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A distributed computing system consists of 
heterogeneous computing devices, 
communication networks, operating system 
services,  and applications. As organisations move 
toward distributed computing environments, 
there will be a corresponding growth in 
distributed applications central to  the enterprise. 
The  design,  development,  and  management  of 
distributed applications presents many difficult 
challenges. As these systems grow to hundreds 
or  even  thousands of devices  and similar or 
greater magnitude of software components, it 
will become  increasingly difficult to manage 
them without appropriate support tools and 
frameworks. Further, the design  and  deployment 
of additional applications and services will be, at 
best,  ad  hoc without modelling tools and timely 
data on which to base  design  and configuration 
decisions.  This  paper presents a framework for 
management  of distributed applications and 
systems.  The framework is based  on a set of 
common  management  services that support 
management activities. The  services include 
monitoring, control, configuration, and data 
repository services. A prototype system built on 
the framework is described that implements and 
integrates management applications providing 
visualisation, fault location, performance 
monitoring and  modelling,  and configuration 
management.  The prototype also demonstrates 
how  various  management  services  can be 
implemented. 

D istributed systems must be managed to  ensure 
that they operate as intended. Distributed ap- 

plication management focusses specifically on tools 
and services for managing the processes and files of 
applications running within a distributed system. It 
may  be said to sit on top of network management 
(for the communications infrastructure) and system 
management (for the system  services and devices 
such as file  systems, operating systems,  disk  drives, 
and printers).  The management environment has to 
collect data about the existence  and  behaviour of ser- 
vices and devices of many kinds. The  data have to 
be kept for analysis based on different viewpoints, 
such as the performance of a particular service, or 
the availability of a set of services, and  for analysis 
over different time scales. The management system 
also has to provide automatic reactions of various 
kinds to maintain services and service quality. 
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Figure 1 MANDAS management  framework 

MANAGFMENT APPl CATIONS 

Compared to network and system management, 
there has been little research on distributed appli- 
cation management. "4 The distinguishing  difficulty 
of this level of management is that applications are, 
by their nature, more specialised, more distinctive, 
and more heterogeneous  than network devices or 
file  services. Management tends to be  developed spe- 
cifically for one application or  one domain. Domain 
independence, environment independence, and  scal- 
ability are necessary characteristics of an effective 
solution for application management. 

In our previous work2 we proposed a conceptual 
framework5 with a  central role for several powerful 
midlevel management services. These services inter- 
acted with managed applications and management 
agents, which were integrated by a common data re- 
pository. The management services were in turn ex- 
ploited by management applications. We  have con- 
tinued to work  on our management framework, in 
particular by concentrating on the design, implemen- 
tation, and use of management services. This paper 
presents our results to date on management services. 

First we  review our management framework and ex- 
plain each of the management service  subsystems 
that we  have been developing as part of the project. 
Next  we describe a prototype system developed to 
evaluate these services and experimental manage- 
ment applications. We then position our research 
with respect to related work.  Finally we present the 
lessons we  have learned and conclude  with directions 
for future research. 

Management framework and services 

MANDAS, the management framework developed in 
our previous work,  is depicted in Figure 1. 

Management applications are used to perform man- 
agement tasks, such as  system configuration, anal- 
ysis of performance bottlenecks, fault detection and 
location, report generation, visualisation of network 
or system  activity, simulation, and modelling. 

Playing a central role in our framework is a set of 
management  sewices, which  in our previous work we 

IBM SYSTEMS JOURNAL, VOL 36, NO 4, 1997 



Figure 2 Information  model  class  hierarchy 

organised as four subsystems: the repositoly  services 
subsystem, the configuration services subsystem, the 
monitoringsewices subsystem, and the control  sewices 
subsystem. 

Managed  objects are abstractions of real managed 
resources such as processes or devices. Management 
agents carry out management activities on behalf of 
management services and applications. For exam- 
ple,  they may configure the managed resources, mon- 
itor  their behaviour, and perform control actions on 
them. Some agents may be capable of both moni- 
toring and controlling functions; others may  even 
possess some analysis capabilities. Management ser- 
vices  may communicate with these agents using 
SNMP,~  CMIP,’ or proprietary protocols. 

Each of the management services  subsystems  is de- 
scribed in detail. 

Repository services subsystem. The repository sub- 
system provides the  database management services 
needed by the management applications and the 
other subsystems. Three types of data must be han- 
dled by the repository subsystem: structural data, 
control data,  and measurement data. 

Structural  data consist of descriptions of managed 
objects, their relationships, and their environments. 
These include, for example, application configura- 
tions, workload characteristics, and network topol- 
ogy. Structural data typically consist of many in- 

stances of relatively  few  types of objects. These 
descriptions can be complex and will  typically out- 
line the relationships an object has to other objects. 
For example, there may be many process instances 
active at  one time, all of which can be described in 
the same way. The description of each process in- 
stance contains properties such as process identifier, 
parent process identifier, start  time  and  end time, 
and relationships to its host, its application, its  ex- 
ecutable file,  its data files, and  other processes. Re- 
trievals from the structural data  are primarily que- 
ries  using object identifiers or attribute values, or 
following relationships from  one object to  other  ob- 
jects. Finally, structural data are relatively static since 
they are only updated for “significant events,” such 
as process creation  and process termination. These 
properties suggest that  an object-oriented informa- 
tion model is the most appropriate  representation. 

We have defined an object-oriented information 
model to describe the  structural  data. A portion of 
its class hierarchy is  shown in Figure 2; a detailed 
description of the model is available.* The classes 
in the model describe a distributed application in 
terms of its  code and run-time components. The code 
components of a distributed application include the 
files that are used to build an application, such as 
source code files (basic engineering objects), object 
code files (clusters), executable files (capsules), and 
data files. We have chosen to use generic terminol- 
ogy from the engineering structures of the  Refer- 
ence Model for  Open Distributed Processing 
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(RM-ODP) in order to accommodate different styles 
of applications. The run-time components of a dis- 
tributed application include the run-time managed 
objects such as application instances and processes. 
The relationships between the code and run-time ob- 
jects of an application are  represented as link or ob- 
ject reference attributes in the class definitions. 

