
EXTENDS OBJECT

1. US ENGLISH MRI

CLASS hemsgsfr
EXTENDS OBJECT

FRENCH MRI

CLASS hese70ap
EXTENDS APPLET

LOADER -

.| CLASS heazyoct
EXTENDS OBSERVABLE

| SESSION CONFIGURATION

CLASS 58883270
o EXTENDS PANEL

CLASS heldref
EXTENDS OBSERVABLE

APPLET CONFIGURATION ROOT SESSION

o - GUI
CLASS sessfram
EXTENDS FRAME

WINDOW SKELETON

T ACCESS:

. .| CLASS screen
i .| EXTENDS CANVAS

IMPLEMENTS RUNNABLE

PRESENTATION SPACE
HANDLER

| cLASS psaz7o
| IMPLEMENTS IHANDLR

.“}| PRESENTATION SPACE

CLASS debug
EXTENDS FRAME
IMPLEMENTS RUNNABLE

TRACE

| cLASS dsagro
| EXTENDS OBJECT

1| DATA STREAM PARSE
AND ASSEMBLY

CLASS tna270
EXTENDS OBJECT
IMPLEMENTS RUNNABLE

SOCKET AND TELNET
HANDLER

CLASS buffer
EXTENDS VECTOR

1 CLASS buttnbar
3 EXTENDS PANEL

LINEAR BUFFER
1 TOOLBAR HANDLER

CLASS keypad

CLASS 13270 EXTENDS PANEL

EXTENDS OBJECT

3270 FIELD KEYPALY HANDILER

CLASS oia3270
EXTENDS PANEL

OIA HANDLER

problem determination capabilities. Both areas
posed an interesting implementation challenge in the
Java environment. Host On-Demand enables NLS
through a message text scheme, and provides a built-
in debugging facility that dynamically interacts with
the main components. These approaches may be of
interest to general Java developers. Let us examine
them closely.

144 TAN ET AL

Message text

Host On-Demand Release 1 was designed for level
1.02 Java Virtual Machines (JvMs), which does not
include the comprehensive NLS functionality asso-
ciated with the locale class and text package in 1.1-
level JVMs. In spite of the JvM 1.02 restrictions, the
product was structured to enable NLS and facilitate

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 11 Code segment for creation of graphical toolbar

Figure 12 HTML applet tag

translations when the JVM restrictions are removed.
The approach is to separate message and GUI text
from the mainline processing, allocate an individual
national language directory per country, carry coun-
try-specific code page tables, and use the configura-
tion class methods to separate others from retriev-
ing message and GUI text strings.

Release 1 implemented locale-like support for its
message text and help information. When the Host
On-Demand applet class is initialized, it examines
the value of an optionally provided NLS_CODE pa-
rameter to determine its locale. For example, a value
of EN instructs Host On-Demand to instantiate a U.S.
English message table, code page 850 ASCIVEBCDIC
translation tables, U.S. English menus, toolbar, and
keypads using static data objects contained in dis-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

crete Java class files. Further, the NLS_CODE of EN
instructs Host On-Demand to use U.S. English
HTML-based help information contained in the EN
directory. Using this scheme, Host On-Demand can
dynamically tailor the national language displayed
to the end user by having the user point to the ap-
propriate HTML page. For example, the HTML ap-
plet tag in Figure 12 invokes Host On-Demand with
u.s. English machine readable instructions (MRIs).

When the he3270ap applet initializes, it instantiates
a configuration class object using the passed
NLS_CODE. Subsequently, the configuration object
instantiates MRI-dependent instance data. The top
row of Figure 10 describes this flow. The Java code
in Figure 13 illustrates the language-specific class in-
stantiations.

TAN ET AL. 145

Figure 13 Language-specific class instantiations

Methods throughout Host On-Demand do not
“hard-code” message strings to be displayed to the
end user. Rather, methods are invoked in the con-
figuration object to retrieve the appropriate string.
The following Java code creates a label using mes-
sage #28 which is retrieved from the configuration
object using the getMsg method; the message num-
ber serves as an index into the currently instantiated
message table:

Label label3=new Label(config.getMsg(28));

// Get text for "Separate window" field

By isolating the MRI from the other Java source code,
the discrete Java class files containing the static MRI
data objects and the HTML-based help information
can be submitted for translation without affecting the
product development cycle.

Debugging facility

The debugging facility is intended for internal de-
velopers, vendors, and problem determination spe-
cialists who are involved in handling error situations.
The conventional approach would be to generate the
traces, messages, and error logs and provide a sep-

146 TAN ET AL

arate utility to format the information. That ap-
proach does not fit well with the Java applet model
because typically an applet does not have access to
local files. Having a separate utility also means run-
ning as a separate applet that could cause unwanted
complexity of inter-applet communications.

