
Predicting the
performance of
distributed virtual
shared-memory
applications

by E. W. Parsons
M. Brorsson
K. C. Sevcik

The use of networks of workstations for parallel
computing is becoming increasingly common.
Networks of workstations are attractive for a
large class of parallel applications that can
tolerate the higher network latencies and
lower bandwidth associated with commodity
networks. Several software packages, such as
TreadMarksTM, have been developed to provide a
common view of global memory, allowing many
shared-memory parallel applications to be easily
ported to networks of workstations. This paper
investigates in detail the performance of several
TreadMarks-based shared-memory applications
on a modern network of workstations, identifying
the extent to which different system components
affect the efficiency of these applications. Then a
performance model for such applications is
developed and used to evaluate the impact
future changes in technology are likely to have
on performance. The results of the model
indicate that current systems are limited in their
performance by communications and software
overhead for supporting the distributed virtual
shared memory, rather than hardware delays.

E ven though most parallel computing today is
based on a message-passing programming

model, it is easier to develop parallel programs us-
ing a shared-memory image for interprocess commu-
nication. In fact, some algorithms are extremely dif-
ficult to parallelize by hand using explicit message
passing. As a result, much research has been de-
voted to presenting a shared-memory image to pro-

grams running on distributed-memory systems, an
approach termed distributed virtual shared memory
(DVSM). This is accomplished using a combination
of virtual memory protection mechanisms to detect
accesses to specific portions of memory, and soft-
ware exception handlers to ensure that the memory
images on different processors are kept consistent.
Examples of such software-based DVSM systems are
TreadMarks**, CVM, Munin, and Ivy.

It is becoming increasingly common for networks of
workstations (NOWS), instead of special-purpose mul-
tiprocessors, to be used for parallel computation, pri-
marily because of the cost-effectiveness of using
commodity components. Also, the latest processor
technology often appears in workstations before it
can be incorporated into large-scale multiprocessors,
which allows NOWS to attain higher aggregate per-
formance relative to a large-scale multiprocessor for
the same investment. This fact can be seen in that
several recent winners of the Gordon Bell Prize in
the best costlperformance category have used a NOW
as their computing p l a t f ~ r m . ~ - ~

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM E iYSTEMS JOURNAL, VOL 36, NO 4, 1997 0018-8670197/$5 00 0 1997 IBM PARSONS, BRORSSON, AND SEVCIK 527

In most such systems, the granularity for memory
protection is relatively coarse, namely the page size.
With straightforward implementations of DVSM, this
granularity leads to false sharing. This effect occurs
when one processor updates a data item in a mem-
ory page, causing update or invalidation messages
to be sent to all other processors that have copies
of that page, even though those processors never ac-
cess the particular data item just updated. With use
of relaxed forms of memory consistency, it is pos-
sible to allow several processes to write to a partic-
ular page simultaneously, without causing excessive
exchanges of messages. With such forms of consis-
tency, reasonably good speedups can be obtained for
parallel applications, even on a NOW using off-the-
shelf LAN (local area network) technology.5

However, given that processor performance is in-
creasing very rapidly relative to commodity network
performance, it is not clear how well such DVSM sys-
tems will perform in the future. Whereas significant
speedups (e.g., about three for the Barnes applica-
tions, defined later) were reported for certain ap-
plications on eight processors under the TreadMarks
system,6 those same applications exhibited about half
the speedup running on more recent processors con-
nected by the same network.

In this paper, we describe the way in which we de-
veloped a model to predict the performance of par-
allel DvsM-based applications, using TreadMarks as
a case study. The purpose of this model is to allow
us to determine the effects of changes in technology
on the performance of applications. As an abstrac-
tion of a system, a model does not include complete
details about every aspect of the system (e.g., the
memory system in our case). Despite this, a model
can often offer good approximations to performance
given certain types of changes. For example, we use
this model to investigate the impact of processor
speed, network latency and bandwidth, and software
overheads on performance. Although this study is
based on applications using TreadMarks, we believe
the approach we describe is generally applicable to
the modelling of applications based on other DVSM
systems as well.

The results show, not surprisingly, that consistency
actions and lock acquisitions are the limiting factors
on performance with current technology. When we
break down the costs associated with these opera-
tions into software delays (DVSM and communica-
tion protocols processing time) and hardware delays
(network time and adapter latency), we find that the

hardware delays do not constrain the performance
as much as the software delays. However, hardware
delays will become increasingly significant as process-
ing speeds increase. The results also indicate that
aggressive network hardware technologies by them-
selves are not enough to achieve the same perfor-
mance for systems with processors eight times faster
than today's; in particular, latency hiding techniques
(e.& prefetching) will be required to maintain lev-
els of processor efficiency comparable to those
achieved now.

The next section discusses a specific DVSM system,
TreadMarks, and the technology parameters that af-
fect the performance of applications that run under
it. The succeeding section presents performance re-
sults for a number of applications running on our
experimental system using TreadMarks. Then the
model that evaluates the performance of these ap-
plications is presented, along with a validation of the
execution times predicted by our model relative to
those actually observed. The model is then used to
predict future performance limitations. Related work
and conclusions are described in the last two sec-
tions, respectively.

Technology parameters affecting
performance of DVSM

There have been several experimental implementa-
tions of DVSM systems, all of which face the same
fundamental challenge of maintaining consistency
of shared data without encountering an unaccept-
able amount of synchronisation and communication
overhead. The specific DVSM system we have cho-
sen to study is the TreadMarks system. Developed
for a network of workstations, this system allows par-
allel programs to interact transparently, using a
shared-memory model, even though the processors
themselves do not physically share memory. Tread-
Marks, like its similar predecessors, does this by re-
lying on the memory protection mechanism provided
by the hardware and operating system to detect ac-
cesses to specific regions of memory in each proces-
sor, and then invoking necessary actions to maintain
memory consistency. These actions involve exchang-
ing messages between processors to update the con-
tents of memory.

Lazy release consistency. In a strong memory con-
sistency model, a programmer can assume that mod-
ifications made to memory in a shared-memory seg-
ment are automatically and immediately reflected
in the memories of other processors. This model

would correspond to the behaviour of multiple pro-
cesses sharing a memory segment on a single work-
station (possibly having multiple processors). This
model, however, tends to require a large number of
message exchanges when implemented on distrib-
uted-memory machines.

As a result, a number of weak consistency memory
models have been proposed that greatly reduce the
amount of interprocess communication. They are
based on the observation that most parallel programs
serialize modifications to a given data item from mul-
tiple processors through the use of locks. In such pro-
grams, it is possible to reflect modifications made to
memory only when a lock is released while preserv-
ing the correctness of the algorithm (since no other
process should be reading from or writing to this
memory item while the lock is held). In fact, in this
model, a processor only needs to be informed of
modifications to a data item when it tries to acquire
the lock protecting the data. This condition allows
different processors to simultaneously modify differ-
ent variables that lie on the same page, as long as
no two processors modify the same variable at the
same time.

The lazy release consistency (LRC) protocol7 used
in TreadMarks is very similar to the basic release
consistency model just described, except that data
are simply marked as having been modified upon
lock acquisition, delaying the application of the mod-
ifications until the data are actually accessed. As this
protocol has been described numerous times in the
past, we do not repeat this description here. Instead,
we provide an example of the protocol in the Ap-
pendix, where a number of terms are described in
detail. Briefly, a fault occurs when a processor ac-
cesses a page that requires some type of consistency
action, resulting from the processor having received
prior write notices for the page. To make the page
consistent, the processor requestsdiffrom other pro-
cessors that have modified the page.

Performance factors. The original TreadMarks study
reported reasonable speedups over a range of ap-
plications on a network of eight DECstati0n""-
5000/240 workstations interconnected by a Fore ATM
(asynchronous transfer mode) switch.6 Since that
study was done, processor performance has increased
dramatically while the ATM network technology still
is considered to be current. In the future, the per-
formance of DvsM-based applications will be strongly
influenced by relative changes in the performance
of these two components, as well as by developments

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

in system software and compiler technology. Within
this subsection some of the factors that might influ-
ence the performance of DVSM applications in the
future are discussed.

Processorperformance. Processor performance con-
tinues to increase roughly by a factor of two every
18 months. If this rate of increasing performance is
not matched in other system components, it will be

TreadMarks allows parallel
programs to interact transparently,

using a shared-memory model.

difficult to maintain current levels of performance
for parallel applications, as measured by speedup or,
equivalently, eficiency. (Speedup is the ratio of ex-
ecution time on a single processor over that on mul-
tiple processors, and efficiency is the speedup divided
by number of processors.) The reason is that, as the
computation time decreases, the overheads due to
processor interactions will represent a larger frac-
tion of the overall execution time.