Control  data capture information related  to the op- 
eration of an application and  are of two  types. The 
first  type  is the set of environment and initialisation 
values for an application instance. The second type 
is the set of event  notifications generated by a man- 
aged object. For example, a process would send a 
notification to its management agent for events such 
as process creation, process termination, or  remote 
procedure call  (RPC) timeout. A history of the event 
notifications may be maintained for use in manage- 
ment applications, such as fault management. 

Measurement  data describe the run-time operation 
of an object. They may be data collected by mon- 
itoring the object, such as process CPU use or pro- 
cess  disk I/O, or they  may be derived from collected 
data, such  as “resource use = CPU use + disk 1i0.” 
Measurement data provide the primary input for the 
performance management, performance modelling, 
and fault management applications. The  data  pro- 
vide both the  current  state and the execution his- 
tory of an application in terms of resource use and 
quality of service provided to users. 

Accesses to  the measurement data consist  mainly of 
updates by the management agents collecting the 
data and retrievals by the management applications 
analysing the data. Updates  are typical database up- 
dates in that the new  value is independent of the cur- 
rent value, but atypical  in that they happen in real 
time. The real-time characteristic of updates means 
that  the overhead incurred by an  update must be 
minimised and so favours a design  in  which updates 
can be performed on databases local to the manage- 
ment agents. Retrievals, on the  other hand, do not 
have real-time requirements like updates, but they 
may  involve data about more than  one managed ob- 
ject or summaries of the  data across one or more 
dimensions. For example, an analysis of resource us- 
age may require examining  usage totals for an en- 
tire system, an application, or an individual process, 
on an hourly, daily, or weekly  basis. It will also  be 
necessary to maintain historical data for certain types 
of analyses. Thus, the service to provide storage and 
management of measurement data must support 
both complex retrievals and real-time updates. One 
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approach to providing the service  is  with a data ware- 
house lo that will  allow collection of the measurement 
data  at distributed, independent sites and will  also 
integrate copies of the  data in a common database 
for querying and analysis. 

The different  characteristics of the three types of data 
meant that no single type of database system could 
efficiently support all the data. This fact led to  a  re- 
pository  subsystem  composed of two  different repos- 
itories: the Management Information Repository to 
store structural and control data,  and  the Measure- 
ment Data Warehouse to  store measurement data. 

Management  Information  Repository. The Manage- 
ment Information Repository (MIR) implements the 
information model and is  used to  store structural 
data  and control data. It can be implemented with 
a client/server architecture in which the MIR server 
stores the  data  and provides retrieval and  update 
functions to clients. Clients (users or management 
applications) retrieve data from the server in two 
ways,  by issuing queries to  the server searching for 
objects  matching certain criteria, or by using a brows- 
ing paradigm to locate objects by exploiting the struc- 
ture of the information model. 

Clients interact with the MIR server through a col- 
lection of functions called the MIR client library. The 
MIR client library presents clients with a view  of the 
MIR that is consistent with the MANDAS information 
model. It also encapsulates communication so that 
interaction with the MIR server can be independent 
of other management services. There  are  three  ba- 
sic object types used in the MIR: management 
metaobjects, management schema  objects, and man- 
agement data objects. Schema objects are similar to 
classes  in an object-oriented programming  language. 
They  define the attributes that a data object may con- 
tain. The  attributes  are  further grouped into  cate- 
gories that are defined by a metaobject. Each schema 
object is an instance of one or more metaobjects 
(thus specifying the categories of the attributes), and 
each data object is an instance of a schema object. 

The MIR client library provides functions to connect 
to and disconnect from the MIR, to  create, modify, 
and retrieve metaobjects, schema objects, and  data 
objects, and to define query conditions and issue data 
object queries. 

Measurement  Data  Warehouse. The Measurement 
Data Warehouse, shown in Figure 3, stores the  mea- 
surement  data and the event histories. The  data 



Figure 3 The  Measurement  Data  Warehouse 
"_ 

DATA WAREHOUSE 

MEASUREMENT DATA SOURGES 

warehouse approach allows us to  separate  the real- 
time updates of the measurement data from the com- 
plex data analysis performed by management appli- 
cations. The Measurement Data Warehouse is made 
up of the following components: 

A collector is  responsible for propagating data from 
a measurement data source into  the warehouse. 
The measurement data source can  be of various 
types, for example, a file, or an agent that emits 
a  data stream using a  standard  or proprietary pro- 
tocol. The collector takes the data from the source, 
converts it into repository format,  then passes the 
data  to  the integrator. 
The integrator combines data from the various data 
sources, translates the  data  into changes to  be ap- 
plied to the views  in the warehouse, then applies 
the changes to  the warehouse data. 
The data warehouse is typically a relational data- 
base management system that maintains the mea- 
surement data in a form suited to analytical pro- 
cessing. Aggregates along various dimensions may 
be maintained as materialised views  of the base 

data to support faster querying of the measurement 
data. 
The view  creator allows the system manager to  de- 
fine the views of the  data  that  are to be kept in the 
warehouse. 
The aggregate navigator translates high-level data 
requests from the analytical processing into  que- 
ries on the views in the  data warehouse. 

Configuration services subsystem. Structural data 
that  capture  the  structure  and relationships of a sys- 
tem and application are referred to as configuration 
data. Configuration data have both static and dy- 
namic aspects. Static configuration data describe the 
organisation of the system and applications at start- 
up. Changes made to the system or application while 
the system  is running create dynamic configuration 
data. Both a user request to start  an application and 
a process spawning a subprocess represent  the types 
of events that change a system's configuration. The 
configuration services  subsystem  is responsible for 
detecting, collecting,  and  maintaining  descriptive  and 
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location information about the entities of the dis- 
tributed system. 

