
Services supporting
management of
distributed applications
and systems

by M. A. Bauer
R. B. Bunt
A. El Rayess
P. J. Finnigan
T. Kunz
H. L. Lutfiyya
A. D. Marshall
P. Martin
G. M. Oster
W. Powley
J. Rolia
D. Taylor
M. Woodside

A distributed computing system consists of
heterogeneous computing devices,
communication networks, operating system
services, and applications. As organisations move
toward distributed computing environments,
there will be a corresponding growth in
distributed applications central to the enterprise.
The design, development, and management of
distributed applications presents many difficult
challenges. As these systems grow to hundreds
or even thousands of devices and similar or
greater magnitude of software components, it
will become increasingly difficult to manage
them without appropriate support tools and
frameworks. Further, the design and deployment
of additional applications and services will be, at
best, ad hoc without modelling tools and timely
data on which to base design and configuration
decisions. This paper presents a framework for
management of distributed applications and
systems. The framework is based on a set of
common management services that support
management activities. The services include
monitoring, control, configuration, and data
repository services. A prototype system built on
the framework is described that implements and
integrates management applications providing
visualisation, fault location, performance
monitoring and modelling, and configuration
management. The prototype also demonstrates
how various management services can be
implemented.

D istributed systems must be managed to ensure
that they operate as intended. Distributed ap-

plication management focusses specifically on tools
and services for managing the processes and files of
applications running within a distributed system. It
may be said to sit on top of network management
(for the communications infrastructure) and system
management (for the system services and devices
such as file systems, operating systems, disk drives,
and printers). The management environment has to
collect data about the existence and behaviour of ser-
vices and devices of many kinds. The data have to
be kept for analysis based on different viewpoints,
such as the performance of a particular service, or
the availability of a set of services, and for analysis
over different time scales. The management system
also has to provide automatic reactions of various
kinds to maintain services and service quality.

“Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royaltyprovided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

I 508 BAUER ET AL. 0018-8670/97/$5.00 0 1997 IEM IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Figure 1 MANDAS management framework

MANAGFMENT APPl CATIONS

Compared to network and system management,
there has been little research on distributed appli-
cation management. "4 The distinguishing difficulty
of this level of management is that applications are,
by their nature, more specialised, more distinctive,
and more heterogeneous than network devices or
file services. Management tends to be developed spe-
cifically for one application or one domain. Domain
independence, environment independence, and scal-
ability are necessary characteristics of an effective
solution for application management.

In our previous work2 we proposed a conceptual
framework5 with a central role for several powerful
midlevel management services. These services inter-
acted with managed applications and management
agents, which were integrated by a common data re-
pository. The management services were in turn ex-
ploited by management applications. We have con-
tinued to work on our management framework, in
particular by concentrating on the design, implemen-
tation, and use of management services. This paper
presents our results to date on management services.

First we review our management framework and ex-
plain each of the management service subsystems
that we have been developing as part of the project.
Next we describe a prototype system developed to
evaluate these services and experimental manage-
ment applications. We then position our research
with respect to related work. Finally we present the
lessons we have learned and conclude with directions
for future research.

Management framework and services

MANDAS, the management framework developed in
our previous work, is depicted in Figure 1.

Management applications are used to perform man-
agement tasks, such as system configuration, anal-
ysis of performance bottlenecks, fault detection and
location, report generation, visualisation of network
or system activity, simulation, and modelling.

Playing a central role in our framework is a set of
management sewices, which in our previous work we

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Figure 2 Information model class hierarchy

organised as four subsystems: the repositoly services
subsystem, the configuration services subsystem, the
monitoringsewices subsystem, and the control sewices
subsystem.

Managed objects are abstractions of real managed
resources such as processes or devices. Management
agents carry out management activities on behalf of
management services and applications. For exam-
ple, they may configure the managed resources, mon-
itor their behaviour, and perform control actions on
them. Some agents may be capable of both moni-
toring and controlling functions; others may even
possess some analysis capabilities. Management ser-
vices may communicate with these agents using
SNMP,~ CMIP,’ or proprietary protocols.

Each of the management services subsystems is de-
scribed in detail.

Repository services subsystem. The repository sub-
system provides the database management services
needed by the management applications and the
other subsystems. Three types of data must be han-
dled by the repository subsystem: structural data,
control data, and measurement data.

Structural data consist of descriptions of managed
objects, their relationships, and their environments.
These include, for example, application configura-
tions, workload characteristics, and network topol-
ogy. Structural data typically consist of many in-

stances of relatively few types of objects. These
descriptions can be complex and will typically out-
line the relationships an object has to other objects.
For example, there may be many process instances
active at one time, all of which can be described in
the same way. The description of each process in-
stance contains properties such as process identifier,
parent process identifier, start time and end time,
and relationships to its host, its application, its ex-
ecutable file, its data files, and other processes. Re-
trievals from the structural data are primarily que-
ries using object identifiers or attribute values, or
following relationships from one object to other ob-
jects. Finally, structural data are relatively static since
they are only updated for “significant events,” such
as process creation and process termination. These
properties suggest that an object-oriented informa-
tion model is the most appropriate representation.

We have defined an object-oriented information
model to describe the structural data. A portion of
its class hierarchy is shown in Figure 2; a detailed
description of the model is available.* The classes
in the model describe a distributed application in
terms of its code and run-time components. The code
components of a distributed application include the
files that are used to build an application, such as
source code files (basic engineering objects), object
code files (clusters), executable files (capsules), and
data files. We have chosen to use generic terminol-
ogy from the engineering structures of the Refer-
ence Model for Open Distributed Processing

510 EAUER ET AL. IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

(RM-ODP) in order to accommodate different styles
of applications. The run-time components of a dis-
tributed application include the run-time managed
objects such as application instances and processes.
The relationships between the code and run-time ob-
jects of an application are represented as link or ob-
ject reference attributes in the class definitions.

Control data capture information related to the op-
eration of an application and are of two types. The
first type is the set of environment and initialisation
values for an application instance. The second type
is the set of event notifications generated by a man-
aged object. For example, a process would send a
notification to its management agent for events such
as process creation, process termination, or remote
procedure call (RPC) timeout. A history of the event
notifications may be maintained for use in manage-
ment applications, such as fault management.

Measurement data describe the run-time operation
of an object. They may be data collected by mon-
itoring the object, such as process CPU use or pro-
cess disk I/O, or they may be derived from collected
data, such as “resource use = CPU use + disk 1i0.”
Measurement data provide the primary input for the
performance management, performance modelling,
and fault management applications. The data pro-
vide both the current state and the execution his-
tory of an application in terms of resource use and
quality of service provided to users.

Accesses to the measurement data consist mainly of
updates by the management agents collecting the
data and retrievals by the management applications
analysing the data. Updates are typical database up-
dates in that the new value is independent of the cur-
rent value, but atypical in that they happen in real
time. The real-time characteristic of updates means
that the overhead incurred by an update must be
minimised and so favours a design in which updates
can be performed on databases local to the manage-
ment agents. Retrievals, on the other hand, do not
have real-time requirements like updates, but they
may involve data about more than one managed ob-
ject or summaries of the data across one or more
dimensions. For example, an analysis of resource us-
age may require examining usage totals for an en-
tire system, an application, or an individual process,
on an hourly, daily, or weekly basis. It will also be
necessary to maintain historical data for certain types
of analyses. Thus, the service to provide storage and
management of measurement data must support
both complex retrievals and real-time updates. One

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

approach to providing the service is with a data ware-
house lo that will allow collection of the measurement
data at distributed, independent sites and will also
integrate copies of the data in a common database
for querying and analysis.

