564 FINNIGAN ET AL.

The software bookshelf

Legacy software systems are typically complex,
geriatric, and difficult to change, having evolved
over decades and having passed through many
developers. Nevertheless, these systems are
mature, heavily used, and constitute massive
corporate assets. Migrating such systems to
modern platforms is a significant challenge due
to the loss of information over time. As a result,
we embarked on a research project to design
and implement an environment to support
software migration. In particular, we focused on
migrating legacy PL/I source code to C++, with
an initial phase of looking at redocumentation
strategies. Recent technologies such as reverse
engineering tools and World Wide Web standards
now make it possible to build tools that greatly
simplify the process of redocumenting a legacy
software system. In this paper we introduce the
concept of a software bookshelf as a means to
capture, organize, and manage information about
a legacy software system. We distinguish three
roles directly involved in the construction,
population, and use of such a bookshelf: the
builder, the librarian, and the patron. From these
perspectives, we describe requirements for the
bookshelf, as well as a generic architecture and
a prototype implementation. We also discuss
various parsing and analysis tools that were
developed and integrated to assist in the
recovery of useful information about a legacy
system. In addition, we illustrate how a software
bookshelf is populated with the information of a
given software project and how the bookshelf
can be used in a program-understanding
scenario. Reported results are based on a pilot
project that developed a prototype bookshelf for
a software system consisting of approximately
300K lines of code written in a PL/I dialect.

0018-8670/97/$5.00 © 1997 IBM

by P. J. Finnigan
R. C. Holt
l. Kalas
S. Kerr
K. Kontogiannis
H. A. Mdller
J. Mylopoulos
S. G. Perelgut
M. Stanley
K. Wong

Software systems age for many reasons. Some of
these relate to the changing operating environ-
ment of a system, which renders the system ever less
efficient and less reliable to operate. Other reasons
concern evolving requirements, which make the sys-
tem look ever less effective in the eyes of its users.
Beyond these, software ages simply because no one
understands it anymore. Information about a soft-
ware system is routinely lost or forgotten, including
its initial requirements, design rationale, and imple-
mentation history. The loss of such information
causes the maintenance and continued operation of
a software system to be increasingly problematic and
€Xpensive.

This loss of information over time is characteristic
of legacy software systems, which are typically com-
plex, geriatric, and difficult to change, having evolved
over decades and having passed through many de-
velopers. Nevertheless, these systems are mature,
heavily used, and constitute massive corporate as-
sets. Since these systems are intertwined in the still-
evolving operations of the organization, they are very

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

difficult to replace. Organizations often find that they
have to re-engineer or refurbish the legacy code. The
software industry faces a significant problem in mi-
grating this old software to modern platforms, such
as graphical user interfaces, object-oriented technol-
ogies, or network-centric computing environments.
All the while, they need to handle the changing bus-
iness processes of the organization as well as urgent
concerns such as the “Year 2000 problem.”

In the typical legacy software system, the accumu-
lated documentation may be incomplete, inconsis-
tent, outdated, or even too abundant. Before a re-
engineering process can continue, the existing
software needs to be documented again, or redocu-
mented, with the most current details about its struc-
ture, functionality, and behavior. Also, the existing
documentation needs to be found, consolidated, and
reconciled. Some of these old documents may only
be available in obsolete formats or hard-copy form.
Other information about the software, such as de-
sign rationale, may only be found in the heads of geo-
graphically separated engineers. All of this useful in-
formation about the system needs to be recaptured
and stored for use by the re-engineering staff.

As a result of these needs, we embarked on a re-
search project to design and implement an environ-
ment to support software migration. In particular,
we focused on migrating legacy PL/I source code to
C+ +, with an initial phase of looking at redocumen-
tation strategies and technologies. The project was
conducted at the 1BM Toronto Centre for Advanced
Studies (CAS) with the support of the Centre for Soft-
ware Engineering Research (CSER), an industry-
driven program of collaborative research, develop-
ment, and education, that involves leading Canadian
technology companies, universities, and government
agencies.

Technologies improved over the past few years now
make it possible to build tools that greatly simplify
the process of redocumenting a legacy software sys-
tem. These technologies include reverse engineer-
ing, program understanding, and information man-
agement. With the arrival of nonproprietary World
Wide Web standards and tools, it is possible to solve
many problems effectively in gathering, presenting,
and disseminating information. These approaches
can add value by supporting information linking and
structuring, providing search capabilities, unifying
text and graphical presentations, and allowing easy
remote access. We explore these ideas by implement-
ing a prototype environment, called the software

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

bookshelf, which captures, organizes, manages, and
delivers comprehensive information about a software
system, and provides an integrated suite of code anal-
ysis and visualization capabilities intended for soft-
ware re-engineering and migration.

We distinguish three roles (and corresponding per-
spectives) involved in directly constructing, populat-
ing, and using such a bookshelf: the builder, the li-
brarian, and the patron. A role may be performed
by several persons and a person may act in more than
one role. The builder constructs the bookshelf sub-
strate or architecture, focusing mostly on generic,
automatic mechanisms for gathering, structuring,
and storing information to satisfy the needs of the
librarian. The builder designs a general program-un-
derstanding schema for the underlying software re-
pository, imposing some structure on its contents.
The builder also integrates automated and semi-au-
tomated tools, such as parsers, analyzers, convert-
ers, and visualizers to allow the librarian to popu-
late the repository from a variety of information
sources.

The librarian populates the bookshelf repository with
meaningful information specific to the software sys-
tem of interest. Sources of information may include
source code files and their directory structure, aswell
as external documentation available in electronic or
paper form, such as architectural information, test
data, defect logs, development history, and mainte-
nance records. The librarian must determine what
information is useful and what is not, based on the
needs of the re-engineering effort. This process may
be automatic and use the capabilities provided by
the builder, or it may be partly manual to review and
reconcile the existing software documentation for on-
line access. The librarian may also generate new con-
tent, such as architectural views derived from dis-
cussions with the original software developers. By
incorporating such application-specific domain
knowledge, the librarian adds value to the informa-
tion generated by the automatic tools. The librarian
may further tailor the repository schema to support
specific aspects of the software, such as a proprietary
programming language.

The patron is an end user of the bookshelf content
and could be a developer, manager, or anyone need-
ing more detail to re-engineer the legacy code. Once
the bookshelf repository is populated, the patron is
able to browse the existing content, add annotations
to highlight key issues, and create bookmarks to high-
light useful details. As well, the patron can generate

FINNIGAN ET AL. 565

new information specific to the task at hand using
information stored in the repository and running the
integrated code analysis and visualization tools in the
bookshelf environment. From the patron’s point of
view, the populated bookshelf is more than either
a collection of on-line documents or a computer-
aided software engineering (CASE) toolset. The soft-
ware bookshelf is a unified combination of both that
has been customized and targeted to assist in the re-
engineering effort. In addition, these capabilities are
provided without replacing the favored development
tools already in use by the patron.

The three roles of builder, librarian, and patron are
increasingly project- and task-specific. The builder
focuses on generic mechanisms that are useful across
multiple application domains or re-engineering
projects. The librarian focuses on generating infor-
mation that is useful to a particular re-engineering
effort, but across multiple patrons, thereby also low-
ering the effort in adopting the bookshelf in prac-
tice. The patron focuses on obtaining fast access to
information relevant to the task at hand. The range
of automatic and semi-automatic approaches em-
bodied by these roles is necessary for the diverse
needs of a re-engineering effort. Fully automatic
techniques may not provide the project and task-spe-
cific value needed by the patrons.

In this paper we describe our research and experi-
ence with the bookshelf from the builder, librarian,
and patron perspectives. As builders, we have de-
signed a bookshelf architecture using Web technol-
ogies, and implemented an initial prototype. As li-
brarians, we have populated a bookshelf repository
with the artifacts of a legacy software system con-
sisting of approximately 300 000 lines of code writ-
ten in a PL/I dialect. As patrons, we have used this
populated bookshelf environment to analyze and un-
derstand the functionality of a particular module in
the code for migration purposes.

In the next section, we expand on the roles and their
responsibilities and requirements. The subsequent
section outlines the overall architecture of the book-
shelf and details the various technologies used to im-
plement our initial prototype. We also describe how
we populated the bookshelf repository by gathering
information automatically from source code and ex-
isting documentation as well as manually from in-
terviews with the legacy system developers. A typ-
ical program-understanding scenario illustrates the
use of the software bookshelf. Our research effort
is also related to other work, particularly in the ar-

B66 FINNIGAN ET AL

eas of information systems, program understanding,
and software development environments. Finally, we
summarize the contributions of this experience, re-
port our conclusions, and suggest directions for fu-
ture work.

Software bookshelf metaphor

Imagine an ideal scenario: where the developers of
a software system have maintained a complete, con-
sistent, and up-to-date written record of its evolu-
tion from its initial conception to its current form;
where the developers have been meticulous at main-
taining cross references among the various docu-
ments and application-domain concepts; and where
the developers can access and update this informa-
tion effectively and instantaneously. We envision our
software bookshelf as an environment that can bring
software engineering practices closer to this scenario,
by generally offering capabilities to ease the recap-
ture of information about a legacy system, to sup-
port continuous evolution of the information
throughout the life of the system, and to allow ac-
cess to this information through a widely available
interface.

Our software bookshelf directly involves builder, li-
brarian, and patron roles, with correspondingly dif-
ferent, but increasingly project- and task-specific, re-
sponsibilities and requirements. The roles are related
in that the librarian must satisty the needs of the pa-
tron, and the builder must satisfy the needs of the
librarian (and indirectly the patron). Consequently,
the builder and librarian must have more than their
own requirements and perspectives in mind.

The builder. The bookshelf builder is responsible for
the design and implementation of an architecture
suitable to satisfy the information gathering, struc-
turing, and storing needs of the librarian. To be rel-
atively independent of specific re-engineering or mi-
gration projects, the builder focuses on a general
conceptual model of program understanding. In par-
ticular, the schema for the underlying software re-
pository of the bookshelf needs to represent infor-
mation for the software system at several levels of
abstraction.'

The levels are:
* Physical. The system is viewed as a collection of
source code files, directory layout, build scripts, etc.

* Program. The system is viewed as a collection of
language-independent program units, written us-

IBM SYSTEMS JOURNAL, VOL 38, NO 4, 1997

ing a particular programming paradigm. For the
procedural paradigm, these units would include
variables, procedures, and statements, and involve
data and control flow dependencies.

 Design. The system is viewed as a collection of high-
level, implementation-independent design compo-
nents {e.g., patterns and subsystems), abstract data
types (e.g., sets and graphs), and algorithms (e.g.,
sorting and math functions).

s Domain. The domain is the explanation of “what
the system is about,” including the underlying pur-
pose, objectives, and requirements.

At each level of abstraction, the software system is
described in terms of a different set of concepts.
These descriptions are also interrelated. For in-
stance, a design-level concept, such as a design pat-
tern,* may be implemented using one or more class
constructs at the program level, which correspond
to several text fragments in various files at the phys-
ical level.

The builder also integrates various tools to allow the
librarian to populate the bookshelf repository. Data
extraction tools include parsers that operate on
source code or on intermediate code generated by
a compiler. File converters transform old documents
into formats more suited to on-line navigation. Re-
verse engineering and code analysis tools are used
to discover meaningful software structures at var-
ious levels of granularity. Graph visualizers provide
diagrams of software structures and dependencies
for easier understanding. To aid the librarian, the
builder elaborates the repository schema to repre-
sent the diverse products created by these types of
tools.