If we consider the system used in the study by Kele-
her6 and Amza et al.,5 the processors represent tech-
nology that is now five years old. If other parame-
ters were to exhibit the same rate of improvement,
commodity network bandwidth would have to in-
crease from 155 Mbps (megabits per second) to
about 1 Gbps (gigabit per second), and network la-
tency would have to drop from about 500 ps (mi-
croseconds) to 100 ps for a one-way message. Even
though there are no technical reasons preventing net-
work components from keeping pace with advances
in processor technology, development efforts for
commodity network components tend to focus on
increasing bandwidth rather than on reducing la-
tency, the latter being most important to DVSM sys-
tems.

Networkpegomzance. Two types of off-the-shelf LAN
technologies that are of interest in a NOW are Eth-
ernet and ATM. The 10-Mbps Ethernet, which has
been very common up to now, is quickly being dis-
placed by 100-Mbps Fast Ethernet, as the latter is

PARSONS, BRORSSON, AND SEVCIK 529

standard in many workstations sold today. This tech-
nology offers much greater bandwidth, resulting in
lower contention and shorter delivery time for large
messages, relative to its predecessor. The ATM net-
works used today, in contrast, typically operate at
155 Mbps, but these will soon be displaced by 622-
Mbps networks now emerging on the market. Be-
cause it uses a switch, an ATM networkwill incur less
contention than a Fast Ethernet network for inde-
pendent communications at the expense of added
latency through the switch. This difference disap-
pears, however, if one considers using switched Fast
Ethernet hubs, which are becoming increasingly pop-
ular.

Network adapters are becoming increasingly capa-
ble in terms of the services they can provide. An ex-
ample is the Cheetah ATM network adapter, devel-
oped by I B M . ~ This adapter has the ability to read
from and write to user-specified data buffers, thus
avoiding having to copy messages to and from the
kernel as has traditionally been the case. Experiments
with these adapters on our system have shown that
latencies for small messages of 140 ps can be
achieved (as compared to 250 ps for standard Trans-
mission Control Protocol/Internet Protocol, or

, TCPIIP, stacks). Others have reported even lower la-
I tencies using experimental interfaces or protocols

(e.g., References 9 and 10).

System sofhYare. TreadMarks is but one example of
a DVSM system, albeit the one that is most common.
As we gain more experience with such software, the
overheads associated with DVSM will decrease as
more efficient algorithms and data structures are de-
veloped. Also, since communication latency due to
protocol processing is becoming more significant, fu-
ture systems are likely to provide lightweight pro-
tocols for the types of applications examined in this
paper.

Compiler technology. One of the primary perfor-
mance limitations for DvsM-based applications is the
latency for consistency actions and lock acquisitions.
Research in compiler technology has devised tech-
niques to hide the latency of cache misses, but these
same techniques have been shown to be highly ap-
plicable to paging for out-of-core computations. ''
Using such techniques to prefetch diffs for pages that
will be accessed shortly'* or to acquire locks in ad-
vance of when they are needed l3 may greatly improve
the performance of applications. Hiding latencies will
likely become more important in the future as it is

530 PARSONS, BRORSSON, AND SEVCIK

generally easier to increase bandwidth than to re-
duce latency.

Performance analysis of TreadMarks on a
network of workstations

This section describes our experimental system and
the performance results for some applications that
run on it using TreadMarks.

Experimental platform. Our experimental platform
consists of eight IBM RISC System/6000* 43P (133
MHz) workstations, each having 64 MB (megabytes)
of main memory, and connected by two commodity
networks, a 100 Mbps Fast Ethernet and a 155 Mbps
ATM. The Fast Ethernet comprises 3Com 3C595
EtherLinkIII* * PCI (peripheral component intercon-
nect) adapters and a 16-port Cisco hub, whereas Fore
PCA200E ATM adapters and a Fore ASX 200/WG
ATM switch comprise the ATM network.

Choice of applications. We have chosen six appli-
cations to analyze for this study, including ones that
do numerical computation, image analysis, and phys-
ical systems modelling. These applications are:

sorr-This kernel performs a typical red-black suc-
cessive over-relaxation (SOR) on a two-dimensional
grid, which involves iteratively updating each element
of the grid based on the values of its neighboring el-
ements. The grid is partitioned across processors in
contiguous areas, so communication only occurs
when a processor must read an element across a
boundary; synchronisation is based on a barrier at
the end of each iteration.

1s-This kernel sorts 2N integers in the range from
zero to 2B - 1, using a bucket sort algorithm. Each
iteration in the algorithm consists of two steps. In
the first step, the data-sharing pattern is migratory,
whereas in the second, it is primarily read-only.

Barnes-This application simulates the evolution of
a system of bodies under the influence of gravita-
tional forces (e.g., a system of galaxies). The iter-
ative algorithm consists of phases with a producer-
consumer data-sharing pattern between processors
in different phases. This sharing is relatively fine-
grained, causing considerable false sharing and,
hence, high fault handling overhead.

Sphere-The shallow water equations for a spher-
ical surface are solved by this application. The al-
gorithm used in Sphere is typical of those used in

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Table 1 Summary of application characteristics

climate and weather modelling software.14 Almost
all shared-data structures are initialised at the be-
ginning and then accessed in a read-only fashion
throughout the remainder of the execution. The one
exception is a solution vector whose elements can
be updated by any processor while the equations are
being solved.

Water-This application simulates a system of wa-
ter molecules in a liquid state. The main shared-data
structure is an array that is accessed by processors
in a partitioned manner. The primary sharing pat-
tern is fine-grained and migratory, as intermolecu-
lar forces are calculated, but some false sharing oc-
curs across the boundaries of the array.

Raytrace-This application renders a two-dimen-
sional graphical image created from a three-dimen-
sional scene, using a raytrace algorithm. Almost all
data are shared read-only or exclusively updated by
one processor as each processor operates on its own
partition of the frame buffer used to store the re-
sulting image. However, for load-balancing reasons,
processors may steal work from one another, caus-
ing some degree of false sharing.

Table 1 lists the parameters used for each applica-
tion and summarizes their execution-time perfor-
mance on our experimental platform, based on the
average of five trials for each case. The data sets that
we have used are in many cases representative of pro-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

duction runs of the programs. However, many of the
applications use iterative algorithms, and, in order
to reduce the length of experiments, we have lim-
ited the number of iterations to only a few. We there-
fore deliberately analysed only the parallel compo-
nent of each application, since the serial initialisation
would otherwise have had too great an impact on
our results. For Barnes and Sphere, two different
problem sizes, determined by “particles” and “pitch,”
respectively, are included in our experiments. (In the
case of Barnes, the tolerance differs between the two
problem sizes, as recommended by Singh et al. l5 in
order to achieve the same relative error.)

Execution time overhead. We instrumented Tread-
Marks to measure the amount of time spent in dif-
ferent components, as follows:

Busy time-Busy time is the time spent by the ap-
plication on actual computation.

Fault handling-This time is consumed by handling
read or write faults of the application to maintain
memory consistency across processors. The most sig-
nificant component of fault handling is the sending
of requests to remote processors for (possibly mul-
tiple) diffs, and waiting for their replies.