The different characteristics of the three types of data
meant that no single type of database system could
efficiently support all the data. This fact led to a re-
pository subsystem composed of two different repos-
itories: the Management Information Repository to
store structural and control data, and the Measure-
ment Data Warehouse to store measurement data.

Management Information Repository. The Manage-
ment Information Repository (MIR) implements the
information model and is used to store structural
data and control data. It can be implemented with
a client/server architecture in which the MIR server
stores the data and provides retrieval and update
functions to clients. Clients (users or management
applications) retrieve data from the server in two
ways, by issuing queries to the server searching for
objects matching certain criteria, or by using a brows-
ing paradigm to locate objects by exploiting the struc-
ture of the information model.

Clients interact with the MIR server through a col-
lection of functions called the MIR client library. The
MIR client library presents clients with a view of the
MIR that is consistent with the MANDAS information
model. It also encapsulates communication so that
interaction with the MIR server can be independent
of other management services. There are three ba-
sic object types used in the MIR: management
metaobjects, management schema objects, and man-
agement data objects. Schema objects are similar to
classes in an object-oriented programming language.
They define the attributes that a data object may con-
tain. The attributes are further grouped into cate-
gories that are defined by a metaobject. Each schema
object is an instance of one or more metaobjects
(thus specifying the categories of the attributes), and
each data object is an instance of a schema object.

The MIR client library provides functions to connect
to and disconnect from the MIR, to create, modify,
and retrieve metaobjects, schema objects, and data
objects, and to define query conditions and issue data
object queries.

Measurement Data Warehouse. The Measurement
Data Warehouse, shown in Figure 3, stores the mea-
surement data and the event histories. The data

Figure 3 The Measurement Data Warehouse
"_

DATA WAREHOUSE

MEASUREMENT DATA SOURGES

warehouse approach allows us to separate the real-
time updates of the measurement data from the com-
plex data analysis performed by management appli-
cations. The Measurement Data Warehouse is made
up of the following components:

A collector is responsible for propagating data from
a measurement data source into the warehouse.
The measurement data source can be of various
types, for example, a file, or an agent that emits
a data stream using a standard or proprietary pro-
tocol. The collector takes the data from the source,
converts it into repository format, then passes the
data to the integrator.
The integrator combines data from the various data
sources, translates the data into changes to be ap-
plied to the views in the warehouse, then applies
the changes to the warehouse data.
The data warehouse is typically a relational data-
base management system that maintains the mea-
surement data in a form suited to analytical pro-
cessing. Aggregates along various dimensions may
be maintained as materialised views of the base

data to support faster querying of the measurement
data.
The view creator allows the system manager to de-
fine the views of the data that are to be kept in the
warehouse.
The aggregate navigator translates high-level data
requests from the analytical processing into que-
ries on the views in the data warehouse.

Configuration services subsystem. Structural data
that capture the structure and relationships of a sys-
tem and application are referred to as configuration
data. Configuration data have both static and dy-
namic aspects. Static configuration data describe the
organisation of the system and applications at start-
up. Changes made to the system or application while
the system is running create dynamic configuration
data. Both a user request to start an application and
a process spawning a subprocess represent the types
of events that change a system's configuration. The
configuration services subsystem is responsible for
detecting, collecting, and maintaining descriptive and

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

location information about the entities of the dis-
tributed system.

Configuration information is stored in the MIR. A
service" is needed to enable management applica-
tions and other management service subsystems to
update the configuration information as a result of
changes. This service uses the MIR client library to
provide a registration service and a query service to
other management entities. The registration services
permit registration of various system and applica-
tion components in the MIR. The entities that can
be registered, and the services responsible for doing
so, are shown in Table 1. The services available for
retrieving information about system and applica-
tion components from the repository are shown in
Table 2.

Monitoring and control services subsystem. In our
original management framework, we considered
monitoring and control services as two separate sub-
systems. Our experiences to date suggest that they
should be combined into one subsystem, supported
by process instrumentation.

The monitoring subsystem is responsible for mon-
itoring the behaviour of managed objects in the dis-
tributed system. Measurement data are collected by,
or from, management agents and stored via the re-
pository subsystem. Subsequently, data may be re-
trieved from the repository for analysis. Results may
be returned to the repository for other uses, such as
for later display or for further analysis.

The monitoring subsystem must be able to determine
appropriate agents and information in response to
requests for past, current, or future information.
Such requests could originate from administrators
via management applications or come from other
management service subsystems. Accordingly, the
monitoring subsystem is responsible for initiating the
collection of information at appropriate times, del-
egating monitoring requests to remote monitoring
components or to subordinate systems and devices,
coordinating the collection of data from multiple
agents, and ensuring that ongoing monitoring activ-
ities continue even under failures.

The control subsystem encompasses the set of com-
ponents responsible for controlling the behaviour of
managed objects. Control activities may also be car-
ried out by interacting with management agents. The
control subsystem requests may come from various
management applications, from the monitoring sub-

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

Table 2 Query services

system, or from the configuration subsystem. For ex-
ample, the monitoring subsystem or management
tools may trigger appropriate control actions to be
taken when exceptions on managed objects arise.

Both monitoring and control aspects of distributed
application management make use of management
agents and require processes to be instrumented. An
instrumented manageable process is an application
process with embedded instrumentation. Such a pro-
cess can maintain management information, respond
to management requests, and generate event reports.
Thus, instrumentation provides aspects of both mon-
itoring and control services. More details on the de-
sign and implementation of the instrumentation are
available. 12~13 The instrumentation components, de-
picted graphically in Figure 4, are described below:

The manugement coordinator facilitates commu-
nication between management agents and an in-
strumented process. Its role includes message rout-
ing for requests, replies, and reports flowing
between the management system and the instru-
mentation code. The management coordinator,
upon receiving incoming requests from manage-
ment agents, invokes the appropriate functional-
ity in the instrumentation code. Similarly, the in-
strumentation code sends requests or reports to
the appropriate management agents through the
management coordinator.

Figure 4 Instrumentation architecture and environment

Instrumentation code provides an internal view of
the managed process. There are two types of in-
strumentation code: sensors and actuators. Sensors
encapsulate management information. They col-
lect, maintain, and (perhaps) process this informa-
tion within the managed process. Sensors exhibit
monitor-like qualities in that they encapsulate
management information and provide an interface
through which probes, other sensors, and the man-
agement coordinator can access their state in a con-
trolled manner. Sensors can be provided for a va-
riety of performance metrics, to measure resource
usage, to collect accounting statistics, and to de-
tect faults. Sensors get their input data from probes
inserted at strategic points in the process code or
by reading other sensors. Sensors provide their in-
formation to the management coordinator in the
form of periodic reports, alarm reports (when ex-
ceptional or critical circumstances arise), or in re-
sponse to explicit requests. The second type of in-
strumentation code is an actuator. The actuator
encapsulates management functions that exert con-
trol over the managed process to change its op-
eration.

Instrumentation probes are embedded in the pro-
cess to facilitate interactions with the instrumen-
tation code (the sensors and actuators). Probes
may be implemented as macros, function calls, or
method invocations that are injected, during de-
velopment, into the instruction stream of the ap-
plication at locations called probe points.

We now illustrate these concepts with an example.
We may specify that a client process should receive
a response to a remote procedure call within x sec-
onds. A probe is injected before and after each re-
mote procedure call. The probe before the remote
procedure call includes code to initialise a variable
with the current time. The probe after the remote
procedure call includes code to determine the
elapsed time. This elapsed time is passed to a sen-
sor. The sensor determines if a threshold has been
exceeded. If it has, an event report is sent through
the management coordinator to the management
agent. If the management system decides to change
the threshold from x seconds to x’ seconds, a mes-
sage is sent through the management coordinator,
which then informs the sensor.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

A prototype management system

A key aspect of our work has been to evaluate and
refine the proposed framework and services via pro-
totypes and experimentation. A prototype imple-
mentation (Figure 5) demonstrating some of our
ideas and concepts was shown at the Centre for Ad-
vanced Studies conference (CASCON) in 1996. The
prototype platform was the Open Software Foun-
dation's Distributed Computing Environment* *
(OSF DCE* *), l4 which was chosen because of its avail-
ability and our past experience with it. In this sec-
tion we describe the management applications that
made use of the management services, our manage-
ment agent, our use of instrumented processes to
implement aspects of the monitoring and control ser-
vices, the implementation details of the MIR and
Measurement Data Warehouse, how the configura-

tion services subsystem was implemented, how the
prototype operates, and the interactions among its
components.

