Predicting the
performance of
distributed virtual
shared-memory
applications

The use of networks of workstations for parallel
computing is becoming increasingly common.
Networks of workstations are attractive for a
large class of parallel applications that can
tolerate the higher network latencies and

lower bandwidth associated with commodity
networks. Several software packages, such as
TreadMarks™, have been developed to provide a
common view of global memory, allowing many
shared-memory parallel applications to be easily
ported to networks of workstations. This paper
investigates in detail the performance of several
TreadMarks-based shared-memory applications
on a modern network of workstations, identifying
the extent to which different system components
affect the efficiency of these applications. Then a
performance model for such applications is
developed and used to evaluate the impact
future changes in technology are likely to have
on performance. The results of the model
indicate that current systems are limited in their
performance by communications and software
overhead for supporting the distributed virtual
shared memory, rather than hardware delays.

ven though most parallel computing today is

based on a message-passing programming
model, it is easier to develop parallel programs us-
ing a shared-memory image for interprocess commu-
nication. In fact, some algorithms are extremely dif-
ficult to parallelize by hand using explicit message
passing.! As a result, much research has been de-
voted to presenting a shared-memory image to pro-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

0018-8670/97/$5.00 © 1997 IBM

by E. W. Parsons
M. Brorsson
K. C. Sevcik

grams running on distributed-memory systems, an
approach termed distributed virtual shared memory
(DVsSM). This is accomplished using a combination
of virtual memory protection mechanisms to detect
accesses to specific portions of memory, and soft-
ware exception handlers to ensure that the memory
images on different processors are kept consistent.
Examples of such software-based DVSM systems are
TreadMarks**, cvM, Munin, and Ivy.

It is becoming increasingly common for networks of
workstations (NOWs), instead of special-purpose mul-
tiprocessors, to be used for parallel computation, pri-
marily because of the cost-effectiveness of using
commodity components. Also, the latest processor
technology often appears in workstations before it
can be incorporated into large-scale multiprocessors,
which allows NOWs to attain higher aggregate per-
formance relative to a large-scale multiprocessor for
the same investment. This fact can be seen in that
several recent winners of the Gordon Bell Prize in
the best cost/performance category have used a NOW
as their computing platform.>*

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

PARSONS, BRORSSON, AND SEVCIK 527

In most such systems, the granularity for memory
protection is relatively coarse, namely the page size.
With straightforward implementations of DVSM, this
granularity leads to false sharing. This effect occurs
when one processor updates a data item in a mem-
ory page, causing update or invalidation messages
to be sent to all other processors that have copies
of that page, even though those processors never ac-
cess the particular data item just updated. With use
of relaxed forms of memory consistency, it is pos-
sible to allow several processes to write to a partic-
ular page simultaneously, without causing excessive
exchanges of messages. With such forms of consis-
tency, reasonably good speedups can be obtained for
parallel applications, even on a NOW using off-the-
shelf LAN (local area network) technology.’

However, given that processor performance is in-
creasing very rapidly relative to commodity network
performance, it is not clear how well such DVSM sys-
tems will perform in the future. Whereas significant
speedups (e.g., about three for the Barnes applica-
tions, defined later) were reported for certain ap-
plications on eight processors under the TreadMarks
system,® those same applications exhibited about half
the speedup running on more recent processors con-
nected by the same network.

In this paper, we describe the way in which we de-
veloped a model to predict the performance of par-
allel DVSM-based applications, using TreadMarks as
a case study. The purpose of this model is to allow
us to determine the effects of changes in technology
on the performance of applications. As an abstrac-
tion of a system, a model does not include complete
details about every aspect of the system (e.g., the
memory system in our case). Despite this, a model
can often offer good approximations to performance
given certain types of changes. For example, we use
this model to investigate the impact of processor
speed, network latency and bandwidth, and software
overheads on performance. Although this study is
based on applications using TreadMarks, we believe
the approach we describe is generally applicable to
the modelling of applications based on other DVSM
systems as well.

The results show, not surprisingly, that consistency
actions and lock acquisitions are the limiting factors
on performance with current technology. When we
break down the costs associated with these opera-
tions into software delays (DVSM and communica-
tion protocols processing time) and hardware delays
(network time and adapter latency), we find that the

28 PARSONS, BRORSSON, AND SEVCIK

hardware delays do not constrain the performance
as much as the software delays. However, hardware
delays will become increasingly significant as process-
ing speeds increase. The results also indicate that
aggressive network hardware technologies by them-
selves are not enough to achieve the same perfor-
mance for systems with processors eight times faster
than today’s; in particular, latency hiding techniques
(e.g., prefetching) will be required to maintain lev-
els of processor efficiency comparable to those
achieved now.

The next section discusses a specific DVSM system,
TreadMarks, and the technology parameters that af-
fect the performance of applications that run under
it. The succeeding section presents performance re-
sults for a number of applications running on our
experimental system using TreadMarks. Then the
model that evaluates the performance of these ap-
plications is presented, along with a validation of the
execution times predicted by our model relative to
those actually observed. The model is then used to
predict future performance limitations. Related work
and conclusions are described in the last two sec-
tions, respectively.

Technology parameters affecting
performance of DVSM

There have been several experimental implementa-
tions of DVSM systems, all of which face the same
fundamental challenge of maintaining consistency
of shared data without encountering an unaccept-
able amount of synchronisation and communication
overhead. The specific DVSM system we have cho-
sen to study is the TreadMarks system. Developed
for a network of workstations, this system allows par-
allel programs to interact transparently, using a
shared-memory model, even though the processors
themselves do not physically share memory. Tread-
Marks, like its similar predecessors, does this by re-
lying on the memory protection mechanism provided
by the hardware and operating system to detect ac-
cesses to specific regions of memory in each proces-
sor, and then invoking necessary actions to maintain
memory consistency. These actions involve exchang-
ing messages between processors to update the con-
tents of memory.

Lazy release consistency. In a strong memory con-
sistency model, a programmer can assume that mod-
ifications made to memory in a shared-memory seg-
ment are automatically and immediately reflected
in the memories of other processors. This model

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

would correspond to the behaviour of multiple pro-
cesses sharing a memory segment on a single work-
station (possibly having multiple processors). This
model, however, tends to require a large number of
message exchanges when implemented on distrib-
uted-memory machines.

As a result, a number of weak consistency memory
models have been proposed that greatly reduce the
amount of interprocess communication. They are
based on the observation that most parallel programs
serialize modifications to a given data item from mul-
tiple processors through the use of locks. In such pro-
grams, it is possible to reflect modifications made to
memory only when a lock is released while preserv-
ing the correctness of the algorithm (since no other
process should be reading from or writing to this
memory item while the lock is held). In fact, in this
model, a processor only needs to be informed of
modifications to a data item when it tries to acquire
the lock protecting the data. This condition allows
different processors to simultaneously modify differ-
ent variables that lie on the same page, as long as
no two processors modify the same variable at the
same time.

The lazy release consistency (LRC) protocol’ used
in TreadMarks is very similar to the basic release
consistency model just described, except that data
are simply marked as having been modified upon
lock acquisition, delaying the application of the mod-
ifications until the data are actually accessed. As this
protocol has been described numerous times in the
past, we do not repeat this description here. Instead,
we provide an example of the protocol in the Ap-
pendix, where a number of terms are described in
detail. Briefly, a fault occurs when a processor ac-
cesses a page that requires some type of consistency
action, resulting from the processor having received
prior write notices for the page. To make the page
consistent, the processor requests diff from other pro-
cessors that have modified the page.

Performance factors. The original TreadMarks study
reported reasonable speedups over a range of ap-
plications on a network of eight DECstation**-
5000/240 workstations interconnected by a Fore ATM
(asynchronous transfer mode) switch.® Since that
study was done, processor performance has increased
dramatically while the ATM network technology still
is considered to be current. In the future, the per-
formance of DvsM-based applications will be strongly
influenced by relative changes in the performance
of these two components, as well as by developments

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

in system software and compiler technology. Within
this subsection some of the factors that might influ-
ence the performance of DVSM applications in the
future are discussed.

