172 nNick ET AL

S/390 cluster
technology: Parallel
Sysplex

This paper describes a clustered multiprocessor
system developed for the general-purpose,
large-scale cog:mercial marketplace. The
system (S/390" Parallel Sysplex™) is based
on an architecture designed to combine the
benefits of full data sharing and parallel
processing in a highly scalable clustered
computing environment. The Parallel Sysplex
offers significant advantages in the

areas of cost, performance range, and
availability.

Parallel and clustered systems initially found in
numerically intensive markets are gaining in-
creasing acceptance in commercial segments as well.
The architectural elements of these systems span a
broad spectrum that includes massively parallel pro-
cessors that focus on high performance for numer-
ically intensive workloads' and cluster operating sys-
tems that deliver high system availability.? This paper
describes new clustering functions that are imple-
mented by IBM’s §/390* processors and 0S/390* oper-
ating system.

The $/390 cluster (parallel system complex, or Par-
allel Sysplex*) contains innovative multisystem data-
sharing technology, allowing direct, concurrent
read/write access to shared data from all processing
nodes in the parallel configuration, without sacrific-
ing performance or data integrity. Each node is able
to concurrently cache shared data in local processor

0018-8670/97/$5.00 © 1997 IBM

by J. M. Nick
B. B. Moore
J.-Y. Chung
N. S. Bowen

memory through hardware-assisted cluster-wide se-
rialization and coherency controls. This in turn en-
ables work requests associated with a single work-
load, such as business transactions or database
queries, to be dynamically distributed for parallel ex-
ecution on nodes in the sysplex cluster, based on
available processor capacity. Through this state-of-
the-art cluster technology, the power of multiple
08/390 systems can be harnessed to work in concert
on common workloads, taking the commercial
strengths of the 0S/390 platform to improved levels
of competitive price/performance, scalable growth,
and continuous availability.

In this paper we review the $/390 Parallel Sysplex ar-
chitecture, its core technology components, and the
customer business objectives that shaped the over-
all system structure. In Part I we discuss the objec-
tives that guided the Parallel Sysplex designers and
introduce the technology components of the Paral-
lel Sysplex cluster. Part II presents an overview of
the coupling facility (CF) and coupling support fa-
cility architectures, and discusses the scalability of
the $/390 Parallel Sysplex. A concluding section sum-
marizes the key points contained in the paper.

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

PART |

Design overview

This section summarizes the key design points for
the s/390 Parallel Sysplex and relevant design ratio-
nale. We begin with a set of objectives that guided
the overall system structure. This is followed by a
description of design benefits derived from its data-
sharing capabilities. Then, alternative cluster archi-
tecture models are discussed. Finally, Parallel Sys-
plex technology functions are introduced.

Customer business objectives. One key customer
business objective was to reduce the total cost of com-
puting for $/390 systems. There are many examples
of systems that use low-cost microprocessors as a
building block for a large system. In order to obtain
the same cost advantages as these systems, the most
dramatic change for $/390 meant replacing the $/390
bipolar processor technology with complementary
metal-oxide semiconductor (CMOS) microprocessor
technology and clustering multiple systems together
to meet aggregate capacity requirements. This
strategic decision enabled the $/390 systems to
leverage industry-standard CMOS technology for
price/performance advantage, both in terms of re-
duced base manufacturing costs and significant on-
going customer savings in reduced power, cooling,
and floor space requirements.

A closely related objective was to provide a commer-
cial platform that would support the nondisruptive
addition of the scalable processing capacity, in in-
crements matching the growth of workload require-
ments for customers, without requiring re-engineer-
ing of customer applications or repartitioning of
databases. Satisfying this objective was critical to the
design of the Parallel Sysplex shared-data cluster ar-
chitecture, which will be discussed later in this pa-
per. Prior to Parallel Sysplex, /390 customers had
been forced to contain the capacity requirements of
a workload within the technology limits imposed by
the size of the largest single symmetric multiproces-
sor system available. Workload growth beyond these
limits required splitting the workload and reparti-
tioning the database between the nodes—a complex,
resource-intensive process not supportive of cus-
tomer business objectives.

A third key business objective was to address the in-
creasing customer demands for improved applica-
tion availability, not only in terms of failure recov-
ery, but for the more important reduction of planned

{BM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

outage times. Today, there is less opportunity for
planned systems shutdowns in the global economic
environment. Here again, meeting this objective was
key to the Parallel Sysplex cluster design.

Another key business objective was to protect invest-
ments customers have in existing applications. There
were two aspects to this objective. First, the Parallel
Sysplex technology had to be introduced in a com-
patible manner with existing applications. Second,
the benefits of parallel processing had to be trans-
parently applied to applications through exploitation
of the technology by application subsystems and da-
tabase managers. With few exceptions, these objec-
tives have been met. The Parallel Sysplex technol-
ogy extensions to the $/390 architecture (introducing
new CPU Instructions, new channel subsystem tech-
nology, etc.) are fully compatible with the base $/390
architecture. The IBM subsystem transaction man-
agers in the Customer Information Control System
(cics*) and the Information Management System
(1Ms*), and the key subsystem database managers
such as DATABASE 2* (DB2*) and IMS-DB, have ex-
ploited the data-sharing technology while preserv-
ing their existing interfaces.