Host On-Demand uses a compact debugging solu-
tion that dynamically displays formatted problem de-
termination information. The debugging facility is
controlled by a Host On-Demand applet parame-
ter. If the applet parameter specifies no debugging,
there is no indication of its existence from the tool-
bar and menubar. Therefore, normal users would not
bother with the debugging function. If debug is spec-
ified in the applet parameter, a debug button and
menu item will appear on the 3270 screen window
for turning the function on and off. The debug in-
formation is organized by host access classes, which
provide a layered level view. Figure 14 shows the de-
bug window. The component selections are imple-
mented as Java Checkboxes and the trace and mes-
sage display area is a Java TextArea. The window
runs in a separate background thread from Host On-
Demand processing.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 14 Host On-Demand debug facility

IBM Host On Demand Debug Log

I~ 3270 [ps320 T ps3aze W

Do not wrap log

Select the components to be logged

7 Contiguration [Session

¥ ¥ Loader

& Rllow log to wrap

Starting session with configuration:
29-Sep-97 6:39:36 MM DFORMATION ModuleID

Setting the debuy flag in Session to true
29-Sep-97 6:45:06 AM THF ORMATION ModuleID

[Logying in Sess3270 turned ontrue
29-Sep-97 6:45:06 AM

Setting the debuy flag in Loader to false

29-Sep-97 6:45:11 A INFORMATION ModuleID

Jsetting the debug flag in Config to false

HLS code<FN Seperate window-ND Theme defaulted=true Theme=EMILATOR Protocol=TH3270E TH32UE serv

= Loader Probeld = hei27bap::startSession-1

= Loader ProbeID = debuy::notifySezsion()
Probelll = sess3270::setDebuy()

= Session

= Loader ProbelD = debugy::notifylLoader ()

Several display options were considered for the de-
bugging facility before it was decided to have Host
On-Demand provide its own debug window. The ob-
vious one was to use the System.out.println standard
output stream from the java.lang.System class to
print messages to a console. This works fine for in-
ternal software development but causes a problem
in the user environment because not all browsers pro-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

vide output consoles. Netscape Navigator** has a
Java console, but Microsoft Internet Explorer** does
not—it has a log file instead. Finally, Host On-De-
mand’s own debug window is selected to provide a
level of consistency across all environments.

In Figure 10, the left-most column indicates the in-
stantiation of the debug class. The debug class runs

TAN ET AL. 147

Figure 15 Flow of scheme for intercomponent communications

.

Bl
&
o

il-

before
15

ions,
Figure

icat
in

The code segment

lustrates this flow.

general intercomponent commun
JavaBeans**.1?

tens to the Checkboxes op-
individual components when to start

and stop generating traces and messages. Each com-

1S

on its own thread and 1
tions to noti

ponent has a debug switch that controls the built-in
trace and message logging of the component. The

The future

tten to the TextArea of the

101 1S WI1

debug informat

del.

Java applets are dynamically downloaded “on de-
ter-

1cation mo

The Java model is a server-centric appli
ing users to in

mand” to requesting clients, enabl

L =]
$28
= —
SE8
- ® 0
Pz
By =
- 2.2
0 g o
22 E
=
S s
as g
172 B VY
o TR =
£5E
©.8%
ER e
Q=
gﬁh
D
un%
=
225
SEE
S .2
= s @7
cht
O s ®
=1
o w

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1898

148 TAN ET AL

Figure 15 Flow of scheme for intercomponent communications (continued)

act with virtually any information source from any-
where. As described, Host On-Demand provides
on-demand access to host applications from home,
the office, and even on the road. Host On-Demand
Version 2 added new capabilities and broadened the
application base. In addition to 3270 applications,
Host On-Demand can now access 5250, VT (virtual
terminal), and Cics* (Customer Information Con-
trol System) gateway applications. It also supports
Host File Transfer, Telnet redirection, Secure Sock-
ets Layer (SSL) security persistent user configuration,
Host Access Class Library, and much more. This new
application model is quite powerful from a univer-
sal access perspective, but the dynamic nature of net-
work application access presents many new perfor-
mance and management challenges and a seemingly
endless opportunity for new functions.