The builder has a few primary requirements. Since
the information needs of the librarian and patron
cannot all be foreseen, the builder requires power-
ful conceptual modeling and flexible information
storage and access capabilities that are extensible
enough to accommodate new and diverse types of
content. Similarly, the builder requires generic tool
integration mechanisms to allow access to other re-
search and commercial tools. Finally, the builder re-
quires that the implementation of the bookshelf ar-
chitecture be based on standard, nonproprietary, and
widely available technologies, to ensure that the
bookshelf environment can be easily ported to new
platforms without high costs or effort. In this paper
we describe our experiences in using object-oriented
database and Web technologies to satisfy these and
other requirements.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

The librarian. The librarian is responsible for pop-
ulating the bookshelf repository with information
specific to the software system. The librarian weighs
the usefulness of each piece of information based
on the needs of the re-engineering or migration proj-
ect. The gathered information adds project-specific
value and lowers the effort of the patron in adopting
the bookshelf environment. The bookshelf content
comes from several original, derived, and computed
sources:

s Internal—the source code, including useful prior
versions; the librarian can capture this informa-
tion from the version control and configuration
management system and the working development
directories

& External—information separated from the source
code, including requirements specifications, algo-
rithm descriptions, or architectural diagrams
(which often becomes out-of-date or lost when the
code changes); the librarian can recover this in-
formation by talking to the developers who know
salient aspects of the history of the software

s Implicit personal—information used by the orig-
inal developers, including insights, preferences,
and heuristics (which is often not verbalized or doc-
umented); the librarian can recover this informa-
tion by talking to the developers and recording
their comments

s Explicit personal—accumulated information that
the developers have maintained personally, includ-
ing memos, working notes, and unpublished re-
ports (which often becomes lost when a developer
leaves); the librarian can often recover this infor-
mation by accessing a developer’s on-line data-
bases, along with a roadmap on what can be found

s References— cross-referenced information, such as
all the places where a procedure is called or where
a variable is mentioned (which is valuable for re-
covering software structure, but time-consuming
and error-prone to maintain manually); the librar-
ian can usually recover this information by using
automated tools

s Tool-generated— diverse information produced by
tools, including abstract syntax trees, call graphs,
complexity metrics, test coverage results, and per-
formance measurements (which is often not well
integrated from a presentation standpoint); the li-
brarian need not store this information in the book-
shelf repository if it can be computed on demand

The librarian organizes the gathered information
into a useful and easily navigable structure to the
patron and forms links between associated pieces of

FINNIGAN ET AL. 567

Figure 1 A populated software bookshelf environment

" COMPUTER

information. The librarian must also reconcile con-
flicting information, perhaps in old documentation,
with the software system as seen by its developers.
Finding both implicit and explicit personal informa-
tion is critical for complementing the tool-generated
content. All these difficult processes involve signif-
icant application-domain knowledge, and thus the
librarian must consuit with the experienced devel-
opers of the software to ensure accuracy. For the pa-
tron, the bookshelf contents will only be used if they
are perceived to be accurate enough to be useful.
Moreover, the bookshelf environment will only have
value to the re-engineering effort if it is used. Con-
sequently, the librarian must carefully maintain and
control the bookshelf contents.

The librarian has a few primary requirements. The
librarian requires tools to populate and update the
bookshelf repository automatically with information
for a specific software system (insofar as that is pos-
sible). These tools would reduce the time and effort
of populating the repository, releasing valuable time
for tasks that the librarian must do manually (such
as consulting developers) or semi-automatically
(such as producing architectural diagrams). The li-
brarian requires the bookshelf environment to han-
dle and allow uniform access to diverse types of doc-
uments, including those not traditionally recorded
(e.g., electronic mail, brainstorming sessions, and in-

568 FINNIGAN ET AL

" BOOKSHELF

terviews of customers). Finally, the librarian requires
structuring and linking facilities to produce book-
shelf content that is organized and casily explored.
The links need to be maintained outside of the orig-
inal documents (e.g., the source code) to not intrude
on the owners of those documents (e.g., the devel-
opers).

The patron. The patron is an end user who directly
uses the populated bookshelf environment to obtain
more detail for a specific re-engineering or migra-
tion task. This role may include the developers who
have been maintaining the software system and have
the task of re-engineering it. Some of these patrons
may already have significant experience with the sys-
tem. Other patrons may be new to the project and
will access the bookshelf content to aid in their un-
derstanding of the software system before accept-
ing any re-engineering responsibilities. In any case,
the patron can view the bookshelf environment as
providing several entities that can be explored or ac-
cessed (see also Figure 1):

* Books— cohesive chunks of content, including orig-
inal, derived, and computed information relevant
to the software system and its application domain
(e.g., source code, visual descriptions, typeset doc-
uments, business policies)

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

* Notes—annotations that the patron can attach to
books or other notes (e.g., reminders, audio clips)

* Links—relationships within and among books and
notes, which provide structure for navigation (e.g.,
guided tours) or which express semantic relation-
ships (e.g., between design diagrams and source
code)

¢ Tools—software tools the patron can use to search
or compute task-specific information on demand

¢ Indices—maps for the bookshelf content, which are
organized according to some meaningful criteria
(e.g., based on the software architecture)

* Catalogs— hierarchically structured lists of all the
available books, notes, tools, and indices

* Bookmarks—entry points produced by the indi-
vidual patron to particularly useful and frequently
visited bookshelf content

For the patron, the populated bookshelf environ-
ment provides value by unifying information and
tools into an easily accessible form that has been spe-
cifically targeted to meet the needs of the re-engi-
neering or migration project. The work of the librar-
ian frees the patron to spend valuable time on more
important task-specific concerns, such as rewriting
a software module in a different language. Hence,
the effort for the patron to adopt the bookshelf envi-
ronment is lowered. Newcomers to the project can
use the bookshelf content as a consolidated and log-
ically organized reference of accurate, project-spe-
cific software documentation.

The patron has a few major requirements. Most im-
portantly, the bookshelf content must pertain spe-
cifically to the re-engineering project and be accu-
rate, well organized, and easily accessible (from
possibly a different platform at a remote site). The
patron also requires the bookshelf environment to
be easy to use and yet flexible enough to assist in
diverse re-engineering or migration tasks. Finally,
the patron requires that the bookshelf environment
not interfere with day-to-day activities, other than
to improve the ability to retrieve useful information
more easily. In particular, the patron should still be
able to use tools already favored and in use today.

Building the bookshelf

With builder, librarian, and patron requirements in
mind, the builder designs and implements the archi-
tecture of the bookshelf environment to satisfy those
requirements. In this section we describe our expe-
rience, from a bookshelf builder perspective, with a
bookshelf architecture that we implemented as a

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

proof-of-concept. The architecture follows the par-
adigm proposed in Reference 5, where a system is
composed of a set of building blocks and compo-
nents.®

Our client-server architecture consists of three ma-
jor parts: a user interface, an information repository,
and a collection of tools (see Figure 2). The client-
side user interface is a Web browser, which is used
to access bookshelf content. The server-side infor-
mation repository stores the bookshelf content, or
more accurately, stores pointers to diverse informa-
tion sources. The repository is based on the Telos
conceptual modeling language,’ is implemented us-
ing DB2* (DATABASE 2*), and is accessed through an
off-the-shelf Web server. Client-side tools include
parsers to extract information from a variety of
sources, scripts to collect, transform, and synthesize
information, as well as reverse engineering and vi-
sualization tools to recover and summarize informa-
tion about software structure. These major parts are
described in more detail later in the section.

Our architecture uses Web technologies extensively
(see Table 1 for acronyms and definitions). In par-
ticular, these technologies include: a common pro-
tocol (HTTP), integration mechanisms (CGI, Java**),
a common hypertext format (HTML), multimedia data
types (MIME), and unified access to information re-
sources (URL). These standards provide immediate
benefits by partly addressing some requirements of
the builder (i.e., tool integration, nonproprietary
standards, and cross-platform capabilities), the li-
brarian (i.e., uniform access to diverse documents
and linking facilities), and the patron (i.e., easy re-
mote access). Many nonproprietary components are
available off-the-shelf, including Web browsers, Web
servers, document viewers, and HTML file convert-
ers, which can reduce the effort of building a soft-
ware bookshelf architecture. Consequently, the use
of Web technologies provides significant value to the
bookshelf builder. In addition, the Web browser is
easy to use and—we can assume today—immediately
familiar to the patron. This lowers the startup cost
and training effort of the patron in adopting the pop-
ulated bookshelf environment.

User interface. The patron navigates through the
bookshelf content using a Web browser, which may
transparently invoke a variety of tools and scripts.
The patron can browse through books or notes by
simply clicking (a selection using a mouse button)
on any links. We implemented a hypermedia link
mechanism to support relationships between vari-

FINNIGAN ET AL. 560

Figure 2 Builder perspective of the implemented bookshelf architecture

ous pieces of content. This mechanism allows the li-
brarian to provide the patron a choice among pos-
sible destinations. For instance, clicking on a
procedure name in a source code file may present
a list of options, including the definition of the pro-
cedure in source code, its interface declaration, its
position within a global call graph, the program lo-
cations that call it, and its internal data and control
flow graphs. Once the patron chooses an option, a
particular view of the procedure can be presented
by the browser or by one of the integrated presen-
tation tools in the bookshelf environment. This mul-
tiheaded link mechanism thus offers the librarian
added flexibility in organizing and presenting access
to bookshelf content.

We chose Netscape Navigator®* as the default Web
browser for the bookshelf environment, but any com-
parable browser should suffice. The browser must,
however, support Java® directly since this is used as
a client-side extension mechanism. In particular, this
mechanism enables any browser that connects to the
Web server to be transparently extended to handle
various data objects in the information repository.

570 FINNIGAN ET AL.

Navigator also supports remote invocation features
to allow tools to tell it to follow a URL. In following
the URL, Navigator accesses the Web server to re-
trieve requested content from the information re-
pository. For example, a tool can present a map of
the bookshelf content as a graph, where clicking on
a node would invoke Navigator to go to the corre-
sponding book or note. These features also allow,
for example, a code editor to request the browser
to display details about a selected software artifact.
This ability benefits the patron by making the book-
shelf content readily and transparently accessible
from the patron’s development environment.

Information repository. To track all the different in-
formation sources and their cross references, the
bookshelf environment contains an information re-
pository that describes the content of the bookshelf.
Access to the information repository is through a
Web server. A module of this server is an object
server, which is a mediator to a persistent object
store. The object server and object store constitute
the implementation of the repository. The structure
for the stored data is specified using an object-ori-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Table 1 Web technologies

ftem

Description

Common Protocol

Unified Access

Multimedia Data Types

Integration ‘Mechanism

The Web is founded on a client-server architecture. The clients and servers run indepéndently; |
on different machines in different control domains. They communicate through a commnion
protocol, the HyperText Transfer Protocol (HTTP). The connections are stateless; once the
transaction with the client is completed, the server forgets the communication context.

Version 1.1 of the HTTP protocol supports persistent connections that allow multiple

- transfers before the connection closes. To be served, a client issues a request 1o one of the
servers, and the sérver analyzes the request, performs the requested opera’tlon (e g GET
POST, PUT), and generates a response. : ‘ '

The servers provide controlied access to information resources they manage “The. resourées ar
accessed by clients via links called uniform resource locators (URLS) that designate the -
location and the identity of the desired resource. .

The data associated with requests and responses are typed using the Multipurpose Internet Mail
Extensions (MIME). The unit of transfer between the chent and ths server isa MIME '
document, which is a typed sequence of octets.

Common Hypertext Format The HyperText Markup Language (HTML) defines a mmposxte document model The document
may contain references to other documents that are rendered in lineg by the client (¢.g., tags,
pictures, audio, video). In addition to these, the document may contain links to external
documents (or parts thereof). If the type of a document is text/HTML and the document
contains links to other documents, each one of these is handled in a separate transfer.