Processor performance. Processor performance con-
tinues to increase roughly by a factor of two every
18 months. If this rate of increasing performance is
not matched in other system components, it will be

TreadMarks allows parallel
programs to interact transparently,
using a shared-memory model.

difficult to maintain current levels of performance
for parallel applications, as measured by speedup or,
equivalently, efficiency. (Speedup is the ratio of ex-
ecution time on a single processor over that on mul-
tiple processors, and efficiency is the speedup divided
by number of processors.) The reason is that, as the
computation time decreases, the overheads due to
processor interactions will represent a larger frac-
tion of the overall execution time.

If we consider the system used in the study by Kele-
her® and Amza et al.,’ the processors represent tech-
nology that is now five years old. If other parame-
ters were to exhibit the same rate of improvement,
commodity network bandwidth would have to in-
crease from 155 Mbps (megabits per second) to
about 1 Gbps (gigabit per second), and network la-
tency would have to drop from about 500 us (mi-
croseconds) to 100 us for a one-way message. Even
though there are no technical reasons preventing net-
work components from keeping pace with advances
in processor technology, development efforts for
commodity network components tend to focus on
increasing bandwidth rather than on reducing la-
tency, the latter being most important to DVSM sys-
tems.

Network performance. Two types of off-the-shelf LAN
technologies that are of interest in a NOW are Eth-
ernet and ATM. The 10-Mbps Ethernet, which has
been very common up to now, is quickly being dis-
placed by 100-Mbps Fast Ethernet, as the latter is

PARSONS, BRORSSON, AND SEVCIK 520

standard in many workstations sold today. This tech-
nology offers much greater bandwidth, resulting in
lower contention and shorter delivery time for large
messages, relative to its predecessor. The ATM net-
works used today, in contrast, typically operate at
155 Mbps, but these will soon be displaced by 622-
Mbps networks now emerging on the market. Be-
cause it uses a switch, an ATM network will incur less
contention than a Fast Ethernet network for inde-
pendent communications at the expense of added
latency through the switch. This difference disap-
pears, however, if one considers using switched Fast
Ethernet hubs, which are becoming increasingly pop-
ular.

Network adapters are becoming increasingly capa-
ble in terms of the services they can provide. An ex-
ample is the Cheetah ATM network adapter, devel-
oped by 1BM.® This adapter has the ability to read
from and write to user-specified data buffers, thus
avoiding having to copy messages to and from the
kernel as has traditionally been the case. Experiments
with these adapters on our system have shown that
latencies for small messages of 140 us can be
achieved (as compared to 250 us for standard Trans-
mission Control Protocol/Internet Protocol, or
TCP/IP, stacks). Others have reported even lower la-
tencies using experimental interfaces or protocols
(e.g., References 9 and 10).

System software. TreadMarks is but one example of
a DVSM system, albeit the one that is most common.
As we gain more experience with such software, the
overheads associated with DVSM will decrease as
more efficient algorithms and data structures are de-
veloped. Also, since communication latency due to
protocol processing is becoming more significant, fu-
ture systems are likely to provide lightweight pro-
tocols for the types of applications examined in this

paper.

Compiler technology. One of the primary perfor-
mance limitations for DVSM-based applications is the
latency for consistency actions and lock acquisitions.
Research in compiler technology has devised tech-
niques to hide the latency of cache misses, but these
same techniques have been shown to be highly ap-
plicable to paging for out-of-core computations.’!
Using such techniques to prefetch diffs for pages that
will be accessed shortly’? or to acquire locks in ad-
vance of when they are needed * may greatly improve
the performance of applications. Hiding latencies will
likely become more important in the future as it is

B30 PARSONS, BRORSSON, AND SEVCIK

generally easier to increase bandwidth than to re-
duce latency.

Performance analysis of TreadMarks on a
network of workstations

This section describes our experimental system and
the performance results for some applications that
run on it using TreadMarks.

Experimental platform. Our experimental platform
consists of eight 1BM RISC System/6000* 43P (133
MHz) workstations, each having 64 MB (megabytes)
of main memory, and connected by two commodity
networks, a 100 Mbps Fast Ethernet and a 155 Mbps
ATM. The Fast Ethernet comprises 3Com 3C595
EtherLinkIIT** PCI (peripheral component intercon-
nect) adapters and a 16-port Cisco hub, whereas Fore
PCA200E ATM adapters and a Fore Asx 200/WG
ATM switch comprise the ATM network.

Choice of applications. We have chosen six appli-
cations to analyze for this study, including ones that
do numerical computation, image analysis, and phys-
ical systems modelling. These applications are:

SOR—This kernel performs a typical red-black suc-
cessive over-relaxation (SOR) on a two-dimensional
grid, which involves iteratively updating each element
of the grid based on the values of its neighboring el-
ements. The grid is partitioned across processors in
contiguous areas, so communication only occurs
when a processor must read an element across a
boundary; synchronisation is based on a barrier at
the end of each iteration.

1s—This kernel sorts 2% integers in the range from
zero to 2% — 1, using a bucket sort algorithm. Each
iteration in the algorithm consists of two steps. In
the first step, the data-sharing pattern is migratory,
whereas in the second, it is primarily read-only.

Barnes—This application simulates the evolution of
a system of bodies under the influence of gravita-
tional forces (e.g., a system of galaxies). The iter-
ative algorithm consists of phases with a producer-
consumer data-sharing pattern between processors
in different phases. This sharing is relatively fine-
grained, causing considerable false sharing and,
hence, high fault handling overhead.

Sphere—The shallow water equations for a spher-

ical surface are solved by this application. The ai-
gorithm used in Sphere is typical of those used in

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Table 1 Summary of application characteristics

climate and weather modelling software.'* Almost
all shared-data structures are initialised at the be-
ginning and then accessed in a read-only fashion
throughout the remainder of the execution. The one
exception is a solution vector whose elements can
be updated by any processor while the equations are
being solved.

Water—This application simulates a system of wa-
ter molecules in a liquid state. The main shared-data
structure is an array that is accessed by processors
in a partitioned manner. The primary sharing pat-
tern is fine-grained and migratory, as intermolecu-
lar forces are calculated, but some false sharing oc-
curs across the boundaries of the array.

Raytrace—This application renders a two-dimen-
sional graphical image created from a three-dimen-
sional scene, using a raytrace algorithm. Almost all
data are shared read-only or exclusively updated by
one processor as each processor operates on its own
partition of the frame buffer used to store the re-
sulting image. However, for load-balancing reasons,
processors may steal work from one another, caus-
ing some degree of false sharing.

Table 1 lists the parameters used for each applica-
tion and summarizes their execution-time perfor-
mance on our experimental platform, based on the
average of five trials for each case. The data sets that
we have used are in many cases representative of pro-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

duction runs of the programs. However, many of the
applications use iterative algorithms, and, in order
to reduce the length of experiments, we have lim-
ited the number of iterations to only a few. We there-
fore deliberately analysed only the parallel compo-
nent of each application, since the serial initialisation
would otherwise have had too great an impact on
our results. For Barnes and Sphere, two different
problem sizes, determined by “particles” and “pitch,”
respectively, are included in our experiments. (In the
case of Barnes, the tolerance differs between the two
problem sizes, as recommended by Singh et al.” in
order to achieve the same relative error.)

Execution time overhead. We instrumented Tread-
Marks to measure the amount of time spent in dif-
ferent components, as follows:

Busy time—Busy time is the time spent by the ap-
plication on actual computation.

Fault handling—This time is consumed by handling
read or write fauits of the application to maintain
memory consistency across processors. The most sig-
nificant component of fault handling is the sending
of requests to remote processors for (possibly mul-
tiple) diffs, and waiting for their replies.

Empty time—This time is consumed in handling first-
time misses for pages accessed by each processor.
Before consistency action can be taken, a full copy

PARSONS, BRORSSON, AND SEVCIK 5§31

Figure 1

The percentage of execution time spent in executing useful instructions and various overhead components

of the page must be obtained from another proces-
sor (known as an empty miss). Although empty
misses occur as a result of a consistency fault, they
occur with varying frequencies in different applica-
tions, so they are modelled separately.

GC time—This time is consumed by garbage collec-
tion, which is initiated at the end of a barrier if the
amount of memory consumed by TreadMarks data
structures exceeds a predefined threshold. Garbage
collection results in essentially the same operations
as a consistency fault, requesting and receiving diffs,
except it does so for all pages being actively shared.
As such, it is an expensive operation, because two
processors may exchange diffs during the GC phase
even if their sharing patterns do not require such ex-
changes.