Configuration information is stored in the MIR. A 
service" is needed to enable management applica- 
tions and other management service  subsystems to 
update  the configuration information as a result of 
changes. This service  uses the MIR client library to 
provide a registration service and a query service to 
other management entities. The registration services 
permit registration of various system and applica- 
tion components in the MIR. The entities that can 
be registered, and the services responsible for doing 
so, are shown  in Table 1. The services  available for 
retrieving information about system and applica- 
tion components from the repository are shown  in 
Table 2. 

Monitoring and control services subsystem. In our 
original management framework, we considered 
monitoring and control services  as  two separate sub- 
systems. Our experiences to  date suggest that they 
should be combined into  one subsystem, supported 
by process instrumentation. 

The monitoring subsystem  is responsible for mon- 
itoring the behaviour of managed objects in the dis- 
tributed system. Measurement data are collected by, 
or from, management agents and stored via the  re- 
pository subsystem. Subsequently, data may be re- 
trieved from the repository for analysis. Results may 
be returned  to  the repository for other uses, such as 
for later display or for  further analysis. 

The monitoring  subsystem  must be able to determine 
appropriate agents and information in response to 
requests for past, current, or future information. 
Such requests could originate from administrators 
via management applications or come from other 
management service  subsystems.  Accordingly, the 
monitoring subsystem is responsible for initiating the 
collection of information at appropriate times, del- 
egating monitoring requests to  remote monitoring 
components or  to  subordinate systems and devices, 
coordinating the collection of data from multiple 
agents, and ensuring that ongoing monitoring activ- 
ities continue even under failures. 

The control subsystem encompasses the set of com- 
ponents responsible for controlling the behaviour of 
managed objects. Control activities may also be car- 
ried out by interacting with management agents. The 
control subsystem requests may come from various 
management applications, from the monitoring sub- 
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Table 2 Query services 

system, or from the configuration subsystem. For ex- 
ample, the monitoring subsystem or management 
tools may trigger appropriate control actions to be 
taken when exceptions on managed objects arise. 

Both monitoring and control aspects of distributed 
application management make use  of management 
agents and require processes to be instrumented. An 
instrumented  manageable  process is an application 
process  with embedded instrumentation. Such a pro- 
cess  can  maintain management information, respond 
to management requests, and generate event reports. 
Thus, instrumentation provides aspects of both mon- 
itoring and control services. More details on the de- 
sign and implementation of the instrumentation are 
available. 12~13 The instrumentation components, de- 
picted graphically  in Figure 4, are described below: 

The manugement coordinator facilitates commu- 
nication between management agents and an in- 
strumented process. Its role  includes  message rout- 
ing for requests, replies, and  reports flowing 
between the management system and the instru- 
mentation code. The management coordinator, 
upon receiving  incoming requests from manage- 
ment agents, invokes the  appropriate functional- 
ity  in the instrumentation code. Similarly, the in- 
strumentation code sends requests or  reports  to 
the  appropriate management agents through the 
management coordinator. 



Figure 4 Instrumentation  architecture  and  environment 

Instrumentation  code provides an internal view  of 
the managed process. There  are two types of in- 
strumentation code: sensors and actuators. Sensors 
encapsulate management information. They col- 
lect, maintain, and (perhaps) process this informa- 
tion within the managed process. Sensors exhibit 
monitor-like qualities in that they encapsulate 
management information and  provide an interface 
through which probes, other sensors, and the man- 
agement coordinator can  access their state in a con- 
trolled manner. Sensors can be provided for a va- 
riety of performance metrics, to measure resource 
usage, to collect accounting statistics, and to  de- 
tect faults. Sensors get their input data from probes 
inserted at strategic points in the process code or 
by reading other sensors. Sensors provide their in- 
formation to the management coordinator in the 
form of periodic reports, alarm reports (when ex- 
ceptional or critical circumstances arise), or in re- 
sponse to explicit requests. The second type of in- 
strumentation  code is an  actuator. The actuator 
encapsulates management functions that exert  con- 
trol over the managed process to change its op- 
eration. 

Instrumentation  probes are embedded in the  pro- 
cess to facilitate interactions with the instrumen- 
tation code (the sensors and  actuators). Probes 
may be implemented as macros, function calls, or 
method invocations that  are injected, during de- 
velopment, into  the instruction stream of the ap- 
plication at locations called probe points. 

We  now illustrate these concepts with an example. 
We  may specify that  a client process should receive 
a response to a  remote  procedure call  within x sec- 
onds. A probe is injected before and after each re- 
mote procedure call. The probe before the  remote 
procedure call includes code to initialise a variable 
with the  current time. The probe after  the  remote 
procedure call includes code to  determine  the 
elapsed time. This elapsed time is passed to  a sen- 
sor. The sensor determines if a threshold has been 
exceeded. If it has, an event report is sent through 
the management coordinator to the management 
agent. If the management system decides to change 
the threshold from x seconds to x’ seconds, a mes- 
sage is sent through the management coordinator, 
which then informs the sensor. 
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A prototype management system 

A key aspect of our work has been to evaluate and 
refine the proposed framework and services via pro- 
totypes and experimentation. A prototype imple- 
mentation (Figure 5 )  demonstrating some of our 
ideas and concepts was  shown at the  Centre for Ad- 
vanced Studies conference (CASCON) in 1996. The 
prototype platform was the  Open Software Foun- 
dation's Distributed Computing Environment* * 
(OSF DCE* *), l4 which  was chosen because of its  avail- 
ability and  our past experience with it. In this sec- 
tion we describe the management applications that 
made use of the management services, our manage- 
ment agent, our use of instrumented processes to 
implement aspects of the monitoring and control ser- 
vices, the implementation details of the MIR and 
Measurement Data  Warehouse, how the configura- 

tion services  subsystem  was implemented, how the 
prototype operates, and the interactions among its 
components. 

