Technical forum

IBM Business Frameworks:
San Francisco project technical
overview

Software developers face significant challenges as
they attempt to modernize current applications to
take advantage of the benefits of distributed objects.
The cost of developing the next generation of ap-
plications as industrial-strength distributed-object so-
lutions will be prohibitive for many software vendors,
because their skills are in developing procedural ap-
plications. Some vendors have indicated that as much
as 80 percent of their development cost is in writing
and supporting the basic, noncompetitive functions
that are essentially the same for any application so-
lution offered in a specific domain.

The San Francisco project now in progress addresses
these problems by providing object-oriented infra-
structure and application logic that can be expanded
and enhanced by developers in the areas where they
choose to provide competitive differentiation. The
frameworks are intended to lower the barriers to
widespread commercial implementation of distrib-
uted object solutions. This report provides an over-
view of the 1BM San Francisco project and its Bus-
iness Frameworks.

The San Francisco project was started when several
software vendors asked us for help in modernizing
their application products. They realized that their
current applications needed to be updated if they
were to continue to be viable in the emerging object-
oriented, network-based market. However, there
were several barriers. One barrier was the problem
of retraining the development staff to effectively use
object-oriented technology. The retraining would be
more than just learning another programming lan-
guage; the staff would need to learn how to analyze
a problem in terms of objects and how to use that
analysis to design an object-oriented solution. A
whole new approach to building systems and a whole
new set of skills and tools would be required.

1BM SYSTEMS JOURNAL, VOL 36, NO 3, 1997

0018-8670/97/$6.00 © 1997 IBM

A second barrier was the risk involved in moving to
a new technology. Often the first solution built by
a team using new skills and a new technology is less
than perfect. A poor design causes problems, such
as code that does not function properly, poor per-
formance, or a solution that is hard to use. Solving
such problems is a necessary step in learning to ap-
ply a new technology, but the number and magni-
tude of the problems must be contained, so that the
business can keep operating while the new approach
is learned.

A third barrier in moving to object-oriented tech-
nology was the cost of making the change. The soft-
ware developers needed some basic infrastructure
upon which to base their applications. Many of the
companies could not afford to develop this infrastruc-
ture themselves. They also could not afford to re-
write their entire product line at one time. They
needed to be able to spread the cost of upgrading
their applications over time by having the object-
based portions of the application interoperate with
portions that had not yet been updated.

The San Francisco project helps developers to over-
come the barriers through business frameworks that
provide an object-oriented infrastructure, a consis-
tent application programming model, and some de-
fauit business logic. The frameworks make it easier
to move to object-oriented technology because de-
velopers use well-tested services instead of building
their own. They can design their solutions using a
proven programming model instead of developing
a unique approach. They can build their applications
by modifying and extending the default business ob-
jects and logic provided in the frameworks instead
of having to start “from scratch” to build applica-
tions from raw requirements statements. This allows
developers to apply more development resources on
the functions that will give them a competitive ad-
vantage. The frameworks are designed to be easy to

©Copyright 1997 by International Business Machines Corpo-
ration.

TECHNICAL FORUM 437

extend in areas where software vendors have told us
they differ from their competitors.

The San Francisco project is being developed in col-
laboration with several hundred international 1SVs
(independent software vendors) to ensure applica-
bility across a broad range of small-to-medium-en-
terprise business solutions. The 1SVs are working with
IBM to design, develop, and validate frameworks, cre-
ate development tools, and develop integrated ap-
plications using the frameworks.

Feedback from companies that have tested early ver-
sions indicates that the frameworks provide about
40 percent of a typical working application within
the supported domains. ISvs will develop the remain-
ing 60 percent of the application on top of the frame-
works and bundle both the 1BM and ISV code into
a single solution, which the 1SV will then license to
customers. The customers benefit through improved
flexibility to meet changing business needs, improved
availability and affordability of customized multiplat-
form business solutions, and improved application
interoperability. Use of a shared architecture will
make it easier to integrate solutions from different
software vendors.