Management applications. To validate the manage-
ment services as well as to investigate aspects of man-
agement applications, it was important to have, as
part of the prototype system, several management
applications.

Event visualisation. POET, Partial Order Event Trac-
er,15 is a tool for collecting and visualising event
traces from the execution of distributed applications.
Although POET was originally intended for use as a
debugging tool,16 its event displays are also useful
for visualising the operation of an application in pro-
duction use.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

POETS notion of an event is fairly general, which al-
lows it to remain independent of the target system
generating the events. In the context of DCE, for ex-
ample, events represent the creation and deletion
of processes, threads and mutexes, RPC commu-
nication, and thread-synchronisation events such as
mutex lock and unlock. POET displays show differ-
ent event types with different combinations of open
and filled circles and squares. Each entity (such as
a process or a mutex) is visualised as one “trace line”;
events occurring within this entity are placed along
the trace line in such a way that the underlying par-
tial order on events is preserved. Events represent-
ing an interaction between entities are connected by
an arrow showing the direction of information flow.
In the case of an RPC, for example, the call event
and the receive event are paired, with the call event
occurring in a client process thread and the receive
event occurring in a server process thread. In this
context, POET can be used to view an application’s
execution on an ongoing basis, scrolling the display
automatically when the current display fills up. This
allows a user to focus on the current activity of the
application or system being monitored.

POETprovides abstraction operations to group events
into abstract events and traces into clusters. These
abstractions can, in turn, be grouped again into high-
er-level abstractions, leading to tree-structured ab-
straction hierarchies. The user can navigate the ab-
straction hierarchies to visualise the execution at an
appropriate abstraction level. 15,18 The abstraction hi-
erarchies can be built manually or by using automatic
tools. 19~20 Various forms of pattern specification and
matching to automatically scan the incoming event
trace are also supported. Some examples of these
facilities are the flagging of potential race situations,
the detection of user-specified global predicates, or
the automatic abstraction of certain user-specified
communication patterns.

Pe$orrnance management. Delays caused by poor
performance at the application level or network level
can seriously affect the usability and effectiveness of
a distributed application, or an entire distributed
environment. Both application developers and man-
agers of a distributed system must therefore take
steps to ensure that their systems are performing
well.

To that end, we have developed two performance-
related management applications, both of which
share a common subset of performance data stored
in the Measurement Data Warehouse.

516 BAUER ET AL.

Measurement and modelling of RPC traffic. RPC per-
formance is critically important to the distributed ap-
plications we are interested in. A real-time perfor-
mance monitoring tool was used to visualise DCE RPC
performance data obtained from the Measurement
Data Warehouse. RPCS are decomposed by DCE run-
time software into a series of protocol data units
(PDUs), the size of which is implementation-depen-
dent. These PDUS are further decomposed by net-
work software into a series of IP (Internet Protocol)
packets on the network. The superposition of these
two processes determines the arrival process. The
tool provides a visual picture of some of these char-
acteristics in “real time,” and can be used to observe
the effects of application, system, and network fac-
tors on traffic patterns. Network-level performance
is presented as a set of times: the interarrival times
for all IP packets, the interarrival times for PDus, and
the interarrival times for IP packets in PDUS. The use
of this information in performance visualisation is
illustrated in Sun et al. 21; its use in performance pre-
diction and workload modelling is discussed in de-
tail in Sunz2

Automatic construction of predictive models. Predic-
tive performance models for distributed application
systems can be used by distributed application de-
velopers and performance management staff to make
quantitative comparisons between software design
and system configuration alternatives. Models and
their performance evaluation techniquessz can also
be used in capacity planning, to determine whether
specific application objects should be placed in the
same server, or how server processes should be al-
located to nodes for a given workload mix of appli-
cation requests.

We build these models based on data, collected about
applications as they run, that are stored in the Mea-
surement Data Warehouse. The models require in-
formation about hardware resource demands and
about remote procedure call interactions between
application objects. Some information is collected
from the operating system using management agents,
some from probes in the “midware,” and some from
probes inserted in the application.

Automating fault location. One aspect of distributed
application management is fault management- de-
tecting that the behaviour of an application has de-
viated from the specification of its desired behav-
iour. This deviation is referred to as a failure, and
is manifested through observedsymptoms. Symptoms
are detected and reported by instrumentation and

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

management agents. At the source of a failure is a
fault (or possibly several faults). Symptoms alone do
not provide enough information to allow the fault
to be corrected: many faults may give rise to the same
symptom. We have developed a management appli-
cation, the fault management tool,26 that automates
the process of fault location. The steps in this pro-
cess are: reducing the number of symptoms for fur-
ther examination, determining a set of system ob-
jects that could be the source of the fault, examining
the failure history of these objects to determine an
order in which to test them, then, finally, testing each
object in turn. The tool makes use of configuration
and repository services to determine the configura-
tion of applications and hardware (to find the set of
objects that could be the source of the fault), and
of management agents and instrumentation for de-
termining the possible causes of a fault (through sta-
tus checking and testing).

Configuration management application. The config-
uration management application can retrieve con-
figuration information about distributed applications
from the MIR, including the structure of executing
distributed applications, the source code, and the net-
work topology. The user interacts with the config-
uration management application to start, stop, view,
and manage applications.

The POET event server as management agent. The
POET-based event visualisation management appli-
cation described earlier has its data supplied by a
separate process called the POET event server. In pre-
vious work we used management agents that con-
formed to CMIP, with all the communication layers
that entails. Since the POET event server is able to
accept messages from applications and forward these
messages to the visualiser, we chose to experiment
with it to see if it can be used with other manage-
ment applications as a “lighter-weight” management
agent.

The existing POET infrastructure was enhanced to
support a wider variety of management applications
as follows. Each management application interested
in event information defines its own target-system
instrumentation, using the underlying POET event-
collection functions. Events are typed, and event
types are grouped into classes, one for each man-
agement application. As part of the registration of
each event class, the event server is provided with
the name of a class-specific client. When events of
a class other than POET appear in the event stream,
the event server will buffer them in a bounded buffer

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

and, if necessary, start up the corresponding client.
It is up to the class-specific clients to query the event
server, using the standard protocol, for their event
data. Also, once the connection is established, such
clients can return control information via the event
server to the embedded instrumentation. The base
instrumentation package provides for the registra-
tion of “callback” functions by the class-specific in-
strumentation packages. These callback functions
will be invoked when control information reaches
the instrumentation stubs.

This design has allowed the integration of event data
collection for performance analysis, fault detection, and
visualisation, all using the same basic infrastructure.

Instrumentation. We developed an instrumentation
library for the prototype that includes the following
sensors and actuators:

Fault detection sensors. These sensors collect in-
formation about remote procedure call timeouts
and response times.
RPC statistics sensors. These sensors compute RPC
statistics (e.g., average service time) at the end of
each reporting interval, then report them to the
management coordinator.
Process control actuators. These actuators control
process termination, process suspension, and pro-
cess priority modification and change the length
of the interval between RPC statistics event reports.