Management applications. To validate the manage- 
ment services  as  well  as to investigate  aspects of man- 
agement applications, it  was important to have,  as 
part of the prototype system, several management 
applications. 

Event visualisation. POET, Partial Order Event Trac- 
er,15  is a tool for collecting and visualising event 
traces from the execution of distributed applications. 
Although POET was  originally intended for use as a 
debugging  tool,16 its event displays are also useful 
for visualising the operation of an application in pro- 
duction use. 
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POETS notion of an event is  fairly general, which  al- 
lows it to remain independent of the target system 
generating the events. In the context of DCE, for ex- 
ample, events represent  the  creation  and deletion 
of processes, threads  and mutexes, RPC commu- 
nication, and thread-synchronisation events such as 
mutex lock and unlock. POET displays  show  differ- 
ent event types  with different combinations of open 
and filled  circles and squares. Each entity (such as 
a process or  a mutex)  is  visualised as one  “trace line”; 
events occurring within this entity are placed along 
the  trace line in such a way that  the underlying par- 
tial order  on events is preserved. Events represent- 
ing an interaction between entities are connected by 
an arrow showing the direction of information flow. 
In  the case of  an RPC, for example, the call event 
and the receive event are paired, with the call event 
occurring in a client process thread  and  the receive 
event occurring in a server process thread. In this 
context, POET can be used to view an application’s 
execution on an ongoing basis,  scrolling the display 
automatically when the  current display  fills up. This 
allows a user to focus on the  current activity of the 
application or system being monitored. 

POETprovides abstraction operations to group events 
into abstract events and traces into clusters. These 
abstractions can, in turn, be grouped again into high- 
er-level abstractions, leading to  tree-structured  ab- 
straction hierarchies. The user can navigate the ab- 
straction hierarchies to visualise the execution at an 
appropriate abstraction level. 15,18 The abstraction hi- 
erarchies can be built  manually or by using automatic 
tools. 19~20 Various forms of pattern specification and 
matching to automatically scan the incoming event 
trace are also supported. Some examples of these 
facilities are  the flagging  of potential race situations, 
the detection of user-specified global predicates, or 
the automatic abstraction of certain user-specified 
communication patterns. 

Pe$orrnance  management.  Delays caused by poor 
performance at the application level or network  level 
can seriously  affect the usability and effectiveness of 
a distributed application, or  an  entire distributed 
environment. Both application developers and man- 
agers of a distributed system  must therefore  take 
steps to  ensure  that their systems are performing 
well. 

To that  end, we  have developed two performance- 
related management applications, both of which 
share  a common subset of performance data stored 
in the Measurement Data Warehouse. 
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Measurement  and modelling of RPC traffic. RPC per- 
formance is  critically important to  the distributed ap- 
plications we are  interested in. A real-time perfor- 
mance monitoring tool was  used to visualise DCE RPC 
performance data obtained from the Measurement 
Data Warehouse. RPCS are decomposed by DCE run- 
time software into  a series of protocol data units 
(PDUs), the size of which  is implementation-depen- 
dent. These PDUS are  further decomposed by net- 
work software into  a series of IP (Internet Protocol) 
packets on the network. The superposition of these 
two processes determines the arrival process. The 
tool provides a visual picture of some of these  char- 
acteristics in “real time,” and can be used to observe 
the effects of application, system, and network fac- 
tors on traffic patterns. Network-level performance 
is presented as a set of times: the interarrival times 
for all IP packets, the interarrival times for PDus, and 
the interarrival times for IP packets in PDUS. The use 
of this information in performance visualisation is 
illustrated in Sun et al. 21; its use  in performance pre- 
diction and workload modelling is  discussed  in de- 
tail in Sunz2 

Automatic construction of predictive models. Predic- 
tive performance models for distributed application 
systems can be used by distributed application de- 
velopers and performance management staff to make 
quantitative comparisons between software design 
and system configuration alternatives. Models and 
their performance evaluation  techniquessz  can  also 
be used in  capacity planning, to  determine whether 
specific application objects should be placed in the 
same server, or how server processes should be al- 
located to nodes for a given workload mix  of appli- 
cation requests. 

We  build these models  based on data, collected about 
applications as they run,  that  are  stored in the Mea- 
surement  Data Warehouse. The models require  in- 
formation about hardware resource demands and 
about remote  procedure call interactions between 
application objects. Some information is collected 
from the operating system  using management agents, 
some from probes in the “midware,” and some from 
probes inserted in the application. 

Automating fault location. One aspect of distributed 
application management is fault management- de- 
tecting that  the behaviour of an application has de- 
viated from the specification of its desired behav- 
iour. This deviation is referred  to as a failure, and 
is  manifested through observedsymptoms.  Symptoms 
are detected and  reported by instrumentation and 
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management agents. At  the source of a failure is a 
fault (or possibly  several faults). Symptoms alone do 
not provide enough information to allow the fault 
to be corrected: many faults may  give rise to  the same 
symptom.  We  have developed a management appli- 
cation, the fault management tool,26  that  automates 
the process of fault location. The steps in  this pro- 
cess are: reducing the number of symptoms for fur- 
ther examination, determining a set of system ob- 
jects that could be the source of the fault, examining 
the failure history of these objects to  determine  an 
order in  which to test them, then, finally, testing each 
object in turn.  The tool makes use of configuration 
and repository services to determine  the configura- 
tion of applications and hardware (to find the set of 
objects that could be the source of the  fault),  and 
of management agents and instrumentation for de- 
termining the possible causes of a fault (through sta- 
tus checking and testing). 

Configuration  management  application. The config- 
uration management application can retrieve con- 
figuration information about distributed applications 
from the MIR, including the  structure of executing 
distributed applications, the source code, and the net- 
work  topology. The user interacts with the config- 
uration management application to  start, stop, view, 
and manage applications. 