The Common Gateway Interface {CGI) defines a mechanism that allows a Web server to launch
and convey requests to arbitrary external programs.

ented conceptual modeling language. By using ob-
ject-oriented database technology, the bookshelf
builder can provide the necessary capabilities to rep-
resent and structure highly interrelated, fine-grained
data. The librarian especially needs these capabil-
ities to express and organize software artifacts and
dependencies. Furthermore, our particular choice
of technology supports dynamic updates to the data
schema, to allow extension to new and unforeseen
types of content. Consequently, our use of object-
oriented database technology provides a major ben-
efit by satistying some requirements of the builder
(i.e., powerful conceptual modeling and extensibil-
ity to new types of content) and the librarian (i.c.,
structuring and linking facilities).

Meta-data repository. The information repository gen-
erally stores descriptions about pieces of bookshelf
content (such as location) along with the links among
the pieces. Since these descriptions constitute data
about other data, they are called meta-data.’ The re-
pository explicitly stores the meta-data, not neces-
sarily the data themselves. The actual data are left
in files, databases, physical books, etc. This indirect
approach is necessary since the actual data can be
too large to store or too complex to fully model. Nev-
ertheless, this detail only concerns the builder and
librarian. The patron perspective is that bookshelf

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

content is somehow delivered by the bookshelf re-
pository.

Our repository design provides three basic capabil-
ities for the builder and librarian: an information
model, global schema, and persistent storage. The
information model provides facilities for modeling
the meta-data and is analogous to a data model for
a database. The global schema consists of classes de-
scribing the kinds of information to be stored. This
schema serves as a foundation for modeling the soft-
ware implementation domain (by the builder) and
modeling the application domain (by the librarian).
In addition, the shared nature of this schema enables
data integration for various tools. The persistent stor-
age contains a populated instantiation of the schema.

Web server. The Web server provides an interface for
accessing information in the repository. It does so
by delivering the appropriate data to the requesting
tool or acting directly as an information conduit. The
Web server accepts HTTP requests and maps them
using the repository meta-data into appropriate ac-
tions for accessing the actual content. This approach
allows the server to journal all requests. The server
can also cache requests, to allow specific optimiza-
tions for accessing distributed content. In our book-
shelf implementation, we use the freely available

FINNIGAN ET AL. §71

Figure 3 Bookshelf repository subsystems

Apache Web server.'® The only additional require-
ment is that the server support CGL

Object server and store. The repository is implemented
by an object server and object store. The object server
is an in-memory facility that offers caching, query,
and naming services, built as an Apache Web server
module for more efficient performance (see Figure
3). (An earlier, slower prototype used CcGI and Tcl
scripts to connect the Web server and repository.)
The object store provides persistence for content de-
scription objects using DB2. The object server com-
municates with the object store through messages
implemented with UNIX** sockets. The single com-
munication channel between the object server and
store ensures consistency. In addition, all queries and
updates can be performed in the local workspace of
the object server, thereby increasing performance.
The object server can update the store according to
whatever schedule is appropriate, depending on
hardware availability, security issues, and usage pat-
terns.

Information modeling. The information model is
based on the conceptual modeling language Telos,’
which offers facilities for organizing information in
the repository using generalization, aggregation, and
classification. These facilities are all necessary to sat-
isfy the information structuring needs of the librar-
ian. In our experience, program-understanding and

572 FINNIGAN ET AL.

re-engineering tasks require a high level of flexibil-
ity in structuring information and forming semantic
associations. Telos also provides constructs for rep-
resenting meta-data using metaclasses and meta-at-
tributes. For example, links from a procedure to
called procedures would be stored as part of the
meta-description of a procedure. An interpreter/
compiler for Telos is built into the object server.

Schema. The repository does not impose a pre-
defined view of the data it is representing. Rather,
a customized schema needs to be built for each ap-
plication domain. This customization is a significant
task and it is necessary for the builder to reduce the
work of the librarian. In our customization we have
tried to prepare a generally global schema that is ap-
plicable to a variety of program-understanding

Figure 4 Schema details for the Design level

MetaClass Design
in DesignClass
isa Realization
with
isRealizedByAttribute

isRealizedBy : Implementation

isPartOfAtiribute
isPartOf : Design

hasPartsAttribute
hasParts : Design

isContainedinAttribute
isContainedin : Design
containsAttribute
contains : Design
end

MetaClass System
isa Design

end

MetaClass Subsystemn
isa Design
with
isPartOfAttribute
isPartOf : System
hasPartsAttribute
hasParts : Subsystem

end

MetaClass Algorithm
with
descriptionAttribute
pseudoCode : PseudoCode
specification : Specification
text : AlgorithmText

end

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Figure 5 Schema overview: the basic classes at the design, implementation, and storage levels. Nodes represent

meta-classes and arcs represent is-a relations.

Graphic <= GraphicAnnotation

TextAnnotation
Text +E Parameter AlgorithmText
DesignDescription 4—E3peciﬁcaﬁon

Storage
PseudoCode
StorageFile g
Directory
L FileSystem
A

Realization == Implementation
A

[lmplementatiam:ile 4= File

DesignFile «
Design Algorithm

Subsystem

system

projects. This schema mirrors the levels of software
abstraction previously outlined and includes meta-
classes defining the kinds of objects that can reside
in the object store. Figure 4 shows some of the de-
sign-level metaclass definitions.

According to these design-level definitions, a
System is a subclass of Design and may have Sub-
systems as parts (with isPartOfAttribute). Design-level
classes (Design and its subclasses) are realized by one
or more program-level classes (Implementation and
its subclasses). This is expressed by the isRealized-
ByAttribute of Design. For example, a specific Sub-
system is a design that could be realized as a set of
files. Finally, an Aigorithm can be described by
PseudoCode, a Specification, or in AlgorithmText.

Analogous definitions apply for the program and
physical levels. Relevant metaclasses for the program
level include Implementation, ProgrammingConstruct,
and Statement. Similarly, Storage, FileSystem, Stor-
ageFile, and Directory are some of the classes for the
physical level. Figure 5 shows these different levels
of the schema.

Link mechanism. A multiheaded hypermedia link is

implemented by accessing a repository object that
describes possible destinations for the link. This de-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

ProgrammingConstruct 4==plixConstruct

Scope ' :
Type Aggregate <__[S'tructul'e
Datattem 4| Aray
DeclarationQEEmry caar
Proc
Statement

compilationUnit

scription depends on the classes that the object in-
stantiates. The possible destinations can be differ-
ent for different types of objects (e.g., procedures
versus variables) and can be further individualized
for particular objects. In Telos terms, these multi-
headed links are supported by multiple attributes
within multiple attribute categories. For example,
while browsing a procedure object, the patron may
want to see different views of the procedure and its
relationship to the rest of the software. By accessing
the attributes in the defaultView and availableView cat-
egories, the patron can navigate to a source code view
of the procedure or a text file explaining the imple-
mented algorithm (see Figure 6).

Name translation service. The repository integrates
the content found in disparate information sources.
A particular procedure may be mentioned many
times in different source code files and other doc-
umentation. For this procedure, there should only
be a single object in the store, with appropriate at-
tributes describing where the procedure is defined,
mentioned, called, etc. Consequently, one common
problem of data integration is reconciling the mul-
tiple names used for the same entity. At one extreme,
a tool may have an inflexible mechanism that requires
a unique name for each entity it manipulates. At the
other extreme, a tool may simply manipulate the en-

FINNIGAN ET AL. §73

Figure 6 Specific detail of the repository schema
showing how attribution is used to represent
hyperlinks

SimpleClass proc_1
in Proc
with
URL
: “hitp://CSER/projects/boundary.htmf”
name
: “proc_1”
defaultView
HTMLSourceView : proc_1_1;
availableView
AlgorithmView : proc_1_3;
//algorithm
ProcCalledByView : proc_1_2;
/fcalled procedures
FuliCallGraphView : proc_1_26;
//entire call graph
NearCallGraphView : proc_1_27,
//meighborhood cail graph
FarCallGraphView : proc_1_28;
/ffar call graph
ProcToVarView : proc_1_29
d//accessed variables
an

tities without any concern for their meaning. In ad-
dition, the implementation domain may impose re-
strictions on the names of entities. For example, the
rules of a programming language usually require that
all global procedures have unique names.

To deal with these needs, our repository provides
an integrated name translation service for use by the
bookshelf tools. This service is implemented by giv-
ing each entity a unique object identifier and by main-
taining a mapping between this identifier and the
form of name needed by a tool. This service provides
additional capabilities, aside from easing data inte-
gration. In particular, this service is a basis for a gen-
eral, name-based query service for use by the tools.
This query service is used to support virtual links that
implicitly connect entities or dynamic links that are
created on demand. For example, consider a patron
reading through a text document that describes the
major algorithms used in a software system. This doc-
ument predates the creation of the software and has
almost no explicit hyperlinks. If the patron highlights
a word representing the common name of an algo-
rithm, the viewing tool could query the repository
for all entities that use this name. Using the result,
the tool can present the patron with a number of nav-
igation options for further exploration of how this
algorithm is implemented in the software. These nav-

574 FINNIGAN ET AL

igation paths are dynamic. If it happens that these
paths are useful, they can be made explicit and static,
without changing the original document.

Adding new content. By design, the information re-
pository is easily extensible with new data or types
of data. In the former case, the repository creates
new objects describing the new data, with appropri-
ate pointers to the location of the data. The new data
are immediately available to all tools. A tool can
dynamically query the repository, fetch information
about the new data, and display them to the patron.
The latter case for a new type of data requires
changes to the schema to describe the class of in-
formation being added to the repository.

The schema itself is dynamic. That is, the schema
can be extended, contracted, or modified without
changing the representation of existing objects or the
tools that manipulate those objects. This flexibility
allows, for example, a new type of view to be added
to the procedure class without affecting any of the
actual procedure instances or any of the display tools
that already operate on these instances. Another use
of a dynamic schema is to create user-defined views
to organize and capture implicit personal informa-
tion.

Tools. Our bookshelf environment is based on an
open architecture, which allows a variety of tools to
be integrated. Tools that populate the bookshelf re-
pository are generally independent, communicating
with each other using files and to the bookshelf Web
server using standard Web protocols. These common
protocols also provide the necessary integration
mechanism for the Web server to export meta-data
or data to external tools. These tools may use this
information to locate the appropriate input files and
derive new information that is stored either sepa-
rately as a file, directly in the repository, or in some
combination of the two. For example, a code ana-
lyzer might scan the intermediate representation of
aset of program files, and calculate various complex-
ity metrics. The results could be stored in a local file,
with an entry made in the repository describing the
new information and its location. In this example,
the tool takes care of storing its output in a file, but
updates to the repository are sent to the bookshelf
Web server via Web protocols.

Adding tools. A Web browser provides only a single
kind of access point into the bookshelf contents. Ad-
ditional presentation tools that also access the re-
pository are needed and should be integrated within

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

the bookshelf architecture using Web protocols. For
example, suppose that a patron wants to edit a source
code segment while also viewing an annotated ver-
sion of the source in the Web browser. The patron
clicks on a button on the Web page to launch the
patron’s favorite code editor to process the appro-
priate source code file. One way of implementing this
feature with Web protocols is the following. The but-
ton is tied to a URL which, when clicked, causes the
Web server to run a CGI script. This script encap-
sulates the name of the desired file using a special
MIME type. The encapsulated data are sent from the
server to the browser as aresponse. The browser rec-
ognizes these data as having a special type, and
launches the appropriate helper application on the
data. The helper application processes the data as
a file name, consults the patron’s preferences, and
launches the preferred code editor to process the de-
sired file. Such an approach relaxes the requirement
for a detailed tool-modeling notation usually found
in other software engineering environments. ' In any
case, a CGI script or helper application mediates be-
tween a tool and the repository, translating between
the specific form required by the tool and the form
required by the Web server.