Frameworks description

The San Francisco project is building three layers of
extensible components for use by application devel-
opers. In the highest layer, the core business pro-
cesses provide business objects and default business
logic for selected “vertical” domains. The second
layer provides definitions of commonly used busi-
ness objects that can be used as the foundation for
interoperability between applications. In the lowest
layer, the base provides the infrastructure and ser-
vices that are required to build industrial-strength
applications in distributed, managed-object, multi-
platform applications. The base isolates an applica-
tion from the complexities of multiplatform network
technology and allows the application providers to
focus on unique elements that give value to their cus-
tomers.

Application developers may choose to use the frame-
work technology for only portions of their applica-
tion. The San Francisco frameworks have been de-
signed to coexist with existing business applications,
preserving existing application investments.

Application developers can use the frameworks at
any of the three levels, as shown in Figure 1. At the

438 TECHNICAL FORUM

lowest level, application developers can utilize the
base infrastructure to provide a consistent program-
ming interface and structure for building distributed
multiplatform applications. At the next level they can
select common business objects as the basis for ap-
plication integration. This level provides a common
foundation for building interoperable business so-
lutions. At the highest level, application-specific bus-
iness frameworks will provide core business processes
that can be easily extended to provide a complete
business solution. Initially, the San Francisco proj-
ect has examined business application frameworks
in the domains of accounts receivable, accounts pay-
able, general ledger, sales and purchase order man-
agement, and warehouse management. Over time,
these business frameworks will be extended and en-
hanced with additional objects and access to more
framework interfaces, providing greater application
flexibility.

The San Francisco project (referred to simply as “San
Francisco” in the rest of this report) uses the Java™**
language. This makes the frameworks, and the ap-
plications developed using them, portable across
many platforms. It also allows developers to use the
many tools and class libraries the industry is produc-
ing for Java development. We expect most develop-
ment with San Francisco frameworks to take the
form of Java applications. However, application de-
velopers can create applets! to work with San Fran-
cisco objects as well.

The following information reflects the current direc-
tion for the San Francisco frameworks. IBM has not
committed to ship all of the functions and reserves
the right to make changes to functions listed here.
We are working with our reference group? to help
validate and prioritize how functions will be deliv-
ered over time. Our current plan is to ship the base
technology, several common business objects, and
portions of the the general finance vertical domain
frameworks in the initial release.

Base layer. The lowest-level framework that can be
used by application developers is the base. It pro-
vides the underlying infrastructure for the common
business objects and the core business processes. It
allows San Francisco to hide differences in under-
lying technology from application developers, mak-
ing it easier to support an application on multiple
platforms while still exploiting platform-specific ad-
vantages. The base layer also provides a consistent
programming interface and structure for building ap-
plications.

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997

Figure 1 I1BM Business Frameworks

e

 COMMERCIAL .
| APPLICATIONS

BUSINESS
FRAMEWORKS

'SERVERS

CLIENTS !

Two categories of functions in the base layer are di-
rectly usable by developers: base object model classes
and utilities. To support distributed, mission-critical
requirements, the base layer also provides a set of
kernel services. In most cases, the kernel services are
not directly visible to developers. Instead they are
invoked indirectly by the base object model inter-
faces. This approach helps to simplify the applica-
tion programming model. I't also will allow applica-
tion developers to make use of new technology that

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997

1BM might incorporate into the infrastructure with-
out modifying their application code. The interfaces
that application developers use would remain con-
sistent; only the underlying implementation of the
infrastructure would change.

Many of the services in this layer are based on ob-
ject service definitions from the Object Management
Group (OMG). For example, the kernel service pro-
vides an object transaction service, collection han-

TECHNICAL FORUM

439

dling, communication between distributed objects,
and persistence management. However, San Fran-
cisco is not providing a CORBA**-compliant Object
Request Broker.? The base merges and combines
OMG-defined functions with functions provided by
Java. It also simplifies the OMG definitions when pos-
sible and adds additional function when necessary.
For example, instead of supporting all of the lock-
ing types defined by OMG, we are supporting only
optimistic locking (to allow greater concurrent ac-
cess to data) in addition to the traditional pessimis-
tic locking approaches used by many infrastructures.
Our services are also influenced by other sources,
including Taligent frameworks* and patterns as de-
scribed by Gamma et al.’