The POET event server as management agent. The 
POET-based event visualisation management appli- 
cation described earlier has its data supplied by a 
separate process  called the POET event  server. In pre- 
vious  work we used management agents that con- 
formed to CMIP, with  all the communication layers 
that entails. Since the POET event server is able to 
accept  messages  from  applications and forward these 
messages to  the visualiser, we chose to experiment 
with  it to see if it  can be used with other manage- 
ment applications as a “lighter-weight” management 
agent. 

The existing POET infrastructure was enhanced to 
support a wider  variety of management applications 
as follows. Each management application interested 
in event information defines its  own target-system 
instrumentation, using the underlying POET event- 
collection functions. Events are typed, and event 
types are grouped into classes, one for each man- 
agement application. As part of the registration of 
each event class, the event server is provided with 
the name of a class-specific client. When events of 
a class other  than POET appear in the event stream, 
the event server will  buffer them in a bounded buffer 
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and, if necessary, start  up  the corresponding client. 
It is up to the class-specific clients to query the event 
server, using the  standard protocol, for their event 
data. Also, once the connection is established, such 
clients can return control information via the event 
server to the embedded instrumentation. The base 
instrumentation package provides for the registra- 
tion of “callback” functions by the class-specific  in- 
strumentation packages. These callback functions 
will be invoked when control information reaches 
the instrumentation stubs. 

This design has allowed the integration of event data 
collection  for  performance  analysis,  fault detection,  and 
visualisation,  all  using the same  basic  infrastructure. 

Instrumentation. We developed an instrumentation 
library for the prototype that includes the following 
sensors and actuators: 

Fault detection sensors. These sensors collect in- 
formation about remote procedure call timeouts 
and response times. 
RPC statistics sensors. These sensors compute RPC 
statistics (e.g., average service time) at  the  end of 
each reporting interval, then  report them to  the 
management coordinator. 
Process control actuators. These actuators control 
process termination, process suspension, and pro- 
cess priority modification and change the length 
of the interval between RPC statistics event reports. 

The following probes were inserted into source code 
by hand: 

1. Process-instrumentationlnit( ). For  a process to  be 
manageable, it  is  necessary that  the process en- 
try point have this instrumentation probe. It: 

Retrieves the binding  handle of the POET event 
server. The binding handle contains the infor- 
mation needed by a process to establish com- 
munication with the  appropriate POET event 
server. 
Performs registration. The POET event server 
is  notified of the existence of a new process and 
is provided with information about the process, 
such as its process identifier, parent process 
identifier, host, and  start time. 
Creates  the management coordinator and sen- 
sors. A management thread is created  that  be- 
comes the management coordinator,  the sen- 
sors, and the actuators. 
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2. Process-rpcRequestBegin( ) and Process-rpcRe- 
questEnd( ). These are inserted before and after 
each remote procedure call.  They update  the RPC 
statistics and fault detection sensors. 

3. Process-instrumentationShutdown( ). This probe 
notifies the POET event server of the termination 
of a process. 

Management  Information  Repository. The MIR pro- 
totype is depicted in Figure 6. The MIR server has 
two components: the Telos Repository, which pro- 
vides the backend object-oriented database for the 
MIR, and the MIR server interface, which takes re- 
quests from an MIR client and translates them into 
requests to the Telos Repository, returning query re- 
sults when necessary. TelosZ7 is a conceptual mod- 
elling language that provides the concepts and fa- 
cilities  necessary to  represent  the different types of 
data objects and their relations relevant to distrib- 
uted application management. 

The Telos Repository used for the MIR prototype is 
the University of Toronto implementation of the 
Telos language. This implementation uses Object- 
Store** as the underlying storage mechanism. 

Although MIR clients could theoretically use the in- 
terface to  the Telos Repository directly, an  interme- 
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diate layer (the server interface) was built between 
the repository and the clients for the following rea- 
sons: 

Database independence. The MIR server interface 
buffers the MIR clients from the specifics of the Te- 
10s Repository. This will  allow changes to the un- 
derlying storage mechanism with  minimal modi- 
fications to  the overall system.  Only the backend 
of the MIR server interface would need to be mod- 
ified  in order to accommodate such a change. The 
MIR client interface would remain stable, thus re- 
quiring no change to  the possibly numerous MIR 
clients. 
Multiplexing. The communication  mechanism  used 
by the Telos Repository allows  only a single client 
to access the repository at a given time. The MiR 
server uses threads to service and coordinate mul- 
tiple clients, sending one request at a time to the 
Telos Repository. 
Extended query capabilities. The Telos Repository 
provides very limited query capabilities. The MiR 
server interface extends these capabilities to in- 
clude  conjunctive queries based on instance-ofcon- 
ditions, is-a relations, and queries by attribute 
value. The MIR server interface generates  a query 
that can be processed by the  Telos Repository, 
sends the request to  the repository, then filters the 
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result to  return only the objects requested by the 
MIR client. 

The MIR server interface is implemented in C + +  
and runs on an IBM RISC/6000* (RS/6000*) processor 
on  top of OSF DCE. The MIR server interface com- 
municates with the Telos Repository via the Telos 
message bus (TMB) API (application programming 
interface). Strings that are parsed and understood 
by the Telos Repository, called s-expressions, are 
passed from the MIR server interface to  the Telos 
Repository. Requests are satisfied by the repository 
by returning s-expressions to the MIR server inter- 
face. 

Clients communicate with the MIR via DCE RPCs us- 
ing the functions provided by the MIR API (the client 
library). The client library provides users with both 
a C and a C + +  interface to  the MIR. 

In the CASCON '96 demo, the MIR was used to store 
the configuration information for distributed appli- 
cations. The configuration management service  used 
the MIR to register applications and their associated 
processes. Information such as process identifier, 
parent process identifier, host, start time, and many 
other  parameters were stored about each process. 
Static information about an application, such as ref- 
erences to the executable code, pointers to the source 
code, and  other information, was also stored in the 
MIR. When an application was started,  an applica- 
tion instance was registered with the MIR for use by 
other management services and applications. 