Tighter integration with the bookshelif environment
can be achieved by making a tool fully HTTP-aware
(i.e., capable of sending and receiving HTTP requests
and responses). If this is done, the tool is able to com-
municate with other tools and the repository more
cfficiently. An important step for integrating a spe-
cific tool is to describe its capabilities in terms of what
kinds of views it can display (using MIME types) and
what kinds of information it supplies (using the re-
pository schema).

Dynamic content. There is a need for live, special-
ized, computed views as bookshelf content.'** It is
not possible to prefabricate all the views one might
want and store them directly as static HTML pages
or graphic images. There are a number of server-
side solutions for creating dynamic pages. Web au-
thors often use CGI scripts or Web server modules
to construct content dynamically. Also, a metalan-
guage of preprocessing and transformation directives
can extend HTML to provide more dynamic pages.
Server Side Includes (SSI) are a primitive form of
such a metalanguage.

In addition to the server-side approaches, there are
also client-side strategies that operate from the Web
browser, including helper applications, plug-ins, Java
applets, and JavaScript** handlers. Helpers are in-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

dependent programs that can provide sophisticated
views. Plug-ins are software components that con-
form to an interface for communicating with the
browser and drawing into its windows. Java applets
are platform-neutral programs fetched over the net-
work and run on a Java-enabled browser. JavaScript
handlers are scripts that are triggered on certain
events, such as the clicking of a link. These scripts
are embedded in HTML pages and are interpreted
by JavaScript-enabled browsers. All of these strat-
egies are flexible for presenting interactive views of
bookshelf data. However, some strategies may be
easier to exploit than others.

To gain experience with tool integration strategies,
we decided to focus on two extremes: tight and loose
integration. For tight integration, the tool is essen-
tially reimplemented in the new setting (e.g., rewrit-
ten as a Java applet). For loose integration, the tool
needs to be programmable and customizable, to
adapt and plug into the new setting. An annotated
bibliography on different strategies for software en-
gineering environment integration can be found in
Reference 14. In the past, we had developed soft-
ware visualization tools that employed graph-ori-
ented user interfaces (i.e., Landscape,® Rigi, ' and
SHriMP'"). Given our experience with these tools
and the opportunity to compare these visualization
techniques within the Web paradigm, we decided to
integrate Landscape and Rigi into the bookshelf
environment.

Integrating Landscape views. The Landscape tool ™
produces diagrams, called landscapes, of the global
architecture of the target system. '® In each diagram,
there are boxes that represent software entities such
as subsystems, modules, or files. Arrows connecting
the boxes represent dependencies, such as calls to
procedures or references to variables. These dia-
grams are created semi-automatically—based on
software artifact information extracted automatically
using parsers, together with system decomposition
information collected manually from the develop-
ers through interviews. A later section in this paper
illustrates how a patron uses these diagrams to ob-
tain high-level overviews of the target software.

The original version of the Landscape tool was stand-
alone. For the bookshelf environment, a new land-
scape tool was written as a Java applet. This applet
displays landscape diagrams, to provide convenient
navigation through the structure of the software from
diagram to diagram, and to access related bookshelf
content.

FINNIGAN ET AL. §75

Integrating Rigi views. Rigi is a visualization tool for
exploring and understanding large information
spaces. The user interface is a graph editor that is
used to browse, analyze, and modify a graph that rep-
resents the target information space. The tool is end-
user programmable and extensible using the Tcl
scripting language, allowing user-defined views of
graphs, integration with external tools, and automa-
tion of graph editing operations.® Also, Rigi is de-
signed to document software architecture and to
compose, manipulate, and visualize subsystem struc-
tures according to various criteria.”

To exploit its reverse engineering and software anal-
ysis capabilities, the Rigi tool was integrated into the
bookshelf environment. The basic idea was to allow
Rigi to render views constructively, based on infor-
mation stored in the repository. This is an advance
over approaches that only retrieve static, ready-made
images. By building views dynamically, the patron
can filter immaterial artifacts, emphasize relevant
components, and customize the views to the anal-
ysis task at hand. The views are live and manipula-
ble. Also, changes to the software being re-engi-
neered are easily reflected without requiring batch
updates to statically stored images.

Like Landscape, the Rigi system could be tightly in-
tegrated with the booksheif environment by rewrit-
ing the user interface in Java. However, the program-
mability of Rigi allows for a loose integration strategy
that requires no changes to the editor. Rigi was con-
nected to the bookshelf environment using a CGI
script and a helper application, both written in Perl.
Access to Rigi and its constructive views from the
bookshelf Web browser had to be as simple as fol-
lowing a URL. Consequently, we specified a special
form of URL that invokes the CGI script with a se-
quence of keyword/value pairs. These pairs specify
required parameters, including project name, do-
main model, database, version, user identification,
session data, display host, computational host, re-
quested view, and context. The CGI script parses the
pairs and sends the parameters to the helper appli-
cation as a custom MIME type. The helper converts
the parameters into Tcl and generates a custom con-
figuration file, as well as a startup script that is used
to launch Rigi to produce the view. If Rigiis already
running, then the helper conveys the requested view
in a file that Rigi periodically polls.

In our experience, the time needed to convey the
request to Rigi is short, compared to the time needed
to compute and present the requested view in a win-

576 FINNIGAN ET AL.

dow. Since constructive views are computed by an-
other process possibly on another machine, there are
no memory problems or security limitations incurred
by rendering these views within the browser using
plug-in modules or Java applets. This integration
strategy is generic and can be readily adapted for
any stand-alone analysis tool that is end-user pro-
grammable or provides a comprehensive application
program interface.

There are many strategies for integrating a tool with

a Web browser. We explored two specific approach-
es: loose integration using CGI scripts, which allows

The prototype brought
together a diverse set
of reverse engineering
tools and techniques.

for fast prototyping, and tight integration using Java
applets, which allows for a common “look-and-feel.”

Farsers. The librarian requires tools to populate the
bookshelf repository from existing information
sources automatically, insofar as that is possible. For
example, the files that belong to a software project
are stored, typically, in one or more directories in
a file system. The process of converting these files
to HTML can be automated by “walking” the direc-
tory structure and converting the files based on their
content types. Of particular interest are parsers, tools
used to extract data about software artifacts and de-
pendencies automatically. Source code files are
parsed at various levels of detail according to pro-
gram-understanding needs. For example, a simple
parser might extract procedure calls and global var-
iables, whereas a complete parser might generate en-
tire abstract syntax trees.

Our use of parsers is for program-understanding pur-
poses rather than code generation, and so the focus
is primarily on extracting useful information, not all
the details that would be needed for code compi-
lation. Information useful for program understand-
ing includes procedures (their definitions and calls)
and data variables (their definitions and usage). In
the implemented bookshelf environment, the parser

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

output is processed through further code analysis to
establish links among related code fragments, com-
pile cross references of procedures and global var-
iables, drive visualization tools, generate archi-
tectural diagrams, produce metrics on structural
complexity,?* locate cloned fragments of code, and
determine data and control flow paths. Since the
parsers collect the locations of the extracted artifacts,
the detailed analyses can be linked to the relevant
fragments of code.

A simple source code parser was developed using
emacs macros® and is currently used to parse pro-
cedure definitions and calls, and variable declara-
tions and references. Because this parser analyzes
the program source, HTML tags can be inserted in
the annotated source code output at appropriate
points, such as around a procedure definition. Hy-
pertext links are generated automatically from these
references using indirection (i.e., the repository
maintains a mapping of references to tags), and
HTML pages are generated automatically with re-
solved HTML tags. The parser can be extended to link
the annotated code to other documentation. Sim-
ilarly, external comments and notes can be attached
to relevant code fragments.

A series of prototype parsers were also developed
to parse two alternative program representations
generated by a compiler front-end processor we were
using: the cross-reference listing and the interme-
diate language representation. As bookshelf build-
ers, our goal was to obtain some level of language
independence by using these forms of input in some
combination. In addition, parsers for these inputs
are easier to write due to the limited syntax. The cross
reference listing requires only a simple parser, but
the reported data are selective and the format of the
listing is language- and compiler-dependent. Some
information is also missing, such as procedure-to-
procedure calls.

These problems can be overcome by parsing the in-
termediate language representation. For a family of
IBM compilers, this representation is shared across
multiple languages, hardware, and operating system
platforms. The representation can provide detailed
information to determine static control flow and, to
some degree, information to calculate complexity
metrics. In particular, this information includes vari-
able type definitions, function parameter declara-
tions, function return types, and active local and
global variables. Nevertheless, in our experience,
parsing only this representation is not enough since

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

some of the information is lost. For example, the
structure of file inclusions is not maintained and
names of data elements generated by the front-end
processor may not accurately match the variables
names from the original source. Still, the approach
handles the entire compiler family sharing the in-
termediate representation. To demonstrate this, we
applied the parser to the intermediate representa-
tions of both PL/I dialect and C source code.

Shortcomings and lessons learned. The initial pro-
totype of the bookshelf environment served as a test-
ing ground that helped us understand where Web
technologies worked well (e.g., ready access, ease of
use, and consistent presentation) and where more
sophisticated approaches were needed. The proto-
type became a vehicle for bringing together a diverse
set of reverse engineering tools and techniques.

Our experience with the prototype exposed several
issues with building a bookshelf using Web technol-
ogies. First, the advantage of a universally under-
stood Web browser interface degenerates rapidly as
more interactive techniques are used to give the de-
gree of control and flexibility required for sophis-
ticated re-engineering needs. Second, the separation
between the client side and the server side introduces
sharp boundaries that must be dealt with to create
a seamless bookshelf environment to the patron. For
example, since a client and the server run most of-
ten on different machines and file systems, there is
a problem when mapping access rights between the
client and server contexts. Third, the connections are
stateless (as mentioned in Table 1). This creates a
communication overhead when composing docu-
ments for viewing in the Web browser. Finally, no
mechanism is provided for session management and
version control.

The initial prototype has several limitations. First,
adding a new tool required the builder to write a
handcrafted CGi script, which takes some effort. Sec-
ond, repository access was slow for the patron, be-
cause of the communication mechanisms used (i.e.,
UNIX pipes and interpreted Tcl scripts). Third, there
were no security provisions to support selective ac-
cess to read and possibly edit bookshelf content
among patrons. Finally, maintaining a populated
bookshelf repository in the face of multiple releases
of the target software was another problem not ad-
dressed. Some support for multiple releases has been
added to later versions of the prototype and this sup-
port is being evaluated.

FINNIGAN ET AL. §77

Figure 7 Librarian perspective of bookshelf environment
capabilities

Populating the bookshelf

With patron requirements in mind, the librarian pop-
ulates the bookshelf repository with project-specific
content to suit the needs of the re-engineering or
migration effort. In this section, from a librarian per-
spective (see Figure 7), we describe our experience
in populating the initial bookshelf prototype with a
target software system. This target software is a leg-
acy system that has evolved over twelve years, con-
tains approximately 300K lines of highly optimized
code written in a dialect of PL/1, and has an expe-
rienced development team. This system is the code
optimization component of a family of compilers. In
this paper, the name used to refer to this system is
SIDOI.