Empty time-This time is consumed in handling first-
time misses for pages accessed by each processor.
Before consistency action can be taken, a full copy

PARSONS, BRORSSON, AND SEVCIK 531

Figure 1 The percentage of execution time spent in executing useful instructions and various overhead components
~~~~~~~~~~~ ~ 

of the page must  be obtained from another proces- 
sor (known as an empty miss). Although empty 
misses occur as a result of a consistency fault, they 
occur with  varying frequencies in different applica- 
tions, so they are modelled separately. 

GC time-This time is consumed by garbage collec- 
tion, which  is initiated at  the end of a  barrier if the 
amount of memory consumed by TreadMarks  data 
structures exceeds a predefined threshold. Garbage 
collection results in essentially the same operations 
as a consistency fault, requesting and receiving  diffs, 
except  it does so for all pages being actively shared. 
As such, it  is an expensive operation, because two 
processors may  exchange  diffs during the GC phase 
even if their sharing patterns  do not require such ex- 
changes. 

Lock acquisition and release  time-This time is con- 
sumed in acquiring and releasing locks,  which are 
typically  used to serialize access to shared data. Ac- 
quiring a lock  involves sending a request to  the lock 
manager, which forwards the request to the  current 
holder of the lock. Releasing a lock  typically does 
not require any  messaging,  unless another proces- 
sor is already waiting for the lock. 

Sigio time-This time is consumed by the handling 
of asynchronous IiO requests (i.e., SIGIO in UNIX**) 

532 PARSONS, BRORSSON,  AND SEVCIK 

from remote processors resulting from DVSM activ- 
ities (i.e., barriers, faults, or locks). This component 
differs from the previous ones in that it  is not ini- 
tiated by the local processor, but is rather an over- 
head imposed by remote processors. 

Barrier time-This time is consumed by barrier  op- 
erations, which are used to synchronise all proces- 
sors involved  in a computation at  the same point. 
Apart from the delay waiting for all processors to 
arrive at the  barrier,  the principal cost of a  barrier 
is  all the memory protection systems  calls that must 
be made to  the kernel to invalidate pages as a result 
of the combined write notices from all processors. 

The results for each application are shown  in  Fig- 
ure 1. As can be seen, DVSM overheads can be quite 
significant, accounting for up to 60 percent of the 
overall execution time in the case of Water. In gen- 
eral,  the high  cost observed for barriers is not  due 
to messaging, but rather  due  to imbalance between 
processors, which causes significant  wait times. In 
many cases, this  imbalance  arises  from different 
processors having different amounts of DVSM over- 
heads,  rather  than  from  imbalance  internal  to  the 
algorithm. IS, Sphere,  and  Water all have a  large 
amount of locking overhead,  whereas  Barnes suf- 
fers mostly from  garbage  collection  and  fault-han- 
dling overhead. 

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 



Performance model of applications 

In the previous section, we presented time spent in 
different components for each of our six applications. 
Next, we describe a model that we used to study the 
effects of technology changes on the magnitude of 
each of these components. Our basic approach to 
developing this model is to break down the cost of 
each significant operation in each component. In par- 
ticular, we separate  the time spent in local and re- 
mote computation and in  all major parts of the com- 
munication paths. We  also take  into account the 
contention that occurs at local and  remote proces- 
sors resulting from DVSM activities. 

To obtain our measurements, we used a lightweight 
timing  facility  in the Advanced Interactive Execu- 
tive* (AIX*) to measure elapsed time between var- 
ious points in the  TreadMarks software. Since we 
ran all our experiments while the system  was qui- 
escent, the effect of daemon activity and  interrupts 
unrelated to  the applications is  negligible (as is sup- 
ported by the repeatability of our experiments). All 
applications were small enough to fit into memory, 
so there was  very little paging activity. 

One assumption in our model is that network con- 
tention at a global level  is  negligible, because either 
a switched  network  is  being  used  (e.g., an ATM switch) 
or  the available network bandwidth is  very  high. In 
particular, we found that network contention was 
quite low even for our nonswitched Fast Ethernet 
network.  We do, however, take into account the con- 
tention  that arises between a processor and the net- 
work, a problem that can increase the cost of cer- 
tain DVSM operations. 

Given the  nature of our model, we do not  attempt 
to characterize memory  system performance, and in- 
stead assume that memory  access  costs are in most 
cases  unaffected by the changes in  technology that 
we examine in the next section. It is  possible,  how- 
ever, to adjust the performance of the memory  sys- 
tem at a global level, as we  have done for the case 
of increasing processor speeds in the second subsec- 
tion of the next section. Assessing the effects of mem- 
ory at a more detailed level  can  only  be  fully  achieved 
using  low-level simulation techniques. 

DVSM overheads. Ideally, the time spent in each of 
the execution time components (as described pre- 
viously)  would  be  evenly balanced across all proces- 
sors. As mentioned above, we have found that con- 
siderable imbalance can  exist  in several of these, 

IBM SYSTEMS JOURNAL, VOL 36, NO 4,  1997 

there  are  a significant number of faults, but  the 
source of these faults alternates between processor 
zero and all other processors from one phase of the 
computation to the next.  Averaging the faults across 
the entire computation would lead to large inaccu- 
racies in the model. 

To model the execution time of an application, we 
consider separately each phase of the computation, 
as defined by the barriers. For each phase, we  first 
determine  the  total amount of time spent in each 
component (busy time or DVSM overhead), whose 
sum represents  the nonidle time for  the processor; 
the time required for  the phase is  simply the max- 
imum of these sums. (As Figure 2 illustrates, some 
processors may be idle at the end of a phase, waiting 
for the slowest to arrive at the barrier. Note that each 
processor may be in a particular component many 
times during each phase, which  is represented by a 
single “segment” in the graph.) The total execution 
time for the application is  given by the sum of these 
maximums over all phases of the computation. 

To  determine  the time required by each component, 
we instrumented TreadMarks  to collect, for each 
type of operation and each phase of the computa- 
tion, (1) the number of operations occurring on each 
processor, (2) the average time spent in software, 
both on local  and remote processors,  and (3 )  the sizes 
of average messages  involved  in  any interactions. In 
addition, we observed that requests interrupting re- 
mote processors can  be  delayed for several reasons: 

I/O interrupts may be temporarily disabled if the 
remote processor is already busy  with some other 
TreadMarks  operation, causing the request to be 
delayed until interrupts  are re-enabled. 
The  remote processor may have several outstand- 
ing requests, behind which the  current request 
must wait. 
The  remote processor may be operating in kernel 
mode, either because it experienced a page fault 
(possibly requiring a lengthy  disk  access) or  be- 
cause it made a system  call. 

Since these delays can be quite significant, we also 
measure the average time remote operations have 
to wait  as a result of the first  two  types of delay; we 
were unable to measure the last because that would 
have required access to kernel source code. 

PARSONS, BRORSSON, AND SEVCIK 533 



We then input these data into a  spreadsheet  that 
computes, based on the measurements, the time 
spent by each processor in each component during 
each phase, using these  to estimate the overall com- 
putation time for the application. By breaking down 
the cost of each operation (as illustrated later), we 
can then predict the effects changes in technology 
will have on the performance of the application. 

Next,  we  provide more detail about the way the faults 
and barriers are  treated, as these represent the more 
complex of the components. 

Fault time. The major cost of handling a fault is com- 
municating  with remote processors to obtain any  nec- 
essary  diffs for a page. Modelling a fault is the most 
difficult aspect of our model, particularly when diffs 
must be obtained from several processors. 

To illustrate this  complexity, consider the case where 
a processor (Pl) must acquire diffs from two other 
processors (PO and P2) as a result of a fault. (A sim- 
ilar but extended example illustrating the need for 
multipart diff requests is presented in the  Appen- 
dix.) The details of such an operation  are illustrated 
in Figure 3. When the fault occurs, a diff request mes- 
sage is  first sent  to  the two remote processors, each 
of  which computes and returns a diff  in parallel.  Since 

requests are very small (12 bytes), there is no sig- 
nificant  wire time in the sending of requests, but it 
is quite possible for responses to be as large as 4 KB 
in  size, corresponding to wire times of about 330 ps 
on a Fast Ethernet. 

Essentially, a multipart diff request is a pipelined op- 
eration where (1) the sending of the requests, (2) 
the receipt of the replies, and (3) the time spent on 
the wire  must be serialized. In our model, we thus 
estimate the cost of each of these three components 
and choose the longest in estimating the overall cost 
of a multipart diff request. 

Bawier time. The  barrier time for slave processors 
(i.e., processors other  than  the master of the  bar- 
rier) consists of three phases. First, write notices are 
created. Second, a synchronous request is then sent 
to  the master, blocking the slave until the master re- 
leases the  barrier. Finally, memory pages are inval- 
idated according to the write notices that  are  sent 
by the master. For  the master processor, further pro- 
cessing occurs in receiving barrier request messages 
from slave processors, merging write notices, and 
sending release messages  back to  the slave proces- 
sors. In general, the computation time of the master 
processor is greater  than  that of any other proces- 