Measurement Data Warehouse. At  the time of 
CASCON '96, the Measurement Data Warehouse was 
in the initial design stages. For this reason, we used 
a simplified  version of the warehouse to demonstrate 
the concept. This warehouse comprised three main 
components, the collector, the  integrator, and the 
underlying database, DATABASE 2*/6000 (DB2*/6000). 

For  the CASCON '96 demo, processes associated with 
the target application were instrumented to collect 
information about each RPC, including the RPC iden- 
tifier, the hosts of the processes involved, and the 
start and completion times for each RPC. A table was 
set up in DB2 to store these data. 

The RPC information was passed from the instru- 
mented processes to the collector via the POET event 
server. In  a fully implemented Measurement Data 
Warehouse, the  data might come from an event 
stream,  a flat file, or possibly another database. The 
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formation and passing  it to  the  integrator. The in- 
terprocess communication  between the collector and 
the integrator was done using IBM's CORBA** imple- 
mentation, DSOM. ** 
The sole responsibility of the integrator in the 
CASCON '96 demo was to submit the data to DB2. This 
was done using embedded SQL (structured query lan- 
guage). The integrator will serve a much larger role 
in a full-scale data warehouse. The  data stored in 
the data warehouse were retrieved and used by the 
performance monitoring tool, where they were used 
to provide an application-level view  of system per- 
formance. 

Implementation of configuration services. The con- 
figuration services  subsystem described earlier was 
to  be provided by a DCE server with the interface 
shown  in Tables 1 and 2. This server process is an 
MIR client, hence it  uses the MIR client  library to store 
the information it  collects in the MIR. Because of time 
constraints, this server was not ready in time for use 
in the demonstration (it has since been completed), 
so dynamic configuration information was main- 
tained by the configuration management application. 

The prototype in operation. We now describe the 
operation of the prototype, highlighting the  inter- 
actions of the management components that  are in 
place. We  begin by describing the sequence of op- 
erations that take place  when an application instance 
is started: 

1. Information about the application, which  includes 
the list of executable components needed, is 
stored in the MIR. Currently, this information is 
entered by hand by the developer or installer of 
the application. 

2. The configuration management application is 
started. The user selects the Start option. This 
presents another menu with two options, one be- 
ing Start Application. Selecting this option results 
in a window appearing with a list of applications, 
from which the user selects an application to be 
started. 

3. After an application is selected, the configuration 
management application: 

Generates  a unique application instance iden- 
tifier for the chosen application and registers 



the application instance using the RegisterAp- 
plicationlnstance registration service 
Retrieves information about the executable 
components using the RetrieveExelnApp  config- 
uration service. This returns information that 
includes the names of the executable files and 
the host on which each executable file should 
run. 
Starts an instance of the POET event server to 
act  as management agent for the application in- 
stance 
Sends control commands to the event server to 
cause  it to run the executable components mak- 
ing up  the application on the  appropriate hosts 

4. When a process starts, it executes Process-instru- 
mentationhit( ), which registers it. 

5.  The POET event server forwards the registration 
information to the MIR, where it  is stored.  It uses 
the RegisterProcess  service to do this. 

The user  can now retrieve information about the new 
application instance through the configuration man- 
agement application. The information is retrieved 
using the RetrieveApplnstance and RetrieveProcln- 
Applnstance query service operations. 

Once  the processes in an application instance are 
operating, the probes Process-rpcRequestBegin() and 
Process-rpcRequestEnd( ) will update  the informa- 
tion in the RPC statistics sensor. Periodically, the RPC 
statistics sensor computes statistics from the raw data 
collected by the probes and sends them to  the POET 
event server. The POET event server forwards them 
to  the Measurement Data  Warehouse,  where  the 
performance-related management applications can 
retrieve them. 

Suppose that  a  remote  procedure call from one  pro- 
cess to  another fails. The fault detection sensor will 
generate a symptom,  which will be passed to the POET 
event server, then  to an instance of the fault man- 
agement tool. As previously  described, the fault man- 
agement tool wiil attempt  to  determine  the source 
of the fault. 

When the user of the configuration management ap- 
plication selects the Stop Application option, a list of 
application instances is displayed. Once the user se- 
lects an application instance, the configuration man- 
agement application identifies its component pro- 
cesses using the MIR and, using the control services, 
instructs each of the processes to stop. It also causes 

the application instance information to be removed 
from the MIR. 

Related work 

In this section we  review related work in the  areas 
of management frameworks, information models, 
and management services. 

Management frameworks. Two management frame- 
works related to our work are Tivoli* * and the Java* * 
management application programming interface. 
Tivoli provides a framework for management appli- 
cations that helps to tie together management in- 
formation from many heterogeneous sources. The 
sources  can  include SNMP agents, other monitors,  and 
even the MANDAS management services infrastruc- 
ture. Attributes for each source are defined using 
application description files. ’’ Special-purpose 
agents called sentries acquire management data from 
managed components. The application description 
files are used to  interpret  the  data and make them 
available to Tivoli-based management applications. 
The layer of abstraction introduced between man- 
agement applications and monitors helps to conceal 
the specifics of each monitor to provide for more eas- 
ily developed management applications. 

Our framework is similar to  the Tivoli framework 
in that we also provide a common model for describ- 
ing managed objects and  the  data collected about 
them. Both have developed a set of services that 
maintain the information within a common repos- 
itory and allow  it to  be queried. 

The Java management application programming in- 
terface (JMAPI) 30 provides a framework for manage- 
ment applications that uses Java and  internet tech- 
nologies to interact with sources of management 
information. The high  level of connectivity  offered 
by Java helps to simplify the problem of connecting 
with a  heterogeneous collection of monitors. In this 
way the JMAPI competes with, yet complements, 
Tivoli. Furthermore, JMAPI provides a framework for 
the development of management application user 
interfaces in Java; however,  it does not provide any 
specific management applications. 

