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The  use of networks of workstations for parallel 
computing is becoming increasingly common. 
Networks of workstations are attractive for a 
large class of parallel applications that can 
tolerate the higher network latencies and 
lower bandwidth associated with commodity 
networks. Several software packages, such as 
TreadMarksTM,  have  been  developed to provide a 
common view of global memory, allowing many 
shared-memory parallel applications to be easily 
ported to networks of workstations. This paper 
investigates in  detail  the performance of several 
TreadMarks-based  shared-memory applications 
on a modern network of workstations, identifying 
the extent to which different system components 
affect the efficiency of these applications. Then a 
performance model for such applications is 
developed and used to evaluate the impact 
future changes in technology are likely to have 
on performance. The results of the model 
indicate that current systems are limited in their 
performance by communications and software 
overhead for supporting the  distributed  virtual 
shared memory, rather than hardware delays. 

E ven though most parallel computing today is 
based on a message-passing programming 

model, it  is easier to develop parallel programs us- 
ing a shared-memory image for interprocess commu- 
nication. In fact, some algorithms are extremely dif- 
ficult to parallelize by hand using  explicit  message 
passing. As a result, much research has been de- 
voted to presenting a shared-memory image to  pro- 

grams running on distributed-memory systems, an 
approach termed distributed virtual shared memory 
(DVSM). This is accomplished using a combination 
of virtual memory protection mechanisms to detect 
accesses to specific portions of memory, and soft- 
ware exception handlers to  ensure  that  the memory 
images on different processors are kept consistent. 
Examples of such software-based DVSM systems are 
TreadMarks**, CVM, Munin, and Ivy. 

It is becoming increasingly common for networks of 
workstations (NOWS), instead of special-purpose  mul- 
tiprocessors, to be  used for parallel computation, pri- 
marily because of the cost-effectiveness of using 
commodity components. Also, the latest processor 
technology often appears in workstations before it 
can be incorporated into large-scale  multiprocessors, 
which  allows NOWS to attain higher aggregate per- 
formance relative to a large-scale multiprocessor for 
the same investment. This fact can be seen in that 
several recent winners of the  Gordon Bell Prize in 
the best costlperformance category have  used a NOW 
as their computing p l a t f ~ r m . ~ - ~  
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In most such systems, the granularity for memory 
protection is  relatively coarse, namely the page size. 
With straightforward implementations of DVSM, this 
granularity leads to false sharing. This effect occurs 
when one processor updates a  data item in a mem- 
ory page, causing update or invalidation messages 
to be sent to all other processors that have copies 
of that page, even though those processors never ac- 
cess the particular data item just updated. With use 
of relaxed forms of memory consistency,  it  is  pos- 
sible to allow several processes to write to  a partic- 
ular page simultaneously, without causing  excessive 
exchanges of messages. With such forms of consis- 
tency,  reasonably  good speedups can  be obtained for 
parallel applications, even on a NOW using off-the- 
shelf LAN (local area network) technology.5 

However, given that processor performance is  in- 
creasing very  rapidly relative to commodity network 
performance, it  is not clear how  well such DVSM sys- 
tems will perform in the  future.  Whereas significant 
speedups (e.g., about three for the Barnes applica- 
tions, defined later) were reported for certain ap- 
plications on eight processors under the TreadMarks 
system,6 those same applications  exhibited about half 
the speedup running on more recent processors con- 
nected by the same network. 

In this paper, we describe the way  in which  we de- 
veloped a model to predict the performance of par- 
allel  DvsM-based applications, using TreadMarks as 
a case  study. The purpose of this model is to allow 
us to determine the effects of changes in  technology 
on  the performance of applications. As an abstrac- 
tion of a system, a model does not include complete 
details about every aspect of the system (e.g., the 
memory system  in our case). Despite this, a model 
can often offer  good approximations to performance 
given certain types of changes. For example, we  use 
this model to investigate the impact of processor 
speed, network  latency and bandwidth, and software 
overheads on performance. Although this study is 
based on applications using TreadMarks, we believe 
the approach we describe is generally applicable to 
the modelling of applications based on other DVSM 
systems  as  well. 

The results show, not surprisingly, that consistency 
actions and lock acquisitions are  the limiting factors 
on performance with current technology. When we 
break down the costs associated with these  opera- 
tions into software delays (DVSM and communica- 
tion protocols processing time) and hardware delays 
(network time and adapter latency), we find that  the 

hardware delays do not constrain the performance 
as  much as the software delays. However, hardware 
delays  will  become  increasingly  significant  as  process- 
ing speeds increase. The results also indicate that 
aggressive network hardware technologies by them- 
selves are  not enough to achieve the same perfor- 
mance for systems  with processors eight times faster 
than today's;  in particular, latency  hiding techniques 
(e.& prefetching) will be required  to maintain lev- 
els of processor efficiency comparable to those 
achieved now. 

The next section discusses a specific DVSM system, 
TreadMarks, and the technology parameters that af- 
fect the performance of applications that run under 
it. The succeeding section presents performance re- 
sults for  a number of applications running on our 
experimental system  using TreadMarks. Then  the 
model that evaluates the performance of these ap- 
plications is presented, along with a validation of the 
execution times predicted by our model relative to 
those actually observed. The model is then used to 
predict future performance limitations. Related work 
and conclusions are described in the last two sec- 
tions, respectively. 

Technology parameters affecting 
performance of DVSM 

There have been several experimental implementa- 
tions of DVSM systems,  all of which face the same 
fundamental challenge of maintaining consistency 
of shared data without encountering an unaccept- 
able amount of synchronisation and communication 
overhead. The specific DVSM system  we  have cho- 
sen to study is the  TreadMarks system. Developed 
for a network of workstations, this  system  allows par- 
allel programs to interact transparently, using a 
shared-memory model, even though the processors 
themselves do not physically share memory. Tread- 
Marks, like its similar predecessors, does this by re- 
lying on the memory protection mechanism  provided 
by the hardware and operating system to  detect ac- 
cesses to specific regions of memory  in each proces- 
sor, and then invoking  necessary actions to maintain 
memory  consistency. These actions involve  exchang- 
ing messages between processors to update  the con- 
tents of memory. 

Lazy release consistency. In a strong memory con- 
sistency model, a programmer can  assume that mod- 
ifications made to memory in a shared-memory seg- 
ment are automatically and immediately reflected 
in the memories of other processors. This model 



would correspond to the behaviour of multiple pro- 
cesses sharing a memory segment on a single  work- 
station (possibly  having multiple processors). This 
model, however, tends to  require  a large number of 
message  exchanges  when implemented on distrib- 
uted-memory machines. 

As a result, a number of weak  consistency memory 
models have been proposed that greatly reduce the 
amount of interprocess communication. They are 
based on the observation that most parallel programs 
serialize  modifications to a given data item from  mul- 
tiple processors through the use of locks. In such pro- 
grams, it is possible to reflect modifications made to 
memory  only when a lock  is released while preserv- 
ing the correctness of the algorithm (since no other 
process should be reading from or writing to this 
memory item while the lock  is held). In fact, in this 
model, a processor only needs to be informed of 
modifications to  a data item when it tries to acquire 
the lock protecting the data. This condition allows 
different processors to simultaneously modify  differ- 
ent variables that lie on the same page, as long as 
no two processors modify the same variable at  the 
same time. 