sor. 

534 PARSONS,  BRORSSON,  AND SWClK IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 



Figure 3 Detailed  breakdown of a two-part diff  request  (units  are  approximately 100 ps) 
_ _ ~ _  

I I 1  

-+4- 
I /  

TIME 
3 

3 

In  the best case, the master processor arrives at the 
barrier first, so that  the computation is not delayed 
by the receipt of barrier messages from the slaves. 
Thus, we model the time for a  barrier as the sum of 
four components: (1) the time for the last processor 
to send a message to  the master, (2) the time to 
merge write notices, (3) the time for the master to 
send a message to all the slaves, and (4) the average 
post-barrier computation time. 

Networking overheads. In order to make it  possible 
to change  network  parameters,  we  also  break  down the 
cost of sending  and  receiving  messages. For this pur- 
pose, we  used  simple User  Datagram ProtocoUnternet 
Protocol (UDPIIP) benchmarks, but since the actual 
separation between hardware and software costs is 
difficult to determine without detailed system infor- 
mation, we  rely on prior studies to choose appro- 
priate values for hardware latencies. 

We divide send-side communication as follows: (1) 
software overhead to transfer a message to  the ker- 
nel, to go down the protocol stack, and  to set up  the 
network adaptor  to transfer the message, and (2) la- 
tency for the network controller to  begin sending the 
message (assuming a direct memory access, or DMA, 
model). Costs for the receiver are measured simi- 
larly, but we have found in  practice that they are close 

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 

to those of the  sender,  and so we do not distinguish 
the two. 

More importantly, the time to make a send or  re- 
ceive  system  call varies considerably from one invo- 
cation to  the next, presumably because of caching 
or buffer allocation issues. For example, if  we mea- 
sure the cost of repeatedly sending a one-kilobyte 
message to  a  remote processor, in one case  flushing 
the cache between system  calls and in the  other  not, 
then the send ( ) system  call time is  527 ps in the 
first case and 91 p s  in the second for  the Fast Eth- 
ernet on our system.  As a result, we  use a micro- 
benchmark suite17 to first estimate the basic hard- 
ware and software cost breakdown of a messaging 
operation,  and  then use the actual send ( ) and 
receive ( ) measurements from each application to 
adjust for the cache and operating system  effects just 
mentioned. 

Wire time for UDPIIP messages over Fast Ethernet 
is computed as message  size  plus protocol overheads 
(46 bytes) divided by the bandwidth; for UDP/IP mes- 
sages over OC-3-based ATM, we use the established 
effective  bit rate of 135 Mbps." 

The parameters for our two networks are shown  in 
Table 2. Although the software protocol times are 

PARSONS, BRORSSON, AND SNCIK 535 



Table 2 Network cost parameters for each of the two networks 

Table 3 Analysis of empty time test application (all 
times in ks) 

generally linear in the size of the message, deviations 
of  up  to 40 percent can occur across message  size 
boundaries that  are powers of two. For example, the 
protocol times for 1024-byte  and  1025-byte  messages 
are 142.5 ps and 110.5 ps, respectively. It is impos- 
sible to deduce the sources of these deviations with- 
out detailed information from the vendors, and so, 
for simplicity, we chose to ignore these fluctuations, 
averaging out  the results in the ranges shown. 

Model  validation for simple tests. Even though we 
collect a large amount of data for each application 
run, these are in the form of averages (e.g., average 
message  size, average number of  diff requests per 
fault, average computation times). Combined with 
our simple network models, the use of such averages 
will introduce some error in our estimates of exe- 
cution time. In this subsection, we explore the ac- 
curacy of our model for faults and locks  using the 
test applications provided by TreadMarks. 

For each test  that follows, including the ones de- 
scribed in the next section, we ran each application 

536 PARSONS, BRORSSON, AND SEVCIK 

five times on a quiescent system and obtained both 
the means and variances for all measured param- 
eters. In every case, we found that variances were 
quite small, with  all measurements of a particular 
parameter differing by only a few percent. 

Empty time. In the first test, we examine the cost of 
empty page faults, as would occur for cold page 
misses. The test program uses two processors, the 
second of which faults on 1024 pages managed by 
the first. Requests for page faults are 12  bytes in size; 
responses are  4 KB in  size (corresponding to the page 
size). Signals  have been measured on our system to 
take 40 ps. The results are shown  in Table 3.  

In the last row of the table, we  show the estimated 
time for the  operation according to our model, and 
relate this  time to the  total amount of time measured 
in the application for empty faults. (We do not show 
the actual measured time since it  would  be redun- 
dant.) Clearly, the cost of empty page faults is dom- 
inated by software protocol handling, which repre- 
sents 60 percent and 63 percent of the  total time for 
Fast Ethernet and ATM, respectively. As can  be seen, 
the accuracy of the model is quite high at 96 percent 
for both tests. 

Fault time. In our second test, we examine the cost 
of making diff requests. The test program has three 
phases. In  the first phase, processor 0 obtains small 
20-byte  diffs from all other processors; in the sec- 
ond, all processors but the first  exchange  20-byte  diffs 
among themselves; and in the third phase, proces- 
sor 0 obtains large 4120-byte  diffs from all other  pro- 
cessors. In the following discussion, the source re- 
fers to  the processor requesting diffs and the 
destination(s) to  the processor(s) from which  diffs 
are being requested. The breakdown for each of 

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 



Table 4 Analysis of fault time test application (four  processors) 
~ ~~ 

these  phases  for  a  four-processor  experiment is 
shown in Table 4. 

As described earlier,  a  multipart diff request is a pipe- 
lined operation  where  either  the sending, receiving, 
or wire time limits the  performance.  This  operation 
is shown in the  table  as an  entry  multiplied by the 
factor  corresponding to number of processors  in- 
volved in the  multipart diff request.  (The times  for 
sending  and receiving are  broken down in the first 
two rows to allow the  appropriate maximum value 
to be  chosen.)  Once again, the software protocol  han- 
dling  time  represents  a significant fraction of the to- 
tal  time, but DVSM software  handling  time  and  re- 
mote delays caused by message-handling  contention 
can  also be  important. 

We  also  show in Table 4 the maximum signal-han- 
dling time, which includes send  or receive system call 
time, handler  compute time,  and delay in process- 
ing, at  each of the destination  processors,  taking into 
account  the times at which each  request was sent. 
When  the maximum time is large, it indicates that 
there is significant imbalance  among the  destination 
processors; in this  case, using this  value in the cal- 
culation  can  lead to  more  accurate results. Showing 
thisvalue only serves to point  out  that imbalance ex- 
ists; our  model in the next section does  not use  this 
value  because of the complexity of trying to  do so. 

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 

Table 5 shows similar  results  for an eight-processor 
experiment. 

Lock acquisition. We now examine the cost break- 
down for lock acquisition. In  the first test, two pro- 
cessors interact in such  a way that  the first makes 
repeated lock requests  to  the  second. In the  second 
test, three processors  interact in such  a way that  the 
first makes  repeated  requests  for locks managed by 
the  second,  but most  recently accessed by the  third. 
In all cases, the message sizes were 24 bytes for  the 
requests,  and four bytes for  the replies. The results 
are shown in Table 6. 

Discussion of errors. The previous section  compared 
the  model  prediction of execution  time  components 
to  measured  values  for  simple  test  applications  pro- 
vided by TreadMarks.  The accuracy of these  mod- 
els is affected by numerous  factors,  notably: 

Our model of the network is only approximate,  as 
it assumes that costs grow linearly with the  packet 
size, with no  unusual variations; also, in the case 
of Fast  Ethernet, we do  not  model  the effects of 
packet collisions, which sometimes arise with larger 
numbers of nodes. 
Measurements of the delay at  remote processes 
do  not include delays arising from  the  remote  pro- 
cess running in the  kernel; in particular, if two 

PARSONS, BRORSSON, AND SEVCIK 537 



Table 5 Analysis of fault time test application  (eight  processors) 

Table 6 Analysis of lock time test application 

packets arrive nearly simultaneously, the delay on 
the second imposed by the interrupt-level process- 
ing of the first will not be captured. 
Finally, all our measurements only represent av- 
erages; it  is particularly a problem with operations 
that involve multiple remote processors, in that it 
assumes that  there is no imbalance, which  is not 
usually the case (even if operations  at  the  remote 
processors are identical). 

Despite these sources of errors,  our model corre- 
lates well  with actual measurements. The only  sig- 

nificant exception is for the case of  diff requests in- 
volving  many parts, primarily resulting from our 
optimistic  model of interprocessor interactions. Since 
diff requests in practice have  few parts, however, we 
do not expect these errors  to be significant. 

Model validation for full applications. The test ap- 
plications demonstrate  the basic  accuracy of the 
model by performing exactly the same DVSM oper- 
ation a large number of times. Real applications do 
not possess this uniformity and may be more greatly 
affected by the averaging that we perform. In par- 

538 PARSONS, BRORSSON, AND SEVCIK IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 



A comparison of the  execution  time,  subdivided  into its components,  predicted by the  model  and  normalized Figure 4 

L 

to  the  actual  execution  time 
-~ """"" ~~~~ """ 

SVR 1s 
SMALL BIG 
BARNES  BARNES  SPHERE  SPHERE WATER RAMRACE 

SMALL BIG 

ticular, responses to diff requests may vary greatly, 