Gathering information manually. As with many leg-
acy systems, important documentation for SIDOI ex-
isted only in hard-copy versions that were filed at
the back of some developer’s shelf. One major need
was to discover these documents and transform them
into an electronic form for the software bookshelf.
Consequently, over a one-year period, the members

B78 FINNIGAN ET AL.

of the bookshelf project interviewed members of the
development team, developed tools to extract soft-
ware artifacts and synthesize knowledge, collected
relevant documentation, and converted documents
to more usable formats.

Most of the information for the bookshelf reposi-
tory was gathered or derived automatically from ex-
isting on-line information sources, such as source
code, design documents, and documentation. How-
ever, some of the most valuable content was pro-
duced by interviewing members of the development
team.

Recovering architectures. The initial view of the leg-
acy system was centered around an informal diagram
drawn by one of the early developers. This diagram
showed how the legacy system interfaced with
roughly 20 other major software systems. We refined
this architectural diagram and collected short de-
scriptions of the functions of each of these software
systems. The resulting diagram documented the ex-
ternal architecture of the legacy system. At roughly
the same time, the chief architect was interviewed,
resulting in several additional informal diagrams that
documented the high-level, conceptual architecture
(i.e., the system as conceived by its owners). Each
of these diagrams was drawn formally as a software
landscape.

The first of these diagrams was simple, showing the
legacy system as composed of three major subsystems
that are responsible for the three phases of the over-
all computation. The diagram also showed that there
are service routines to support these three phases,
and that the data structure is globally accessed and
shared by all three phases. There were also more de-
tailed diagrams showing the nested subsystems within
each of the major phases. Using these diagrams, with
a preliminary description of the various phases and
subsystems, we extracted a terse but useful set of hi-
erarchical views of the abstract architecture.

After some exploration with trying to extract the con-
crete architecture (i.c., the physical file and direc-
tory structure of the source code), we found it more
effective to work bottom-up, collecting files into
subsystems, and collecting subsystems into phases,
reflecting closely the abstract architecture. This ex-
ercise was difficult. For example, file-naming con-
ventions could not always be used to collect files into
subsystems; roughly 35 percent of the files could not
be classified. The developers were consulted to de-
termine a set of concrete subsystems that included

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

nearly all of the files. The concrete architecture con-
tained many more subsystems than the abstract ar-
chitecture.

In a subsequent, ongoing experiment, we are recov-
ering the architecture of another large system (250K
lines of code). In this work we have found that the
effort is much reduced by initially consulting with the
architects of the system to find their detailed decom-
position of the system into subsystems and those sub-
systems into files.

ILIdata structure. The intermediate language imple-
mentation (ILI) data structure represents the pro-
gram being optimized. The abstract architecture
showed that understanding ILI would be fundamen-
tal to gaining a better understanding of the whole
system. As a result, we interviewed the developers
to get an overview of this data structure and to cap-
ture example diagrams of its substructures. This in-
formation is documented as a bookshelf book that
evolved with successive feedback from the develop-
ers (see Figure 8). This book provides descriptions
and diagrams of ILI substructures. The developers
had repeatedly asked for a list of frequently asked
questions about the ILI data structure, and so one was
created for the book.

Effort. In addition to the initial work of extracting
the architectural structure of the target system, one
significant task was getting the developers to write
a short overview of each subsystem. These descrip-
tions were converted to HTML and linked with the
corresponding architectural diagrams for browsing.
Since there are over 70 subsystems, this work re-
quired more than an elapsed month of a develop-
er’s time. We collected relevant existing documents
and linked them to the browsable concrete architec-
ture diagrams. In some cases, such as when deter-
mining the concrete architecture, we required
developers to invent structures and subsystem bound-
aries that had not previously existed. Such invention
is challenging.

In our experience, the bookshelf librarian would
need to acquire some application-domain expertise.
In many legacy software projects, the developers are
so busy implementing new features that no time or
energy is left to maintain the documentation. Also,
the developers often overlook parts of the software
that require careful attention. Thus, the librarian
must become familiar with the target software and
verify new information for the bookshelf repository
with the developer.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Reducing effort. We were constantly aware, while
manually extracting the information, that this work
is inherently time consuming and costly. We evolved
our tools and approaches to maximize the value of
our bookshelf environment for a given amount of
manual work. It is advantageous to be selective and
load only the most essential information, such as the
documentation for critical system parts, while defer-
ring the consideration of parts that are relatively sta-
ble. The bookshelf contents can be refined and im-
proved incrementally as needed.

In a subsequent experiment with another target sys-
tem, we have been able to do the initial population
of its bookshelf much faster. Our support tools had
matured and our experience allowed us to ignore a
large number of unprofitable information extraction
approaches from the first target system.

Gathering information automatically. Several soft-
ware tools were used to help create and document
the concrete architecture. To facilitate this effort, the
parser output uses a general and simple file format.
This format is called Rigi Standard Format (RSF) and
consists of tuples representing software artifacts and
relationships (e.g., procedure P calls procedure Q,
file F includes file G). These tuple files were the ba-
sis of the diagrams of the concrete architecture. A
relational calculator called Grok was developed to
manipulate the tuples. To gain insights into the struc-
ture of this information, the Star system??” was used
to produce various diagram layouts. The diagrams
were manually manipulated to provide a more aes-
thetic or acceptable appearance for the patrons.

Valuable information about the software was found
in its version control and defect management sys-
tem. In particular, it provided build-related data that
were used to create an array of metrics about the
build history of the project. These metrics included
change frequency, a weighted defect density, and
other measurements relating to the evolution of each
release. A set of scripts was written that queried the
version control system, parsed the responses, and
gathered the desired metrics. The metrics files can
be used by different tools to generate views of the
evolution of the software.

Using the bookshelf

Re-engineering or migration tasks are generally goal-
driven. Based on a desired goal (e.g., reducing costs,
adding features, or resolving defects) and the spe-
cific task (e.g., simplifying code, increasing perfor-

FINNIGAN ET AL. §79

Figure 8 Bookshielf view representing documentation on the key ILI data structure

Compiler

SIDO!

ILI Core Database

Jo1e20) Y
Jojquisssy

580 FINNIGAN ET AL IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

mance, or fixing a bug), the patron poses pertinent
questions about the software and answers them in
part by consulting the bookshelf environment data
(see Figure 9). To illustrate the use of the software
bookshelf, we introduce a scenario drawn from our
experience with the SIDOI target system. The scenario
illustrates the use of the bookshelf environment dur-
ing a structural complexity analysis task by a patron
who is an experienced developer.

In this scenario, the patron wishes to find complex
portions of the code that can be re-engineered to
decrease maintenance costs. In particular, one sub-
system called DS has been difficult to understand be-
cause it is written in an unusually different style.
Other past developers have been reluctant to change
DS because of its apparent complexity (despite re-
ports of suspected performance problems). Also,
there may be portions of DS that can be rewritten
to use routines elsewhere that serve the same or sim-
ilar function. Reducing the number of such cloned
or redundant routines could simplify the structure
of DS and ease future maintenance work. The infor-
mation gathered, while studying the complexity of
Ds, will help to estimate the required effort to revise
the subsystem.

Obtaining an overview. The patron is unfamiliar with
Ds and decides to use the bookshelf environment to
obtain some overview information about the sub-
system, such as its purpose and high-level interac-
tions with other subsystems. Starting at the high-level,
architectural diagram of SIDOI (see Figure 10), the
patron can see where DS fits into the system. This
diagram was produced semi-automatically using the
Landscape tool, based on the automatically gener-
ated output of various parsers. Since nested boxes
express containment, the diagram (in details not
shown here) indicates that DS is contained in the op-
timizer subsystem. For clarity, the procedure call and
variable access arcs have been filtered from this di-
agram.

The patron can click on a subsystem box in this di-
agram or a link in the subsystem list in the left-hand
frame to obtain information about a specific sub-
system. For example, clicking on the DS subsystem
link retrieves a page with a description about what
DS performs, a list of what source files or modules
implement DS, and a diagram of what subsystems use
or are used by DS (see Figure 11). The diagram shows
that DS is relatively modular and is invoked only from
one or more procedures in the PL/ file optimize.pl
through one or more procedures in the file ds.pl.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Figure 9 Patron perspective of a populated bookshelf
environment

The page also offers links to other pages that describe
the algorithms and local data structures used by DS.
The algorithm description outlines three main
phases. The first phase initializes a local data struc-
ture, the second phase performs a live variable anal-
ysis, and the third phase emits code where unnec-
essary stores to variables are eliminated. The data
structure description is both textual and graphical,
with “clickable” areas on the graphical image that
take the patron to more detailed descriptions of a
specific substructure. These descriptions are aug-
mented by important information about the central
ILI data structure of SIDOL

After considering potential entry points into the DS
subsystem, the patron decides to navigate system-
atically along the next level of files in the subsystem:
dsinit.pl, dslvbb.pl, dslvrg.pl, and dselim.pl.

Obtaining more detail. The patron can click on a
file box in the previous diagram or a file link in the
list on the left-hand frame to retrieve further details
about a particular source file of DS. For example,

FINNIGAN ET AL. 581

Figure 10 High-level architectural view of the SIDOI system

582 FINNIGAN ET AL. IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

|t pl b
-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 FINNIGAN ET AL. 583

p! module

N

for the dsi

Iews

lable v

Figure 12 Ava

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

584 FINNIGAN ET AL

clicking on the dsinit.p! file link provides a list of the
available information specific to this file and specific
to the DS subsystem (see Figure 12).

The available views for a given file are outlined be-
low.

& Code redundancy view. This view shows exact
matches for code in the file with other parts of the
system, which is useful for determining instances
of cut-and-paste reuse and finding areas where
common code can be factored into separate pro-
cedures.

~ Complexity metrics view. This view shows a variety
of metrics in a bar graph that compares this file
with other files in the subsystem of interest.

s Files included view. This view provides a list of the
files that are included in the file.

~ Hypertext source view. This view provides a hyper-
text view of the source file with procedures, var-
iables, and included files appearing as links.

s Procs declared view. This view provides a list of pro-
cedures declared in the file.

~ Vars fetched and vars stored views. These views pro-
vide a list of variables fetched or updated in the
file.

In general, clicking on a file, procedure, or variable
in the diagram or set of links produces a list of the
available views specific to that entity. Views appear
either as lists in the left-hand frame, as diagrams in
the right-hand frame, or as diagrams controlled and
rendered by other tools in separate windows. Fig-
ure 13 shows a diagram generated by Rigi with the
neighboring procedures of procedure dsinit. The pa-
tron can rearrange the software artifacts in the di-
agrams and apply suitable filters to hide cluttering
information. The capabilities of the Rigi tool are fully
available for handling these diagrams.

Other, more flexible navigation capabilities are pro-
vided. For instance, the patron can enter the name
of a software artifact in the query entry field of the
left-hand frame. This search-based approach is use-
ful for accessing arbitrary artifacts in the system that
are not directly accessible through predefined links
on the current page. Also, the Web browser can be
used to return to previously visited pages or to cre-
ate bookmarks to particularly useful information.

Analyzing structural complexity. While focusing on
the DS module, the patron decides that some pro-
cedure-specific complexity measures on the module
would be useful for determining areas of complex

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

logic or potentially difficult-to-maintain code (see
Figure 14). Such static information is useful to help
isolate error-prone code.”*-* The bookshelf envi-
ronment offers a procedure-level complexity metrics
view that includes data- and control-flow-related
metrics, measures of code size (i.e., number of equiv-
alent assembly instructions, indentation levels), and
fanout (i.e., number of individual procedure calls).

To examine areas of complex, intraprocedural con-
trol flow, the cyclomatic complexity metric can be
used. This metric measures the number of indepen-
dent paths through the control flow graph of a pro-
cedure. The patron decides to consider all the pro-
cedures in DS and compare their cyclomatic
complexity values. This analysis shows that dselim,
initialize, dslvbb, and dslvrg have values 75, 169, 64,
and 49, respectively.