Java applets are placing an increasing demand on
the Internet and intranets. Applets are typically
transferred from the source server to the requesting
client with each invocation. The applet transfer time
varies depending upon the size of the applet and the
available network bandwidth and server utilization,
creating an opportunity for applet caching technol-
ogies to reduce transfer costs and maintain accept-
able response times. Preferably, the caches will au-
tomatically detect which applets should be cached,
probably based on frequency of use, and apply up-
dates when changes to the applets are detected. In
addition to applet transfer times, the mobile or re-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

mote office user may find the response times of some
applications will be affected by the available network
bandwidth. For Host On-Demand, we have em-
ployed technology from other IBM products, the
1BM eNetwork WebExpress® and eNetwork Emu-
lator Express, ' to satisfy our applet caching and re-
sponse time needs when limited network bandwidth
was available—less than 28.8 kilobits per second.

The Java applet model eliminates many user tasks
traditionally associated with application installation
and software distribution. The next step in reducing
administrative costs will be to automatically config-
ure the appropriate network gateways, servers, per-
sonal preferences, etc., as required by the specific
application or user location. Directory services will
play an important role in addressing configuration
issues. As Java applets enhance their use of direc-
tories, users will no longer be burdened with sup-
plying network configuration information or personal
preferences across multiple applets (or even invo-
cations of the same applet). Administrators will be
able to specify configuration information for their
users and manage user information access capabil-
ities. Another related set of management services
will address security, both authorization and encryp-
tion, and single sign-on capabilities. The ease with
which users may access applications in this new on-
demand model will accelerate the value of these new
management services to businesses and their user
populations.

TAN ET AL. 149

Java has gained wide industry support and accep-
tance as the key technology for network computing.
Its platform-independent nature allows write-once,
run-everywhere programming, and the applet down-
loading mechanisms simplify software distribution.
JavaBeans is the latest addition to Java, providing
reusable components that can be manipulated visu-
ally in software development tools. With JavaBeans,
new Java applications can reuse components to build
complex applications. Many of the components from
Host On-Demand would make useful “beans,” for
example, a session screen bean to start a host ses-
sion and present a display area for host output and
input. Other host beans may include file transfer,
bookmark, or keypad. An intriguing thought is to
deploy some of the services needed for performance
and management as beans.

Conclusions

We have shown that Host On-Demand provides a
natural and practical solution for running host ap-
plications from the Web. A key ingredient that makes
this possible is Java. By implementing core emula-
tion functions in Java classes, the functions can be
stored on the Web and sent as applets to any com-
puter that has a Java Virtual Machine. Java provides
the downloading mechanism through the HTTP pro-
tocol, transparent to the applets. The applet logic
itself is entirely built on existing host data commu-
nication technology, and hundreds of thousands of
host applications are readily available to Web users
immediately. Applets can also run as local applica-
tions. Combined with a Java-based software distri-
bution mechanism, local applications will have the
benefit of Java applets but with reduced download-
ing frequency and added flexibility in desktop inte-
gration. Future Host On-Demand technologies will
switch the emulation services dynamically between
applets and applications and blend host information
with the Web and other sources into customized
forms to meet individual user’s needs. The future is
exciting! The rapid evolution and proliferation of
network computing will change the way we work and
live.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Microsoft Corporation, Open Systems Ltd., Apple Computer Cor-
poration, Novell Inc., or Netscape Communications Corporation.

150 TAN ET AL

Cited references

1. T. Berners-Lee et al., The World-Wide Web 37, No. 8, 76—82
(August 1994).

2. T.Berners-Lee and D. Connolly, Hypertext Markup Language
Specification—2.0, Internet Draft, Internet Engineering Task
Force (IETF), HTML Working Group (June 1995); avail-
able at http://www.ics.uci.edu/pub/ietf/html/html2spec.ps.gz.

3. T.Berners-Lee, R. Fielding, and H. Frystyk, Hypertext Trans-
fer Protocol—HTTP/[1.0 Specification, Internet Engineering
Task Force (IETF), Internet Draft (August 13, 1995); avail-
able at http:/www.ics.uci.edu/pub/ietf/http/draft-fielding-http-
spec-01.ps.Z.

4. B. C. Housel and D. B. Lindquist, WebExpress: A System for
Optimizing Web Browsing in a Wireless Environment, MOBI-
COM 96, Rye, NY (November 10-12, 1996).

S. B.Kelly, TN3270 Enhancements, RFC 1647, Auburn Univer-
sity, Decatur, AL (July 1994).

6. “Web Publishing of Host-based Information,” Microsoft SNA
Server Market Bulletin, Microsoft Corporation, Redmond, WA
(October 1996).

7. G. Cornell and C. S. Horstmann, Core Java, SunSoft Press,
Mountain View, CA, ISBN0-13-565755-5 (1996).

8. IBM Host On-Demand, IBM White Paper, IBM Corporation,
Armonk, NY (November 1996); see http://www.networking.
ibm.com/hex/white_paper_en.html.