both in  size and in the time required to compute and 
apply the diff, from one request to  the next and from 
one processor to the next. In order to assess these 
effects, we  now examine the accuracy of the model 
for the full applications summarized in Table 1. 

To this end, Figure 4 presents the  same information 
as in Figure 1, with the addition of a breakdown cor- 
responding to the model prediction. As can be seen, 
we still exceed 90 percent accuracy in the prediction 
of the total execution time for all applications. Some 
overheads, such  as operating system overhead and 
network contention, are  not  part of the model, and 
therefore  the model typically underestimates some 
of the overhead components. (The biggest discrep- 
ancy  is  in barrier time in IS, but in  this  case,  we are 
dealing with a small absolute error of about 90 mil- 
liseconds.) Even so, the model accurately predicts 
the relative importance of the various execution time 
components. 

Performance trends anticipated for  future 
technologies 

In our model, we have carefully broken down the 
different costs associated with each significant DVSM 

operation. This breakdown now  allows us to vary  dif- 
ferent technology parameters and estimate their ef- 
fects on the execution  time of each application. Next, 
we explore the effects of improvements in DVSM soft- 
ware, networking, and compiler technology  on our 
current system. Then, we consider the effects of faster 
processors, given both current and future software, 
networking, and compiler technology.  Finally, we 
consider as a case study a specific next-generation 
system. 

Effects of DVSM improvements. There  are two main 
causes for poor performance in applications running 
under TreadMarks: lockacquisition and memoy con- 
sistency (which consists of empty, fault, and garbage 
collection times). The relative magnitude of these 
overheads, however, is  highly dependent  on  the rel- 
ative changes in different technology parameters. 
Figure 5 shows the overhead reduction when some 
of the more important parameters  are changed. 
These  parameters  are (1) the number of faults, (2) 
lock  acquisition  costs, (3) protocol costs,  and (4) net- 
work  bandwidth and interface latency,  each of which 
is described in detail in the following subsections. 

Fault  reduction. The fault-handling time is,  of course, 
most  effectively reduced if the application can be re- 

IBM SYSTEMS  JOURNAL,  VOL 36, NO 4, 1997 PARSONS, BRORSSON, AND  SEVCIK 539 



Figure 5 Overhead  reduction  for  changes  in  some  technology  parameters  for  current  generation  system 
~~ 

I 

structured  to minimize its need for communication. ever, the overhead is already relatively  small for this 
In the context of this study, however, we consider application, and  the resulting absolute performance 
prefetching as a latency-hiding technique to over- improvement is limited. 
lap communication with computation, an approach 
that has already been shown to  be effective in both Other applications benefit less  since the relative im- 
shared-memory multiprocessors'9~20 and in networks portance of the  fault-handling overhead time is 
of workstations. smaller compared to SOR. Applications that have 

large-sized diffs, such as Barnes (over 3-Kbyte  diffs 
Although prefetching may reduce  the latency asso- on average), cannot fully benefit from prefetching, 
ciated with faults, it does not reduce the overhead since the software costs at the source and destina- 
due to requesting, computing, and  applying  diffs, and tions are  quite high; moreover, when several diffs 
will  likely increase traffic on the interconnection net- must be prefetched, all sends contribute to overhead 
work as a result of mispredicted prefetches. In our in the source processor, rather  than just the first for 
model, the cost of a prefetch is the sum of software a regular fault. (The remaining sends occurwhen the 
costs that  are normally incurred at the source pro- processor would otherwise be idle waiting for the  re- 
cessor for  a fault, but without the penalty of waiting sponse.) 
for replies. (For  the purpose of this  analysis, we as- 
sume that no are misPredicted to show an The only  application that is  almost  unaffected by fault 
per bound on performance improvements. It is rei- reduction is Sphere.  The reason is that  there is  very 
atively straightfornard to augment the model to little read  and write sharing in Sphere; most data 
include mispredicted prefetches.) structures  are initialised at the beginning of the ex- 

ecution and  then subsequently only read. Thus far, 
Applications whose overhead is dominated by fault- we have  only been considering dynamic prefetching 
handling time benefit the most from fault time re- based on reference history, but if explicit prefetch 
duction. SOR is one such application in which the operations could be inserted based on compiler anal- 
overhead times can be reduced by 13 percent if half  ysis,  it  would be possible for faults due  to cold  misses 
of the faults can be prefetched (see Figure 5). How-  (i.e., empty time) to also be reduced. 

I 
1 

1 

540 PARSONS, BRORSSON, AND SEVCIK IBM SYSTEMS JOURNAL,  VOL 36, NO 4, 1997 1 



Lock acquisition  time  reduction. Prefetching can also 
be used to hide the latency to acquire locks  (by ini- 
tiating the lock request somewhat before it is need- 
ed). Although locks are used by release consistency 
protocols to maintain consistency, we  find that  there 
is little contention for locks  in the applications we 
studied, so the potential increase  in  lock  holding time 
would not inflate contention unacceptably. It has pre- 
viously been shown that lock prefetching requests 
can  be generated automatically by a compiler algo- 
rithm. l3  

We  include the effect  of  lock prefetching in the model 
in a manner similar to  the case of data prefetching; 
the major difference  in characteristics is that locks 
require a single send operation from the source and 
incur much smaller software overheads than faults. 
As  shown  in Figure 5 ,  a 50 percent reduction in lock 
acquisition time translates to reductions in overhead 
ranging from 8 percent  to 20 percent for IS, Sphere, 
Water,  and Raytrace (i.e.,  all applications having 
locks). 

Protocol reduction factor. The protocol reduction fac- 
tor reduces all overheads in the model that  are re- 
lated to protocol execution. We  find that applica- 
tions with a high degree of locking overhead or 
memory  consistency overhead (e.g., Barnes and Wa- 
ter), benefit greatly  (15 percent reduction in over- 
head for a 50 percent protocol cost) from lower-la- 
tency communication facilities (relative to UDPIIP). 

We believe that  there is potential to reduce the pro- 
tocol overhead significantly  in future systems. This 
reduction can be achieved by using lighter-weight 
protocols or by simply  using  lower  levels  in the pro- 
tocol stack (e.g., the AAL, or ATM adaptation layer, 
in the ATM interface). Furthermore, newer ATM in- 
terfaces may perform some of the protocol functions 
in hardware which  would also reduce latencies2' 

Network integace latency  and  other  parameters. Fi- 
nally,  removing the network interface latency has a 
moderate effect on performance across all applica- 
tions (except Water).  The reason is, of course, that 
with current processor technology, the majority of 
the costs lie  within software. 

Other  parameters  that we studied did not have an 
appreciable effect on  the execution time of applica- 
tions. In particular, changes in the network band- 
width do  not  appear  to  be  important, given our cur- 
rent processor speeds. 

IBM SYSTEMS  JOURNAL, VOL 36, NO 4, 1997 

Effects  of faster processors. Next,  we consider the 
impact of processor performance, both on the ef- 
ficiency  of applications and on the benefit of the types 
of technology changes described in the previous sec- 
tion. As mentioned earlier, the performance of pro- 
cessors is increasing by a factor of two  every 18 
months, so in five years, processors may be eight 
times faster  than  the ones used today. 

To model faster processors, we decrease the time 
spent in various components according to the in- 
crease in  processing speed; the only components that 
are not modified are  the network interface latency 
and  the wire delay (arising from bandwidth limita- 
tions). In general, however, the benefits of faster pro- 
cessors cannot be fully realized in  system software, 
because such software tends  to have poor cache lo- 
cality for both data  and instructions. 22323  For exam- 
ple, the extra system  call time that we have included 
in our model arises because protocol code and  data 
are often not found in cache. As another example, 
the minimum remote lock acquisition time reported 
by  Cox et al. on 40-MHz processors24 is  actually  lower 
than on our system.  As a result, we consider two cas- 
es: one where all software gets the full benefit of 
faster processors, and another where the system soft- 
ware gets only a 50 percent benefit. (In particular, 
we model a system software benefit ofx by increas- 
ing the processor speed by a factor of x every time 
the actual processor speed doubles, i.e., increases by 
100 percent.) Although this value  is  only a rough es- 
timate of what may occur in practice, it illustrates 
how such behaviour can affect performance. 

Figure 6 shows the model's prediction of the effi- 
ciency  of each of our applications as processor per- 
formance increases. We show the range of relative 
processor speeds, from 0.25  (roughly  1992) to 16.0 
(roughly 2000). As expected, the efficiency decreases 
with increasing processor speed because hardware 
delays  will become relatively more important. Some 
applications are affected  less than  others by this. 
Sphere, for instance, retains much of its  efficiency 
because most of the overhead is in lock acquisition, 
which  is  highly software intensive in both DVSM and 
communication protocol code. For many of the  ap- 
plications, performance is  relatively constant over a 
range of processor speeds if system software ben- 
efits  fully from faster processors. If we consider the 
case where only 50 percent of the benefit can be 
achieved (Part B of Figure 6), efficiency varies more 
dramatically;  in this case,  all applications exhibit rap- 
idly decreasing efficiency,  with Barnes and  Sphere 
being  most  severely affected. 

PARSONS, BRORSSON, AND SEVCIK 541 



~ 

Figure 6 The  efficiency  as  a  function of the  processor  performance (1 represents  an IBM 43P-133 MHz) 
~~~~~~~~~~ 