Lock acquisition and release time—This time is con-
sumed in acquiring and releasing locks, which are
typically used to serialize access to shared data. Ac-
quiring a lock involves sending a request to the lock
manager, which forwards the request to the current
holder of the lock. Releasing a lock typically does
not require any messaging, unless another proces-
sor is already waiting for the lock.

Sigio time—This time is consumed by the handling
of asynchronous 10 requests (i.e., SIGIO in UNIX**)

532 PARSONS, BRORSSON, AND SEVCIK

from remote processors resulting from DVSM activ-
ities (i.e., barriers, faults, or locks). This component
differs from the previous ones in that it is not ini-
tiated by the local processor, but is rather an over-
head imposed by remote processors.

Barrier time—This time is consumed by barrier op-
erations, which are used to synchronise all proces-
sors involved in a computation at the same point.
Apart from the delay waiting for all processors to
arrive at the barrier, the principal cost of a barrier
is all the memory protection systems calls that must
be made to the kernel to invalidate pages as a result
of the combined write notices from all processors.

The results for each application are shown in Fig-
ure 1. As can be seen, DVSM overheads can be quite
significant, accounting for up to 60 percent of the
overall execution time in the case of Water. In gen-
eral, the high cost observed for barriers is not due
to messaging, but rather due to imbalance between
processors, which causes significant wait times. In
many cases, this imbalance arises from different
processors having different amounts of DVSM over-
heads, rather than from imbalance internal to the
algorithm. 1S, Sphere, and Water all have a large
amount of locking overhead, whereas Barnes suf-
fers mostly from garbage collection and fault-han-
dling overhead.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Performance model of applications

In the previous section, we presented time spent in
different components for each of our six applications.
Next, we describe a model that we used to study the
effects of technology changes on the magnitude of
each of these components. Our basic approach to
developing this model is to break down the cost of
each significant operation in each component. In par-
ticular, we separate the time spent in local and re-
mote computation and in all major parts of the com-
munication paths. We also take into account the
contention that occurs at local and remote proces-
sors resulting from DVSM activities.

To obtain our measurements, we used a lightweight
timing facility in the Advanced Interactive Execu-
tive* (AIX*) to measure elapsed time between var-
ious points in the TreadMarks software. Since we
ran all our experiments while the system was qui-
escent, the effect of daemon activity and interrupts
unrelated to the applications is negligible (as is sup-
ported by the repeatability of our experiments). All
applications were small enough to fit into memory,
so there was very little paging activity.

One assumption in our model is that network con-
tention at a global level is negligible, because either
a switched network is being used (e.g., an ATM switch)
or the available network bandwidth is very high. In
particular, we found that network contention was
quite low even for our nonswitched Fast Ethernet
network. We do, however, take into account the con-
tention that arises between a processor and the net-
work, a problem that can increase the cost of cer-
tain DVSM operations.

Given the nature of our model, we do not attempt
to characterize memory system performance, and in-
stead assume that memory access costs are in most
cases unaffected by the changes in technology that
we examine in the next section. It is possible, how-
ever, to adjust the performance of the memory sys-
tem at a global level, as we have done for the case
of increasing processor speeds in the second subsec-
tion of the next section. Assessing the effects of mem-
ory at amore detailed level can only be fully achieved
using low-level simulation techniques.

DVSM overheads. Ideally, the time spent in each of
the execution time components (as described pre-
viously) would be evenly balanced across all proces-
sors. As mentioned above, we have found that con-
siderable imbalance can exist in several of these,

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

which can poteatially lead to a large modelling er-
ror if not taken into account. For example, in Barnes,
there are a significant number of faults, but the
source of these faults alternates between processor
zero and all other processors from one phase of the
computation to the next. Averaging the faults across
the entire computation would lead to large inaccu-
racies in the model.

To model the execution time of an application, we
consider separately each phase of the computation,
as defined by the barriers. For each phase, we first
determine the total amount of time spent in each
component (busy time or DVSM overhead), whose
sum represents the nonidle time for the processor;
the time required for the phase is simply the max-
imum of these sums. (As Figure 2 illustrates, some
processors may be idle at the end of a phase, waiting
for the slowest to arrive at the barrier. Note that each
processor may be in a particular component many
times during each phase, which is represented by a
single “segment” in the graph.) The total execution
time for the application is given by the sum of these
maximums over all phases of the computation.

To determine the time required by each component,
we instrumented TreadMarks to collect, for each
type of operation and each phase of the computa-
tion, (1) the number of operations occurring on each
processor, (2) the average time spent in software,
both on local and remote processors, and (3) the sizes
of average messages involved in any interactions. In
addition, we observed that requests interrupting re-
mote processors can be delayed for several reasons:

* JJO interrupts may be temporarily disabled if the
remote processor is already busy with some other
TreadMarks operation, causing the request to be
delayed until interrupts are re-enabled.

* The remote processor may have several outstand-
ing requests, behind which the current request
must wait.

* The remote processor may be operating in kernel
mode, either because it experienced a page fault
(possibly requiring a lengthy disk access) or be-
cause it made a system call.

Since these delays can be quite significant, we also
measure the average time remote operations have
to wait as a result of the first two types of delay; we
were unable to measure the last because that would
have required access to kernel source code.

PARSONS, BRORSSON, AND SEVCIK 533

Figure 2

Components of parallel execution time between barriers. (To estimate the time for a phase, we sum the

estimated times required for each component on each processor and take the maximum value.)

We then input these data into a spreadsheet that
computes, based on the measurements, the time
spent by each processor in each component during
each phase, using these to estimate the overall com-
putation time for the application. By breaking down
the cost of each operation (as illustrated later), we
can then predict the effects changes in technology
will have on the performance of the application.

Next, we provide more detail about the way the faults
and barriers are treated, as these represent the more
complex of the components.

Fault time. The major cost of handling a fault is com-
municating with remote processors to obtain any nec-
essary diffs for a page. Modelling a fault is the most
difficult aspect of our model, particularly when diffs
must be obtained from several processors.

To illustrate this complexity, consider the case where
a processor (P1) must acquire diffs from two other
processors (PO and P2) as a result of a fault. (A sim-
ilar but extended example illustrating the need for
multipart diff requests is presented in the Appen-
dix.) The details of such an operation are illustrated
in Figure 3. When the fault occurs, a diff request mes-
sage is first sent to the two remote processors, each
of which computes and returns a diff in parallel. Since

534 PARSONS, BRORSSON, AND SEVCIK

requests are very small (12 bytes), there is no sig-
nificant wire time in the sending of requests, but it
is quite possible for responses to be as large as 4 KB
in size, corresponding to wire times of about 330 us
on a Fast Ethernet.

Essentially, a multipart diff request is a pipelined op-
eration where (1) the sending of the requests, (2)
the receipt of the replies, and (3) the time spent on
the wire must be serialized. In our model, we thus
estimate the cost of each of these three components
and choose the longest in estimating the overall cost
of a multipart diff request.

Barrier time. The barrier time for slave processors
(i.e., processors other than the master of the bar-
rier) consists of three phases. First, write notices are
created. Second, a synchronous request is then sent
to the master, blocking the slave until the master re-
leases the barrier. Finally, memory pages are inval-
idated according to the write notices that are sent
by the master. For the master processor, further pro-
cessing occurs in receiving barrier request messages
from slave processors, merging write notices, and
sending release messages back to the slave proces-
sors. In general, the computation time of the master
processor is greater than that of any other proces-
sor.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Figure 3 Detailed breakdown of a two-part diff request (units are approximately 100 pis)

|

FAULT |
LRETURNS | | TIME
| |

E’?:UCLERJ |

SENDTIME }i— Hﬁé(lnmg SENDT!ME J{WRE CONTENTION.
e
PO

P P aladl

1SENDT|ME}& {RECVTIME | [SENDTIME
' N

| [WIRETME | |RECVTIME]

[PROCESSING |

In the best case, the master processor arrives at the
barrier first, so that the computation is not delayed
by the receipt of barrier messages from the slaves.
Thus, we model the time for a barrier as the sum of
four components: (1) the time for the last processor
to send a message to the master, (2) the time to
merge write notices, (3) the time for the master to
send a message to all the slaves, and (4) the average
post-barrier computation time.