The lazy release consistency (LRC) protocol7 used 
in TreadMarks is  very  similar to the basic release 
consistency model just described, except that  data 
are simply marked as  having been modified upon 
lock  acquisition,  delaying the application of the mod- 
ifications until the  data  are actually accessed. As this 
protocol has been described numerous times in the 
past, we do  not  repeat this description here. Instead, 
we provide an example of the protocol in the  Ap- 
pendix, where a number of terms are described in 
detail. Briefly, a fault occurs when a processor ac- 
cesses a page that  requires some type of consistency 
action, resulting from the processor having  received 
prior write  notices for the page. To make the page 
consistent, the processor requestsdiffrom other pro- 
cessors that have  modified the page. 

Performance  factors. The original TreadMarks study 
reported reasonable speedups over a range of  ap- 
plications on  a network of eight DECstati0n""- 
5000/240 workstations interconnected by a Fore ATM 
(asynchronous transfer mode) switch.6  Since that 
study  was done, processor performance has  increased 
dramatically while the ATM network technology  still 
is considered to  be  current.  In  the  future,  the  per- 
formance of  DvsM-based applications will be strongly 
influenced by relative changes in the performance 
of these two components, as  well  as  by developments 
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in  system software and compiler technology. Within 
this subsection some of the factors that might  influ- 
ence the performance of DVSM applications in the 
future  are discussed. 

Processorperformance. Processor performance con- 
tinues to increase roughly by a factor of two  every 
18 months. If this rate of increasing performance is 
not matched in other system components, it will be 

TreadMarks  allows  parallel 
programs to interact transparently, 

using a shared-memory model. 

difficult to maintain current levels of performance 
for parallel applications, as measured by speedup or, 
equivalently, eficiency. (Speedup is the  ratio of  ex- 
ecution time on  a single processor over that on mul- 
tiple  processors, and efficiency  is the speedup divided 
by number of processors.) The reason is that, as the 
computation time decreases, the overheads due  to 
processor interactions will represent  a larger frac- 
tion of the overall execution time. 

If we consider the system used in the study by Kele- 
her6 and Amza et  al.,5 the processors represent tech- 
nology that is  now  five years old. If other  parame- 
ters were to exhibit the same rate  of improvement, 
commodity network bandwidth would  have to in- 
crease from 155 Mbps (megabits per second) to 
about 1 Gbps (gigabit per second), and network la- 
tency  would  have to  drop from about 500 ps (mi- 
croseconds) to 100 ps for  a one-way  message. Even 
though there are no technical reasons preventing net- 
work components from keeping pace with advances 
in processor technology, development efforts for 
commodity network components tend to focus on 
increasing bandwidth rather  than on reducing la- 
tency, the latter being most important to DVSM sys- 
tems. 

Networkpegomzance.  Two  types of off-the-shelf LAN 
technologies that  are of interest in a NOW are  Eth- 
ernet and ATM. The 10-Mbps Ethernet, which has 
been very common up to now,  is  quickly being dis- 
placed by 100-Mbps Fast Ethernet, as the  latter is 
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standard in  many workstations sold  today. This tech- 
nology  offers  much greater bandwidth, resulting in 
lower contention and  shorter delivery time for large 
messages, relative to its predecessor. The ATM net- 
works  used today, in contrast, typically operate  at 
155  Mbps, but these will soon be displaced by 622- 
Mbps networks now emerging on  the market. Be- 
cause it  uses a switch, an ATM networkwill incur less 
contention than  a Fast Ethernet network for inde- 
pendent communications at the expense of added 
latency through the switch. This difference disap- 
pears, however, if one considers using  switched Fast 
Ethernet hubs,  which are becoming  increasingly  pop- 
ular. 

Network adapters  are becoming increasingly capa- 
ble in terms of the services they can provide. An ex- 
ample is the  Cheetah ATM network adapter, devel- 
oped by I B M . ~  This adapter has the ability to  read 
from and write to user-specified data buffers, thus 
avoiding  having to copy  messages to and from the 
kernel as  has  traditionally  been the case.  Experiments 
with these adapters on our system  have  shown that 
latencies for small  messages of 140 ps can  be 
achieved (as compared to 250 ps for standard Trans- 
mission Control Protocol/Internet Protocol, or 

, TCPIIP, stacks). Others have reported even  lower la- 
I tencies using experimental interfaces or protocols 

(e.g., References 9 and 10). 

System  sofhYare. TreadMarks is but one example of 
a DVSM system, albeit the  one  that is  most common. 
As we gain more experience with  such software, the 
overheads associated with DVSM will decrease as 
more efficient algorithms and data structures are de- 
veloped. Also,  since communication latency due to 
protocol processing  is  becoming more significant, fu- 
ture systems are likely to provide lightweight pro- 
tocols for the types of applications examined in  this 
paper. 

Compiler  technology. One of the primary perfor- 
mance limitations for DvsM-based applications is the 
latency for consistency actions and lock acquisitions. 
Research in compiler technology has devised tech- 
niques to hide the latency of cache misses, but these 
same techniques have been shown to  be highly ap- 
plicable to paging for out-of-core computations. '' 
Using such techniques to prefetch diffs for pages that 
will be accessed shortly'* or  to acquire locks  in ad- 
vance of when  they are needed l3 may greatly  improve 
the performance of applications.  Hiding  latencies will 
likely become more important in the  future as  it  is 
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generally easier to increase bandwidth than to  re- 
duce latency. 

Performance analysis of TreadMarks on a 
network of workstations 

This section describes our experimental system and 
the performance results for some applications that 
run on it  using TreadMarks. 

Experimental platform. Our experimental platform 
consists of eight IBM RISC System/6000* 43P (133 
MHz) workstations, each having  64 MB (megabytes) 
of main memory, and connected by two commodity 
networks, a 100 Mbps Fast Ethernet and a 155 Mbps 
ATM. The Fast Ethernet comprises 3Com 3C595 
EtherLinkIII* * PCI (peripheral component intercon- 
nect) adapters and a 16-port Cisco hub, whereas Fore 
PCA200E ATM adapters  and  a  Fore ASX 200/WG 
ATM switch comprise the ATM network. 

Choice of applications. We have chosen six appli- 
cations to analyze for this  study, including ones that 
do numerical computation, image  analysis, and phys- 
ical  systems modelling. These applications are: 

sorr-This kernel performs a typical red-black suc- 
cessive over-relaxation (SOR) on a two-dimensional 
grid,  which  involves  iteratively updating each element 
of the grid based on the values of its neighboring el- 
ements. The grid  is partitioned across processors in 
contiguous areas, so communication only occurs 
when a processor must read an element across a 
boundary; synchronisation is based on  a  barrier at 
the  end of each iteration. 

1s-This kernel sorts 2N integers in the range from 
zero to 2B - 1, using a bucket sort algorithm. Each 
iteration in the algorithm consists of two steps. In 
the first step,  the data-sharing pattern is migratory, 
whereas in the second, it is primarily read-only. 