The following probes were inserted into source code
by hand:

1. Process-instrumentationlnit(). For a process to be
manageable, it is necessary that the process en-
try point have this instrumentation probe. It:

Retrieves the binding handle of the POET event
server. The binding handle contains the infor-
mation needed by a process to establish com-
munication with the appropriate POET event
server.
Performs registration. The POET event server
is notified of the existence of a new process and
is provided with information about the process,
such as its process identifier, parent process
identifier, host, and start time.
Creates the management coordinator and sen-
sors. A management thread is created that be-
comes the management coordinator, the sen-
sors, and the actuators.

MIR CLIENTS
,. - - ~

MIR SERVER .. I .. : I

.. ...

...

MIR CLIENT MANAGEMENT
LIBRARY APPLICATIONS

2. Process-rpcRequestBegin() and Process-rpcRe-
questEnd(). These are inserted before and after
each remote procedure call. They update the RPC
statistics and fault detection sensors.

3. Process-instrumentationShutdown(). This probe
notifies the POET event server of the termination
of a process.

Management Information Repository. The MIR pro-
totype is depicted in Figure 6. The MIR server has
two components: the Telos Repository, which pro-
vides the backend object-oriented database for the
MIR, and the MIR server interface, which takes re-
quests from an MIR client and translates them into
requests to the Telos Repository, returning query re-
sults when necessary. TelosZ7 is a conceptual mod-
elling language that provides the concepts and fa-
cilities necessary to represent the different types of
data objects and their relations relevant to distrib-
uted application management.

The Telos Repository used for the MIR prototype is
the University of Toronto implementation of the
Telos language. This implementation uses Object-
Store** as the underlying storage mechanism.

Although MIR clients could theoretically use the in-
terface to the Telos Repository directly, an interme-

518 BAUER ET AL.

diate layer (the server interface) was built between
the repository and the clients for the following rea-
sons:

Database independence. The MIR server interface
buffers the MIR clients from the specifics of the Te-
10s Repository. This will allow changes to the un-
derlying storage mechanism with minimal modi-
fications to the overall system. Only the backend
of the MIR server interface would need to be mod-
ified in order to accommodate such a change. The
MIR client interface would remain stable, thus re-
quiring no change to the possibly numerous MIR
clients.
Multiplexing. The communication mechanism used
by the Telos Repository allows only a single client
to access the repository at a given time. The MiR
server uses threads to service and coordinate mul-
tiple clients, sending one request at a time to the
Telos Repository.
Extended query capabilities. The Telos Repository
provides very limited query capabilities. The MiR
server interface extends these capabilities to in-
clude conjunctive queries based on instance-ofcon-
ditions, is-a relations, and queries by attribute
value. The MIR server interface generates a query
that can be processed by the Telos Repository,
sends the request to the repository, then filters the

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

result to return only the objects requested by the
MIR client.

The MIR server interface is implemented in C + +
and runs on an IBM RISC/6000* (RS/6000*) processor
on top of OSF DCE. The MIR server interface com-
municates with the Telos Repository via the Telos
message bus (TMB) API (application programming
interface). Strings that are parsed and understood
by the Telos Repository, called s-expressions, are
passed from the MIR server interface to the Telos
Repository. Requests are satisfied by the repository
by returning s-expressions to the MIR server inter-
face.

Clients communicate with the MIR via DCE RPCs us-
ing the functions provided by the MIR API (the client
library). The client library provides users with both
a C and a C + + interface to the MIR.

In the CASCON '96 demo, the MIR was used to store
the configuration information for distributed appli-
cations. The configuration management service used
the MIR to register applications and their associated
processes. Information such as process identifier,
parent process identifier, host, start time, and many
other parameters were stored about each process.
Static information about an application, such as ref-
erences to the executable code, pointers to the source
code, and other information, was also stored in the
MIR. When an application was started, an applica-
tion instance was registered with the MIR for use by
other management services and applications.

Measurement Data Warehouse. At the time of
CASCON '96, the Measurement Data Warehouse was
in the initial design stages. For this reason, we used
a simplified version of the warehouse to demonstrate
the concept. This warehouse comprised three main
components, the collector, the integrator, and the
underlying database, DATABASE 2*/6000 (DB2*/6000).

For the CASCON '96 demo, processes associated with
the target application were instrumented to collect
information about each RPC, including the RPC iden-
tifier, the hosts of the processes involved, and the
start and completion times for each RPC. A table was
set up in DB2 to store these data.

The RPC information was passed from the instru-
mented processes to the collector via the POET event
server. In a fully implemented Measurement Data
Warehouse, the data might come from an event
stream, a flat file, or possibly another database. The

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

formation and passing it to the integrator. The in-
terprocess communication between the collector and
the integrator was done using IBM's CORBA** imple-
mentation, DSOM. **
The sole responsibility of the integrator in the
CASCON '96 demo was to submit the data to DB2. This
was done using embedded SQL (structured query lan-
guage). The integrator will serve a much larger role
in a full-scale data warehouse. The data stored in
the data warehouse were retrieved and used by the
performance monitoring tool, where they were used
to provide an application-level view of system per-
formance.

Implementation of configuration services. The con-
figuration services subsystem described earlier was
to be provided by a DCE server with the interface
shown in Tables 1 and 2. This server process is an
MIR client, hence it uses the MIR client library to store
the information it collects in the MIR. Because of time
constraints, this server was not ready in time for use
in the demonstration (it has since been completed),
so dynamic configuration information was main-
tained by the configuration management application.

The prototype in operation. We now describe the
operation of the prototype, highlighting the inter-
actions of the management components that are in
place. We begin by describing the sequence of op-
erations that take place when an application instance
is started:

1. Information about the application, which includes
the list of executable components needed, is
stored in the MIR. Currently, this information is
entered by hand by the developer or installer of
the application.

2. The configuration management application is
started. The user selects the Start option. This
presents another menu with two options, one be-
ing Start Application. Selecting this option results
in a window appearing with a list of applications,
from which the user selects an application to be
started.

3. After an application is selected, the configuration
management application:

Generates a unique application instance iden-
tifier for the chosen application and registers

the application instance using the RegisterAp-
plicationlnstance registration service
Retrieves information about the executable
components using the RetrieveExelnApp config-
uration service. This returns information that
includes the names of the executable files and
the host on which each executable file should
run.
Starts an instance of the POET event server to
act as management agent for the application in-
stance
Sends control commands to the event server to
cause it to run the executable components mak-
ing up the application on the appropriate hosts

4. When a process starts, it executes Process-instru-
mentationhit(), which registers it.

5. The POET event server forwards the registration
information to the MIR, where it is stored. It uses
the RegisterProcess service to do this.

The user can now retrieve information about the new
application instance through the configuration man-
agement application. The information is retrieved
using the RetrieveApplnstance and RetrieveProcln-
Applnstance query service operations.

Once the processes in an application instance are
operating, the probes Process-rpcRequestBegin() and
Process-rpcRequestEnd() will update the informa-
tion in the RPC statistics sensor. Periodically, the RPC
statistics sensor computes statistics from the raw data
collected by the probes and sends them to the POET
event server. The POET event server forwards them
to the Measurement Data Warehouse, where the
performance-related management applications can
retrieve them.

Suppose that a remote procedure call from one pro-
cess to another fails. The fault detection sensor will
generate a symptom, which will be passed to the POET
event server, then to an instance of the fault man-
agement tool. As previously described, the fault man-
agement tool wiil attempt to determine the source
of the fault.

When the user of the configuration management ap-
plication selects the Stop Application option, a list of
application instances is displayed. Once the user se-
lects an application instance, the configuration man-
agement application identifies its component pro-
cesses using the MIR and, using the control services,
instructs each of the processes to stop. It also causes

the application instance information to be removed
from the MIR.