"""""- ~-~ """

Table 7 Parameters of a future-generation system

In Figure 7, we show the effects of the same over-
head reductions considered in the previous section
(and Figure 5) , but this time using processors eight
times more powerful. In this case, using prefetching
for data appears to have the greatest impact on per-
formance, ranging from a 15 percent to a 56 percent
reduction in overhead for SOR, IS, Barnes, and Wa-
ter. If system software cannot benefit fully from in-
creases in processor speeds, however, then the ben-
efit of prefetching will be reduced. Finally, factors
that were insignificant with the slower processor,
namely network interface latency and network band-
width, are now much more important.

A representative future system. In five years time,
processor performance will be about eight times that
of today's high-performance microprocessors. If
other technology parameters stay the same, we can
see from Figure 6 that the processor efficiency will
decrease. In order to anticipate the future situation,
we have applied the model with a set of technology
parameters that we believe will be realized within
five years (or possibly sooner). These parameters are
summarized in Table 7. Current VLSI (very large-
scale integration) technology is sufficiently advanced
to accommodate 10 Gbps networks and interfaces2'
The signal latency time is likely to decrease with
faster processors, and operating systems are likely
to provide mechanisms for more effectively handling
remote procedure calls.

Part A of Figure 8 compares the breakdown of ex-
ecution time of this future system with that of cur-
rent technology, assuming system software can fully
benefit from improvements in processor perfor-
mance. As can be seen, it is not only possible to main-
tain the same level of efficiency as today, but also to
actually improve it in all cases. The largest improve-
ments are in memory consistency and lock acquisi-
tion operations, both overheads that are substantially

542 PARSONS, BRORSSON, AND SEVCIK IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

~

Figure 7 Overhead reduction for technology parameter changes when the processor performance is eight times
current technology

t
i

56

SOR IS SMALL BARNES BIG BARNES SMALL SPHERE BIG SPHERE WATER RAYTRACE

(A) FULL SYSTEM BENEFtT
Ad
-7

40

w 35

30
% PROTOCOL TIME REDUCTION 1

N m O R K BANDWIDTH 622 MB
NETWORK BANDWIDTH 10 GBlT 1

i l 5

25
8

8

B 10

5 20

5

0
SOR IS SMALL BARNES BIG BARNES SMALL SPHERE BIG SPHERE WATER RAYTRACE

(E) 50% SYSTEM BENEFIT

L

diminished from the reduction in protocol software
costs.

Part B of Figure 8 shows the same comparison for
the case where system software can only partially
benefit from improvements in processor perfor-
mance. In this case, the efficiency of current systems
will not be sustained for most applications, even with
the aggressive latency-hiding techniques that might

be used. This reemphasises the fact that the single
most important system component to optimize, even
in future systems, is the communication protocol soft-
ware.

Related work

There are many studies of the performance of var-
ious DVSM systems, but only a few of them present

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 PARSONS, BRORSSON, AND SEVCIK 543

models that can be used to predict performance of Karlsson and S t e n ~ t r O m ~ ~ studied TreadMarks-
future systems. based applications running on a system consisting

544 PARSONS, BRORSSON, AND SEVCIK IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

of a number of small-scale shared-memory multipro-
cessors connected by a standard OC-3 ATM switch.
They used program-driven simulation to study the
performance effects of faster processor, network, and
interface technologies. Their study confirms our find-
ings that the interface latency is the performance bot-
tleneck, but in contrast to our study, and due to the
particulars of their simulation model, they cannot
separate communication software cost from the com-
munication hardware overhead in the network in-
terface. Also, because of the limited resources avail-
able when simulating a multiprocessor system, they
are unable to run realistically sized workloads.

Dwarkadas et a1.26 studied the performance of dif-
ferent release consistency options for four applica-
tions, using predictions for the cost of various DVSM
overheads. In their study, they examined the effects
of varying software overheads and of higher-band-
width networks on the performance of applications;
they show how performance for sharing-intensive ap-
plications is most significantly affected by the soft-
ware overheads. Later, Cox et al.24 used a similar
simulation approach (except using better estimates
of software overheads) to study the performance of
several DVSM applications in (what was then) a next-
generation system; in this study, they also considered
the effects of reductions in software overheads. Since
these studies also used simulation, they used small
data sets in their experiments.

Our work differs from these in that we (1) analyse
a wider range of applications and larger problem
sizes (since we could run on real hardware), (2)
present detailed cost breakdowns for several DVSM
operations, showing the high software costs actually
incurred in modern systems, (3) develop a model of
DVSM applications, based on these breakdowns, and
(4) use this model in conjunction with present-day
measurements to predict the effect that a variety of
technological changes may have on the performance
of these applications. Most significant is that we
present a way to analytically model the performance
of applications.

Apart from TreadMarks many other DVSM systems
have been proposed and evaluated in the literature.
We have chosen to mention a few of the more rel-
evant ones:

SoftFLASH” implements a clustered system sim-
ilar to the one studied by Karlsson et al. 25 A major
difference from TreadMarks is that SoftFLASH is
implemented at kernel rather than at user level.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

9 cVM’~ is a new DVSM system based on the Tread-
Marks experience. It is designed in C+ + with sup-
port for multiple consistency models. In his study,
Keleher argues that it is actually not necessary to
support multiple writers to a shared page, but
rather that lazy release consistency is most impor-
tant.
Finally, Bli~zard-S,’~ Shasta,” and Aurora3’ rep-
resent DVSM systems that are based on shared ob-
jects rather than pages, as in the case of the pre-
viously mentioned systems. Since they cannot rely
on hardware mechanisms to detect shared-mem-
ory accesses, they modify the executable code to
check the state of shared objects before accessing
them and to invoke the protocol software if
needed. None of these studies, however, examines
the performance effect of future processors and
communications technology.

The model technique developed and used in this pa-
per can also be applied to all the above-mentioned
systems in order to study performance effects of
changing technologies. Software probes need to be
inserted into the protocol software. This is probably
very easy in the systems that run entirely in user
mode, whereas in the case of SoftFLASH, access to
the kernel would be required. The actual model in
this paper is, of course, targeted to TreadMarks and
would therefore need to be changed to suit the dif-
ferent protocols accordingly.

Conclusions

A network of workstations is an attractive platform
for parallel computing because of its potential to de-
liver high performance at a relatively low cost. It has
previously been shown that it is even possible to
achieve reasonable performance for a shared-mem-
ory programming model if the consistency model is
relaxed.

Given that processor performance has been increas-
ing much more rapidly than network performance
since the earlier measurements of DVSM perfor-
mance were done,5 it is expected that application
efficiency would be lower for the same problem size
on current systems, as we have observed. In this pa-
per, we found that a distributed virtual shared-mem-
ory system on a network of workstations indeed can
still deliver cost-effective performance, even when
using present-day commodity network technology.
It is, however, limited to a class of applications that
has a sufficiently high computation-communication
ratio, such as those examined in this paper.