Networking overheads. In order to make it possible
to change network parameters, we also break down the
cost of sending and receiving messages. For this pur-
pose, we used simple User Datagram Protocol/Internet
Protocol (UDP/IP) benchmarks, but since the actual
separation between hardware and software costs is
difficult to determine without detailed system infor-
mation, we rely on prior studies'® to choose appro-
priate values for hardware latencies.

We divide send-side communication as follows: (1)
software overhead to transfer a message to the ker-
nel, to go down the protocol stack, and to set up the
network adaptor to transfer the message, and (2) la-
tency for the network controller to begin sending the
message (assuming a direct memory access, or DMA,
model). Costs for the receiver are measured simi-
larly, but we have found in practice that they are close

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

to those of the sender, and so we do not distinguish
the two.

More importantly, the time to make a send or re-
ceive system call varies considerably from one invo-
cation to the next, presumably because of caching
or buffer allocation issues. For example, if we mea-
sure the cost of repeatedly sending a one-kilobyte
message to a remote processor, in one case flushing
the cache between system calls and in the other not,
then the send () system call time is 527 us in the
first case and 91 ws in the second for the Fast Eth-
ernet on our system. As a result, we use a micro-
benchmark suite'” to first estimate the basic hard-
ware and software cost breakdown of a messaging
operation, and then use the actual send () and
receive {) measurements from each application to
adjust for the cache and operating system effects just
mentioned.

Wire time for UDP/IP messages over Fast Ethernet
is computed as message size plus protocol overheads
(46 bytes) divided by the bandwidth; for UDP/IP mes-
sages over OC-3-based ATM, we use the established
effective bit rate of 135 Mbps.'®

The parameters for our two networks are shown in
Table 2, Although the software protocol times are

PARSONS, BRORSSON, AND SEVCIK B35

Table 2 Network cost parameters for each of the two networks

Table 3 Analysis of empty time test application (all
times in ps)

generally linear in the size of the message, deviations
of up to 40 percent can occur across message size
boundaries that are powers of two. For example, the
protocol times for 1024-byte and 1025-byte messages
are 142.5 ps and 110.5 us, respectively. It is impos-
sible to deduce the sources of these deviations with-
out detailed information from the vendors, and so,
for simplicity, we chose to ignore these fluctuations,
averaging out the results in the ranges shown.

Maodel validation for simple tests. Even though we
collect a large amount of data for each application
run, these are in the form of averages (e.g., average
message size, average number of diff requests per
fault, average computation times). Combined with
our simple network models, the use of such averages
will introduce some error in our estimates of exe-
cution time. In this subsection, we explore the ac-
curacy of our model for faults and locks using the
test applications provided by TreadMarks.

For each test that follows, including the ones de-
scribed in the next section, we ran each application

B36 PARSONS, BRORSSON, AND SEVCIK

five times on a quiescent system and obtained both
the means and variances for all measured param-
eters. In every case, we found that variances were
quite small, with all measurements of a particular
parameter differing by only a few percent.

Empty time. In the first test, we examine the cost of
empty page faults, as would occur for cold page
misses. The test program uses two processors, the
second of which faults on 1024 pages managed by
the first. Requests for page faults are 12 bytes in size;
responses are 4 KB in size (corresponding to the page
size). Signals have been measured on our system to
take 40 ws. The results are shown in Table 3.

In the last row of the table, we show the estimated
time for the operation according to our model, and
relate this time to the total amount of time measured
in the application for empty faults. (We do not show
the actual measured time since it would be redun-
dant.) Clearly, the cost of empty page faults is dom-
inated by software protocol handling, which repre-
sents 60 percent and 63 percent of the total time for
Fast Ethernet and ATM, respectively. As can be seen,
the accuracy of the model is quite high at 96 percent
for both tests.

Fault time. In our second test, we examine the cost
of making diff requests. The test program has three
phases. In the first phase, processor 0 obtains small
20-byte diffs from all other processors; in the sec-
ond, all processors but the first exchange 20-byte diffs
among themselves; and in the third phase, proces-
sor 0 obtains large 4120-byte diffs from all other pro-
cessors. In the following discussion, the source re-
fers to the processor requesting diffs and the
destination(s) to the processor(s) from which diffs
are being requested. The breakdown for each of

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Table 4 Analysis of fault time test application (four processors)

these phases for a four-processor experiment is
shown in Table 4.

Asdescribed earlier, a multipart diff request is a pipe-
lined operation where either the sending, receiving,
or wire time limits the performance. This operation
is shown in the table as an entry multiplied by the
factor corresponding to number of processors in-
volved in the multipart diff request. (The times for
sending and receiving are broken down in the first
two rows to allow the appropriate maximum value
to be chosen.) Once again, the software protocol han-
dling time represents a significant fraction of the to-
tal time, but DVSM software handling time and re-
mote delays caused by message-handling contention
can also be important.

We also show in Table 4 the maximum signal-han-
dling time, which includes send or receive system call
time, handler compute time, and delay in process-
ing, at each of the destination processors, taking into
account the times at which each request was sent.
When the maximum time is large, it indicates that
there is significant imbalance among the destination
processors; in this case, using this value in the cal-
culation can lead to more accurate results. Showing
this value only serves to point out that imbalance ex-
ists; our model in the next section does not use this
value because of the complexity of trying to do so.

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1997

Table 5 shows similar results for an eight-processor
experiment.

Lock acquisition. We now examine the cost break-
down for lock acquisition. In the first test, two pro-
cessors interact in such a way that the first makes
repeated lock requests to the second. In the second
test, three processors interact in such a way that the
first makes repeated requests for locks managed by
the second, but most recently accessed by the third.
In all cases, the message sizes were 24 bytes for the
requests, and four bytes for the replies. The results
are shown in Table 6.

Discussion of errors. The previous section compared
the model prediction of execution time components
to measured values for simple test applications pro-
vided by TreadMarks. The accuracy of these mod-
els is affected by numerous factors, notably:

* Our model of the network is only approximate, as
it assumes that costs grow linearly with the packet
size, with no unusual variations; also, in the case
of Fast Ethernet, we do not model the effects of
packet collisions, which sometimes arise with larger
numbers of nodes.

* Measurements of the delay at remote processes
do not include delays arising from the remote pro-
cess running in the kernel; in particular, if two

PARSONS, BRORSSON, AND SEVCIK B37

Table 5 Analysis of fault time test application (eight processors)

packets arrive nearly simultaneously, the delay on
the second imposed by the interrupt-level process-
ing of the first will not be captured.

« Finally, all our measurements only represent av-
erages; it is particularly a problem with operations
that involve multiple remote processors, in that it
assumes that there is no imbalance, which is not
usually the case (even if operations at the remote
processors are identical).

Despite these sources of errors, our model corre-
lates well with actual measurements. The only sig-

538 PARSONS, BRORSSON, AND SEVCIK

nificant exception is for the case of diff requests in-
volving many parts, primarily resulting from our
optimistic model of interprocessor interactions. Since
diff requests in practice have few parts, however, we
do not expect these errors to be significant.

Model validation for full applications. The test ap-
plications demonstrate the basic accuracy of the
model by performing exactly the same DVSM oper-
ation a large number of times. Real applications do
not possess this uniformity and may be more greatly
affected by the averaging that we perform. In par-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Figure 4 A comparison of the execution time, subdivided into its components, predicted by the model and normalized

to the actual execution time

g

8

PERCENTAGE OF EXECUTION TIME

NOW

o
a
o}
=

o o ot
5§ 8§ 2%
g g g
" SOR 18 BARNES BARNES
SMALL BIG

NOW

s 3
o z g 2 zZ o
=) o B Q o Q o
z < -
g g 2 g
SPHERE SPHERE WATER RAYTRACE
SMALL 8iG

ticular, responses to diff requests may vary greatly,
both in size and in the time required to compute and
apply the diff, from one request to the next and from
one processor to the next. In order to assess these
effects, we now examine the accuracy of the model
for the full applications summarized in Table 1.