Related work

In this section we review related work in the areas
of management frameworks, information models,
and management services.

Management frameworks. Two management frame-
works related to our work are Tivoli* * and the Java* *
management application programming interface.
Tivoli provides a framework for management appli-
cations that helps to tie together management in-
formation from many heterogeneous sources. The
sources can include SNMP agents, other monitors, and
even the MANDAS management services infrastruc-
ture. Attributes for each source are defined using
application description files. ’’ Special-purpose
agents called sentries acquire management data from
managed components. The application description
files are used to interpret the data and make them
available to Tivoli-based management applications.
The layer of abstraction introduced between man-
agement applications and monitors helps to conceal
the specifics of each monitor to provide for more eas-
ily developed management applications.

Our framework is similar to the Tivoli framework
in that we also provide a common model for describ-
ing managed objects and the data collected about
them. Both have developed a set of services that
maintain the information within a common repos-
itory and allow it to be queried.

The Java management application programming in-
terface (JMAPI) 30 provides a framework for manage-
ment applications that uses Java and internet tech-
nologies to interact with sources of management
information. The high level of connectivity offered
by Java helps to simplify the problem of connecting
with a heterogeneous collection of monitors. In this
way the JMAPI competes with, yet complements,
Tivoli. Furthermore, JMAPI provides a framework for
the development of management application user
interfaces in Java; however, it does not provide any
specific management applications.

Other management frameworks, which have less in
common with our work, include:

OSF DME. This provides a single methodology (in-
dependent of the underlying operating system) for
deploying, updating, and controlling software in

a heterogeneous environment, thus simplifying
these operations.
NMF (Network Management Forum) OMNI-
Point. 32 The focus is on network management and
services management.
IBM Sy~temView*.~~ This product focusses on the
management of system services.
IBM TMN (Telecommunications Management Net-
work) WorkBench. 34 This focusses on the manage-
ment of switching and transmission components.
The TMN WorkBench eliminates much of the rou-
tine work involved in generating code for data
structures from a GDMO (Guidelines for Defini-
tion of Managed Objects) specification. The TMN
Workbench allows the use of GDMO ASN.l (Ab-
stract Syntax Notation l), and SMI (Structure of
Management Information) notations for the spec-
ification of managed objects, which can then be
used by CMIP agents.

These four frameworks are intended for the man-
agement of entities at the network or systems levels,
in contrast to our work, which is at the application
level.

Information models. A choice of standards for con-
figuration information models does exist. While the
following standards are not explicitly associated with
management, they can be adapted easily for the man-
agement domain:

ISO management 7,35,36

Internet SNMP-styled management 6,3"39

A CORBA-based approach4'
An OSF DCE-based a p p r ~ a c h ' ~
DMTF/DM141

Choices of standard management models relevant
to distributed applications did not exist when we be-
gan our work. Recently, the Internet Engineering
Task Force (IETF) and the Desktop Management
Task Force (DMTF) have proposed models that cover
some of application management as defined in this
paper.

The IETF has proposed two extensions to its Man-
agement Information Base (MIB) structure: the sys-
tem application MIB~' and the application M I B . ~ ~ The
system application MIB maintains information about
applications already installed and running on a node.
This information is limited to what can be obtained
without instrumenting the application code, such as
the application packages installed and their compo-
nent files and executables, the application instances

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

started and the processes making up an instance, and
system-level measurements such as CPU usage and
memory usage of a process. The application MIB ex-
tends the system application MIB structure to include
attributes that require instrumentation of the appli-
cation. In particular, it adds information on open
files, open connections to other processes, and trans-
action statistics. The MIB descriptions are low level
compared to our information model. Our model pro-
vides powerful object-oriented abstraction mecha-
nisms, like inheritance, and more detailed descrip-
tions of the code and run-time views of a distributed
application than can be formulated with the MIB
structures. Our model also describes the distributed
run-time environment of an application, while the
MIB structures can only describe local nodes indi-
vidually.

The DMTF has proposed the Management Informa-
tion Format (IV~IF),~' which is similar to MIB struc-
tures with respect to its modelling capabilities and
has the same shortcomings as MIB structures when
compared with our In another effort, the
DMTF has proposed the Common Information Model
(c IM) ,~~ which in the same way as our model applies
object-oriented modelling techniques to network and
systems management. The CIM application schema
definition, developed by the DMTF Application Man-
agement Working Committee,45 is the component
of the CIM closest to our work. The application
schema deals with the installation and deployment
of an application over its lifetime but does not in-
clude information relevant to other aspects of man-
agement, such as descriptions of the run-time envi-
ronment. Our model, on the other hand, provides
a more complete description of a distributed appli-
cation that can be used for configuration manage-
ment, fault management, and performance manage-
ment.

Monitoring and control of distributed applications.
Some work has been done in implementing specific
tools for monitoring and controlling distributed ap-
plications. Some of these tools are:

Meta t ~ o l k i t . ~ This toolkit is a system for manag-
ing distributed applications developed using the
ISIS distributed programming toolkit.46
Huang and Kintala tools.47 This set of tools pro-
vides services for detecting whether a process is
alive or dead, specifying and checkpointing crit-
ical data, recovering checkpointed data, logging
events, locating and reconnecting to a server, and
replicating user-specified files on a backup host.

BAUER ET AL. 521

mation about the resources of computer systems
and environment services in large, heterogeneous
distributed environments. Megascope is an auton-
omous distributed application, built on top of
OSF DCE. It extends the basic functionality of DCE
by adding to it a service that provides the cell re-
source information.
MAL (Management Adaptation Library).49 This
work focusses on instrumentation. A separate
thread is used to support management.

The Meta toolkit is meant to be within a specialised
environment that is provided by ISIS. Our work is
more general in that we do not make any particular
assumptions about the underlying environment. The
Megascope tool is specific to DCE services while our
work also encompasses distributed applications that
use DCE services (or any other midware environ-
ment). The services provided by the Huang and Kin-
tala tools can be implemented by an agent, or by sen-
sors and actuators. MAL is similar to our work in
instrumentation except that we further developed an
architecture for instrumentation that includes both
sensors and actuators.

Configuration services. A review of the academic lit-
erature and current r e ~ e a r c h ~ ” - ~ ~ on configuration
management finds it to be concerned primarily with
the development of languages and environments for
the implementation of reconfigurable systems. Most
of these languages and systems adopt the principle
of the strict separation between a module configura-
tion language, which describes the overall static and
dynamic structure of the program, and a modulepro-
gramming language, which is used to implement the
algorithms within the application program. Recon-
figuration facilities are usually restricted to a class
of changes and are embedded into the module con-
figuration language.

Summary. As can be seen, much of the work just
described focusses on a single aspect of management.
For example, much of the work in monitoring tools
does not explicitly consider integration of services
for the collection, storage, and analysis of data about
the internal behaviour of processes.

In contrast to the bottom-up approach seen in much
of the related work, we have chosen to consider the
requirements of management applications. This has
allowed us to extract a set of common requirements

5-22 BAUER ET AL.

Lessons learned

Our work on the MANDAS framework has taught us
a number of lessons concerning the management of
distributed applications.

The framework developed in our initial work2
treated monitoring and control services as two sep-
arate subsystems. We now see them as one subsystem
implemented through a combination of instrumen-
tation and management agents, with the only differ-
ence between control and monitoring being the di-
rection of information flow: out of a managed process
for monitoring and into it for control.

The management agents used in managing distrib-
uted applications may, and likely will, have a range
of capabilities and rely on a variety of communica-
tion mechanisms. We have developed agents that use
standard protocols, such as SNMP or CMIP, to com-
municate with management applications and service
subsystems. We have also developed alternative
agents, such as those described in this paper, using
alternative protocols. We need to balance the ease
of using agents with standard services, for example,
a CMIP communication interface, where there is no
need to translate management requests into lower
level primitives, against the “weight” of the imple-
mentation of such an agent. To facilitate develop-
ment of management applications it is most impor-
tant to isolate the management agents from the
management applications, so that developers can
concentrate on functionality rather than protocol de-
tails.