Finding redundancies. Using the code redundancy
and source code views in the bookshelf environment,
the patron discovers and verifies that procedures
dselim and dslvbb are nearly copies of each other.
Also, procedure dslvrg and dslvbb contain similar al-
gorithmic patterns. Code segments are often cloned
through textual cut-and-paste edits on the source
code. Some of the clones may be worth replacing by
a common routine if future maintenance can be sim-
plified. The amount of effort needed depends on the
complexity measures of the cloned code. With a per-
tinent set of bookshelf views, the re-engineering
group can weigh the benefits and costs of implement-
ing the revised code.

After completing the whole investigation, it is use-
ful to store links to the discoveries in some form, such
as Web browser bookmarks, guided tour books, foot-
prints on visited pages, and analysis objects in the
repository. Such historical information may help
other developers with a similar investigation in the
future.

Related work

In this section, we discuss related work on integrated
software environments, parsing and analysis tools,
software repositories, and knowledge engineering.

Integrated software environments. Tool integration
encompasses three major dimensions: data (i.e., ex-
changing and sharing of information), control (i.e.,
communication and coordination of tools), and pre-
sentation (i.e., user interface metaphor).* Data in-
tegration is usually based on a common schema that

FINNIGAN ET AL. B85

i,

|
|
i
|
B
i
i
|
!
,
i
i
|
§
f
!
i
§
i
i
i

A P M oL s o s
SR O S RS 2

586 FINNIGAN ET AL. IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Figure 14 Procedure-specific metrics for the DS subsystem

e B e e T e S e et

peseery

B e et e e e e = et et i e s oo

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 FINNIGAN ET AL. §87

models software artifacts and analysis results to be
shared among different tools. For example, in the
PCTE system,*® data integration is achieved with a
physically distributed and replicated object base.
Forming a suitable common schema requires a study
of functional aspects related to specific tool capa-
bilities and organizational aspects in the domain of
discourse. Control integration involves the mechan-
ics of allowing different tools to cooperate and pro-
vide a common service. In environments such as
Field* and SoftBench,* tools are coordinated by
broadcast technology, while environments based on
the Common Object Request Broker Architecture
(CORBA) standard® use point-to-point message pass-
ing. Furthermore, control integration involves issucs
related to process modeling and enactment sup-
port,*® computer-supported cooperative work,*’ co-
operative information systems,* and distributed
computing. Presentation integration involves look-
and-feel and metaphor consistency issues.

The software bookshelf tries to achieve data inte-
gration through a meta-data repository and Telos
conceptual model, control integration through Web
protocols and scripting, and presentation integration
through the Web browser hypertext metaphor. Kai-
ser et al. recently introduced an architecture for
World Wide Web-based software engineering envi-
ronments.* Their OzWeb system implements data
integration through subweb repositories and control
integration by means of groupspace services. In ad-
dition, there are several existing commercial prod-
ucts such as McCabe’s Visual Reengineering Tool-
set BattleMap**,* which offers a variety of reverse
engineering and analysis tools, visualization aids, and
a meta-data repository. By and large, these environ-
ments are not based on the technologies selected for
our bookshelf implementation. In particular, our
work is distinguished through an open and exten-
sible architecture, Web technology with multiheaded
hypermedia links, a powerful and extensible concep-
tual model, and the use of off-the-shelf software com-
ponents.

Parsing tools. Many parsing tools and reverse en-
gineering environments have been developed to ex-
tract software artifacts from source files.* The Soft-
ware Refinery* parses the source and populates an
object repository with an abstract syntax tree that
conforms to a user-specified domain model. Once
populated, the user can access, analyze, and trans-
form the tree using a full programming and query
language. PCCTS is a compiler construction toolkit
that can be used to develop a parser.* The output

B88 FINNIGAN ET AL.

of this parser is an abstract syntax tree represented
by C++ objects. Analysis tools can be written using
aset of C+ + utility functions. GENOA provides a lan-
guage-independent abstract syntax tree to ease ar-
tifact extraction and analysis.* Lightweight parsers
have emerged that can be tailored to extract selected
artifacts from software systems rather than the full
abstract syntax tree.*>* For the software bookshelf,
our parsers convert the source to HTML for viewing
or extract the artifacts in a language-independent way
by processing the intermediate language represen-
tation emitted by the compiler front-end processor.

Analysis tools. To understand and manipulate the
extracted artifacts, many tools have been developed
to analyze, search, navigate, and display the vast in-
formation space effectively. Slicing tools subset the
system to show only the statements that may affect
a particular variable.*” Constructive views,* visnal
queries,* Landscapes, * and end-user programma-
ble tools® are effective visual approaches to custom-
ize exploration of the information space to individ-
val needs. Several strategies have emerged to match
software patterns. GRASPR recognizes program plans,
such as a sorting algorithm, with a graph parsing ap-
proach that involves a library of stereotypical algo-
rithms and data structures (clichés).*® Other plan rec-
ognition approaches include concept assignment”'
and constraint-based recognition.>* Tools have been
developed for specific analyses, such as data depen-
dencies,™ coupling and cohesion measurements,**
control flow properties,* and clone detection.*>’
On the commercial front, several products have been
introduced to analyze and visualize the architecture
of large software systems.>®

Software repositories. Modeling every aspect of a
software system from source code to application do-
main information is a hard and elusive problem. Soft-
ware repositories have been developed for a variety
of specialized uses, including software development
environments, CASE tools, reuse libraries, and reverse
engineering systems. The information model, index-
ing approach, and retrieval strategies differ consid-
erably among these uses. The knowledge-based
LaSSIE system provides domain, architectural, and
code views of a software system.™ Description logic
rules® relate the different views and the knowledge
base is accessed via classification rules, graphical
browsing, and a natural language interface. The Soft-
ware Information Base uses a conceptual knowledge
base and a flexible user interface to support software
development with reuse.®' This knowledge base is
organized using Telos’ and contains information

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

about requirements, design, and implementation.
The knowledge base can be queried through a graph-
ical interface to support the traversal of semantic
links. The REGINA software library project builds an
information system to support the reuse of commer-
cial off-the-shelf software components.* Their pro-
posed architecture also exploits Web technology.

Knowledge engineering. Related areas in knowledge
engineering include knowledge sharing,® ontolo-
gies,* data repositories,” data warehouses,® and
similarity-based queries. "% Meta-data have received
considerable attention (e.g., Reference 69) as a way
to integrate disparate information sources.’ Solving
this problem is particularly important for building
distributed multimedia systems for the World Wide
Web.™ Atlas is a distributed hyperlink database sys-
tem that works with traditional servers.” Other ap-
proaches to the same problem focus on a generic ar-
chitecture (e.g., through mediators™). The software
bookshelf uses multiheaded links and an underlying
meta-data repository to offer a more flexible, distrib-
uted hypermedia system.

In general, the representational frameworks used in
knowledge engineering are richer in structure and
in supported inferences than those in databases, but
those in databases are less demanding on resources
and also scale up more gracefully. The bookshelf re-
pository falls between these extremes in represen-
tational power and in resource demands. Also, the
bookshelf repository is particularly strong in the
structuring mechanisms it supports (i.e., generaliza-
tion, aggregation, classification, and contexts) and
in the way these are integrated into a coherent rep-
resentational framework.

Conclusions

This paper introduces the concept of a software
bookshelf to recapture, redocument, and access rel-
evant information about a legacy software system for
re-engineering or migration purposes. The novelty
of the concept is the technologies that it combines,
including an extensible, Web-based architecture, tool
integration mechanisms, an expressive information
model, a meta-data repository, and state-of-the-art
analysis tools. The paper describes these components
from the perspectives of three, increasingly project-
specific roles involved in directly constructing, pop-
ulating, and using a software bookshelf: the builder,
the librarian, and the patron. Moreover, we outline
a prototype implementation and discuss design deci-
sions as well as early experiences. In addition, the

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

paper reports on our experiences from a substantial
case study with an existing legacy software system.

The software bookshelf has several major advan-
tages. First, its main user interface is based on an
oft-the-shelf Web browser, making it familiar, casy-
to-use, and readily accessible from any desktop. This
aspect provides an attractive and consistent presen-
tation of all information relevant to a software sys-
tem and facilitates end-user adoption. Second, the
bookshelf is a one-stop, structured reference of proj-
ect-specific software documentation. By incorporat-
ing application-specific domain knowledge based on
the needs of the migration effort, the librarian adds
value to the information generated by the automatic
tools. Third, reverse engineering and software anal-
ysis tools can be easily connected to the bookshelf
using standard Web protocols. Through these tools,
the bookshelf provides a collection of diverse redocu-
mentation techniques to extract information that is
often lacking or inconsistent for legacy systems.
Fourth, the bookshelf environment is based on ob-
ject-oriented, meta-data repository technology and
can scale up to accommodate large legacy systems.
Finally, the overall bookshelf implementation is
based on platform-independent Web standards that
offer potential portability for the bookshelf. Using
a client-server architecture, the bookshelf is central-
ized for straightforward updates yet is highly avail-
able to remote patrons.

We consider the software bookshelf useful because
it can collect and present in a coherent form differ-
ent kinds of relevant information about a legacy soft-
ware system for re-engineering and migration pur-
poses. We also demonstrated that it is a viable
technique, because the creation of a large software
bookshelf can be completed within a few months by
librarians who have access to parsers, converters, and
analysis tools. Moreover, the viability of the tech-
nique is strengthened in that the bookshelf environ-
ment requires little additional software and exper-
tise for its use, thanks to adopting ubiquitous Web
technology.

Despite some encouraging results, there are addi-
tionai research tasks to be completed to finish eval-
uating the bookshelf technique. First, we are cur-
rently validating the generality of the technique by
applying it to a second legacy software system. Such
a study will also provide a better estimate of the ef-
fort required in developing new bookshelves and pro-
vide useful insight to bookshelf builders. Second, we
wish to study techniques that would allow bookshelf

FINNIGAN ET AL. 589

patrons to extend and update bookshelf contents,
as well as adding annotations at public, private, and
group levels. This study would ensure that the tech-
nology does indeed support the evolution of a book-
shelf by its owners and end users. Third, we are work-
ing on mechanisms for maintaining consistency of
the bookshelf contents and for managing the prop-
agation of changes from one point, for example, a
source code file, to all other points that relate to it.
Fourth, the bookshelf user interface is sufficiently
complex to justify a user experiment to evaluate its
usability and effectiveness. Finally, we are currently
studying extensions to the functionality of the book-
shelf environment so that it supports not only redocu-
mentation and access, but also specific software mi-
gration tasks.

Acknowledgments

The research reported in this paper was carried out
within the context of a project jointly funded by 1BM
Canada and the Canadian Consortium for Software
Engineering Research (CSER), an industry-directed
program of collaborative university research and ed-
ucation, involving leading Canadian technology com-
panies, universities, and government agencies.

This project would not have been possible without
the tireless efforts of several postdoctoral Fellows,
graduate students, and research associates. Many
thanks go to: Gary Farmaner, Igor Jurisica, Tannis
Tourlakis, and Vassilios Tzerpos (University of
Toronto); Johannes Martin, James McDaniel, Mar-
garet-Anne Storey, and James Uhl (University of
Victoria); and Morven Gentleman and Howard
Johnson (National Research Council).

We also wish to thank all the members of the de-
velopment group that we worked with inside the IBM
Toronto Laboratory for sharing their technical
knowledge and insights on a remarkable software sys-
tem.