The kernel services contain extensions that we found
were necessary for our Java frameworks. We are us-
ing Java’s remote method invocation (RMI) interface
as the basis for the communication infrastructure.
We have extended the RMI function to support ar-
eas such as server process management. We antic-
ipate that some kernel services that complement the
base will be provided by products from other ven-
dors. Examples include licensing and encryption
technology.

Object model classes. The object model classes pro-
vide the basic structure for San Francisco objects and
frameworks. In effect, they define the San Francisco
application model. These classes contain complete
methods that are inherited and used by application
developers, as well as abstract definitions for other
methods.

The object model classes provide a consistent ob-
ject model that will fit a wide range of distributed
applications. They allow the developers to specify
different options, such as defaults for location (on
the client or on the server), locking mechanism, and
object identification approach. The interfaces may
be implemented differently to exploit the advantages
of each platform, but the behavior seen by the de-
veloper is the same.

The object model classes include:

~ Entity. Entities are independent, shareable objects
(persons, things) that are used in the operation of
a business. Entities are often associated with the
data that are at the core of an application or frame-
work. An entity may be persistent (associated with
an underlying persistent storage mechanism on a
server) or transient. Entities may also be used for

440 TECHNICAL FORUM

temporary caching of data on client systems while
processing is taking place. The methods associated
with each entity generally deal with getting and set-
ting the state (attribute) values, or business logic
that involves only a single object. A subtype of En-
tity, Dynamic Entity, allows property/value pairs
to be associated with the entity at execution time.
This provides great flexibility in customizing en-
tities to specific business requirements.

» Dependent. Dependent objects have less system
overhead than entities. Because they cannot exist
outside of the scope of an entity, they cannot be
shared, be referenced, or take part in transactions
independently. Dependents often contain addi-
tional information about their owning entity.

~» Command. A command is a group of operations
on an object or collection of objects. Commands
contain logic that is applicable to more than one
business object. The commands contain many of
the functions and procedures for an application
or framework. They can be distributed to either
clients or servers and can affect either individual
entities or collections of entities.

» Collection/Iterator. Collections are used to group
objects together. Some collections are structured
so that individual elements may be accessed by a
key. Others function as a set of elements. Itera-
tors associated with the collection are used to ac-
cess the elements and traverse across the collec-
tion. For example, an iterator may provide a “next”
method to enable scrolling through a collection.

» Factory. A factory manages instances of its objects
during framework execution. Factories provide
functions that create and delete entities, com-
mands, and collections. Different implementations
of the factories will allow application developers
to support different platforms and persistent stor-
age mechanisms with minimal or no change to the
business objects themselves.

Urtilities. Utilities provide services that will be needed
by most applications built from the San Francisco
frameworks. The utilities are designed to be used “as
is,” rather than extended or modified.

Several different types of utilities are provided. Ad-
ministration supports the definition and maintenance
of application security and system configuration infor-
mation. Conflict control allows a system administra-
tor to prevent commands that should not be executed
at the same time from running concurrently. The in-
stallation utility helps application developers install
and maintain the frameworks, and applications built

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997

from the frameworks. The audit trail utility allows
application developers to track object access by users.

Many of the utilities will be implemented by invok-
ing functions provided in the operating systems or
in other products. The San Francisco developers will
ensure that the functions are well-integrated and pro-
vide a consistent “look-and-feel” for users. And, like
the kernel services, the utilities will provide addi-
tional capability when needed. For example, in ap-
plication security the utility adds support for group-
ing users by the methods they can access.

Common business objects layer. The middle layer
of the frameworks contains the common business ob-
Jects (CBOs). This layer is composed of several inde-
pendent frameworks that can be categorized as (1)
business objects common to multiple domains or (2)
common application services. Speaking in general
terms, the business objects represent those entities
that a person knowledgeable in the domain would
reference when describing how to perform a busi-
ness task in nontechnical terms. The common ap-
plication services are more likely to be identified
when discussing an approach for automating a pro-
cess.