Barnes-This application simulates the evolution of 
a system of bodies under  the influence of gravita- 
tional forces (e.g., a system of galaxies). The iter- 
ative algorithm consists of phases with a producer- 
consumer data-sharing pattern between processors 
in different phases. This sharing is  relatively fine- 
grained, causing considerable false sharing and, 
hence, high fault handling overhead. 

Sphere-The  shallow water equations for a  spher- 
ical surface are solved by this application. The al- 
gorithm used  in Sphere is  typical of those used  in 
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Table 1 Summary of application characteristics 

climate  and  weather  modelling software.14 Almost 
all shared-data  structures  are  initialised at the  be- 
ginning  and then accessed in a  read-only  fashion 
throughout  the  remainder of the execution. The  one 
exception is a  solution  vector  whose  elements  can 
be  updated by any processor while the  equations  are 
being solved. 

Water-This application  simulates  a system of wa- 
ter molecules in a liquid state.  The main  shared-data 
structure is an array  that is accessed by processors 
in a  partitioned  manner.  The primary  sharing pat- 
tern is fine-grained  and  migratory,  as  intermolecu- 
lar  forces are calculated,  but  some false sharing oc- 
curs  across the  boundaries of the array. 

Raytrace-This application renders a  two-dimen- 
sional  graphical  image  created  from  a  three-dimen- 
sional  scene, using a  raytrace  algorithm.  Almost all 
data  are  shared read-only or exclusively updated by 
one processor as  each processor operates on its own 
partition of the  frame buffer used to  store  the re- 
sulting  image.  However, for load-balancing  reasons, 
processors  may  steal  work  from one  another, caus- 
ing some  degree of false  sharing. 

Table 1 lists the  parameters used  for  each  applica- 
tion  and  summarizes  their  execution-time  perfor- 
mance on our experimental  platform,  based on the 
average of  five trials  for  each  case. The  data sets that 
we have used are in many cases representative of pro- 
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duction  runs of the  programs. However, many of the 
applications use iterative  algorithms, and, in order 
to  reduce  the  length of experiments, we have lim- 
ited  the  number of iterations to only a few. We there- 
fore  deliberately  analysed only the parallel  compo- 
nent of each  application, since the  serial initialisation 
would  otherwise have had  too  great  an impact on 
our results. For  Barnes  and  Sphere, two different 
problem sizes, determined by “particles”  and  “pitch,” 
respectively, are included in our experiments. (In the 
case of Barnes, the  tolerance differs between the two 
problem sizes, as  recommended by Singh et al. l5 in 
order  to achieve the  same relative error.) 

Execution time overhead. We  instrumented  Tread- 
Marks to  measure  the  amount of time  spent in dif- 
ferent  components,  as follows: 

Busy  time-Busy time is the  time  spent by the  ap- 
plication on  actual  computation. 

Fault handling-This time is consumed by handling 
read  or write  faults of the application to maintain 
memory consistency across processors. The most sig- 
nificant component of fault  handling is the sending 
of requests to  remote processors  for (possibly mul- 
tiple) diffs, and waiting for  their  replies. 