Other management frameworks, which  have  less  in 
common with our work, include: 

OSF DME. This provides a single  methodology (in- 
dependent of the underlying operating system) for 
deploying, updating, and controlling software in 



a heterogeneous environment, thus simplifying 
these operations. 
NMF (Network Management Forum) OMNI- 
Point. 32 The focus  is on network management and 
services management. 
IBM Sy~temView*.~~ This product focusses on the 
management of system  services. 
IBM TMN (Telecommunications Management Net- 
work)  WorkBench. 34 This focusses on the manage- 
ment of switching and transmission components. 
The TMN WorkBench eliminates much of the rou- 
tine work  involved  in generating code for data 
structures from a GDMO (Guidelines for Defini- 
tion of Managed Objects) specification. The TMN 
Workbench allows the use of GDMO ASN.l (Ab- 
stract Syntax Notation l), and SMI (Structure of 
Management Information) notations for the spec- 
ification of managed objects, which can then  be 
used by CMIP agents. 

These four frameworks are  intended for the man- 
agement of entities at the network or systems  levels, 
in contrast to  our work,  which  is at  the application 
level. 

Information  models. A choice of standards for con- 
figuration information models does exist.  While the 
following standards are not explicitly associated with 
management, they  can  be adapted easily for the man- 
agement domain: 

ISO management 7,35,36 

Internet SNMP-styled management 6,3"39 

A CORBA-based approach4' 
An OSF DCE-based a p p r ~ a c h ' ~  
DMTF/DM141 

Choices of standard management models relevant 
to distributed applications did not exist  when we be- 
gan our work. Recently, the  Internet Engineering 
Task Force (IETF) and  the Desktop Management 
Task Force (DMTF)  have proposed models that cover 
some of application management as defined in this 
paper. 

The IETF has proposed two extensions to its Man- 
agement Information Base (MIB) structure:  the sys- 
tem application MIB~'  and  the application M I B . ~ ~  The 
system application MIB maintains information about 
applications already  installed and running on a node. 
This information is limited to what can be obtained 
without instrumenting the application code, such as 
the application packages installed and their compo- 
nent files and executables, the application instances 
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started and the processes  making up  an instance, and 
system-level measurements such as CPU usage and 
memory usage of a process. The application MIB ex- 
tends the system application MIB structure to include 
attributes  that require instrumentation of the appli- 
cation. In particular, it adds information on open 
files, open connections to  other processes, and trans- 
action statistics. The MIB descriptions are low  level 
compared to our information model. Our model pro- 
vides powerful object-oriented abstraction mecha- 
nisms, like inheritance, and more detailed descrip- 
tions of the code and run-time views  of a distributed 
application than can be formulated with the MIB 
structures. Our model also describes the distributed 
run-time environment of an application, while the 
MIB structures can only describe local nodes indi- 
vidually. 

The DMTF has proposed the Management  Informa- 
tion Format (IV~IF),~' which is similar to MIB struc- 
tures with respect to its modelling capabilities and 
has the same shortcomings as MIB structures when 
compared with our  In  another effort, the 
DMTF has proposed the Common Information  Model 
( c IM) ,~~  which  in the same way as our model applies 
object-oriented modelling techniques to network and 
systems management. The CIM application schema 
definition, developed by the DMTF Application Man- 
agement Working Committee,45 is the component 
of the CIM closest to  our work. The application 
schema deals with the installation and deployment 
of an application over its lifetime but does not in- 
clude information relevant to other aspects of man- 
agement, such as descriptions of the run-time envi- 
ronment. Our model, on the  other hand, provides 
a more complete description of a distributed appli- 
cation that can be used for configuration manage- 
ment, fault management, and performance manage- 
ment. 

Monitoring  and  control of distributed applications. 
Some work has been  done in implementing specific 
tools for monitoring and controlling distributed ap- 
plications. Some of these tools are: 

Meta t ~ o l k i t . ~  This toolkit is a system for manag- 
ing distributed applications developed using the 
ISIS distributed programming toolkit.46 
Huang and Kintala tools.47 This set of tools pro- 
vides  services for detecting whether a process is 
alive or  dead, specifying and checkpointing crit- 
ical data, recovering checkpointed data, logging 
events, locating and reconnecting to  a server, and 
replicating user-specified files on  a backup host. 
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mation about  the resources of computer systems 
and environment services  in large, heterogeneous 
distributed environments. Megascope is an auton- 
omous distributed application, built on  top of 
OSF DCE. It extends the basic functionality of DCE 
by adding to it a service that provides the cell re- 
source information. 
MAL (Management Adaptation Library).49 This 
work  focusses on instrumentation. A separate 
thread is used to support management. 

The Meta toolkit is meant to be  within a specialised 
environment that is provided by ISIS. Our work  is 
more general in that we do not make any particular 
assumptions about the underlying environment. The 
Megascope tool is specific to DCE services  while our 
work  also encompasses distributed applications that 
use DCE services (or any other midware environ- 
ment). The services provided by the Huang and Kin- 
tala tools can  be implemented by an agent, or by sen- 
sors and actuators. MAL is  similar to our work  in 
instrumentation except that we further developed an 
architecture for instrumentation that includes both 
sensors and actuators. 

Configuration services. A review of the academic lit- 
erature and current r e ~ e a r c h ~ ” - ~ ~  on configuration 
management finds  it to be concerned primarily with 
the development of languages and environments for 
the implementation of reconfigurable systems.  Most 
of these languages and systems adopt the principle 
of the strict separation between a module configura- 
tion language, which describes the overall static and 
dynamic structure of the program, and a modulepro- 
gramming language, which  is used to implement the 
algorithms within the application program. Recon- 
figuration facilities are usually restricted to  a class 
of changes and  are embedded into  the module con- 
figuration language. 