To this end, Figure 4 presents the same information
as in Figure 1, with the addition of a breakdown cor-
responding to the model prediction. As can be seen,
we still exceed 90 percent accuracy in the prediction
of the total execution time for all applications. Some
overheads, such as operating system overhead and
network contention, are not part of the model, and
therefore the model typically underestimates some
of the overhead components. (The biggest discrep-
ancy is in barrier time in IS, but in this case, we are
dealing with a small absolute error of about 90 mil-
liseconds.) Even so, the model accurately predicts
the relative importance of the various execution time
components.

Performance trends anticipated for future
technologies

In our model, we have carefully broken down the
different costs associated with each significant DVSM

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

operation. This breakdown now allows us to vary dif-
ferent technology parameters and estimate their ef-
fects on the execution time of each application. Next,
we explore the effects of improvements in DVSM soft-
ware, networking, and compiler technology on our
current system. Then, we consider the effects of faster
processors, given both current and future software,
networking, and compiler technology. Finally, we
consider as a case study a specific next-generation
system.

Effects of DVSM improvements. There are two main
causes for poor performance in applications running
under TreadMarks: lock acquisition and memory con-
sistency (which consists of empty, fault, and garbage
collection times). The relative magnitude of these
overheads, however, is highly dependent on the rel-
ative changes in different technology parameters.
Figure 5 shows the overhead reduction when some
of the more important parameters are changed.
These parameters are (1) the number of faults, (2)
lock acquisition costs, (3) protacol costs, and (4) net-
work bandwidth and interface latency, each of which
is described in detail in the following subsections.

Fault reduction. The fault-handling time is, of course,
most effectively reduced if the application can be re-

PARSONS, BRORSSON, AND SEVCIK 530

Figure 5 Overhead reduction for changes in some technology parameters for current generation system

structured to minimize its need for communication.
In the context of this study, however, we consider
prefetching as a latency-hiding technique to over-
lap communication with computation, an approach
that has already been shown to be effective in both
shared-memory multiprocessors** and in networks
of workstations.

Although prefetching may reduce the latency asso-
ciated with faults, it does not reduce the overhead
due to requesting, computing, and applying diffs, and
will likely increase traffic on the interconnection net-
work as a result of mispredicted prefetches. In our
model, the cost of a prefetch is the sum of software
costs that are normally incurred at the source pro-
cessor for a fault, but without the penalty of waiting
for replies. (For the purpose of this analysis, we as-
sume that no faults are mispredicted to show an up-
per bound on performance improvements. It is rel-
atively straightforward to augment the model to
include mispredicted prefetches.)

Applications whose overhead is dominated by fault-
handling time benefit the most from fault time re-
duction. SOR is one such application in which the
overhead times can be reduced by 13 percent if half
of the faults can be prefetched (see Figure 5). How-

540 PARSONS, BRORSSON, AND SEVCIK

I FAULT REDUCTION 50%
B FAULT REDUCTION 100%
LOGK ACQ. REDUCTION 50%
INTERFACE LATENCY =0
PROTOCOL TIME REDUCTION 50%
PROTOCOL TIME REDUCTION 100%
B NETWORK BANDWIDTH 622 MBIT/S
] NETWORK BANDWIDTH 10 GBIT/S

ever, the overhead is already relatively small for this
application, and the resulting absolute performance
improvement is limited.

Other applications benefit less since the relative im-
portance of the fault-handling overhead time is
smaller compared to SOR. Applications that have
large-sized diffs, such as Barnes (over 3-Kbyte diffs
on average), cannot fully benefit from prefetching,
since the software costs at the source and destina-
tions are quite high; moreover, when several diffs
must be prefetched, all sends contribute to overhead
in the source processor, rather than just the first for
aregular fault. (The remaining sends occur when the
processor would otherwise be idle waiting for the re-
sponse.)

The only application that is almost unaffected by fault
reduction is Sphere. The reason is that there is very
little read and write sharing in Sphere; most data
structures are initialised at the beginning of the ex-
ecution and then subsequently only read. Thus far,
we have only been considering dynamic prefetching
based on reference history, but if explicit prefetch
operations could be inserted based on compiler anal-
ysis, it would be possible for faults due to cold misses
(i.e., empty time) to also be reduced.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Lock acquisition time reduction. Prefetching can also
be used to hide the latency to acquire locks (by ini-
tiating the lock request somewhat before it is need-
ed). Although locks are used by release consistency
protocols to maintain consistency, we find that there
is little contention for locks in the applications we
studied, so the potential increase in lock holding time
would not inflate contention unacceptably. It has pre-
viously been shown that lock prefetching requests
can be generated automatically by a compiler algo-
rithm. "

We include the effect of lock prefetching in the model
in a manner similar to the case of data prefetching;
the major difference in characteristics is that locks
require a single send operation from the source and
incur much smaller software overheads than faults.
As shown in Figure 5, a 50 percent reduction in lock
acquisition time translates to reductions in overhead
ranging from 8 percent to 20 percent for IS, Sphere,
Water, and Raytrace (i.c., all applications having
locks).

Protocol reduction factor. The protocol reduction fac-
tor reduces all overheads in the model that are re-
lated to protocol execution. We find that applica-
tions with a high degree of locking overhead or
memory consistency overhead (e.g., Barnes and Wa-
ter), benefit greatly (15 percent reduction in over-
head for a 50 percent protocol cost) from lower-la-
tency communication facilities (relative to UDP/IP).

We believe that there is potential to reduce the pro-
tocol overhead significantly in future systems. This
reduction can be achieved by using lighter-weight
protocols or by simply using lower levels in the pro-
tocol stack (e.g., the AAL, or ATM adaptation layer,
in the ATM interface). Furthermore, newer ATM in-
terfaces may perform some of the protocol functions
in hardware which would also reduce latencies.*

Network interface latency and other parameters. Fi-
nally, removing the network interface latency has a
moderate effect on performance across all applica-
tions (except Water). The reason is, of course, that
with current processor technology, the majority of
the costs lie within software.

Other parameters that we studied did not have an
appreciable effect on the execution time of applica-
tions. In particular, changes in the network band-
width do not appear to be important, given our cur-
rent processor speeds.

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1997

Effects of faster processors. Next, we consider the
impact of processor performance, both on the ef-
ficiency of applications and on the benefit of the types
of technology changes described in the previous sec-
tion. As mentioned earlier, the performance of pro-
cessors is increasing by a factor of two every 18
months, so in five years, processors may be eight
times faster than the ones used today.

To model faster processors, we decrease the time
spent in various components according to the in-
crease in processing speed; the only components that
are not modified are the network interface latency
and the wire delay (arising from bandwidth limita-
tions). In general, however, the benefits of faster pro-
cessors cannot be fully realized in system software,
because such software tends to have poor cache lo-
cality for both data and instructions. *** For exam-
ple, the extra system call time that we have included
in our model arises because protocol code and data
are often not found in cache. As another example,
the minimum remote lock acquisition time reported
by Cox et al. on 40-MHz processors® is actually lower
than on our system. As a result, we consider two cas-
es: one where all software gets the full benefit of
faster processors, and another where the system soft-
ware gets only a 50 percent benefit. (In particular,
we model a system software benefit of x by increas-
ing the processor speed by a factor of x every time
the actual processor speed doubles, i.e., increases by
100 percent.) Aithough this value is only a rough es-
timate of what may occur in practice, it illustrates
how such behaviour can affect performance.

Figure 6 shows the model’s prediction of the effi-
ciency of each of our applications as processor per-
formance increases. We show the range of relative
processor speeds, from 0.25 (roughly 1992) to 16.0
(roughly 2000). As expected, the efficiency decreases
with increasing processor speed because hardware
delays will become relatively more important. Some
applications are affected less than others by this.
Sphere, for instance, retains much of its efficiency
because most of the overhead is in lock acquisition,
which is highly software intensive in both bvSM and
communication protocol code. For many of the ap-
plications, performance is relatively constant over a
range of processor speeds if system software ben-
efits fully from faster processors. If we consider the
case where only 50 percent of the benefit can be
achieved (Part B of Figure 6), efficiency varies more
dramatically; in this case, all applications exhibit rap-
idly decreasing efficiency, with Barnes and Sphere
being most severely affected.