Business Partner is an example of a business object
that we found in multiple domains. It encapsulates
the characteristics of a customer or supplier, such
as the default currency, a description, and the lan-
guages used by the partner. Another example is Ad-
dress, which provides a generic way to describe a lo-
cation, including a postal area. It supports different
formatting controls for the address data and the re-
lationships of an address to other objects, such as
locale and language. An example of a common ap-
plication service is the Decimal Structure. It provides
the capability to define the number of decimal po-
sitions and rules about how the number is to be pro-
cessed, such as rounding on input or output.

For many of the common business objects, part of
the basic structure and behavior is required by mul-
tiple application domains and part is unique to an
individual domain. For example, in the Business
Partner, much of the structure related to currencies,
languages, and addresses would be required by mul-
tiple domains, while the structure and behavior as-
sociated with the product-supplier relationship would
be unique to the warehouse logistics domain. In this
case the common portions are implemented within
the CBO layer and the unique structure and behav-

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997

ior is implemented as part of the application domain
framework that references the CBO structures.

Core business processes layer. The top layer of the
frameworks contains the core business processes. The
objective for this layer is to create a sound architec-
ture and highly extensible objected-oriented imple-
mentation for the basic structure and behavior of any
solution in the selected domain. On top of this basic
structure and behavior we will implement a very lim-
ited set of application functionality, so that the frame-
works will actually do something as they “come out
of the box.” Our participating vendors tell us that
the combination of common business objects and
core business processes will approximate 40 percent
of a typical working application. It is anticipated that
application providers will in all cases extend the
frameworks to add their own user interface, coun-
try- and industry-specific requirements, business
rules, competitive differentiators, and complemen-
tary application functions. The extension points at
which application providers will add or replace bus-
iness logic are carefully defined during the frame-
works design phase.

The application domains addressed in the initial re-
quirements and design phases for the San Francisco
project included business “financials,” (accounts pay-
able, accounts receivable, and general ledger), or-
der management (sales orders and purchase orders),
and warechouse management (logistics and control
functions). The initial toolkit for San Francisco con-
tains the General Ledger framework, several com-
mon business objects, and the base infrastructure.
Additional frameworks and business objects will be
added over time, based on customer requirements.

The frameworks in each domain make use of com-
mon business objects and provide the structure and
default behavior for relevant business tasks. Exam-
ples of tasks in the Accounts Receivable/Accounts
Payable Ledger framework are Payment (receiving
payments from and creating payments to business
partners) and Transfer Item (transferring an item
from one account to another, or from one business
partner to another).

The General Ledger framework can be used to man-
age the accounts on the general ledger for a com-
pany or a hierarchy of companies. Business tasks sup-
ported include Journaling (creating, validating,
processing, and posting journals) and Closing (clos-
ing the books for an accounting period or year).

TECHNICAL FORUM 441

The Sales Order Processing framework manages
quotations, sales orders, and sales-order contracts
throughout their respective life cycles. Its business
tasks include Pricing and Discounts (maintaining, re-
trieving, and calculating sales prices and discounts)
and Sales Contracts (creating and maintaining sales
contracts and tracking customer compliance).

The Purchase Order Processing framework supports
purchase orders and supply contracts. Its business
tasks include Purchase Orders (creating, maintain-
ing, and confirming purchase orders) and Back to
Back Orders (managing purchase orders that are di-
rectly linked to specific sales orders).

The Order Management framework provides an ab-
stract model and default behavior for aspects of or-
der processing that are common across several order-
related processes (e.g., sales orders, purchase orders,
and quotations). Within this framework Order Data
Interchange is an abstract model for managing or-
der data that are interchanged among several en-
tities. It includes preprocessing to select and normal-
ize data before the data reach the actual processing
destination.

The Warehouse Management framework supports
warehouse logistics tasks, for example, Internal Re-
plenishment (recommendations for stock move-
ments between warehouses), and Kit Assembly
(tracking the associated stock activity and move-
ments). A business object used in this framework is
the Product (definition, policies, lead time, reserves,
and balances). Other tasks supported include Man-
ual Stock Transactions (receiving and disbursing
stock for miscellaneous purposes) and Kit Defini-
tion (defining a kitting operation to assemble the
product).