Empty time-This time is consumed in handling first- 
time misses for  pages accessed by each  processor. 
Before consistency action  can be  taken, a full copy 
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Figure 1 The  percentage of execution  time  spent  in  executing  useful  instructions  and  various  overhead  components 
~~~~~~~~~~~ ~ 

of the page must  be obtained from another proces- 
sor (known as an empty miss). Although empty 
misses occur as a result of a consistency fault, they 
occur with  varying frequencies in different applica- 
tions, so they are modelled separately. 

GC time-This time is consumed by garbage collec- 
tion, which  is initiated at  the end of a  barrier if the 
amount of memory consumed by TreadMarks  data 
structures exceeds a predefined threshold. Garbage 
collection results in essentially the same operations 
as a consistency fault, requesting and receiving  diffs, 
except  it does so for all pages being actively shared. 
As such, it  is an expensive operation, because two 
processors may  exchange  diffs during the GC phase 
even if their sharing patterns  do not require such ex- 
changes. 

Lock acquisition and release  time-This time is con- 
sumed in acquiring and releasing locks,  which are 
typically  used to serialize access to shared data. Ac- 
quiring a lock  involves sending a request to  the lock 
manager, which forwards the request to the  current 
holder of the lock. Releasing a lock  typically does 
not require any  messaging,  unless another proces- 
sor is already waiting for the lock. 

Sigio time-This time is consumed by the handling 
of asynchronous IiO requests (i.e., SIGIO in UNIX**) 
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from remote processors resulting from DVSM activ- 
ities (i.e., barriers, faults, or locks). This component 
differs from the previous ones in that it  is not ini- 
tiated by the local processor, but is rather an over- 
head imposed by remote processors. 

Barrier time-This time is consumed by barrier  op- 
erations, which are used to synchronise all proces- 
sors involved  in a computation at  the same point. 
Apart from the delay waiting for all processors to 
arrive at the  barrier,  the principal cost of a  barrier 
is  all the memory protection systems  calls that must 
be made to  the kernel to invalidate pages as a result 
of the combined write notices from all processors. 

The results for each application are shown  in  Fig- 
ure 1. As can be seen, DVSM overheads can be quite 
significant, accounting for up to 60 percent of the 
overall execution time in the case of Water. In gen- 
eral,  the high  cost observed for barriers is not  due 
to messaging, but rather  due  to imbalance between 
processors, which causes significant  wait times. In 
many cases, this  imbalance  arises  from different 
processors having different amounts of DVSM over- 
heads,  rather  than  from  imbalance  internal  to  the 
algorithm. IS, Sphere,  and  Water all have a  large 
amount of locking overhead,  whereas  Barnes suf- 
fers mostly from  garbage  collection  and  fault-han- 
dling overhead. 
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Performance model of applications 

In the previous section, we presented time spent in 
different components for each of our six applications. 
Next, we describe a model that we used to study the 
effects of technology changes on the magnitude of 
each of these components. Our basic approach to 
developing this model is to break down the cost of 
each significant operation in each component. In par- 
ticular, we separate  the time spent in local and re- 
mote computation and in  all major parts of the com- 
munication paths. We  also take  into account the 
contention that occurs at local and  remote proces- 
sors resulting from DVSM activities. 

To obtain our measurements, we used a lightweight 
timing  facility  in the Advanced Interactive Execu- 
tive* (AIX*) to measure elapsed time between var- 
ious points in the  TreadMarks software. Since we 
ran all our experiments while the system  was qui- 
escent, the effect of daemon activity and  interrupts 
unrelated to  the applications is  negligible (as is sup- 
ported by the repeatability of our experiments). All 
applications were small enough to fit into memory, 
so there was  very little paging activity. 

One assumption in our model is that network con- 
tention at a global level  is  negligible, because either 
a switched  network  is  being  used  (e.g., an ATM switch) 
or  the available network bandwidth is  very  high. In 
particular, we found that network contention was 
quite low even for our nonswitched Fast Ethernet 
network.  We do, however, take into account the con- 
tention  that arises between a processor and the net- 
work, a problem that can increase the cost of cer- 
tain DVSM operations. 

Given the  nature of our model, we do not  attempt 
to characterize memory  system performance, and in- 
stead assume that memory  access  costs are in most 
cases  unaffected by the changes in  technology that 
we examine in the next section. It is  possible,  how- 
ever, to adjust the performance of the memory  sys- 
tem at a global level, as we  have done for the case 
of increasing processor speeds in the second subsec- 
tion of the next section. Assessing the effects of mem- 
ory at a more detailed level  can  only  be  fully  achieved 
using  low-level simulation techniques. 

DVSM overheads. Ideally, the time spent in each of 
the execution time components (as described pre- 
viously)  would  be  evenly balanced across all proces- 
sors. As mentioned above, we have found that con- 
siderable imbalance can  exist  in several of these, 
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there  are  a significant number of faults, but  the 
source of these faults alternates between processor 
zero and all other processors from one phase of the 
computation to the next.  Averaging the faults across 
the entire computation would lead to large inaccu- 
racies in the model. 

To model the execution time of an application, we 
consider separately each phase of the computation, 
as defined by the barriers. For each phase, we  first 
determine  the  total amount of time spent in each 
component (busy time or DVSM overhead), whose 
sum represents  the nonidle time for  the processor; 
the time required for  the phase is  simply the max- 
imum of these sums. (As Figure 2 illustrates, some 
processors may be idle at the end of a phase, waiting 
for the slowest to arrive at the barrier. Note that each 
processor may be in a particular component many 
times during each phase, which  is represented by a 
single “segment” in the graph.) The total execution 
time for the application is  given by the sum of these 
maximums over all phases of the computation. 

To  determine  the time required by each component, 
we instrumented TreadMarks  to collect, for each 
type of operation and each phase of the computa- 
tion, (1) the number of operations occurring on each 
processor, (2) the average time spent in software, 
both on local  and remote processors,  and (3 )  the sizes 
of average messages  involved  in  any interactions. In 
addition, we observed that requests interrupting re- 
mote processors can  be  delayed for several reasons: 

I/O interrupts may be temporarily disabled if the 
remote processor is already busy  with some other 
TreadMarks  operation, causing the request to be 
delayed until interrupts  are re-enabled. 
The  remote processor may have several outstand- 
ing requests, behind which the  current request 
must wait. 
The  remote processor may be operating in kernel 
mode, either because it experienced a page fault 
(possibly requiring a lengthy  disk  access) or  be- 
cause it made a system  call. 

Since these delays can be quite significant, we also 
measure the average time remote operations have 
to wait  as a result of the first  two  types of delay; we 
were unable to measure the last because that would 
have required access to kernel source code. 
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We then input these data into a  spreadsheet  that 
computes, based on the measurements, the time 
spent by each processor in each component during 
each phase, using these  to estimate the overall com- 
putation time for the application. By breaking down 
the cost of each operation (as illustrated later), we 
can then predict the effects changes in technology 
will have on the performance of the application. 

Next,  we  provide more detail about the way the faults 
and barriers are  treated, as these represent the more 
complex of the components. 

Fault time. The major cost of handling a fault is com- 
municating  with remote processors to obtain any  nec- 
essary  diffs for a page. Modelling a fault is the most 
difficult aspect of our model, particularly when diffs 
must be obtained from several processors. 

To illustrate this  complexity, consider the case where 
a processor (Pl) must acquire diffs from two other 
processors (PO and P2) as a result of a fault. (A sim- 
ilar but extended example illustrating the need for 
multipart diff requests is presented in the  Appen- 
dix.) The details of such an operation  are illustrated 
in Figure 3. When the fault occurs, a diff request mes- 
sage is  first sent  to  the two remote processors, each 
of  which computes and returns a diff  in parallel.  Since 

requests are very small (12 bytes), there is no sig- 
nificant  wire time in the sending of requests, but it 
is quite possible for responses to be as large as 4 KB 
in  size, corresponding to wire times of about 330 ps 
on a Fast Ethernet. 

Essentially, a multipart diff request is a pipelined op- 
eration where (1) the sending of the requests, (2) 
the receipt of the replies, and (3) the time spent on 
the wire  must be serialized. In our model, we thus 
estimate the cost of each of these three components 
and choose the longest in estimating the overall cost 
of a multipart diff request. 

Bawier time. The  barrier time for slave processors 
(i.e., processors other  than  the master of the  bar- 
rier) consists of three phases. First, write notices are 
created. Second, a synchronous request is then sent 
to  the master, blocking the slave until the master re- 
leases the  barrier. Finally, memory pages are inval- 
idated according to the write notices that  are  sent 
by the master. For  the master processor, further pro- 
cessing occurs in receiving barrier request messages 
from slave processors, merging write notices, and 
sending release messages  back to  the slave proces- 