PARSONS, BRORSSON, AND SEVCIK 545

Our work shows how a model can be developed for
parallel applications running on a DVSM system,
which we use to study their performance as changes
occur in technology. As has been noted before, the
main bottleneck for DVSM systems with current tech-
nology is the software overhead in the comrnunica-
tion protocol. Latency-hiding techniques to reduce
fault-handling time and lock acquisition time can be
effective if implemented. However, with the expected
performance of future processors, the performance
of these applications is likely to be constrained more
by hardware-related delays such as network inter-
face and wire time.

Our model shows that the anticipated improvements
in DVSM and networking technology are likely to per-
mit the same relative application performance to be
maintained over the near to medium term. However,
if system software cannot be written so as to take
full advantage of faster processors, it will be almost
impossible to achieve the same speedups (equiva-
lent efficiency) as today. Also, it will not be possible
to maintain this performance if latency-hiding tech-
niques are not used for memory faults and lock ac-
quisitions.

In this study, we have focussed on how changes in
protocol and DVSM software and in processor and
network hardware will affect speedup for a set of ap-
plications of specific size executing on eight proces-
sors. Problems of greatest importance that will ex-
ecute on DVSM systems of the future will involve
much larger computations (e.g., sequential execu-
tion times of hours or days rather than minutes or
seconds) and will require many more processors. The
modelling approach described in this paper can be
immediately applied to any problem by running it
on an existing system to gather the base statistics.
With a deeper understanding of the various appli-
cation parameters that are used by the model, it
would also be possible to apply the approach to prob-
lems too large to be run today.

Acknowledgments

The network of workstations used for this study is
part of the Parallelism on Workstations (POW) proj-
ect, which is a cooperative project between the Uni-
versity of Toronto and the Centre for Advanced
Studies at the IBM Toronto Development Labora-
tory. Three major themes within the POW project are
(1) development of compilers that support automatic
parallelization for a network of workstation environ-
ments, (2) exploitation of prefetching to overcome

546 PARSONS, BRORSSON, AND SEVCIK

remote data access latencies in distributed-memory
systems, and (3) efficient multiprogrammed sched-
uling of workloads dominated by parallel jobs.

We would like to thank Giridhar Chukkapalli who
kindly provided the Sphere application. The research
in this paper was supported in part by the Natural
Sciences and Engineering Research Council of Can-
ada, the Information Technology Research Centre
of Ontario, Northern Telecom, and the Swedish Na-
tional Board for Industrial and Technical Develop-
ment (NUTEK) under project number P8.55.

Appendix

To illustrate the LRC protocol, consider three pro-
cesses sharing a single distributed virtual shared-
memory page that contains two variables, V1 and
V2, each protected by a lock, L1 and L2, respectively.
Figure 9 depicts a sequence of actions taken by the
processors. Initially, the page is marked as valid, but
write-protected in all three processors; all proces-
sors can read the variables. Next, processor 0 acquires
the lock L1, and roughly at the same time processor
2 acquires lock L2. When these processors modify
the variables corresponding to the lock they acquired
for the first time, a page fault will occur (since the
page was initially write-protected), and a local copy
of the page will be made in each processor; these
copies, or twins, can later be used to determine which
portions of the page have been modified. The page
is then unprotected, allowing reads and writes to pro-
ceed uninterrupted. Later, when the processors re-
lease their locks, the fact that the page has been rnod-
ified is recorded in a write notice.

After the locks have been released, processor 1 ac-
quires both locks, presumably to either read orwrite
variables V1 and V2. Acquiring a lock involves send-
ing a message to a preassigned manager of the lock,
which forwards the request to the processor that last
held the lock, which in turn responds with any write
notices that are associated with the lock. In our ex-
ample, a message is sent to both processors 0 and
2, both of which respond with a write notice for the
same page, causing processor l’s copy of the page
to be invalidated. When processor 1 subsequently
accesses the page, a request is made to both other
processors for diffs, which record what changed in
the page on a given processor. (A diff is computed
by comparing the current copy of the page against
its twin.) After the diffs have been computed, the
twins can be safely discarded.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

~~ ~

Figure 9 The lazy release consistency protocol in TreadMarks. (Processors are not notified of changes until the lock
acquisition, and pages do not get updated until the first reference after the lock acquisition.) ____

ACQUIRE REFERENCE TO V1 RELEME LOCK L1
LOCK L1 CREATE TWIN RECORD WRITE NOTICE

FIRST WRITE
COMPUTE DlFF FOR V1
DISCARD TWIN TIME

I MllN
FIRST REFERENCE
TO PAGE. OBTAIN

I f AND APPLY DIFFS
I .” .i t i

I

9

FIRST WRITE
ACQUIRE REFERENCE TO V2
LOCK L2 CREATE TWIN

p2 y, ’ A

I ~

DlFF V1

I___,

APPLY DlFFS
CONTINUE WITH
MEMORY
REFERENCE

RELEASE LOCK L2 COMPLITE DlFF FOR VZ
RECORD WRITE NOTICE DISCARD TWIN

TWIN TWIN DlFF VZ

Processor 1 uses the diffs it receives to update its own
copy of the page with the modifications made by pro-
cessors 0 and 2. Hence, once processor 1 has received
and applied both diffs, there will be three different
versions of the page: one each on processors 0 and
2 that reflect the changes done to the page locally
and one on processor 1 with an updated status con-
taining changes made by both processors 0 and 2.
In order for this multiple-writer scheme to work, it
is assumed that the programmer does not associate
overlapping memory regions with different locks,
since that would cause the diffs to partly relate to
the same addresses, and the final state of a shared
page would depend on the order in which the diffs
were applied.

TreadMarks also supports bam’er synchronisations
which, in addition to synchronising all processors,
also cause the processors to exchange write notices
for all shared-memory pages. Each barrier is asso-
ciated with a managing processor that coordinates
the actions of other processors. Basically, the man-

ager collects the write notices from all other proces-
sors as they reach the barrier, and then redistributes
them back to all processors involved in the compu-
tation. TreadMarks uses barriers to initiate garbage
collection (Gc) if the amount of memory consumed
by write notices, diffs, and twins exceeds a predefined
threshold on any processor. If garbage collection is
initiated, then at the end of the barrier, all proces-
sors compute and exchange diffs for all pages, mak-
ing all copies of each shared-memory page identi-
cal.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of PARALLELTOOLS,
LLC, Digital Equipment Corporation, Scorn, Inc., or XiOpen
Company, Ltd.

Cited references

1. J. P. Singh, A. Gupta, and M. Levoy, “Parallel Visualization
Algorithms: Performance and Architectural Implications,”
Computer 21, No. I , 45-55 (July 1994).

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 PARSONS, BRORSSON, AND SEVCIK 547

2. A. H. Karp, K. Miura, and H. Simon, “1992 Gordon Bell Prize
Winners,” Computer 26, No. 1, 77-82 (January 1993).

3. A. H. Karp, M. Heath, D. Heller, and H. Simon, “1994 Gor-
don Bell Prize Winners,” Computer 28, No. 1, 68-74 (Jan-
uary 1995).

4. A. H. Karp, M. Heath, and A. Geist, “1995 Gordon Bell Prize
Winners,” Computer 27, No. 1, 79-85 (January 1996).

5. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel, “TreadMarks:
Shared Memory Computing on Networks of Workstations,”
Computer 29, No. 2, 18-28 (February 1996).

6. P. Keleher, Lazy Release Consistency for Distributed Shared
Memoty, Ph.D. thesis, Department of Computer Science, Rice
University, Houston, TX (January 1995).

7. P. Keleher, A. Cox, and W. Zwaenepoel, “Lazy Release Con-
sistency for Software Distributed Shared Memory,”Proceed-
ings of the 19th International Symposium on ComputerArchi-
tecture (May 1992), pp. 13-21.

8. R. Mraz, D. Freimuth, E. Nowicki, and G. Silberman, “Us-
ing Commodity Networks for Distributed Computing Re-
search,” Proceedings of Workshop on Computer Networking:
Putting Theory to Practice, 1995Asian Computing Science Con-
ference, Pathumthani, Thailand (December 1995), pp. 6-13.

9. E. Felten, R. Alpert, A. Bilas, M. Blumrich, D. Clark, S. Dami-
anakis, C. Dubnicki, L. Iftode, and K. Li, “Early Experience
with Message-Passing on the SHRlMP Multicomputer,” Pro-
ceedings of the 23rdAt1nuallnternational Symposium on Com-
puterArchitecture, Philadelphia, PA (May 22-24, 1996), pp.