Building applications from frameworks

Building applications from the business frameworks
will be approached in several ways. The simplest of
these is to use the objects and classes in the frame-
works without changing them. To do this, the de-
veloper writes client code that uses a factory object
to manage access to the framework business objects.
The factory manages a command (and the associ-
ated transaction) that creates, deletes, or updates a
business object.

A second approach is to modify the frameworks by
creating new domain classes from the base object
model classes. This would be done if a new business

442 TECHNICAL FORUM

task or process is added on top of the frameworks.
Developers who make these changes need to undes-
stand the methods and programming guidelines for
creating, deleting, and updating framework objects.
They will need to understand how to use the factory
methods that create and delete business objects and
how to build the commands that implement the new
business task.

A third approach is to modify the frameworks by ex-
tending the supplied domain classes and methods.
It may be necessary to add additional attributes to
those defined for a class, or to replace the logic in
one of the methods. We worked closely with our par-
ticipating vendors to identify the types of changes
that will be necessary. We then designed the frame-
works so that these changes are easy to make and
affect other parts of the frameworks as little as pos-
sible. Developers must understand and follow the
application model of the base object classes to en-
sure consistency with unchanged parts of the frame-
works.

Example. The San Francisco frameworks are de-
signed to be extended easily by application devel-
opers. Extensions include overriding the default bus-
iness logic in supplied methods, adding attributes to
existing classes, adding methods to existing classes,
and adding new classes to the frameworks. The
framework documentation will describe each part
and its function, helping the developer to find the
section of code to be customized.

As an example, consider a framework that includes
the classes Receipt and Purchase Order Line. De-
fault attributes of Receipt include status, quantity
accepted, and quantity rejected. Its default methods
include determining if an inspection is required and
recording inspection results.

A default attribute of Purchase Order Line is a “qual-
ity inspect” flag that can be set to “yes” or “no.” Re-
ceipt’s default method to determine if an inspection
is required simply tests the value of this attribute.

Suppose the developer wants to add logic to make
additional tests before determining if an inspection
is required. Perhaps information about the supplier,
or previous receipts from the supplier, should be
checked. Perhaps hazardous materials and expen-
sive products should always be inspected.

To do this, the developer creates a subclass of Re-
ceipt and writes a new method to determine if an

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997

inspection is required. This method overrides the de-
fault method and contains the logic needed to check
the supplier table, check the results of previous re-
ceipts from this supplier, and determine whether the
receipt is for hazardous materials or high-value prod-
ucts before making the final determination that an
inspection is or is not required.

When the changes have been compiled and installed,
the new logic will be in effect for quality checks, while
the rest of the framework continues to function as
before. Of course, if the new method requires classes
or attributes that are not already in the framework,
additional changes are needed.

Development process

Effective use of frameworks requires a different de-
velopment approach than is typically used in devel-
oping applications. A development process tailored
for frameworks is outlined here:

1. Business architecture. First, domain experts de-
fine the business problem to be solved. This in-
volves gathering requirements from experts, users,
and existing systems. The business problem is bro-
ken down into business processes. These are
viewed as functional requirements, or use cases.®
The framework repository is searched for avail-
able processes that match, or can be extended to
match, the functional requirements. The required
processes are assembled in an object model di-
agram’ to analyze static elements of the design.
The use cases are used, in conjunction with the
object model, to define object interaction dia-
grams® to analyze the dynamic aspects of the de-
sign.

2. Framework componentry. The focus now moves
to finding or defining reusable parts. The repos-
itory is browsed to find parts that meet or can be
extended to meet the functional requirements in-
corporated into the model. In some cases the
function needed may already exist in the repos-
itory. In other cases developers may need to use
combinations of existing frameworks or modify
existing frameworks to meet specific needs. This
may include adding and deleting activities and
nodes, or modifying the sequences of activities.
If the function does not exist in the repository,
one may consider buying a framework to incor-
porate into the design. In still other cases new
code will need to be developed. It is important

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997

that it be designed using object techniques to max-
imize its potential for reuse.