sors. In general, the computation time of the master 
processor is greater  than  that of any other proces- 
sor. 
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Figure 3 Detailed  breakdown of a two-part diff  request  (units  are  approximately 100 ps) 
_ _ ~ _  
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In  the best case, the master processor arrives at the 
barrier first, so that  the computation is not delayed 
by the receipt of barrier messages from the slaves. 
Thus, we model the time for a  barrier as the sum of 
four components: (1) the time for the last processor 
to send a message to  the master, (2) the time to 
merge write notices, (3) the time for the master to 
send a message to all the slaves, and (4) the average 
post-barrier computation time. 

Networking overheads. In order to make it  possible 
to change  network  parameters,  we  also  break  down the 
cost of sending  and  receiving  messages. For this pur- 
pose, we  used  simple User  Datagram ProtocoUnternet 
Protocol (UDPIIP) benchmarks, but since the actual 
separation between hardware and software costs is 
difficult to determine without detailed system infor- 
mation, we  rely on prior studies to choose appro- 
priate values for hardware latencies. 

We divide send-side communication as follows: (1) 
software overhead to transfer a message to  the ker- 
nel, to go down the protocol stack, and  to set up  the 
network adaptor  to transfer the message, and (2) la- 
tency for the network controller to  begin sending the 
message (assuming a direct memory access, or DMA, 
model). Costs for the receiver are measured simi- 
larly, but we have found in  practice that they are close 
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to those of the  sender,  and so we do not distinguish 
the two. 

More importantly, the time to make a send or  re- 
ceive  system  call varies considerably from one invo- 
cation to  the next, presumably because of caching 
or buffer allocation issues. For example, if  we mea- 
sure the cost of repeatedly sending a one-kilobyte 
message to  a  remote processor, in one case  flushing 
the cache between system  calls and in the  other  not, 
then the send ( ) system  call time is  527 ps in the 
first case and 91 p s  in the second for  the Fast Eth- 
ernet on our system.  As a result, we  use a micro- 
benchmark suite17 to first estimate the basic hard- 
ware and software cost breakdown of a messaging 
operation,  and  then use the actual send ( ) and 
receive ( ) measurements from each application to 
adjust for the cache and operating system  effects just 
mentioned. 

Wire time for UDPIIP messages over Fast Ethernet 
is computed as message  size  plus protocol overheads 
(46 bytes) divided by the bandwidth; for UDP/IP mes- 
sages over OC-3-based ATM, we use the established 
effective  bit rate of 135 Mbps." 

The parameters for our two networks are shown  in 
Table 2. Although the software protocol times are 
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Table 2 Network cost parameters for each of the two networks 

Table 3 Analysis of empty time test application (all 
times in ks) 

generally linear in the size of the message, deviations 
of  up  to 40 percent can occur across message  size 
boundaries that  are powers of two. For example, the 
protocol times for 1024-byte  and  1025-byte  messages 
are 142.5 ps and 110.5 ps, respectively. It is impos- 
sible to deduce the sources of these deviations with- 
out detailed information from the vendors, and so, 
for simplicity, we chose to ignore these fluctuations, 
averaging out  the results in the ranges shown. 

Model  validation for simple tests. Even though we 
collect a large amount of data for each application 
run, these are in the form of averages (e.g., average 
message  size, average number of  diff requests per 
fault, average computation times). Combined with 
our simple network models, the use of such averages 
will introduce some error in our estimates of exe- 
cution time. In this subsection, we explore the ac- 
curacy of our model for faults and locks  using the 
test applications provided by TreadMarks. 

For each test  that follows, including the ones de- 
scribed in the next section, we ran each application 
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five times on a quiescent system and obtained both 
the means and variances for all measured param- 
eters. In every case, we found that variances were 
quite small, with  all measurements of a particular 
parameter differing by only a few percent. 

Empty time. In the first test, we examine the cost of 
empty page faults, as would occur for cold page 
misses. The test program uses two processors, the 
second of which faults on 1024 pages managed by 
the first. Requests for page faults are 12  bytes in size; 
responses are  4 KB in  size (corresponding to the page 
size). Signals  have been measured on our system to 
take 40 ps. The results are shown  in Table 3.  

In the last row of the table, we  show the estimated 
time for the  operation according to our model, and 
relate this  time to the  total amount of time measured 
in the application for empty faults. (We do not show 
the actual measured time since it  would  be redun- 
dant.) Clearly, the cost of empty page faults is dom- 
inated by software protocol handling, which repre- 
sents 60 percent and 63 percent of the  total time for 
Fast Ethernet and ATM, respectively. As can  be seen, 
the accuracy of the model is quite high at 96 percent 
for both tests. 

Fault time. In our second test, we examine the cost 
of making diff requests. The test program has three 
phases. In  the first phase, processor 0 obtains small 
20-byte  diffs from all other processors; in the sec- 
ond, all processors but the first  exchange  20-byte  diffs 
among themselves; and in the third phase, proces- 
sor 0 obtains large 4120-byte  diffs from all other  pro- 
cessors. In the following discussion, the source re- 
fers to  the processor requesting diffs and the 
destination(s) to  the processor(s) from which  diffs 
are being requested. The breakdown for each of 
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Table 4 Analysis of fault time test application (four  processors) 
~ ~~ 

these  phases  for  a  four-processor  experiment is 
shown in Table 4. 

As described earlier,  a  multipart diff request is a pipe- 
lined operation  where  either  the sending, receiving, 
or wire time limits the  performance.  This  operation 
is shown in the  table  as an  entry  multiplied by the 
factor  corresponding to number of processors  in- 
volved in the  multipart diff request.  (The times  for 
sending  and receiving are  broken down in the first 
two rows to allow the  appropriate maximum value 
to be  chosen.)  Once again, the software protocol  han- 
dling  time  represents  a significant fraction of the to- 
tal  time, but DVSM software  handling  time  and  re- 
mote delays caused by message-handling  contention 
can  also be  important. 

We  also  show in Table 4 the maximum signal-han- 
dling time, which includes send  or receive system call 
time, handler  compute time,  and delay in process- 
ing, at  each of the destination  processors,  taking into 
account  the times at which each  request was sent. 
When  the maximum time is large, it indicates that 
there is significant imbalance  among the  destination 
processors; in this  case, using this  value in the cal- 
culation  can  lead to  more  accurate results. Showing 
thisvalue only serves to point  out  that imbalance ex- 
ists; our  model in the next section does  not use  this 
value  because of the complexity of trying to  do so. 
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Table 5 shows similar  results  for an eight-processor 
experiment. 

Lock acquisition. We now examine the cost break- 
down for lock acquisition. In  the first test, two pro- 
cessors interact in such  a way that  the first makes 
repeated lock requests  to  the  second. In the  second 
test, three processors  interact in such  a way that  the 
first makes  repeated  requests  for locks managed by 
the  second,  but most  recently accessed by the  third. 
In all cases, the message sizes were 24 bytes for  the 
requests,  and four bytes for  the replies. The results 
are shown in Table 6. 

Discussion of errors. The previous section  compared 
the  model  prediction of execution  time  components 
to  measured  values  for  simple  test  applications  pro- 
vided by TreadMarks.  The accuracy of these  mod- 
els is affected by numerous  factors,  notably: 

Our model of the network is only approximate,  as 
it assumes that costs grow linearly with the  packet 
size, with no  unusual variations; also, in the case 
of Fast  Ethernet, we do  not  model  the effects of 
packet collisions, which sometimes arise with larger 
numbers of nodes. 
Measurements of the delay at  remote processes 
do  not include delays arising from  the  remote  pro- 
cess running in the  kernel; in particular, if two 
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Table 5 Analysis of fault time test application  (eight  processors) 

Table 6 Analysis of lock time test application 

packets arrive nearly simultaneously, the delay on 
the second imposed by the interrupt-level process- 
ing of the first will not be captured. 
Finally, all our measurements only represent av- 
erages; it  is particularly a problem with operations 
that involve multiple remote processors, in that it 
assumes that  there is no imbalance, which  is not 
usually the case (even if operations  at  the  remote 
processors are identical). 

Despite these sources of errors,  our model corre- 
lates well  with actual measurements. The only  sig- 

nificant exception is for the case of  diff requests in- 
volving  many parts, primarily resulting from our 
optimistic  model of interprocessor interactions. Since 
diff requests in practice have  few parts, however, we 
do not expect these errors  to be significant. 

Model validation for full applications. The test ap- 
plications demonstrate  the basic  accuracy of the 
model by performing exactly the same DVSM oper- 
ation a large number of times. Real applications do 
not possess this uniformity and may be more greatly 
affected by the averaging that we perform. In par- 
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A comparison of the  execution  time,  subdivided  into its components,  predicted by the  model  and  normalized Figure 4 

L 

to  the  actual  execution  time 
-~ """"" ~~~~ """ 
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ticular, responses to diff requests may vary greatly, 