Our development of the prototype emphasised the
importance of the information model in the frame-
work. The information model provides a common
description of all aspects of an application that can
be used by all the management applications. The
model and its associated MIR support integration of
the set of management applications into the man-
agement framework.

Distributed application management requires the
collection and storage of different types of data with
very different characteristics and access require-
ments. No one type of database system can ade-
quately support all the requirements, so the repos-
itory service must consist of multiple database
systems. We found that a reasonable approach was

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

erful object-oriented model to store the structural
data and a second system to handle the measure-
ment data with their frequent updates and relational
database-like querying requirements.

Acquiring the data needed to perform management
is a complex and tedious task, so a management
framework must include tools to support data ac-
quisition. This includes tools to automatically extract
configuration information from application files and
tools to support the automatic generation of instru-
mentation code.

A distributed system running a number of distrib-
uted applications has the potential to generate vast
quantities of management data. To be scalable, ef-
ficient means of handling large amounts of data and
approaches to filtering or aggregating data will be
needed.

We underestimated the importance of the human/
computer interface in managing distributed appli-
cations. More research is needed to develop effec-
tive ways of screening and presenting relevant data
to the user.

Future directions

One of the motivations for developing a management
framework is to enable the development of tools for
automating some of the steps involved in generat-
ing and running manageable applications. We have
developed, and are continuing to develop, such tools.
Two examples of these tools, one aimed at creating
applications, the other at creating management
agents, are described here.

An automated model builder for distributed appli-
cations has been integrated into a prototype of IBM’s
Distributed Application Development Toolkit
(DADT). With DADT, an application designer can
specify object interfaces and choices for midwares.
DADT then generates “wrapper” code to cause the

midwares. The model-building systems5 has three
major components:

An instrumentation package and tool for captur-
ing information about application level objects
A statistical analyser that deduces some model pa-
rameters from measurement data that cannot be
measured

I appropriate object interactions with the specified

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997
I

the management information repository and cre-
ates models for performance evaluation

Presently, the development of management agents
is difficult, time-consuming, and ad hoc. There are
many decisions that must be made in the develop-
ment of agents, such as what services to offer, and
what relationships the agent should have with the
environment (i.e., hardware or software resources,
user interface, etc.). We have identified a set of ser-
vices, independent of the underlying management
protocols, that is required from all or most agents;
these include accepting monitoring and control re-
quests from managers, executing these requests, re-
turning results, notifying the manager of predeter-
mined events of interest, and communicating with
other entities. We have also identified a generic ar-
chitecture for agents that describes the services that
the agents should or could provide, the components
of an agent, and how the components satisfy the ser-
vices. Based on this infrastructure, we have devel-
oped a tool that allows the user to specify the type
of agent using a simple graphical user interfa~e.””~
The tool allows the user to enter the required in-
formation, ensures that the information entered is
valid, then generates the code for the specified agent.
We are currently examining how to extend this tool
to a Java-based network environment.

We have developed a number of prototype manage-
ment applications, but determining the kinds of man-
agement applications that will be needed in the field
remains an open problem. We believe that the use
of policies may help drive this search. Policies orig-
inate with the business needs and objectives of the
enterprise and represent the operational require-
ments of the systems, services, and applications. We
believe that the specification and enforcement of pol-
icies will give insight into the management applica-
tions needed and the services to support these ap-
plications.

Our current management applications have to know
about the types and locations of management agents.
Management applications could be more easily de-
veloped if these details were hidden by a service that
takes requests for data and determines the best way
of getting those data. We have begun work on such
a service.

Finally, we have had some success in integrating dif-
ferent management applications into a prototype.
What is still needed is a consistent user interface used

BAUER ET AL. 523

by all the management applications-a “manage-
ment station” with a consistent user interface, rather
than a collection of disparate tools.

Acknowledgments

James P. Black and Vidar Vetland contributed to
the work described in this paper. This research was
supported by the IBM Centre for Advanced Studies
and the Natural Sciences and Engineering Research
Council of Canada. We would also like to thank the
referees of this paper for their excellent comments
and constructive suggestions for improving the pa-
per.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Open Software
Foundation, Inc., Object Design, Inc., Object Management
Group, Tivoli Systems Inc.. or Sun Microsystems, Inc.

Cited references and notes

1. M. A. Bauer, N. Coburn, D. L. Erickson, P. J. Finnigan,
J. W. Hong, P.-.& Larson, J. Pachl, J. Slonim, D. J. Taylor,
and T. J. Teorey, “A Distributed System Architecture for a
Distributed Application Environment,”ZBMSystemsJournal
33, No. 3, 399-425 (1994).

2. M. A. Bauer, P. J. Finnigan, J. W. Hong, J. A. Rolia, T. J.
Teorey, and G. A. Winters, “Reference Architecture for Dis-
tributed Systems Management,”IBMSystemsJournal33, No.

3. M. A. Bauer, H. L. Lutfiyya, J. W. Hong, J. P. Black, T. Kunz,
D. J. Taylor, T. P. Martin, R. B. Bunt, D. L. Eager, P. J. Finni-
gan, J. A. Rolia, c. M. Woodside, and T. J. Teorey,
“MANDAS: Management of Distributed Applications and
Systems,” Proceedings, International Workshop on Future
Trends in Distributed Computing Systems (FTDCS95), Cheju,
Korea (August 1995), pp. 200-206.

4. K. Marzullo, R. Cooper, M. D. Wood, and K. P. Birman,
“Tools for Distributed Application Management,” IEEE
Computer 25, No. 8, 42-51 (August 1991).

5. This framework (theMNDASManagementFramework), its
subsequent refinements, and the results reported in this pa-
per were developed as part of the MANDAS (MANagement
of Distributed Applications and Systems) project.

6. J. D. Case, M. Fedor, M. L. Schoffstall, and C. Devin, Simple
Network Management Protocol (SNMP), The Internet Engi-
neering Task Force, Request for Comments 1157 (May 1990).

7. Information Processing Systems-Open Systems Intercon-
nection, Common Management Information Protocol Speci-
fication, International Organization for Standardization, In-
ternational Standard 9596-1 (1991).

8. P. Martin and W. Powley, “A Management Information
Model for Distributed Applications Management,”Proceed-
ings of CASCON ’96, Toronto, Canada (November 1996), pp.

9. K. Raymond, “Reference Model of Open Distributed Pro-
cessing: A Tutorial,” J. De Meer, B. Mahr, and s. Storp, Ed-
itors, Open Distributed Processing II (C-20), Elsevier Science
B. V., Amsterdam (1994).

3, 426-444 (1994).

54-63.

10. J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-
Molina, and J. Widom, “A System Prototype for Warehouse
View Maintenance,” Proceedings of the Workshop on Mate-
rialized Views: Techniques and Applications, Montreal, Can-
ada (June 1996), pp. 26-33.

11. Z. I. Najib, Maintaining Configuration Information in Distrib-
uted Systems, master’s degree thesis, The University of West-
ern Ontario, London, Canada. In preparation.

12. M. J. Katchabaw, S. L. Howard, H. L. Lutfiyya, and M. A.
Bauer, “Efficient Management Data Acquisition and Run-
Time Control of DCE Applications Using the OS1 Manage-
ment Framework,” Proceedings of the Second International
IEEE Workshop on Systems Management, Toronto, Canada
(June 1996), pp. 104-111.