PARSONS, BRORSSON, AND SEVCK 541

Figure 6 The efficiency as a function of the processor performance {1 represents an 1BM 43P-133 MHz)

(A} FULL SYSTEM BENEFIT

“LLL

- -
e IMWWMMW"W"W"‘M‘ o
g O ———
g
g
s
i s0
: ol
5 ‘ sy My, %
%; T
&:) 30| - T T ‘ﬁﬂ
W
& 29
0] | T’
S S I
L P p 2 4 - 8
CPU PERFORMANGE -
s SOR " |
soesrse. BIG BARNES

s SMALL BARNES
n SMALL SPHERE
WATER

| — |5 SPHERE

Table 7 Parameters of a future-generation system

In Figure 7, we show the effects of the same over-
head reductions considered in the previous section
(and Figure 5), but this time using processors eight
times more powerful. In this case, using prefetching
for data appears to have the greatest impact on per-
formance, ranging from a 15 percent to a 56 percent
reduction in overhead for SOR, IS, Barnes, and Wa-
ter. If system software cannot benefit fully from in-
creases in processor speeds, however, then the ben-
efit of prefetching will be reduced. Finally, factors
that were insignificant with the slower processor,
namely network interface latency and network band-
width, are now much more important.

542 PARSONS, BRORSSON, AND SEVCIK

(B 50% SYSTEM BENEFIT

CPU PERFORMANCE

A representative future system. In five years time,
processor performance will be about eight times that
of today’s high-performance microprocessors. If
other technology parameters stay the same, we can
see from Figure 6 that the processor efficiency will
decrease. In order to anticipate the future situation,
we have applied the model with a set of technology
parameters that we believe will be realized within
five years (or possibly sooner). These parameters are
summarized in Table 7. Current VLSI (very large-
scale integration) technology is sufficiently advanced
to accommodate 10 Gbps networks and interfaces.?
The signal latency time is likely to decrease with
faster processors, and operating systems are likely
to provide mechanisms for more effectively handling
remote procedure calls.'®

Part A of Figure 8 compares the breakdown of ex-
ecution time of this future system with that of cur-
rent technology, assuming system software can fully
benefit from improvements in processor perfor-
mance. As can be seen, it is not only possible to main-
tain the same level of efficiency as today, but also to
actually improve it in all cases. The largest improve-
ments are in memory consistency and lock acquisi-
tion operations, both overheads that are substantially

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Figure 7 Overhead reduction for technology parameter changes when the processor performance is eight times

current technology

56

QVERHEAD REDUCTION PERCENTAGE

44

SOR IS SMALL BARNES BIG BARNES
(A) FULL SYSTEM BENEFIT

SMALL SPHERE BIG SPHERE WATER RAYTRACE

35

30

, ' FAULT REDUCTION 50%
40 | B FAULT REDUCTION 100%
] LOCK ACQ. REDUCTION 50%
B INTERFACE LATENCY =0
B PROTOCOL TIME REDUCTION 50%
[’] PROTOCOL TIME REDUCTION 100%
B NETWORK BANDWIDTH 622 MBIT/S
ENETWORK BANDWIDTH 10 GBIT/S

.

OVERHEAD REDUCTION PERCENTAGE
n
b

diminished from the reduction in protocol software
costs.

Part B of Figure 8 shows the same comparison for
the case where system software can only partially
benefit from improvements in processor perfor-
mance. In this case, the efficiency of current systems
will not be sustained for most applications, even with
the aggressive latency-hiding techniques that might

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

be used. This reemphasises the fact that the single
most important system component to optimize, even
in future systems, is the communication protocol soft-
ware.

Related work

There are many studies of the performance of var-
ious DVSM systems, but only a few of them present

PARSONS, BRORSSON, AND SEVCIK 543

Figure 8 Execution time breakdown for a future generation system compared to today’s technology

. PERCENTAGEOF EXECUTIONTIME -~ .~ _

models that can be used to predict performance of Karlsson and Stenstrom? studied TreadMarks-
future systems. based applications running on a system consisting

544 PARSONS, BRORSSON, AND SEVCIK IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

of a number of small-scale shared-memory multipro-
cessors connected by a standard OC-3 ATM switch.
They used program-driven simulation to study the
performance effects of faster processor, network, and
interface technologies. Their study confirms our find-
ings that the interface latency is the performance bot-
tleneck, but in contrast to our study, and due to the
particulars of their simulation model, they cannot
separate communication software cost from the com-
munication hardware overhead in the network in-
terface. Also, because of the limited resources avail-
able when simulating a multiprocessor system, they
are unable to run realistically sized workloads.

Dwarkadas et al. * studied the performance of dif-
ferent release consistency options for four applica-
tions, using predictions for the cost of various DVSM
overheads. In their study, they examined the effects
of varying software overheads and of higher-band-
width networks on the performance of applications;
they show how performance for sharing-intensive ap-
plications is most significantly affected by the soft-
ware overheads. Later, Cox et al.** used a similar
simulation approach (except using better estimates
of software overheads) to study the performance of
several DVSM applications in (what was then) a next-
generation system; in this study, they also considered
the effects of reductions in software overheads. Since
these studies also used simulation, they used small
data sets in their experiments.

Our work differs from these in that we (1) analyse
a wider range of applications and larger problem
sizes (since we could run on real hardware), (2)
present detailed cost breakdowns for several DVSM
operations, showing the high software costs actually
incurred in modern systems, (3) develop a model of
DVSM applications, based on these breakdowns, and
(4) use this model in conjunction with present-day
measurements to predict the effect that a variety of
technological changes may have on the performance
of these applications. Most significant is that we
present a way to analytically model the performance
of applications.

Apart from TreadMarks many other DVSM systems
have been proposed and evaluated in the literature.
We have chosen to mention a few of the more rel-
evant ones:

s SoftFLASH? implements a clustered system sim-
ilar to the one studied by Karlsson et al.® A major
difference from TreadMarks is that SoftFLASH is
implemented at kernel rather than at user level.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

* CVM® is a new DVSM system based on the Tread-
Marks experience. It is designed in C+ + with sup-
port for multiple consistency models. In his study,
Keleher argues that it is actually not necessary to
support multiple writers to a shared page, but
rather that lazy release consistency is most impor-
tant.

« Finally, Blizzard-S,” Shasta,’ and Aurora® rep-
resent DVSM systems that are based on shared ob-
jects rather than pages, as in the case of the pre-
viously mentioned systems. Since they cannot rely
on hardware mechanisms to detect shared-mem-
ory accesses, they modify the executable code to
check the state of shared objects before accessing
them and to invoke the protocol software if
needed. None of these studies, however, examines
the performance effect of future processors and
communications technology.

The model technique developed and used in this pa-
per can also be applied to all the above-mentioned
systems in order to study performance effects of
changing technologies. Software probes need to be
inserted into the protocol software. This is probably
very easy in the systems that run entirely in user
mode, whereas in the case of SoftFLASH, access to
the kernel would be required. The actual model in
this paper is, of course, targeted to TreadMarks and
would therefore need to be changed to suit the dif-
ferent protocols accordingly.

Conclusions

A network of workstations is an attractive platform
for parallel computing because of its potential to de-
liver high performance at a relatively low cost. It has
previously been shown that it is even possible to
achieve reasonable performance for a shared-mem-
ory programming model if the consistency model is
relaxed.’

Given that processor performance has been increas-
ing much more rapidly than network performance
since the earlier measurements of DVSM perfor-
mance were done,’ it is expected that application
efficiency would be lower for the same problem size
on current systems, as we have observed. In this pa-
per, we found that a distributed virtual shared-mem-
ory system on a network of workstations indeed can
still deliver cost-effective performance, even when
using present-day commodity network technology.
It is, however, limited to a class of applications that
has a sufficiently high computation-communication
ratio, such as those examined in this paper.

PARSONS, BRORSSON, AND SEVCIK 545

Our work shows how a model can be developed for
parallel applications running on a DVSM system,
which we use to study their performance as changes
occur in technology. As has been noted before, the
main bottleneck for DVSM systems with current tech-
nology is the software overhead in the communica-
tion protocol. Latency-hiding techniques to reduce
fault-handling time and lock acquisition time can be
effective if implemented. However, with the expected
performance of future processors, the performance
of these applications is likely to be constrained more
by hardware-related delays such as network inter-
face and wire time.