both in  size and in the time required to compute and 
apply the diff, from one request to  the next and from 
one processor to the next. In order to assess these 
effects, we  now examine the accuracy of the model 
for the full applications summarized in Table 1. 

To this end, Figure 4 presents the  same information 
as in Figure 1, with the addition of a breakdown cor- 
responding to the model prediction. As can be seen, 
we still exceed 90 percent accuracy in the prediction 
of the total execution time for all applications. Some 
overheads, such  as operating system overhead and 
network contention, are  not  part of the model, and 
therefore  the model typically underestimates some 
of the overhead components. (The biggest discrep- 
ancy  is  in barrier time in IS, but in  this  case,  we are 
dealing with a small absolute error of about 90 mil- 
liseconds.) Even so, the model accurately predicts 
the relative importance of the various execution time 
components. 

Performance trends anticipated for  future 
technologies 

In our model, we have carefully broken down the 
different costs associated with each significant DVSM 

operation. This breakdown now  allows us to vary  dif- 
ferent technology parameters and estimate their ef- 
fects on the execution  time of each application. Next, 
we explore the effects of improvements in DVSM soft- 
ware, networking, and compiler technology  on our 
current system. Then, we consider the effects of faster 
processors, given both current and future software, 
networking, and compiler technology.  Finally, we 
consider as a case study a specific next-generation 
system. 

Effects of DVSM improvements. There  are two main 
causes for poor performance in applications running 
under TreadMarks: lockacquisition and memoy con- 
sistency (which consists of empty, fault, and garbage 
collection times). The relative magnitude of these 
overheads, however, is  highly dependent  on  the rel- 
ative changes in different technology parameters. 
Figure 5 shows the overhead reduction when some 
of the more important parameters  are changed. 
These  parameters  are (1) the number of faults, (2) 
lock  acquisition  costs, (3) protocol costs,  and (4) net- 
work  bandwidth and interface latency,  each of which 
is described in detail in the following subsections. 

Fault  reduction. The fault-handling time is,  of course, 
most  effectively reduced if the application can be re- 
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Figure 5 Overhead  reduction  for  changes  in  some  technology  parameters  for  current  generation  system 
~~ 

I 

structured  to minimize its need for communication. ever, the overhead is already relatively  small for this 
In the context of this study, however, we consider application, and  the resulting absolute performance 
prefetching as a latency-hiding technique to over- improvement is limited. 
lap communication with computation, an approach 
that has already been shown to  be effective in both Other applications benefit less  since the relative im- 
shared-memory multiprocessors'9~20 and in networks portance of the  fault-handling overhead time is 
of workstations. smaller compared to SOR. Applications that have 

large-sized diffs, such as Barnes (over 3-Kbyte  diffs 
Although prefetching may reduce  the latency asso- on average), cannot fully benefit from prefetching, 
ciated with faults, it does not reduce the overhead since the software costs at the source and destina- 
due to requesting, computing, and  applying  diffs, and tions are  quite high; moreover, when several diffs 
will  likely increase traffic on the interconnection net- must be prefetched, all sends contribute to overhead 
work as a result of mispredicted prefetches. In our in the source processor, rather  than just the first for 
model, the cost of a prefetch is the sum of software a regular fault. (The remaining sends occurwhen the 
costs that  are normally incurred at the source pro- processor would otherwise be idle waiting for the  re- 
cessor for  a fault, but without the penalty of waiting sponse.) 
for replies. (For  the purpose of this  analysis, we as- 
sume that no are misPredicted to show an The only  application that is  almost  unaffected by fault 
per bound on performance improvements. It is rei- reduction is Sphere.  The reason is that  there is  very 
atively straightfornard to augment the model to little read  and write sharing in Sphere; most data 
include mispredicted prefetches.) structures  are initialised at the beginning of the ex- 

ecution and  then subsequently only read. Thus far, 
Applications whose overhead is dominated by fault- we have  only been considering dynamic prefetching 
handling time benefit the most from fault time re- based on reference history, but if explicit prefetch 
duction. SOR is one such application in which the operations could be inserted based on compiler anal- 
overhead times can be reduced by 13 percent if half  ysis,  it  would be possible for faults due  to cold  misses 
of the faults can be prefetched (see Figure 5). How-  (i.e., empty time) to also be reduced. 

I 
1 

1 
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Lock acquisition  time  reduction. Prefetching can also 
be used to hide the latency to acquire locks  (by ini- 
tiating the lock request somewhat before it is need- 
ed). Although locks are used by release consistency 
protocols to maintain consistency, we  find that  there 
is little contention for locks  in the applications we 
studied, so the potential increase  in  lock  holding time 
would not inflate contention unacceptably. It has pre- 
viously been shown that lock prefetching requests 
can  be generated automatically by a compiler algo- 
rithm. l3  

We  include the effect  of  lock prefetching in the model 
in a manner similar to  the case of data prefetching; 
the major difference  in characteristics is that locks 
require a single send operation from the source and 
incur much smaller software overheads than faults. 
As  shown  in Figure 5 ,  a 50 percent reduction in lock 
acquisition time translates to reductions in overhead 
ranging from 8 percent  to 20 percent for IS, Sphere, 
Water,  and Raytrace (i.e.,  all applications having 
locks). 

Protocol reduction factor. The protocol reduction fac- 
tor reduces all overheads in the model that  are re- 
lated to protocol execution. We  find that applica- 
tions with a high degree of locking overhead or 
memory  consistency overhead (e.g., Barnes and Wa- 
ter), benefit greatly  (15 percent reduction in over- 
head for a 50 percent protocol cost) from lower-la- 
tency communication facilities (relative to UDPIIP). 

We believe that  there is potential to reduce the pro- 
tocol overhead significantly  in future systems. This 
reduction can be achieved by using lighter-weight 
protocols or by simply  using  lower  levels  in the pro- 
tocol stack (e.g., the AAL, or ATM adaptation layer, 
in the ATM interface). Furthermore, newer ATM in- 
terfaces may perform some of the protocol functions 
in hardware which  would also reduce latencies2' 

Network integace latency  and  other  parameters. Fi- 
nally,  removing the network interface latency has a 
moderate effect on performance across all applica- 
tions (except Water).  The reason is, of course, that 
with current processor technology, the majority of 
the costs lie  within software. 

Other  parameters  that we studied did not have an 
appreciable effect on  the execution time of applica- 
tions. In particular, changes in the network band- 
width do  not  appear  to  be  important, given our cur- 
rent processor speeds. 
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Effects  of faster processors. Next,  we consider the 
impact of processor performance, both on the ef- 
ficiency  of applications and on the benefit of the types 
of technology changes described in the previous sec- 
tion. As mentioned earlier, the performance of pro- 
cessors is increasing by a factor of two  every 18 
months, so in five years, processors may be eight 
times faster  than  the ones used today. 

To model faster processors, we decrease the time 
spent in various components according to the in- 
crease in  processing speed; the only components that 
are not modified are  the network interface latency 
and  the wire delay (arising from bandwidth limita- 
tions). In general, however, the benefits of faster pro- 
cessors cannot be fully realized in  system software, 
because such software tends  to have poor cache lo- 
cality for both data  and instructions. 22323  For exam- 
ple, the extra system  call time that we have included 
in our model arises because protocol code and  data 
are often not found in cache. As another example, 
the minimum remote lock acquisition time reported 
by  Cox et al. on 40-MHz processors24 is  actually  lower 
than on our system.  As a result, we consider two cas- 
es: one where all software gets the full benefit of 
faster processors, and another where the system soft- 
ware gets only a 50 percent benefit. (In particular, 
we model a system software benefit ofx by increas- 
ing the processor speed by a factor of x every time 
the actual processor speed doubles, i.e., increases by 
100 percent.) Although this value  is  only a rough es- 
timate of what may occur in practice, it illustrates 
how such behaviour can affect performance. 

Figure 6 shows the model's prediction of the effi- 
ciency  of each of our applications as processor per- 
formance increases. We show the range of relative 
processor speeds, from 0.25  (roughly  1992) to 16.0 
(roughly 2000). As expected, the efficiency decreases 
with increasing processor speed because hardware 
delays  will become relatively more important. Some 
applications are affected  less than  others by this. 
Sphere, for instance, retains much of its  efficiency 
because most of the overhead is in lock acquisition, 
which  is  highly software intensive in both DVSM and 
communication protocol code. For many of the  ap- 
plications, performance is  relatively constant over a 
range of processor speeds if system software ben- 
efits  fully from faster processors. If we consider the 
case where only 50 percent of the benefit can be 
achieved (Part B of Figure 6), efficiency varies more 
dramatically;  in this case,  all applications exhibit rap- 
idly decreasing efficiency,  with Barnes and  Sphere 
being  most  severely affected. 
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Figure 6 The  efficiency  as  a  function of the  processor  performance (1 represents  an IBM 43P-133 MHz) 
~~~~~~~~~~ 