9. 3270 Information Display System Data Stream Programmer’s
Reference, GA23-0059-07, IBM Corporation; available
through IBM branch offices.

10. IBM Host On-Demand Version 2.0, product announcement,
IBM Corporation, Armonk, NY (September 9, 1997); see
http://www.networking.ibm.com/ene/news9hex.html.

11. Netscape Communicator Professional Edition, Netscape
Communications Corporation (June 1997); see http://home.
netscape.com/comprod/products/communicator/index.html.

12. Component-Based Software with JavaBeans and ActiveX,
White Paper, Sun Microsystems, Inc.; see http://www.sun.
com/javastation/whitepapers/javabeans/javabean_ch1.html.

13. IBM eNetwork Web Express, IBM Corporation, Armonk,
NY; see http://www.networking.ibm.com/art/artexp.htm.

14. IBM eNetwork Emulator Express, IBM Corporation, Armonk,
NY; see http://www.networking.ibm.com/art/artemul.htm.

Accepted for publication August 29, 1997.

Yih-Shin Tan IBM Software Solutions Division, 3039 Cornwallis
Road, P.O. Box 12195, Research Triangle Park, North Carolina
27709 (electronic mail: ystan@us.ibm.com). Mr. Tan joined IBM
in 1978, specializing in networking software development, and
later in MVS architecture, design, and development. In 1989 he
took an assignment with the Enterprise Systems Group to review
$/390 software-related issues and later joined the Networking Sys-
tems Division in 1994 as a member of the technology staff, where
he focused on exploring new workstation and Web-based com-
munication software that leverages legacy systems. His work led
to the concept of Host On-Demand with the result that he was
assigned the leadership role for the architecture, design, and im-
plementation of Host On-Demand. Mr. Tan is currently a senior
software engineer in the Networking Software Laboratory at the
IBM Research Triangle Park facility. He received a B.S. degree
in mathematics from Fu-Jen Catholic University, and dual M.S.
degrees in mathematics and computer science from The Ohio
State University in 1977.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

David B. Lindquist /BM Software Solutions Division, 3039 Corn-
wallis Road, P.O. Box 12195, Research Triangle Park, North Caro-
lina 27709 (electronic mail: lindqui@us.ibm.com). Mr. Lindquist
joined the IBM Data Systems Division in 1982, specializing in
large-system performance, and later in large-system architecture
and design. In 1990 he joined the Networking Systems Division
as a member of the technology staff where he focused on distrib-
uted multimedia and mobile products. His research has led to
numerous patents in the area of distributed processing, and rec-
ognition as an IBM Master Inventor. Mr. Lindquist is currently
a Senior Technical Staff Member in the Software Solutions Di-
vision. He received a B.S. in computer engineering from Boston
University in 1982.

Thomas O. Rowe IBM Internet Division, P.O. Box 12195, Re-
search Triangle Park, North Carolina 27709 (electronic mail:
trowe@us.ibm.com). ' Mr. Rowe received a B.S. in computer sci-
ence from Lehigh University and joined IBM in 1984. He has
worked in the field of real-time microprocessor-based program-
ming his entire career. He has designed and implemented soft-
ware for statistical multiplexers, signal processors, SNA commu-
nications subsystems, and most recently, the Java-based Host On-
Demand product. He is currently working in the Network
Computing Framework (NCF) architecture department with a
focus on server-side Java and Internet push technology.

John R. Hind IBM Software Solutions Division, 3039 Cornwallis
Road, P.O. Box 12195, Research Triangle Park, North Carolina
27709 (electronic mail: hind@vnet.ibm.com). Mr. Hind received
a B.S. in electrical engineering with an equivalent major in com-
puter science and an M.S. in computer science and applications,
both from Virginia Polytechnic Institute and State University in
1971 and 1973, respectively. Subsequently, he worked as a research
instructor at Virginia Polytechnic Institute and State University
Department of Electrical Engineering; as a systems analyst, Di-
vision of Consolidated Laboratories, Commonwealth of Virginia;
and as associate, Planning Research Corporation, Information
Sciences Company, concentrating on various aspects of distrib-
uted processing. In 1977 he joined IBM in Kingston, New York,
to work on the DPPX communications subsystem development
team. Subsequently he has worked on various aspects of network-
ing, including document distribution, e-mail, library, directory,
security, message queuing, transaction routing, multiprotocol
transport, and most recently, Web integration and optimization.

Reprint Order No. G321-5668.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

TAN ET AL. 151