Our model shows that the anticipated improvements
n DVSM and networking technology are likely to per-
mit the same relative application performance to be
maintained over the near to medium term. However,
if system software cannot be written so as to take
full advantage of faster processors, it will be almost
impossible to achieve the same speedups (equiva-
lent efficiency) as today. Also, it will not be possible
to maintain this performance if latency-hiding tech-
niques are not used for memory faults and lock ac-
quisitions.

In this study, we have focussed on how changes in
protocol and DVSM software and in processor and
network hardware will affect speedup for a set of ap-
plications of specific size executing on eight proces-
sors. Problems of greatest importance that will ex-
ecute on DVSM systems of the future will involve
much larger computations (e.g., sequential execu-
tion times of hours or days rather than minutes or
seconds) and will require many more processors. The
modelling approach described in this paper can be
immediately applied to any problem by running it
on an existing system to gather the base statistics.
With a deeper understanding of the various appli-
cation parameters that are used by the model, it
would also be possible to apply the approach to prob-
lems too large to be run today.

Acknowledgments

The network of workstations used for this study is
part of the Parallelism on Workstations (POW) proj-
ect, which is a cooperative project between the Uni-
versity of Toronto and the Centre for Advanced
Studies at the 1BM Toronto Development Labora-
tory. Three major themes within the POW project are
(1) development of compilers that support automatic
parallelization for a network of workstation environ-
ments, (2) exploitation of prefetching to overcome

546 PARSONS, BRORSSON, AND SEVCIK

remote data access latencies in distributed-memory
systems, and (3) efficient multiprogrammed sched-
uling of workloads dominated by parallel jobs.

We would like to thank Giridhar Chukkapalli who
kindly provided the Sphere application. The research
in this paper was supported in part by the Natural
Sciences and Engineering Research Council of Can-
ada, the Information Technology Research Centre
of Ontario, Northern Telecom, and the Swedish Na-
tional Board for Industrial and Technical Develop-
ment (NUTEK) under project number P855.

Appendix

To illustrate the LRC protocol, consider three pro-
cesses sharing a single distributed virtual shared-
memory page that contains two variables, V1 and
V2, each protected by a lock, L1 and L2, respectively.
Figure 9 depicts a sequence of actions taken by the
processors. Initially, the page is marked as valid, but
write-protected in all three processors; all proces-
sors can read the variables. Next, processor (acquires
the lock L1, and roughly at the same time processor
2 acquires lock L.2. When these processors modify
the variables corresponding to the lock they acquired
for the first time, a page fault will occur (since the
page was initially write-protected), and a local copy
of the page will be made in each processor; these
copies, ot twins, can later be used to determine which
portions of the page have been modified. The page
is then unprotected, allowing reads and writes to pro-
ceed uninterrupted. Later, when the processors re-
lease their locks, the fact that the page has been mod-
ified is recorded in a write notice.

After the locks have been released, processor 1 ac-
quires both locks, presumably to either read or write
variables V1 and V2. Acquiring alock involves send-
ing a message to a preassigned manager of the lock,
which forwards the request to the processor that last
held the lock, which in turn responds with any write
notices that are associated with the lock. In our ex-
ample, a message is sent to both processors 0 and
2, both of which respond with a write notice for the
same page, causing processor 1’s copy of the page
to be invalidated. When processor 1 subsequently
accesses the page, a request is made to both other
processors for diffs, which record what changed in
the page on a given processor. (A diff is computed
by comparing the current copy of the page against
its twin.) After the diffs have been computed, the
twins can be safely discarded.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Figure 9 The lazy release consistency protocol in TreadMarks. (Processors are not notified of changes until the lock

acquisition, and pages do not get updated until the first reference after the lock acquisition.)

Processor 1 uses the diffs it receives to update its own
copy of the page with the modifications made by pro-
cessors 0 and 2. Hence, once processor 1 has received
and applied both diffs, there will be three different
versions of the page: one each on processors 0 and
2 that reflect the changes done to the page locally
and one on processor 1 with an updated status con-
taining changes made by both processors 0 and 2.
In order for this multiple-writer scheme to work, it
is assumed that the programmer does not associate
overlapping memory regions with different locks,
since that would cause the diffs to partly relate to
the same addresses, and the final state of a shared
page would depend on the order in which the diffs
were applied.

TreadMarks also supports barrier synchronisations
which, in addition to synchronising all processors,
also cause the processors to exchange write notices
for all shared-memory pages. Each barrier is asso-
ciated with a managing processor that coordinates
the actions of other processors. Basically, the man-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

FIRST WRITE
ACQUIRE REFERENCETOV1 RELEASELOCK L1 COMPUTE DIFF FOR V3
LOCKL1 GREATE TWIN RECORD WRITE NOTICE DISCARD TWIN TIVE
Po == ¥ T T ? —
[l Q DJFF Vi
o FIRST REFERENCE
TWIN l TO PAGE. OBTAIN
t T : ! e AND APPLY DIFFS ﬂ
f l |
P, > HK—r —
,\ L
ACQUIRE LOCKS f \ 4+
eI ’ { APPLY DIFFS
CONTINUE WITH
NOTICESAND | CONTINY
INVALIDATE PAGE | | J MOy e
o FIRST WRITE {)
. " ACQUIRE REFERENCE TOV2 !
. LOCKLZ CREATE TWIN | i l
V’FZ;'"'X‘ . X . AL V' —
o 3 I T A
- RELEASELOCKL2 COMPUTE DIFF FOR V2
RECORD WRITE NOTICE DISCARD TWIN
DIFF V2

ager collects the write notices from all other proces-
sors as they reach the barrier, and then redistributes
them back to all processors involved in the compu-
tation. TreadMarks uses barriers to initiate garbage
collection (GC) if the amount of memory consumed
by write notices, diffs, and twins exceeds a predefined
threshold on any processor. If garbage collection is
initiated, then at the end of the barrier, all proces-
sors compute and exchange diffs for all pages, mak-
ing all copies of each shared-memory page identi-
cal.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of PARALLELTOOLS,
LLC, Digital Equipment Corporation, 3Com, Inc., or X/Open
Company, Ltd.

Cited references

1. J. P. Singh, A. Gupta, and M. Levoy, “Parallel Visualization
Algorithms: Performance and Architectural Implications,”
Computer 27, No. 7, 45-55 (July 1994).

PARSONS, BRORSSON, AND SEVCIK 547

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. A.H. Karp, K. Miura, and H. Simon, “1992 Gordon Bell Prize
Winners,” Computer 26, No. 1, 77-82 (January 1993).

. A H. Karp, M. Heath, D. Heller, and H. Simon, “1994 Gor-
don Bell Prize Winners,” Computer 28, No. 1, 68-74 (Jan-
vary 1995).

. A.H.Karp, M. Heath, and A. Geist, “1995 Gordon Bell Prize
Winners,” Computer 27, No. 1, 79-85 (January 1996).

. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel, “TreadMarks:
Shared Memory Computing on Networks of Workstations,”
Computer 29, No. 2, 18-28 (February 1996).

. P. Keleher, Lazy Release Consistency for Distributed Shared
Memory, Ph.D. thesis, Department of Computer Science, Rice
University, Houston, TX (January 1995).

. P.Keleher, A. Cox, and W. Zwaenepoel, “Lazy Release Con-
sistency for Software Distributed Shared Memory,” Proceed-
ings of the 19th International Symposium on Computer Archi-
tecture (May 1992), pp. 13-21.

. R. Mraz, D. Freimuth, E. Nowicki, and G. Silberman, “Us-
ing Commodity Networks for Distributed Computing Re-
search,” Proceedings of Workshop on Computer Networking:
Putting Theory to Practice, 1995 Asian Computing Science Con-
ference, Pathumthani, Thailand (December 1995), pp. 6~13.

. E.Felten, R. Alpert, A. Bilas, M. Blumrich, D. Clark, S. Dami-

anakis, C. Dubnicki, L. Iftode, and K. Li, “Early Experience

with Message-Passing on the SHRIMP Multicomputer,” Pro-
ceedings of the 23rd Annual International Symposium on Com-
puter Architecture, Philadelphia, PA (May 22-24, 1996), pp.

296-307.