"""""- ~-~ """ 

Table 7 Parameters of a future-generation  system 

In Figure 7, we  show the effects of the same over- 
head reductions considered in the previous section 
(and Figure 5) ,  but this time using processors eight 
times more powerful. In this case, using prefetching 
for  data  appears  to have the greatest impact on per- 
formance, ranging from a 15 percent to a 56 percent 
reduction in overhead for SOR, IS, Barnes, and Wa- 
ter. If system software cannot benefit fully from in- 
creases in processor speeds, however, then  the  ben- 
efit of prefetching will be reduced. Finally, factors 
that were insignificant  with the slower processor, 
namely  network interface latency and network band- 
width, are now much more important. 

A representative future system. In five years time, 
processor performance will be about eight times that 
of today's high-performance microprocessors. If 
other technology parameters stay the same, we can 
see  from Figure 6 that  the processor efficiency  will 
decrease. In  order to anticipate the  future situation, 
we have applied the model with a set of technology 
parameters  that we believe will be realized within 
five years (or possibly sooner). These parameters  are 
summarized in Table 7. Current VLSI (very large- 
scale integration) technology  is  sufficiently  advanced 
to accommodate 10 Gbps networks and interfaces2' 
The signal latency time is likely to decrease with 
faster processors, and operating systems are likely 
to provide  mechanisms for more effectively handling 
remote  procedure calls. 

Part A of Figure 8 compares the breakdown of ex- 
ecution time of this future system  with that of cur- 
rent technology, assuming system software can fully 
benefit from improvements in processor perfor- 
mance. As can be seen, it  is not only  possible to main- 
tain the same level of efficiency  as today, but also to 
actually improve it  in  all  cases. The largest improve- 
ments are in memory consistency and lock acquisi- 
tion operations, both overheads that are substantially 
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Figure 7 Overhead  reduction  for  technology  parameter  changes  when  the  processor  performance  is  eight  times 
current  technology 
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diminished  from the  reduction in protocol  software 
costs. 

Part B of Figure 8 shows the  same comparison for 
the case  where system software  can only partially 
benefit  from  improvements in processor  perfor- 
mance. In this  case, the efficiency  of current systems 
will not  be sustained  for  most  applications,  even with 
the aggressive latency-hiding  techniques that might 

be used.  This  reemphasises  the  fact  that  the single 
most  important system component to optimize,  even 
in future systems, is the communication protocol soft- 
ware. 

Related work 

There  are many  studies of the  performance of var- 
ious DVSM systems, but only a few of them  present 
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models that  can be used to  predict  performance of Karlsson and S t e n ~ t r O m ~ ~  studied  TreadMarks- 
future systems. based  applications  running on a system consisting 
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of a number of small-scale shared-memory multipro- 
cessors connected by a  standard OC-3 ATM switch. 
They used program-driven simulation to study the 
performance effects of faster processor, network, and 
interface technologies. Their study  confirms our find- 
ings that the interface latency  is the performance bot- 
tleneck, but in contrast to  our study, and due  to  the 
particulars of their simulation model, they cannot 
separate communication  software  cost  from the com- 
munication hardware overhead in the network in- 
terface. Also, because of the limited resources avail- 
able when simulating a multiprocessor system,  they 
are unable to  run realistically  sized workloads. 

Dwarkadas et a1.26 studied the performance of dif- 
ferent release consistency options for four applica- 
tions, using predictions for the cost of various DVSM 
overheads. In their study, they examined the effects 
of varying software overheads and of higher-band- 
width networks on the performance of applications; 
they  show  how performance for sharing-intensive ap- 
plications is  most  significantly  affected by the soft- 
ware overheads. Later, Cox et al.24 used a similar 
simulation approach (except using better estimates 
of software overheads) to study the performance of 
several DVSM applications in  (what  was then)  a next- 
generation system;  in  this  study,  they  also considered 
the effects of reductions in  software overheads. Since 
these studies also used simulation, they used small 
data sets in their experiments. 

Our work  differs from these in that we (1) analyse 
a wider range of applications and larger problem 
sizes (since we could run on real hardware), (2) 
present detailed cost breakdowns for several DVSM 
operations, showing the high software costs actually 
incurred in modern systems, (3) develop a model of 
DVSM applications, based on these breakdowns, and 
(4) use this model in conjunction with present-day 
measurements to predict the effect that  a variety of 
technological changes may have on the performance 
of these applications. Most  significant  is that we 
present a way to analytically model the performance 
of applications. 

Apart from TreadMarks many other DVSM systems 
have been proposed and evaluated in the  literature. 
We  have chosen to mention a few  of the more rel- 
evant ones: 

SoftFLASH” implements a clustered system  sim- 
ilar to  the  one studied by Karlsson et al. 25 A major 
difference from TreadMarks is that SoftFLASH  is 
implemented at kernel rather  than  at user  level. 
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9 cVM’~ is a new DVSM system based on the  Tread- 
Marks experience. It is designed in C+ + with sup- 
port for multiple consistency models. In his study, 
Keleher argues that it  is  actually not necessary to 
support multiple writers to a  shared page, but 
rather  that lazy release consistency  is most impor- 
tant. 
Finally, Bli~zard-S,’~ Shasta,”  and  Aurora3’  rep- 
resent DVSM systems that  are based on  shared  ob- 
jects rather  than pages, as  in the case of the  pre- 
viously mentioned systems.  Since they cannot rely 
on hardware mechanisms to detect shared-mem- 
ory accesses,  they  modify the executable code to 
check the  state of shared objects before accessing 
them  and  to invoke the protocol software if 
needed. None of these studies, however, examines 
the performance effect of future processors and 
communications technology. 

The model technique developed and used  in  this pa- 
per can also be applied to all the above-mentioned 
systems  in order to study performance effects of 
changing technologies. Software probes need to  be 
inserted into  the protocol software. This is probably 
very  easy in the systems that run entirely in user 
mode, whereas in the case of  SoftFLASH, access to 
the kernel would be required.  The actual model in 
this paper is,  of course, targeted to  TreadMarks  and 
would therefore need to be changed to suit the dif- 
ferent protocols accordingly. 