3. Application architecture. Developers are now

ready to build the application. This includes in-
corporating the user interface with the functions
needed to meet all design requirements. The ap-
plication is assembled by pulling together the se-
lected frameworks and developing any additional
code that is needed. The application is prototyped
and tested. The frameworks are changed and ex-
tended as required to meet application needs.
There should be two to three complete design cy-
cles, from analysis through prototyping. This is
critical to ensure that the basic design is right. It
will become the foundation for defining and test-
ing incremental improvements to the application.
Following this step, the application is ready for
end-user testing.

4. End-user environment. The application is in-
stalled and integrated into the business environ-
ment. For simple applications, the customer may
simply install and configure the shrink-wrapped
product. A complex application might be vali-
dated via process modeling and analysis, tested
with end users, and integrated with other appli-
cations. New requirements might be incorporated
before the application is finally put in production.

Tools are needed to support each step of the pro-
cess. For San Francisco, tool support will be provided
by both IBM and other vendors. We are working with
tool vendors to ensure that their tools make effec-
tive use of the frameworks.

Development approaches

The ultimate goal for the San Francisco frameworks
is to support rapid application development. The de-
velopers will be coming from several different ap-
plication disciplines.

San Francisco will allow the integration of different
approaches for building applications, for example:
compound documents, business process modeling and
control (workflow), and Java-based internet/intranet
approaches. It is our plan to provide sample demon-
strations of how these technologies can be integrated.

Compound documents. Compound document envi-
ronments include Lotus Notes** and scripting, Java-
Beans**, and ActiveX**, (all supporting desktop-
centric, document-style applications. Development

TECHNICAL FORUM 443

in these environments focuses on how a document
is presented to the end user and how the informa-
tion is represented. Attached to the various sections
or parts of the document form are scripts contain-
ing the functional extensions.

For example, a form might represent a sales order.
As the sales order passes through its life cycle, scripts
are executed and data values are retrieved and placed
in the form: name and address in the heading infor-
mation, inventory items in the body, and calculated
totals and discounts in the totals area.

San Francisco frameworks can be used as a basis for
the form and its parts, providing the functional ex-
tensions for these compound documents.

Business process modeling and control. Business
process reengineering is giving focus to a number of
technologies, including modeling tools and workflow
process-control engines. Workflow technology pro-
vides a layer of control outside of the normal pro-
cessing. The outer layer can be modified to meet bus-
iness process-to-market demands, while keeping
controls and audits for existing processes. This sup-
ports a customer focus on business processes, to
streamline and control them for increased efficiency
and cost savings.

Application developers in this environment can use
San Francisco frameworks as business activities
within a process, and also to initiate business pro-
cesses. They will use workflow products to “glue” var-
ious new and existing applications together into a
coherent business process, passing parameters be-
tween application activities via workflow products.

Internet/intranet and Java. This is one of the fastest-
growing and most exciting technologies for devel-
oping distributed application solutions. Applications
may be designed and configured to either include
execution of objects on the client or to have all ex-
ecution on the server. Solutions will need to allow
seamless integration between Java and non-Java en-
vironments.

Migration and coexistence

Businesses will tend to upgrade and replace their mis-
sion-critical applications a few at a time rather than
all at once. San Francisco will provide ways for new
applications based on the frameworks to coexist with
existing business systems.

444 TECHNICAL FORUM

First, the frameworks will allow integration with leg-
acy databases. San Francisco will provide “schema
mappers” to allow developers to access relational da-
tabases as San Francisco objects. These databases
may be part of a new application design or from ex-
isting applications. An open interface will support
relational databases from several vendors. Qur goal
is to allow shared, concurrent update access between
legacy and San Francisco-based applications.

A second area to address is the interoperation of leg-
acy code with San Francisco objects. We plan to dem-
onstrate that San Francisco objects can call functions
provided by applications written in traditional lan-
guages. This provides access to a large set of legacy
application function. The ability for other programs
and objects (such as ActiveX objects) to invoke San
Francisco objects is also being examined. Many
groups, both within and outside of IBM are working
on this problem. We plan to provide sample code
to help 1Svs better understand the interoperability
requirements for migration and coexistence.