13. M. J. Katchabaw, H. L. Lutfiyya, A. D. Marshall, and M. A.
Bauer, “Policy-Driven Fault Management in Distributed Sys-
tems,” Proceedings of the Seventh International Symposium on
Software Reliability Engineering (ISSRE ’96), White Plains, NY
(October 31-November 2, 1996).

14. Introduction to OSFDCE, Open Software Foundation, Cam-
bridge, MA (1992).

15. D. J. Taylor, “The Use of Process Clustering in Distributed-
System Event Displays,” Proceedings of CASCON ’93, Vol. 1,
Software Engineering, Toronto, Canada (October 1993), pp.
505-512.

16. D. J. Taylor, T. Kunz, and J. P. Black, “A Tool for Debug-
ging OSF DCE Applications,” Proceedings of the 12thAnnual
International Computer Software andApplications Conference,
Seoul, Korea (August 1996), pp. 440-446.

17. The term “mutex” (an abbreviation of “mutual exclusion”)
refers to a mechanism to ensure that only one thread at a
time can perform a particular action. Most often, the action
in question is accessing a shared variable. Typically, a thread
acquires a mutex associated with a shared variable (the mu-
tex mechanism guarantees that it can only do so if no other
thread currently holds the mutex), updates the shared vari-
able, then releases the mutex.

18. T. Kunz, “Visualizing Abstract Events,” Proceedings of
CASCON ’94, Toronto, Canada (November 1994), pp. 334-
343.

19. T. Kunz, “Reverse Engineering Distributed Applications: An
Event Abstraction Tool,” InternationalJournalof Software En-
gineering and Knowledge Engineering 4, No. 3,303-323 (Sep-
tember 1994).

20. T. Kunz and J. P. Black, “Using Automatic Process Cluster-
ing for Design Recovery and Distributed Debugging,” IEEE
Transactions on Software Engineering 21, No. 6,515-527 (June
1995).

21. Y . Sun, R. Bunt, and G. Oster, “Measuring RPC Traffic in
an OSi2 DCE Environment,” Proceedings of the Fifh Inter-
national Symposium on Modeling Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS ‘97),
Haifa, Israel (January 1997), pp. 51-54.

22. Y. Sun, Measuring and Modelling RPC Performance in OSF
DCE, master’s degree thesis, Department of Computer Sci-
ence, University of Saskatchewan, Saskatoon, Canada (Au-
gust 1997).

23. J. Rolia, V. Vetland, and G. Hills, “Ensuring Responsive-
ness and Scalability for Distributed Applications,” Proceed-
ings of CASCON ’95, Toronto, Canada (November 1995), pp.

24. J. A. Rolia and K. C. Sevcik, “The Method of Layers,” IEEE
Transactions on Software Engineering21, No. 8,689-700 (Au-
gust 1995).

25. C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majum-

28-41.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

dar, “The Stochastic Rendez-vous Network Model for Per-
formance of Synchronous Client-Server-like Distributed Soft-
ware,” IEEE Transactions on Computers 44, No. 1, 20-34
(January 1995).

26. C. Turner, Fault Location in DistributedSystems, master’s de-
gree thesis, The University of Western Ontario, London, On-
tario (September 1995).

27. J. Mylopoulos, A. Borgida, M. Jarke, and K. Koubarakis, Te-
10s: A Language for Representing Knowledge about Informa-
tion Systems (revised), Technical Report KRR-TR-89-1, De-
partment of Computer Science, University of Toronto,
Toronto, Canada (August 1990).

28. CORBA (Common Object Request Broker Architecture),
defined by the Object Management Group (OMG), is a step
toward standardization for interoperability among different
hardware and software products. For more information,
see http://www.omg.org/. IBM’s Distributed System Object
Model (DSOM) is consistent with the CORBAspecification.

29. TivoliApplicatwns Management Spec$ication 1.1; available from
http:/hYww.tivoli.com/amsreg/~S+Spec+Registration.htmV.

30. Java Management API (JMAPI); available from http:/lwww.
javasoft.com/products/JavaManagement/.

31. The OSF Distributed Management Environment (DME) Ar-
chitecture, Open Software Foundation, Cambridge, MA (May
1992).

32. Network Management Forum, Discovering OMNlPoint, PTR
Prentice Hall, Englewood Cliffs, NJ (1993).

33. SystemView Structure, SC31-7038, IBM Corporation (March
1993); available through IBM branch offices.

34. TMN Workbench forAlX Power ToolsforApplication Develop-
ment, available from http://wwv.training.ibm.com/telmedid
tmnworkb.htm.

35. Information Processing Systems-Open Systems Intercon-
nection, Basic Reference Model-Part 4: Management Frame-
work, International Organization for Standardization, Inter-
national Standard 7498-4 (1991).

36. Information Processing Systems-Open Systems Intercon-
nection, Systems Management Overview, International Orga-
nization for Standardization, International Standard 10040
(1991).

37. J. D. Case, K. McCloghrie, M. T. Rose, and S. Waldbusser,
Structure of Management Information for Version 2 of the In-
ternet-Standard Network Management Framework, The Inter-
net Engineering Task Force, Request for Comments 1441
(April i993).

38. J. D. Case. K. McCloghrie. M. T. Rose, and S. Waldbusser,
Structure o fManagemk Information for Version 2 of the Sim-
ple Network Management Protocol (SNMPv2), The Internet
Engineering Task Force, Request for Comments 1442 (April
1993).

39. M. T. Rose and K. McCloghrie, Structure and Identijication
of Management Information for TCPIlP Based Internets, The
Internet Engineering Task Force, Request for Comments
1155 (May 1990).

40. The Common Object Request Broker Architecture: Architec-
ture and Specification, Object Management Group, OMG
Document No. 91.12.1 (1991).

41. DesktopManagementlnterjace Specijication Version 2.00, The
Desktop Management Task Force, Hillsboro, OR (1996).

42. C. Kalbfleisch, C. Krupczak, R. Presuhn, and J. Saperia,Ap-
plication Management MIB, Internet Engineering Task Force,
Internet Draft (July 1997; available at ftp://ftp.ietf.org/
internet-drafts/draft-ietf-applmib-mib-O4.txt).

43. C. Krupczak and J. Saperia,Dejinitions of System-Level Man-
aged Objects for Applications, Internet Engineering Task

Force, Internet Draft (April 1997; available at ftp://ftp.ietf.
orgiinternet-drafts/draft-ietf-applmib-sysapplmib-08.txt).

44. Common Information Model (CIM) Version 1 , The Desktop
Management Task Force, Hillsboro, OR (April 1997).

45. The Common Information Model Application Schema Defi-
nition, The Desktop Management Task Force, Hillsboro, OR
(February 1997).

46. K. Birman and R. Cooper, The ISIS Project: Real Experience
with a Fault Tolerant Programming System, Technical Report
TR90-1183, Department of Computer Science, Cornell Uni-
versity, Ithaca, NY (1990).

47. Y. Huang and C. Kmtala, “Software Implemented Fault Tol-
erance: Technologies and Experience,”Proceedings ofthe 23rd
International Symposium on Fault Tolerant Computing, Tou-
louse, France (June 1993), pp. 2-9.

48. B. Obrenic, K. S. DiBella, and A. S. Gaylord, “DCE Cells
under Megascope: Pilgrim Insight into the Resource Status,”
DCE-The USF Distributed Computing Environment:
ClientIServerModel and Beyond, International DCE Workshop,
Karlsruhe, Germany, Number 731 in Lecture Notes in Com-
puter Science, Springer-Verlag (October 1993).

49. P. Trommler, A. Schade, and M. Kaiserswerth, Object lnstru-
mentation for Distributed Applications Management, Techni-
cal Report RZ 2730 (88162), IBM Research Division (July

50. F. Cristian, “Automatic Reconfiguration in the Presence of
Failures,” IEE Software Engineering Journal 8, No. 2,53-60
(March 1993).