Conclusions 

A network of workstations is an attractive platform 
for parallel computing because of its potential to de- 
liver  high performance at  a relatively low cost. It has 
previously been shown that it  is even possible to 
achieve reasonable performance for a shared-mem- 
ory programming model if the consistency model is 
relaxed. 

Given that processor performance has been increas- 
ing  much more rapidly than network performance 
since the earlier measurements of DVSM perfor- 
mance were done,5 it  is expected that application 
efficiency  would be lower for the same problem size 
on current systems, as we  have observed. In this pa- 
per, we found that  a distributed virtual shared-mem- 
ory  system on  a network of workstations indeed can 
still deliver  cost-effective performance, even when 
using present-day commodity network technology. 
It is, however, limited to  a class of applications that 
has a sufficiently  high computation-communication 
ratio, such as those examined in this paper. 
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Our work  shows  how a model can be developed for 
parallel applications running on a DVSM system, 
which we use to study their performance as changes 
occur in technology. As has been  noted before, the 
main bottleneck for DVSM systems  with current tech- 
nology  is the software overhead in the comrnunica- 
tion protocol. Latency-hiding techniques to reduce 
fault-handling time and lock acquisition time can be 
effective if implemented. However,  with the expected 
performance of future processors, the performance 
of these applications is likely to be constrained more 
by hardware-related delays such as network inter- 
face and wire time. 

Our model shows that  the anticipated improvements 
in DVSM and  networking  technology are likely to  per- 
mit the same relative application performance to be 
maintained over the near to medium term. However, 
if system software cannot be written so as to  take 
full advantage of faster processors, it  will be almost 
impossible to achieve the same speedups (equiva- 
lent efficiency)  as  today.  Also,  it  will not be  possible 
to maintain this performance if latency-hiding tech- 
niques are not used for memory faults and lock ac- 
quisitions. 

In this  study, we have focussed on how changes in 
protocol and DVSM software and in processor and 
network hardware will  affect speedup for a set of ap- 
plications of specific  size  executing on eight proces- 
sors. Problems of greatest importance that will  ex- 
ecute on DVSM systems of the  future will  involve 
much larger computations (e.g., sequential execu- 
tion times of hours or days rather  than minutes or 
seconds) and will require many more processors. The 
modelling approach described in  this paper can  be 
immediately applied to any problem by running it 
on an existing  system to  gather  the base statistics. 
With a  deeper understanding of the various appli- 
cation parameters  that  are used by the model, it 
would  also be possible to apply the approach to prob- 
lems too large to be run today. 

Acknowledgments 

The network of workstations used for this study is 
part of the Parallelism on Workstations (POW) proj- 
ect, which  is a cooperative project between the Uni- 
versity of Toronto and the  Centre for Advanced 
Studies at  the IBM Toronto Development Labora- 
tory. Three major themes within the POW project are 
(1) development of compilers that support automatic 
parallelization for a network of workstation environ- 
ments, (2) exploitation of prefetching to overcome 

546 PARSONS, BRORSSON, AND  SEVCIK 

remote  data access latencies in distributed-memory 
systems, and ( 3 )  efficient multiprogrammed sched- 
uling of workloads dominated by parallel jobs. 

We would like to thank Giridhar Chukkapalli who 
kindly  provided the Sphere application. The research 
in  this paper was supported in part by the Natural 
Sciences and Engineering Research Council of Can- 
ada, the Information Technology Research Centre 
of Ontario,  Northern Telecom, and the Swedish  Na- 
tional Board for Industrial and Technical Develop- 
ment (NUTEK) under project number P8.55. 

Appendix 

To illustrate the LRC protocol, consider three  pro- 
cesses sharing a single distributed virtual shared- 
memory page that contains two variables, V1 and 
V2, each protected by a lock, L1 and L2, respectively. 
Figure 9 depicts a sequence of actions taken by the 
processors. Initially, the page is marked as valid, but 
write-protected in  all three processors; all proces- 
sors  can read the variables.  Next,  processor 0 acquires 
the lock L1, and roughly at  the same time processor 
2 acquires lock  L2. When these processors modify 
the variables corresponding to the lock  they acquired 
for the first time, a page fault will occur (since the 
page was  initially write-protected), and  a local  copy 
of the page will be made in each processor; these 
copies, or twins, can later be used to determine which 
portions of the page have been modified. The page 
is then unprotected, allowing reads and writes to pro- 
ceed uninterrupted.  Later, when the processors re- 
lease their locks, the fact that  the page has been rnod- 
ified is recorded in a write notice. 

After the locks  have been released, processor 1 ac- 
quires both locks, presumably to  either  read  orwrite 
variables V1 and V2. Acquiring a lock  involves send- 
ing a message to  a preassigned manager of the lock, 
which forwards the request to the processor that last 
held the lock,  which  in turn responds with any write 
notices that  are associated with the lock. In our ex- 
ample, a message  is sent to both processors 0 and 
2, both of which respond with a write notice for the 
same page, causing processor l’s copy of the page 
to be invalidated. When processor 1 subsequently 
accesses the page, a request is made to both other 
processors for diffs, which record what changed in 
the page on a given processor. (A diff  is computed 
by comparing the  current copy of the page against 
its  twin.) After  the diffs  have been computed, the 
twins  can be safely discarded. 
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Figure 9 The  lazy  release  consistency  protocol  in  TreadMarks.  (Processors  are  not  notified of  changes  until the  lock 
acquisition,  and  pages  do  not  get  updated  until  the  first  reference  after  the  lock  acquisition.) ____ 
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Processor 1 uses the diffs  it receives to  update its own 
copy of the page with the modifications made by pro- 
cessors 0 and 2. Hence, once  processor 1 has  received 
and applied both diffs, there will be three different 
versions of the page: one each on processors 0 and 
2 that reflect the changes done  to  the page locally 
and  one on processor 1 with an  updated status con- 
taining changes made by both processors 0 and 2. 
In  order for this multiple-writer scheme to work, it 
is assumed that  the programmer does not associate 
overlapping memory regions with different locks, 
since that would cause the diffs to partly relate to 
the same addresses, and the final state of a shared 
page would depend  on  the  order in  which the diffs 
were applied. 

TreadMarks also supports bam’er synchronisations 
which,  in addition to synchronising  all processors, 
also cause the processors to exchange write notices 
for all shared-memory pages. Each barrier is asso- 
ciated with a managing processor that coordinates 
the actions of other processors. Basically, the man- 

ager collects the write notices from all other proces- 
sors as they reach the  barrier,  and  then redistributes 
them back to all processors involved  in the compu- 
tation. TreadMarks uses barriers to initiate garbage 
collection (Gc) if the amount of memory consumed 
by write  notices,  diffs, and twins  exceeds a predefined 
threshold on any processor. If garbage collection is 
initiated, then at the  end of the  barrier, all proces- 
sors compute and exchange  diffs for all pages, mak- 
ing  all copies of each shared-memory page identi- 
cal. 
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