T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net:

A User-Level Network Interface for Parallel and Distributed

Computing,” Proceedings of the Fifteenth ACM Symposium

on Operating Systems Principles (December 1995), pp. 40-53.

T. Mowry, A. Demke, and O. Krieger, “ Automatic Compiler-

Inserted 1/O Prefetching for Out-of-Core Applications,” Pro-

ceedings of the Second Symposium on Operating Systems De-

sign and Implementation (1996), pp. 3-18.

M. Karlsson and P. Stenstrom, “Effectiveness of Dynamic

Prefetching in Multiple-Writer Distributed Virtual Shared

Memory Systems,” to be published in Journal of Parallel and

Distributed Computing (September 1997).

M. Karlsson and P. Stenstrom, “Lock Prefetching in Distrib-

uted Virtual Shared Memory Systems—Initial Results,” IEEE

CS Technical Committee on Computer Architecture Newslet-

ter, 41~48 (March 1997).

G. Chukkapalli, personal communication, Department of Me-

chanical Engineering, University of Toronto, Toronto (e-mail:

chuk@drill.me.utoronto.ca).

J. P. Singh, J. L. Hennessy, and A. Gupta, “Implications of

Hierarchical N-body Methods for Multiprocessor Architec-

ture,” ACM Transactions on Computer Systems 13,No. 2, 141

202 (May 1995).

C. A. Thekkath and H. M. Levy, “Limits to Low-Latency Com-

munication on High-Speed Networks,” ACM Transactions on

Computer Systems 11, No. 2, 179-203 (May 1993).

L. McVoy and C. Staelin, “Imbench: Portable Tools for Per-

formance Analysis,” Proceedings of the USENIX 1996 Annual

Technical Conference (1996), pp. 279-294.

L. G. Cuthbert and J.-C. Sapanel, Chapter 2 in ATM—The

Broadband Telecommunications Solution, The Institution of

Electrical Engineers, London, UK (1993).

F. Dahlgren and P. Stenstrom, “Evaluation of Hardware-

Based Stride and Sequential Prefetching in Shared-Memory

Multiprocessors,” IEEE Transactions on Parallel and Distrib-

uted Systems 7, No. 4, 385-398 (April 1996).

H48 PARSONS, BRORSSON, AND SEVCIK

20.

21.

22.

23.

24,

25.

26.

27.

28.

30.

31.

T. Mowry and A. Gupta, “Tolerating Latency Through Soft-
ware-Controlled Prefetching in Shared-Memory Multipro-
cessors,” Journal of Parallel and Distributed Computing 12, No.
2, 87-106 (June 1991).

P. Sundstrém, M. Karlsson, and P. Andersson, “An Inter-
face Architecture for a Low-Latency Network of Worksta-
tions Using 10 Gbit/s Switched LAN Technology,” Proceed-
ings of the IASTED International Conference on Parallel and
Distributed Systems, Euro-PDS’97, Barcelona (June 1997),
pp. 166-176.

J. Chen and B. Bershad, “The Impact of Operating System
Structure on Memory System Performance,” Proceedings of
the Fourteenth Symposium on Operating System Principles
(1993), pp. 120-133.

A. Maynard, C. Donnelly, and B. Olszewski, “Contrasting
Characteristics and Cache Performance of Technical and
Multi-User Commercial Workloads,” Proceedings of the Sixth
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (October 1994),
pp. 145-156.

A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and
W. Zwaenepoel, “Software Versus Hardware Shared-Mem-
ory Implementation: A Case Study,” Proceedings of the 21st
International Symposium on Computer Architecture (1994),
pp. 106-117.

M. Karlsson and P. Stenstrém, “Performance Evaluation of
a Cluster-Based Multiprocessor Built from ATM Switches
and Bus-Based Multiprocessor Servers,” Proceedings of the
2nd Conference on High Performance Computer Architecture
(February 1996), pp. 4-13.

S. Dwarkadas, P. Keleher, A. Cox, and W, Zwaenepoel, “Eval-
uation of Release Consistent Software Distributed Shared
Memory on Emerging Network Technology,” Proceedings of
the 20th Annual International Symposium on Computer Ar-
chitecture (1993), pp. 144-155.

A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy, “Soft-
FLASH: Analysing the Performance of Clustered Distributed
Virtual Shared Memory,” Proceedings of the 7th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (October 1996), pp. 210-221.
P. Keleher, “The Relative Importance of Concurrent Writ-
ers and Weak Consistency Models,” Proceedings of the 16th
International Conference on Distributed Computing Systems
(May 28, 1996), pp. 91-98.

. 1. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R.

Larus, and D. A. Wood, “Fine-Grain Access Control for Dis-
tributed Shared Memory,” Proceedings of the Sixth Interna-
tional Conference on Architectural Support for Programiming
Languages and Operating Systems (ASPLOS VI) (October
1994), pp. 297-307.

D. J. Scales, K. Gharachorloo, and C. A. Thekkath, “Shasta:
A Low Overhead, Software-Only Approach for Supporting
Fine-Grain Shared Memory,” Proceedings of the Seventh In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems (October, 1996).
P.Lu, “Aurora: Scoped Behaviour for Per-Context Optimized
Distributed Data Sharing,” Proceedings of the 11th Interna-
tional Parallel Processing Symposium (April 1997), pp. 467~
473.

General references

J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Dis-
tributed Shared Memory Based on Type-Specific Memory Co-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

herence,” Proceedings of the 2nd ACM Symposium on Principles
and Practice of Parallel Programming (1990), pp. 168-176.

K. Gharachorloo, A. Gupta, and J. L. Hennessy, “Performance
Evaluation of Memory Consistency Models for Shared-Memory
Multiprocessors,” Proceedings of the 4th International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (April 1991), pp. 245-257.

L. Iftode, J. P. Singh, and K. Li, “Understanding Application Per-
formance on Shared Virtual Memory Systems,” Proceedings of
the 23rd Annual International Symposium on Computer Architec-
ture, Philadelphia, PA (May 22-24, 1996), pp. 122-133.

K.Li, “IVY: A Shared Virtual Memory System for Parallel Com-
puting,” Proceedings of 1988 International Conference on Parallel
Processing (1988), pp. 94-101.

J. P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford
Parallel Applications for Shared-Memory,” Computer Architec-
ture News 20, No. 1, 5-44 (March 1992).

Accepted for publication May 20, 1997.

Eric W. Parsons Department of Computer Science, University of
Toronto, 10 King’s College Road, Toronto, Ontario, Canada M5S
3G4 (electronic mail: eparsons@cs.toronto.edu). Dr. Parsons cur-
rently works at the Computing Technology Laboratory at North-
ern Telecom. He recently completed his Ph.D. in the Department
of Computer Science at the University of Toronto in the area of
multiprocessor scheduling. His primary research interests are in
performance analysis, particularly in relation to multiprocessor
systems and mobile computing. He will be joining the Depart-
ment of Electrical and Computer Engineering at the University
of Toronto as an assistant professor in 1998.

Mats Brorsson Department of Information Technology, Lund Uni-
versity, P.O. Box 118, SE-221 00 Lund, Sweden (electronic mail:
Mats.Brorsson@it.Ith.se). Dr. Brorsson is an associate professor
in the Department of Information Technology at Lund Univer-
sity, Sweden. His main research interests are in parallel archi-
tectures and, in particular, performance analysis of shared-mem-
ory parallel applications. He received the M.Sc. and Ph.D. degrees
in 1985 and 1994, respectively, both from Lund University.

Kenneth C. Sevcik Department of Computer Science, University
of Toronto, 10 King’s College Road, Toronto, Ontario, Canada M5S
3G4 (electronic mail: kes@cs.toronto.edu). Dr. Sevcik is a profes-
sor of computer science with a cross-appointment in electrical
and computer engineering at the University of Toronto. He was
the past Director of the Computer Systems Research Institute
and past Chairman of the Department of Computer Science. He
received a B.S. in mathematics from Stanford University in 1966
and a Ph.D. in information science from the University of Chi-
cago in 1971. His primary area of research interest is in devel-
oping techniques and tools for performance evaluation, and ap-
plying them in such contexts as distributed systems, database
systems, local area networks, and parallel computer architectures.

Reprint Order No. G321-5657.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 PARSONS, BRORSSON, AND SEVCIK 549