51. M. Endler, “A Model for Distributed Management of Dy-
namic Changes,”Proceedings, Fourth lFlP/IEEE International
Workshop on Distributed Systems: Operations and Management
(DSUM’93), Long Branch, NJ (October 1993).

52. F. Faure and D. Marquie, “Service Dynamic Management:
A Configuration Micro-Manager,” Proceedings, Fourth
IFIPIEEE International Workshop on Distributed Systems: Op-
erations and Management (DSOM’93), Long Branch, NJ (Oc-
tober 1993).

53. C. Hofmeister, E. White, and J. Purtilo, “Surgeon: A Pack-
ager for Dynamically Reconfigurable Distributed Applica-
tions,” IEE Software Engineekg Journal 8, No. 2, 95-101
(March 1993).

54. J. Kramer, “Configurable Distributed Systems,”IEESoftware
Engirzeering Journal 8, No. 2, 51-52 (March 1993).

55. M. Qin, R. Lee, V. Vetland, and J. Rolia, “Automatic Gen-
eration of Layered Queueing Models of Distributed Appli-
cations,” Proceedings of CASCON ’96 (CD-ROM version),
Toronto, Canada (November 1996).

56. J. Rolia and V. Vetland, “Parameter Estimation for Perfor-
mance Models of Distributed Application Systems,” Proceed-
ings of CASCON ’95, Toronto, Canada (November 1995), pp.

57. G. S. Perrow, The Abstraction and Modelling of Management
Agents, master’s degree thesis, University of Western Ontario,
London, Canada (September 1994).

58. G. S. Perrow, J. W. Hong, M. A. Bauer, and H. Lutfiyya,
MACT User’s Guide Version 1.0, Technical Report 434, De-
partment of Computer Science, University of Western On-
tario, London, Canada (September 1994).

1995).

42-51.

Accepted for publication June 2, 1997.

Michael A. Bauer Department of Computer Science, Middlesex
College, University of Western Ontario, London, Ontario, Canada
N6A 587 (electronic mail: bauer@csd.uwo.ca). Dr. Bauer is Sen-
ior Director, Information Technology Services, at the University

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

of Western Ontario. He is also a professor in, and former chair
of, the Department of Computer Science. His research interests
include distributed computing, applications of high-speed net-
works, and software engineering.

Richard 6. Bunt Department of Computer Science, University of
Saskatchewan, Saskatoon, Saskatchewan, Canada S7N SA9 (elec-
tronic mail: bunt@cs.usask.ca). Dr. Bunt is a professor in, and
former chair of, the Computer Science Department at the Uni-
versity of Saskatchewan. His research interests include perfor-
mance evaluation and distributed systems.

Asham El Rayess Department of Systems and Computer Engi-
neering, Carleton University, Ottawa, Ontario, Canada KlS SB6
(electronicmail: asham@sce.carleton.ca). Mr. El Rayess received
the B.Eng. degree in electrical engineering from the University
of Damascus, Syria in 1992. He is currently pursuing a Ph.D. de-
gree in the Department of Systems and Computer Engineering
at Carleton University. His research interests include distributed
applications management systems, midware environments, and
software performance engineering. He currently holds a research
fellowship from IBM Canada’s Centre for Advanced Studies.

Patrick J. Finnigan IBM Software Solutions Division, Toronto
Laboratory, 1150 Eglinton Avenue East, North York Ontario, Can-
ada M3C 1H7 (electronic mail:finnigan@vnet.ibm.corn). Mr. Finni-
gan is a staff member at the IBM Toronto Software Solutions Lab-
oratory, which he joined in 1978. He received the M.Math. degree
in computer science from the University of Waterloo in 1994, and
is a member of the Professional Engineers of Ontario. He was
principal investigator, at the IBM Centre for Advanced Studies
of the Consortium for Software Engineering Research (CSER)
project, migrating legacy systems to modern architectures, and
is also executive director of the Consortium for Software Engi-
neering Research, a business/university/government collaboration
to advance software engineering practices and training, sponsored
by Industry Canada.

Thomas Kunz Department of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada N2L 3Gl (electronic mail:
tkunz@uwaterloo.ca). Dr. Kunzreceived the Dr. Ing. degree from
the Technical University of Darmstadt, Federal Republic of Ger-
many, in May 1994. He is currently an assistant professor at the
University of Waterloo. His research interests include load bal-
ancing in distributed systems, distributed debugging, management
of distributed applications and systems, mobile computing, and
reverse engineering and program understanding.

Hanan L. Lutfiyya Department of Computer Science, Middlesex
College, University of Western Ontario, London, Ontario, Canada
N6A SB7 (electronic mail: hanan@csd.uwo.ca). Dr. Lutfiyya re-
ceived the Ph.D. degree from the University of Missouri at Rolla
in 1992. She is currently an assistant professor at the University
of Western Ontario. Her research interests include management
of distributed systems, fault tolerance, and software architecture.

I

Andrew D. Marshall Department of Computer Science, Middlesex
College, University of Western Ontario, London, Ontario, Canada
N6A 5B7 (electronic mail:flash@csd.uwo.ca). Mr. Marshall is a
research associate with the MANDAS project at the University
of Western Ontario, where he is a doctoral candidate in com-
puter science. His research interests include management of dis-

5-26 BAUER ET AL.

tributed applications and systems, software engineering for dis-
tributed systems, and software reengineering.

Patrick Martin Department of Computing and Information Sci-
ence, Queen’s University, fingston, Ontario, Canada K7L 3N6 (elec-
tronic mail: martinequcis.queensu.ca). Dr. Martin is an associate
professor at Queen’s University. His research interests include
data warehousing and resource management in database man-
agement systems.

Gregory M. Oster Department of Computer Science, University
of Saskatchewan, Saskatoon, Saskatchewan, Canada S7NSA9 (elec-
tronic mail: oster@cs.usask.ca). Mr. Oster is a research assistant
with the MANDAS project at the University of Saskatchewan.
His current work includes building tools for monitoring the per-
formance of distributed systems.

Wendy Powley Department of Computing and Information Sci-
ence, Queen’s University, Kingston, Ontario, Canada K7L 3N6 (elec-
tronic mail: wendy@qucis.queensu.ca). Ms. Powley is a research
associate with the MANDAS project at Queen’s University. Her
research interests include information repositories and dataware-
houses.

Jerome Rolia Department of Systems and ComputerEngineering
Carleton University, Ottawa, Ontario, Canada KlS 586 (electronic
mail: jar@sce.carletorz.ca). Dr. Rolia is an assistant professor in
the Department of Systems and Computer Engineering at
Carleton University. His research interests include the perfor-
mance engineering, analytic modelling, and management of dis-
tributed application systems,

David Taylor Department of Computer Science, Universig of Wu-
terloo, Waterloo, Ontario, Canada N2L 3G1 (electronic mail:
dtaylor@uwaterloo.ca). Dr. Taylor is a professor of computer sci-
ence at the University of Waterloo, where he has been a faculty
member since 1977. His research interests include distributed-
systems software and software fault tolerance. During the 1991-
1992 academic year he spent a sabbatical at the Centre for Ad-
vanced Studies, IBM Canada Ltd. Laboratory.

Murray Woodside Department of Systems and Computer Engi-
neering, Carleton University, Ottawa, Canada KIS SB6 (electronic
mail: cmw@sce.carleton,ca). Dr. Woodside is professor of com-
puter systems engineering at Carleton University, and holder of
the OCRI/NSERC Industrial Research Chair in Performance En-
gineering of Real-Time Software. His research interests include
software engineering methods that address performance, and
modelling of distributed systems.

Reprint Order No. G321-5656.

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997