10. T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net:
AUser-Level Network Interface for Parallel and Distributed
Computing,” Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles (December 1995), pp. 40-53.

11. T. Mowry, A. Demke, and 0. Krieger, “Automatic Compiler-
Inserted IiO Prefetching for Out-of-Core Applications,” Pro-
ceedings of the Second Symposium on Operating Systems De-
sign and Implementation (1996), pp. 3-18.

12. M. Karlsson and P. Stenstrom, “Effectiveness of Dynamic
Prefetching in Multiple-Writer Distributed Virtual Shared
Memory Systems,” to be published in Journal of Parallel and
Distributed Computing (September 1997).

13. M. Karlsson and P. Stenstrom, “Lock Prefetching in Distrib-
uted Virtual Shared Memory Systems-Initial Results,” IEEE
CS Technical Committee on Computer Architecture Newslet-
ter, 41-48 (March 1997).

14. G. Chukkapalli, personal communication, Department of Me-
chanical Engineering, University of Toronto, Toronto (e-mail:
chuk@drill.me.utoronto.ca).

15. J. P. Singh, J. L. Hennessy, and A. Gupta, “Implications of
Hierarchical N-body Methods for Multiprocessor Architec-
ture,”ACM Transactions on Computer Systems 13, No. 2.141-
202 (May 1995).

16. C. A. Thekkath and H. M. Levy, “Limits to Low-Latency Com-
munication on High-speed Networks,”ACM Transactions on
Computer Systems 11, No. 2, 179-203 (May 1993).

17. L. McVoy and C. Staelin, “Imbench: Portable Tools for Per-
formance Analysis,” Proceedings of the USENIX1996Annual
Technical Conference (1996), pp. 279-294.

18. L. G. Cuthbert and J.-C. Sapanel, Chapter 2 in ATM-The
Broadband Telecommunications Solution, The Institution of
Electrical Engineers, London, UK (1993).

19. F. Dahlgren and P. Stenstrom, “Evaluation of Hardware-
Based Stride and Sequential Prefetching in Shared-Memory
Multiprocessors,” IEEE Transactions on Parallel and Distrib-
uted Systems 7, No. 4, 385-398 (April 1996).

296-307.

20. T. Mowry and A. Gupta, “Tolerating Latency Through Soft-
ware-Controlled Prefetching in Shared-Memory Multipro-
cessors,” Journal of Parallel and Distributed Computing 12, No.
2, 87-106 (June 1991).

21. P. Sundstriim, M. Karlsson, and P. Andersson, “An Inter-
face Architecture for a Low-Latency Network of Worksta-
tions Using 10 Gbitis Switched LAN Technology,” Proceed-
ings of the MSTED International Conference on Parallel and
Distributed Systems, Euro-PDS’97, Barcelona (June 1997),

22. J. Chen and B. Bershad, “The Impact of Operating System
Structure on Memory System Performance,” Proceedinxs of

pp. 166-1 76.

the Fourteenth Symposium on Operating System Princ$es
(1993), pp. 120-133.

23. A . Maynard, C. Donnelly, and B. Olszewski, “Contrasting
Characteristics and Cache Performance of Technical and
Multi-User Commercial Workloads,” Proceedings ofthe Sixth
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (October 1994),

24. A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and
W. Zwaenepoel, “Software Versus Hardware Shared-Mem-
ory Implementation: A Case Study,” Proceedings ofthe 21st
International Symposium on Computer Architecture (1994),

25. M. Karlsson and P. Stenstrom, “Performance Evaluation of
a Cluster-Based Multiprocessor Built from ATM Switches
and Bus-Based Multiprocessor Servers,” Proceedings of the
2nd Conference on High Perjonnance Computer Architecture
(February 1996), pp. 4-13.

26. S. Dwarkadas, P. Keleher, A. Cox, and W. Zwaenepoel, “Eval-
uation of Release Consistent Software Distributed Shared
Memory on Emerging Network Technology,” Proceedings of
the 20th Annual International Symposium on Computer Ar-
chitecture (1993), pp. 144-155.

27. A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy, “Soft-
FLASH: Analysing the Performance of Clustered Distributed
Virtual Shared Memory,” Proceedings of the 7th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (October 1996), pp. 210-221.

28. P. Keleher, “The Relative Importance of Concurrent Writ-
ers and Weak Consistency Models,” Proceedings of the 16th
International Conference on Distributed Computing Systems
(May 28, 1996), pp. 91-98.

29. I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R.
Larus, and D. A. Wood, “Fine-Grain Access Control for Dis-
tributed Shared Memory,” Proceedings of the Sixth lnterna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS Vl) (October
1994), pp. 297-307.

30. D. J. Scales, K. Gharachorloo, and C. A. Thekkath, “Shasta:
A Low Overhead, Software-Only Approach for Supporting
Fine-Grain Shared Memory,” Proceedings ofthe Seventh In-
ternational Conference on Architectural Supportfor Program-
ming Languages and Operating Systems (October, 1996).

31. P. Lu, “Aurora: Scoped Behaviour for Per-Context Optimized
Distributed Data Sharing,” Proceedings ofthe 11th lnterna-
tional Parallel Processing Symposium (April 1997), pp. 467-
473.

pp. 145-156.

pp. 106-117.

General references

J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Dis-
tributed Shared Memory Based on Type-Specific Memory Co-

548 PARSONS, BRORSSON, AND SEVCIK IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

herence,” Proceedings of the 2nd ACM Symposium on Principles
and Practice of Parallel Programming (1990), pp. 168-176.
K. Gharachorloo, A. Gupta, and J. L. Hennessy, “Performance
Evaluation of Memory Consistency Models for Shared-Memory
Multiprocessors,” Proceedings of the 4th International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (April 1991), pp. 245-257.
L. Iftode, J. P. Singh, and K. Li, “Understanding Application Per-
formance on Shared Virtual Memory Systems,” Proceedings of
the 23rd Annual International Symposium on ComputerArchitec-
lure, Philadelphia, PA (May 22-24, 1996), pp. 122-133.
K. Li, “IVY: A Shared Virtual Memory System for Parallel Com-
puting,” Proceedings of 1988 International Conference on Parallel
Processing (1988), pp. 94-101.
J. P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford
Parallel Applications for Shared-Memory,” Computer Architec-
ture News 20, No. 1, 5-44 (March 1992).

Accepted for publication May 20, 1997.

Eric W. Parsons Department of Computer Science, University of
Toronto, 10 King’s College Road, Toronto, Ontario, Canada M5S
3G4 (electronicmail: eparsons@cs.toronto.edu). Dr. Parsons cur-
rently works at the Computing Technology Laboratory at North-
ern Telecom. He recentlycompleted his Ph.D. in the Department
of Computer Science at the University of Toronto in the area of
multiprocessor scheduling. His primary research interests are in
performance analysis, particularly in relation to multiprocessor
systems and mobile computing. He will be joining the Depart-
ment of Electrical and Computer Engineering at the University
of Toronto as an assistant professor in 1998.

Mats Brorsson Department of Information Technology, Lund Uni-
versiy, P.O. Box 118, SE-221 00 Lund, Sweden (electronic mail:
Mats.Brorsson@it.lth.se). Dr. Brorsson is an associate professor
in the Department of Information Technology at Lund Univer-
sity, Sweden. His main research interests are in parallel archi-
tectures and, in particular, performance analysis of shared-mem-
ory parallel applications. He received the M.Sc. and Ph.D. degrees
in 1985 and 1994, respectively, both from Lund University.

Kenneth C. Sevcik Department of Computer Science, University
of Toronto, 10King’s College Road, Toronto, Ontario, Canada M5S
3G4 (electronic mail: kcs@cs.toronto.edu). Dr. Sevcik is a profes-
sor of computer science with a cross-appointment in electrical
and computer engineering at the University of Toronto. He was
the past Director of the Computer Systems Research Institute
and past Chairman of the Department of Computer Science. He
received a B.S. in mathematics from Stanford University in 1966
and a Ph.D. in information science from the University of Chi-
cago in 1971. His primary area of research interest is in devel-
oping techniques and tools for performance evaluation, and ap-
plying them in such contexts as distributed systems, database
systems, local area networks, and parallel computer architectures.

Reprint Order No. G321-5657.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 PARSONS, BRORSSON, AND SEVCIK 549