Finally, we gratefully acknowledge the tremendous
contributions of energy, diplomacy, and patience by
Dr. Jacob Slonim in bringing together the CSER part-
nership and in launching this project.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Netscape Communications Corporation, or X/Open Co., Ltd.

590 FINNIGAN ET AL.

Cited references and notes

1. H.Lee and M. Harandi, “An Analogy-based Retrieval Mech-
anism for Software Design Reuse,” Proceedings of the 8th
Knowledge-Based Software Engineering Conference, Chicago,
IL, IEEE Computer Society Press (1993), pp. 152-159.

2. J. Ning, A Knowledge-based Approach to Automatic Program
Analysis, Ph.D. thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign (1989).

3. G. Arango, L. Baxter, and P. Freeman, “Maintenance and
Porting of Software by Design Recovery,” Proceedings of the
Conference on Software Maintenance (CSM-85), Austin, TX,
IEEE Computer Society Press (November 1985), pp. 42-49.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley Publishing Co., Reading, MA (1995).

5. F. Van der Linden and J. Muller, “Creating Architectures
with Building Blocks,” IEEE Software 12, No. 6, 51-60 (No-
vember 1995).

6. V.Kozaczynski, E. Liongosari, J. Ning, and A. Olafson, “Ar-
chitecture Specification Support for Component Integration,”
Proceedings of the Seventh International Workshop on Com-
puter-Aided Software Engineering (CASE), Toronto, Canada,
IEEE Computer Society Press (July 1995), pp. 30-39.

7. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, “Te-
los: Representing Knowledge About Information Systems,”
ACM Transactions on Information Systems 8, No. 4, 325-362
(October 1990).

8. J. Gosling, B. Joy, and G. Steele, The Java Language Spec-
ification, Addison-Wesley Publishing Co., Reading, MA
(1996).

9. L.Seligman and A. Rosenthal, “A Metadata Resource to Pro-
mote Data Integration,” IEEE Metadata Conference, Silver
Spring, MD, IEEE Computer Society Press (April 1996).

10. The Apache HTTP Server Project is a collaborative software
development effort aimed at creating a commercial-grade
source-code implementation of an HTTP Web server. Infor-
mation about the project can be found at the Internet World
Wide Web site http://www.apache.org.

11. G. Valetto and G. Kaiser, “Enveloping Sophisticated Tools
into Computer-Aided Software Engineering Environments,”
Proceedings of the Seventh International Workshop on Com-
puter-Aided Software Engineering (CASE), Toronto, Ontario,
IEEE Computer Society Press (July 1995), pp. 40-48.

12. J. A. Zachman, “A Framework for Information Systems Ar-
chitecture,” IBM Systems Journal 26, No. 3, 276292 (1987).

13. J. F. Sowa and J. A. Zachman, “Extending and Formalizing
the Framework for Information Systems Architecture,” IBM
Systems Journal 31, No. 3, 590-616 (1992).

14. A. Brown and M. Penedo, “An Annotated Bibliography on
Software Engineering Environment Integration,” ACM Soft-
ware Engineering Notes 17, No. 3, 47-55 (July 1992).

15. P. Penny, The Software Landscape: A Visual Formalism for
Programming-in-the-Large, Ph.D. thesis, Department of Com-
puter Science, University of Toronto (1992).

16. H. Miller and K. Klashinsky, “Rigi—A System for Program-
ming-in-the-Large,” Proceedings of the 10th International Con-
ference on Software Engineering (ICSE), Raffles City, Singa-
pore, IEEE Computer Society Press (April 1988), pp. 80—
86.

17. M.-A. Storey, K. Wong, P. Fong, D. Hooper, K. Hopkins,
and H. Miiller, “On Designing an Experiment to Evaluate
a Reverse Engineering Tool,” Proceedings of the Working Con-
ference on Reverse Engineering (WCRE), Monterey, CA, IEEE
Computer Society Press (November 1996), pp. 31-40.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

M. Chase, D. Harris, S. Roberts, and A. Yeh, “Analysis and
Presentation of Recovered Software Architectures,” Proceed-
ings of Working Conference on Reverse Engineering (WCRE),
Monterey, CA, IEEE Computer Society Press (November
1996), pp. 153-162.

J. Ousterhout, Tel and the Tk Toolkit, Addison-Wesley Pub-
lishing Co., Reading, MA (1994).

S. Tilley, K. Wong, M.-A. Storey, and H. Miiller, “Program-
mable Reverse Engineering,” International Journal of Soft-
ware Engineering and Knowledge Engineering 4, No. 4, 501-
520 (December 1994).

H. Miiller, M. Orgun, S. Tilley, and J. Uhl, “A Reverse En-
gineering Approach to Subsystem Structure Identification,”
Journal of Software Maintenance: Research and Practice 5, No.
4, 181-204 (December 1993).

L. Wall, T. Christiansen, and R. Schwartz, Programming Perl,
O’Reilly and Associates Inc., 101 Morris Street, Sebastopol,
CA 95472 (1996).

T. McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering SE-2, 308-320 (1976).

M. Halstead and H. Maurice, Elements of Software Science,
Elsevier North-Holland Publishing Co., New York (1977).
R. Stallman, “Emacs: The Extensible, Customizable, Self-
Documenting Display Editor,” Proceedings of the Symposium
on Text Manipulation, Portland, OR (June 1981), pp. 147-
156.

S. Mancoridis and R. Holt, “Extending Programming Envi-
ronments to Support Architectural Design,” Proceedings of
the Seventh International Workshop on Computer-Aided Soft-
ware Engineering (CASE), Toronto, Ontario, IEEE Computer
Society Press (July 1995), pp. 110-119.

S. Mancoridis, The Star System, Ph.D. thesis, Department of
Computer Science, University of Toronto, 10 King’s College
Road, Toronto, Ontario, Canada M5S 3G4 (1996).

D. Kafura and G. Reddy, “The Use of Software Complexity
Metrics in Software Maintenance,” IEEE Transactions on
Software Engineering SE-13, No. 3, 335-343 (March 1987).
B. Curtis, S. Sheppard, P. Milliman, M. Vorst, and T. Love,
“Measuring the Psychological Complexity of Software Main-
tenance Tasks with the Halstead and McCabe Metrics,” IEEE
Transactions on Software Engineering SE-5, 96-104 (March
1979).

E. Buss, R. DeMori, W. M. Gentleman, J. Henshaw, H. John-
son, K. Kontogiannis, E. Merlo, H. A. Miiller, J. Mylopou-
los, S. Paul, A. Prakash, M. Stanley, S. R. Tilley, J. Troster,
and K. Wong, “Investigating Reverse Engineering Technol-
ogies for the CAS Program Understanding Project,” IBM Sys-
tems Journal 33, No. 3, 477-500 (August 1994).

D. Schefstrom and G. Van den Broek, Tool Integration: En-
vironments and Frameworks, John Wiley & Sons, Inc., New
York (1993).

ECMA: Portable Comumon Tool Environment, Technical Re-
port ECMA-149, European Computer Manufacturers Asso-
ciation, Geneva, Switzerland (December 1990).

S. Reiss, “Connecting Tools Using Message Passing in the
Field Environment,” IEEE Software 7, No. 3, 57-66 (July
1990).

M. R. Cagan, “The HP SoftBench Environment: An Archi-
tecture for a New Generation of Software Tools,” Hewlett-
Packard Journal 41, No. 3, 36-47 (June 1990).

The Common Object Request Broker: Architecture and Spec-
ification, Object Management Group, Inc., Framingham Cor-
porate Center, 492 Old Connecticut Path, Framingham, MA
01701 (December 1991).

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

37.
38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

. B. Curtis, M. Kellner, and J. Over, “Process Modeling,” Com-

munications of the ACM 35, No. 9, 75-90 (September 1992).
“Collaborative Computing,” Communications of the ACM
(December 1991), special issue.

Special Issue on Cooperative Information Systems, J. Mylopou-
los and M. Papazoglou, Editors, IEEE Expert, to appear 1997.
G. Kaiser, S. Dossick, W. Jiang, and J. Yang, “An Architec-
ture for WWW-based Hypercode Environments,” Proceed-
ings of the 19th Intermational Conference on Software Engineer-
ing (ICSE), Boston, MA, IEEE Computer Society Press (May
1997), pp. 3-13.

Visual Reengineering Toolset, McCabe & Associates, 5501 Twin
Knolls Road, Suite 111, Columbia, MD 21045. More infor-
mation can be found at the Internet World Wide Web site
http://www.mccabe.com/visual/reeng.html.

R. Arnold, Software Reengineering, IEEE Computer Society
Press (1993).

G. Kotik and L. Markosian, “Automating Software Analysis
and Testing Using a Program Transformation System,” Rea-
soning Systems Inc., 3260 Hillview Avenue, Palo Alto, CA
94304 (1989).

T. J. Parr, Language Translation Using PCCTS and C++: A
Reference Guide, Automata Publishing Company, 1072 South
De Anza Blvd., Suite A107, San Jose, CA 95129 (1996).
P. Devanbu, “GENOA—A Customizable Language- and
Front-End Independent Code Analyzer,” Proceedings of the
14th International Conference on Software Engineering (ICSE),
Melbourne, Australia, IEEE Computer Society Press (May
1992), pp. 307-317.

G. Murphy, D. Notkin, and S. Lan, “An Empirical Study of
Static Call Graph Extractors,” Proceedings of the 18th Inter-
national Conference on Software Engineering, Berlin, Germany,
IEEE Computer Society Press (March 1996), pp. 90-100.
G. Murphy and D. Notkin, “Lightweight Lexical Source
Model Extraction,” ACM Transactions on Software Engineer-
ing and Methodology, 262-292 (April 1996).

M. Weiser, “Program Slicing,” IEEE Transactions on Soft-
ware Engineering SE-10, No. 4, 352-357 (July 1984).

K. Wong, “Managing Views in a Program Understanding
Tool,” Proceedings of CASCON 93, Toronto, Ontario (Oc-
tober 1993), pp. 244-249.

M. Consens, A, Mendelzon, and A. Ryman, “Visualizing and
Querying Software Structures,” Proceedings of the 14th In-
ternational Conference on Software Engineering (ICSE), Mel-
bourne, Australia; IEEE Computer Society Press (May 1992),
pp- 138-156.

L. Wills and C. Rich, “Recognizing a Program’s Design: A
Graph-Parsing Approach,” JEEE Software 7, No. 1, 82-89
(January 1990).

T. Biggerstaff, B. Mitbander, and D. Webster, “Program Un-
derstanding and the Concept Assignment Problem,” Com-
munications of the ACM 37, No. 5, 72-83 (May 1994).

A. Quilici, “A Memory-based Approach to Recognizing Pro-
gramming Plans,” Communications of the ACM 37, No. 5,
84-93 (May 1994).

R. Selby and V. Basili, “ Analyzing Error-Prone System Struc-
ture,” IEEFE Transactions on Software Engineering SE-17, No.
2, 141-152 (February 1991).

S. C. Choiand W. Scacchi, “Extracting and Restructuring the
Design of Large Systems,” JEEE Software 7, No. 1, 66-71
(January 1990).

K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and
M. Bernstein, “Pattern Matching for Clone and Concept De-
tection,” Journal of Automated Software Engineering 3, 77—
108 (1996).

FINNIGAN ET AL.

591

56. H. Johnson, “Navigating the Textual Redundancy Web in
Legacy Source,” Proceedings of CASCON 96, Toronto, On-
tario (November 1996), pp. 7-16.

57. S. Baker, “On Finding Duplication and Near-Duplication in
Large Software Systems,” Proceedings of the Working Con-
ference on Reverse Engineering (WCRE), Toronto, Ontario,
IEEE Computer Society Press (July 1995), pp. 86-95.