Summary. As can be  seen, much of the work just 
described  focusses on a single  aspect of management. 
For example, much of the work  in monitoring tools 
does not explicitly consider integration of services 
for the collection, storage, and analysis of data about 
the internal behaviour of processes. 

In contrast to the bottom-up approach seen in much 
of the related work, we have chosen to consider the 
requirements of management applications. This has 
allowed us to extract a set of common requirements 
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Lessons learned 

Our work on  the MANDAS framework has taught us 
a number of lessons concerning the management of 
distributed applications. 

The framework developed in our initial work2 
treated monitoring and  control services as two sep- 
arate subsystems.  We  now see them  as one subsystem 
implemented through a combination of instrumen- 
tation and management agents, with the only  differ- 
ence between control and monitoring being the di- 
rection of information  flow: out of a managed  process 
for monitoring and into it for control. 

The management agents used in managing distrib- 
uted applications may, and likely  will,  have a range 
of capabilities and rely on a variety of communica- 
tion  mechanisms.  We  have  developed agents that use 
standard protocols, such as SNMP or CMIP, to com- 
municate with management applications and service 
subsystems.  We  have  also developed alternative 
agents, such as those described in this paper, using 
alternative protocols. We need to balance the ease 
of using agents with standard services, for example, 
a CMIP communication interface, where there is no 
need to translate management requests into lower 
level  primitives, against the “weight” of the imple- 
mentation of such an agent. To facilitate develop- 
ment of management applications it  is  most impor- 
tant  to isolate the management agents from the 
management applications, so that developers can 
concentrate on functionality rather than protocol de- 
tails. 

Our development of the prototype emphasised the 
importance of the information model in the frame- 
work. The information model provides a common 
description of all aspects of an application that can 
be used by all the management applications. The 
model and its associated MIR support integration of 
the set of management applications into the man- 
agement framework. 

Distributed application management requires the 
collection and storage of different types of data with 
very different characteristics and access require- 
ments. No one type of database system  can ade- 
quately support all the requirements, so the repos- 
itory service  must  consist of multiple database 
systems. We found that  a reasonable approach was 
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erful object-oriented model to  store  the structural 
data and a second system to handle the measure- 
ment data with their frequent updates and relational 
database-like querying requirements. 

Acquiring the  data  needed  to perform management 
is a complex and tedious task, so a management 
framework must include tools to  support  data ac- 
quisition. This includes tools to automatically extract 
configuration information from application files and 
tools to support  the automatic generation of instru- 
mentation code. 

A distributed system running a number of distrib- 
uted applications has the potential to generate vast 
quantities of management data. To  be scalable, ef- 
ficient means of handling large amounts of data  and 
approaches to filtering or aggregating data will be 
needed. 

We underestimated the importance of the human/ 
computer interface in managing distributed appli- 
cations. More research is needed  to develop effec- 
tive  ways  of screening and presenting relevant data 
to  the user. 

Future  directions 

One of the motivations for developing a management 
framework is to enable the development of tools for 
automating some of the steps involved  in generat- 
ing and running manageable applications. We  have 
developed, and are continuing to develop,  such  tools. 
Two examples of these tools, one aimed at creating 
applications, the  other  at creating management 
agents, are described here. 

An automated model builder for distributed appli- 
cations has been integrated into  a prototype of IBM’s 
Distributed Application Development Toolkit 
(DADT). With DADT, an application designer can 
specify object interfaces and choices for midwares. 
DADT then  generates “wrapper” code to cause the 

midwares. The model-building systems5 has three 
major components: 

An instrumentation package and tool for captur- 
ing information about application level objects 
A statistical analyser that deduces some model pa- 
rameters from measurement data  that cannot be 
measured 

I appropriate object interactions with the specified 
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the management information repository and cre- 
ates models for performance evaluation 

Presently, the development of management agents 
is  difficult, time-consuming, and ad hoc. There  are 
many decisions that must be made in the develop- 
ment of agents, such as  what  services to offer, and 
what relationships the agent should have  with the 
environment (i.e., hardware or software resources, 
user interface, etc.). We have identified a set of ser- 
vices, independent of the underlying management 
protocols, that is required from all or most agents; 
these include accepting monitoring and control re- 
quests from managers, executing these requests, re- 
turning results, notifying the manager of predeter- 
mined events of interest, and communicating with 
other entities. We  have  also identified a generic ar- 
chitecture for agents that describes the services that 
the agents should or could provide, the components 
of an agent, and how the components satisfy the  ser- 
vices.  Based on this infrastructure, we have devel- 
oped  a tool that allows the user to specify the type 
of agent using a simple graphical user interfa~e.””~ 
The tool allows the user to  enter  the required in- 
formation, ensures that  the information entered is 
valid, then generates the code for the specified agent. 
We are currently examining  how to extend this tool 
to a Java-based network environment. 

We have developed a number of prototype manage- 
ment applications, but determining the kinds of man- 
agement applications that will be needed in the field 
remains an open problem. We believe that  the use 
of policies may help drive this search. Policies orig- 
inate with the business needs and objectives of the 
enterprise and represent  the  operational  require- 
ments of the systems,  services, and applications. We 
believe that  the specification  and enforcement of pol- 
icies will  give insight into  the management applica- 
tions needed  and  the services to  support  these  ap- 
plications. 

Our  current management applications have to know 
about the types and locations of management agents. 
Management applications could be more easily de- 
veloped if these details were hidden by a service that 
takes requests for  data  and determines the best way 
of getting those data. We have begun work on such 
a service. 

Finally,  we  have had some success in integrating dif- 
ferent management applications into  a prototype. 
What is still needed is a consistent  user interface used 
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by all the management applications-a “manage- 
ment station” with a consistent user interface, rather 
than  a collection of disparate tools. 
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