Another important consideration in migrating to San
Francisco-based applications is education. Develop-
ers must learn how to design and develop objects.
They must understand what functions the San Fran-
cisco frameworks provide, and how to extend and
customize them for their own applications. IBM will
provide training on how to build frameworks and
frameworks-based applications.

Standards activity

There is ongoing work in the industry to develop
standards in the areas of Java, business objects, and
business object infrastructure. One area being ex-
plored is the relationship between Java and object
request brokers (ORBs). Another is the type of in-
frastructure required to support business objects in
distributed computing environments. There are ef-
forts to reach agreement on common definitions for
some business objects.

The San Francisco project is participating in many
of these discussions. We are working, along with
other projects in 1BM, to submit proposals to the OMG
in the areas of business object facilities and common
business objects. Standards in these areas will allow
customers to more casily combine software from sev-
eral vendors into an integrated solution. Standards
will also make it easier for application developers to
learn to use distributed objects. However, the soft-
ware vendors working with us ask that we not wait

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997

for all of the standards questions to be answered.
We are proceeding to build and deploy the frame-
works while contributing to the definition of stan-
dards.

Early vendor involvement

The San Francisco project was initiated because of
requests from software vendors to help them find a
way to take advantage of object-oriented technol-
ogy. These vendors continue to be involved, review-
ing our plans and designs at scheduled “advisory
group” meetings. Their contributions and guidance
are essential to ensure that the frameworks will help
them as they build their future products. More in-
formation on becoming involved in the San Fran-
cisco project can be found at our frameworks home
page: http://www.ibm.com/java/sanfrancisco.

A pervasive question from our advisory group is
“what should we do to prepare our development or-
ganizations to use object-oriented technology and
the San Francisco frameworks?” In answer to this
question we are offering a number of education
courses. Introductory courses cover basic object-ori-
ented concepts and the Java programming language.
Additional courses are available on object-oriented
analysis and design, and on how to select initial
projects that will have a high likelihood of succeed-
ing. Finally, courses are given on the San Francisco
frameworks, and how to use them as the basis for
designing and building frameworks-based applica-
tions.

Summary

The San Francisco project is intended to help ap-
plication developers rapidly build distributed, object-
oriented applications. It provides a base of object-
oriented infrastructure and application logic, which
can be expanded and enhanced by each developer.
This report has given an overview of the San Fran-
cisco project and the IBM Business Frameworks be-
ing developed. It is intended to provide the reader
with a high-level understanding of the architecture
and content of the frameworks.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Object Management Group, Lotus Development Corporation,
or Microsoft Corporation.

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997

Cited references and notes

1. A Java applet is automatically downloaded, when invoked
through a browser over a network, and runs on the client’s
machine.

2. Our reference group consists of ten software vendors who have
collaborated with the San Francisco developers and are early
adopters of the frameworks.

3. Standards have been published by the OMG for the Common
Object Request Broker Architecture (CORBA). More infor-
mation about the OMG can be found at http://’www.omg.org .

4. Leveraging Object-Oriented Frameworks: A Technology Primer from
Taligent, Taligent, Inc. (1993); available at http:/fwww.taligent.
com/Technology/WhitePapers/LeveragingFwks/Leveraging
Frameworks.html .

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley Publishing Co., Reading, MA (1995).

6. L Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,
Object-Oriented Software Engineering, A Use Case Driven Ap-
proach, Addison-Wesley Publishing Co., New York (1992).

7. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, Object-Oriented Modeling and Design, Prentice
Hall, Englewood Cliffs, NJ (1991).

General references

L. Lemay and C. Perkins, Teach Yourself Java in 21 Days,
Sams.net Publishing, Indianapolis, IN (1996).

D. A. Taylor, Business Engineering with Object Technology, John
Wiley & Sons, Inc., New York (1995).

Vincent D. Arnold, Rebecca J. Bosch, Eugene F.
Dumstorff, Paula J. Helfrich, Timothy C. Hung,
Verlyn M. Johnson, Ronald F. Persik, and Paul D.
Whidden

IBM AS/400 Division
Rochester
Minnesota

TECHNICAL FORUM 445