58. M. Olsem, Software Reengineering Assessment Handbook,
United States Air Force Software Technology Support Cen-
ter, 00-ALC/TISEC, 7278 4th Street, Hill Air Force Base,
Utah 84056-5205 (1997).

59. P.Devanbu, R. Brachman, P. Selfridge, and B. Ballard, “Lass-
ie: A Knowledge-based Software Information System,” Comn-
munications of the ACM 34, No. 5, 34-49 (May 1991).

60. P. Devanbu and M. Jones, “The Use of Description Logics
in KBSE Systems,” to appear in ACM Transactions on Soft-
ware Engineering and Methodology.

61. P. Constantopoulos, M. Jarke, J. Mylopoulos, and Y. Vas-
siliou, “The Software Information Base: A Server for Reuse,”
Very Large Data Bases Journal 4, 1-43 (1995).

62. Building Tightly Integrated Software Development Environ-
ments: The IPSEN Approach, M. Nagl, Editor, Lecture Notes
in Computer Science 1170, Springer-Verlag, Inc., New York
(1996).

63. R.Patil, R. Fikes, P. F. Patel-Schneider, D. McKay, T. Finin,
T. Gruber, and R. Neches, “The DARPA Knowledge Shar-
ing Effort: Progress Report,” Proceedings of the Third Inter-
national Conference on Principles of Knowledge Representa-
tion and Reasoning, Boston (1992).

64. T. Gruber, “A Translation Approach to Portable Ontology
Specifications,” Knowledge Acquisition 5, No. 2, 199-220
(March 1993).

65. P.Bernstein and U. Dayal, “An Overview of Repository Tech-
nology,” International Conference on Very Large Databases,
Santiago, Chile (September 1994).

66. J. Hammer, H. Garcia-Molinas, J. Widom, W, Labio, and
Y. Zhuge, “The Stanford Data Warehousing Project,” IEEE
Data Engineering Bulletin (June 1995).

67. H. Jagadish, A. Mendelzon, and T. Milo, “Similarity-based
Queries,” Proceedings of the Fourteenth ACM SIGACT-SIG-
MOD-SIGART Symposium on Principles of Database Systems
(PODS), San Jose, CA (May 1995), pp. 36-45.

68. 1. Jurisica and J. Glasgow, “Improving Performance of Case-
based Classification Using Context-based Relevance,” Inter-
national Journal of Artificial Intelligence Tools, special issue
of IEEE ITCAI-96 Best Papers 6, No. 3&4 (1997, in press).

69. “Special Issue: Metadata for Digital Media,” W. Klas and
A. Sheth, Editors, ACM SIGMOD Record 23, No. 4 (Decem-
ber 1994).

70. Fifth International World Wide Web Conference, Paris, May
1996.

71. I. Pitkow and K. Jones, “Supporting the Web: A Distributed
Hyperlink Database System,” presented at Fifth International
World Wide Web Conference (WWW96), Paris (May 1996).

72. G. Wiederhold, “The Conceptual Technology for Mediation,”
International Conference on Cooperative Information Systems,
Vienna (May 1995).

Accepted for publication July 21, 1997.

Patrick J. Finnigan IBM Software Solutions Division, Toronto
Laboratory, 1150 Eglinton Avenue East, North York, Ontario,
Canada M3C 1H7 (electronic mail: finnigan@vnet.ibm.com).
Mr. Finnigan is a staff member at the IBM Toronto Software
Solutions Laboratory, which he joined in 1978. He received the

592 FINNIGAN ET AL.

M.Math. degree in computer science from the University of Wa-
terloo in 1994, and is a member of the Professional Engineers
of Ontario. He was principal investigator, at the IBM Centre for
Advanced Studies of the Consortium for Software Engineering
Research (CSER) project, migrating legacy systems to modern
architectures, and is also executive director of the Consortium
for Software Engineering Research, a business/university/
government collaboration to advance software engineering prac-
tices and training, sponsored by Industry Canada.

Richard C. Holt Department of Computer Science, University of
Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada
N2L 3G1 (electronic mail: holt@turing.toronto.edu). Dr. Holt was
a professor at the University of Toronto from 1970 to 1997 and
is now a professor at the University of Waterloo. His Ph.D. work
on deadlock appears in many books on operating systems. He
worked on a number of compilers such as Cornell’s PL/C (PL/T)
compiler, the SUE compiler (an early machine-oriented lan-
guage), the SP/k compiler (PL/I subsets for teaching), and the
Euclid and Concurrent Euclid compilers. He codeveloped the
S/SL parsing method, which is used in a number of software prod-
ucts. He is coinventor of the Turing programming language, which
is used in 50 percent of Ontario high schools and universities. He
was awarded the CIPS 1988 national award for software inno-
vation, the 1994-5 ITAC national award for software research,
and shared the 1995 ITRC award for technology transfer. He is
the author of a dozen books on languages and operating systems.
His current area of research is in software architectures, concen-
trating on a method called Software Landscapes used to orga-
nize the programs and documents in a software development proj-
ect. He has served as Director of ConGESE, the cross-Ontario
Consortium for Graduate Education in Software Engineering.

Ivan Kalas Centre for Advanced Studies, IBM Software Solutions
Division, Toronto Laboratory, 1150 Eglinton Avenue East, North
York, Ontario, Canada M3C 1H7 (electronic mail: kalas@
torolab.vnet.ibm.com). Mr. Kalas is a research staff member at
the Centre for Advanced Studies, IBM Canada Laboratory. His
research interests are in the area of object-oriented design, object-
oriented concurrent systems, programming environments, and
programming languages. He holds degrees in mathematics and
physics, and a master’s degree in mathematical physics from the
University of Toronto. He joined IBM in May of 1989.

Scott Kerr Department of Computer Science, University of Toronto,
10 King’s College Road, Toronto, Ontario, Canada M5S 3G4 (elec-
tronic mail: skerr@cs.toronto.edu). Mr. Kerr is a research asso-
ciate and master’s student at the Department of Computer Sci-
ence, University of Toronto. He received his B.Sc. from the
University of Toronto in 1996. He is presently working at the Cen-
tre for Advanced Studies at the IBM Toronto Laboratory as well
as at the University of Toronto in the areas of conceptual mod-
eling and software engineering.

Kostas Kontogiannis Department of Electrical and Computer En-
gineering, University of Waterloo, 200 University Avenue West, Wa-
terloo, Ontario, Canada N2L 3G1 (electronic mail: kostas@swen.
uwaterloo.ca). Dr. Kontogiannis is an assistant professor at the
University of Waterloo, Department of Electrical and Computer
Engineering. He received a B.Sc. in mathematics from the Uni-
versity of Patras, Greece, an M.Sc. in computer science and ar-
tificial intelligence from Katholieke Universiteit Leuven, Belgium,
and a Ph.D. in computer science from McGill University, Can-
ada. His main area of research is software engineering. He is ac-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

tively involved in several Canadian Centres of Excellence: the Con-
sortium for Software Engineering Research (CSER), the
Information Technology Research Centre (ITRC) of Ontario, and
the Institute for Robotics and Intelligent systems (IRIS).

Hausi A. Miiller Department of Computer Science, University of
Victoria, P.O. Box 3055, MS-7209, Victoria, B.C., Canada V8W 3P6
(electronic mail: hausi@csr.uvic.ca). Dr. Miiller is an associate pro-
fessor of computer science at the University of Victoria where
he has been since 1986. From 1979 to 1982 he worked as a soft-
ware engineer for Brown Boveri & Cie in Baden, Switzerland (now
called ASEA Brown Boveri). He received his Ph.D. in computer
science from Rice University in 1986. In 1992 and 1993 he was
on sabbatical leave at the IBM Centre for Advanced Studies in
the Toronto Laboratory, working with the program-understand-
ing group. He is a principal investigator of CSER (Consortium
for Software Engineering Research), a Canadian Centre of Ex-
cellence sponsored by NSERC, NRC, and industry. One of the
main objectives of the centre is to investigate software migration
technology. His research interests include software engineering,
software evolution, software reverse engineering, software archi-
tecture, program understanding, software reengineering, and soft-
ware maintenance. Recently, he has served as program cochair
and steering committee member for three international confer-
ences: ICSM-94 (International Conference on Software Main-
tenance); CASE-95 (International Workshop on Computer-Aided
Software Engineering); and IWPC-96 (International Workshop
on Program Comprehension). He is on the editorial board of
IEEE Transactions on Software Engineering (TSE) and a mem-
ber of the executive committee of the IEEE Technical Council
of Software Engineering (TCSE).

John Mylopoulos Department of Computer Science, University
of Toronto, 10 King’s College Road, Toronto, Ontario, Canada M5S
3G4 (electronic mail: jm@ai.toronto.edu). Dr. Mylopoulos is a pro-
fessor of computer science at the University of Toronto. His re-
search interests include knowledge representation and concep-
tual modeling, covering languages, implementation techniques,
and applications. Dr. Mylopoulos has worked on the development
of requirements and design languages for information systems,
the adoption of database implementation techniques for large
knowledge bases and the application of knowledge base tech-
niques to software repositories. He is currently leading a number
of research projects and is principal investigator of both national
and provincial Centres of Excellence for Information Technol-
ogy. Dr. Mylopoulos received his Ph.D. degree from Princeton
University in 1970. His publication list includes more than 130
refereed journal and conference proceedings papers and four ed-
ited books. He is the recipient of the first-ever Qutstanding Ser-
vices Award given out by the Canadian Al Society (CSCSI), a
corecipient of the most influential paper award of the 1994 In-
ternational Conference on Software Engineering, a Fellow of the
American Association for Al (AAAI), and an elected member
of the VLDB Endowment Board. He has served on the editorial
board of several international journals, including the ACM Trans-
actions on Software Engineering and Methodology (TOSEM), the
ACM Transactions on Information Systems (TOIS), and the VLDB
Journal and Computational Intelligence.

Stephen G. Perelgut IBM Software Solutions Division, Toronto
Laboratory, 1150 Eglinton Avenue East, North York, Ontario, Can-
ada M3C 1H7 (electronic mail: perelgut@vnet.ibm.com). Mr. Perel-
gut received his M.Sc. degree in computer science from the Uni-
versity of Toronto in 1984. His research interests include compiler

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

design and development, software engineering, software reuse,
and electronic communications as they affect virtual communi-
ties. He is currently a full-time member of the IBM Centre for
Advanced Studies and acting as both a principal investigator on
the software bookshelf project as well as program manager for
CASCON ’97.

Martin Staniey Techne Knowledge Systems Inc., 439 University
Avenue, Suite 900, Toronto, Ontario, Canada M5G 1Y8 (electron-
ic mail: mts@cs.toronto.edu). Mr. Stanley is President and CEO
of Techne Knowledge Systems Inc., a startup company formed
by a group of researchers from the Universities of Toronto and
Waterloo specializing in the development of tools for software
re-engineering. Mr. Stanley received his M.S. degree in computer
science from the University of Toronto in 1987. His research in-
terests include knowledge representation and conceptual mod-
eling, with particular application to the building of software re-
positories. He is currently a part-time research associate in the
Computer Science Department at the University of Toronto.

Kenny Wong Department of Computer Science, University of Vic-
toria, P.O. Box 3055, Victoria, B.C., Canada VW 3P6 (electronic
mail: kenw@csr.uvic.ca). Mr. Wong is a Ph.D. candidate in the
Department of Computer Science at the University of Victoria.
His research interests include program understanding, user in-
terfaces, and software integration. He is a member of the ACM,
USENIX, and the IEEE Computer Socicety.

Reprint Order No. G321-5659.

FINNIGAN ET AL. 5§93