A final objective was to logically present a single-
system image to users, applications, and the network,
and to provide a single point of control to the sys-
tems operations staff. Meeting this objective was key
to controlling the overall cost of managing a mul-
tisystem configuration. In a Parallel Sysplex environ-
ment, many cluster technology components, both
hardware and software, have been developed to meet
this objective. New data-sharing technology hard-
ware enables multiple-system nodes to serve com-
mon workloads with the appearance of a single large
computing resource. Base operating system cluster
services* provide robust intersystem communica-
tion, system monitoring, and automatic failure take-
over mechanisms. Shared consoles are provided for
managing multiple operating systems and multiple
underlying hardware system nodes with a single point
of control. Key system profiles, catalogs, and other
resources can be shared across the clustered systems
to enable efficient “cloning” of system definitions.
Through these and other means, systems manage-
ment costs do not increase linearly as a function of
the number of systems in the sysplex. Rather, total
cost of computing efficiencies of scale accrue through
the coordinated management facilities of the Par-
allel Sysplex cluster.

NIcK ET AL 173

Data-sharing design benefits. Given the customer
business objectives outlined above, the Parallel Sys-
plex shared-data architecture and technology was
critical to delivering the following system benefits:
dynamic workload balancing, continuous availabil-
ity, and continuous operations.

Dynamic workload balancing. A key aspect of being
responsive to changing business needs in a commer-
cial parallel processing environment involves the abil-
ity to dynamically adjust system resources to best sat-
isfy workload performance objectives in terms of
throughput and response times. In the $/390 Parallel
Sysplex environment, the high-performance data-
sharing technology provides the means for 0$/390 and
its subsystems to support dynamic workload balanc-
ing across the collection of systems in the configura-
tion. Functionally, workload balancing can occur at
two levels. During initial connection to the cluster,
clients can be dynamically distributed and bound to
server instances across the set of cluster nodes to ef-
fectively spread the workload. Subsequently, work
requests submitted by a given client (such as trans-
actions) can be executed on any system in the clus-
ter based on available processing capacity. The work
requests do not have to be directed to a specific sys-
tem node due to data-to-processor affinity, which is
typically the case with alternative data-partitioning
parallel systems, wherein buffer coherency and se-
rialization controls are not cluster-wide in scope. In
a Parallel Sysplex cluster environment, work will nor-
mally execute on the system on which the request
is received, but in cases of “over-utilization” on a
given node, work can be directed for execution on
other less-utilized system nodes in the cluster. For
both on-line transaction processing (OLTP) and de-
cision-support workloads, dynamic workload balanc-
ing across systems can be made transparent to the
customer applications or users.

Continuous availability. Within a Parallel Sysplex
cluster it is possibie to construct a paralle! process-
ing environment with no single points of failure. Par-
allel Sysplex hardware components such as sysplex
timers and coupling facilities (to be discussed in de-
tail later) can be redundantly configured. The sys-
plex timer serves as a common time reference source
for systems in the sysplex, distributing synchroniz-
ing clock signals to all nodes. The coupling facility
(CF) is the key Parallel Sysplex technology compo-
nent providing state-of-the-art cluster data-sharing
functions. If a coupling facility fails, critical data con-
tents can be “rebuilt” into an alternate CF under
0s/390 system and subsystem control. Since all sys-

174 NicK ET AL

tems in the Parallel Sysplex can have concurrent ac-
cess to all critical applications and data, the loss of
a system due to either hardware or software failure
does not necessitate loss of application availability.
Peer instances of a failing subsystem executing on
remaining healthy system nodes can take over re-
covery responsibility for resources held by the fail-
ing instance. Alternatively, the failing subsystem can
be automatically restarted on still-healthy systems
using automatic restart capabilities to perform re-
covery for work in progress at the time of the fail-
ure. While the failing subsystem instance is unavail-
able, new work requests can be redirected to other
data-sharing instances of the subsystem on other clus-
ter nodes to provide continuous application avail-
ability across the failure and subsequent recovery.

Continuous operations. The same availability char-
acteristics associated with handling unscheduled out-
ages are applicable to planned outages as well. A sys-
tem can be removed from the Parallel Sysplex for
planned hardware or software reconfiguration, main-
tenance, or upgrade. New work can be dynamically
redistributed across the remaining set of active sys-
tems. Once the system is ready to be brought back
on line, it can be reintroduced into the sysplex in a
nondisruptive manner and participate in dynamic
workload balancing as described earlier.

New system nodes can be introduced into the Par-
allel Sysplex in a similar fashion. That is, the already-
running systems continue to execute work concur-
rent with the activation of the new system node. Once
the new system is active, it can become a full par-
ticipant in dynamic workload balancing. New work
requests are naturally driven at an increased rate to
that system until its utilization has reached steady
state with respect to the demand for overall proces-
sor resources across all system nodes in the Parallel
Sysplex. This capability eliminates the need to shut
down the entire cluster to repartition the databases
and retune workloads for each system to distribute
work evenly after introduction of the new system into
the configuration, as is typically required with a data-
partitioning parallel processing system.

A further design objective for the Parallel Sysplex
was for new releases of 0S/390 and its key subsystems
to support the current and the next release migra-
tion coexistence. This allows new software product
release levels to be rolled through the Parallel Sys-
plex one system at a time, providing continuous ap-
plication availability across the systematic migration
install process.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Cluster architecture models. Clustering, as a way of
organizing computer systems, was surveyed by Pfis-
ter® who identified a cluster as “a type of parallel or
distributed system that consists of a collection of in-
terconnected whole computers and is utilized as a
single, unified computing resource.” The individual
cluster nodes can be either uniprocessor or symmet-
ric multiprocessor (SMP) systems. Although the com-
puters may be connected by a high-speed commu-
nication mechanism, they do not share any central
(main) storage. '

Another viewpoint ™ classifies parallel systems based
on conformance to one of the following architecture
models, each having its own strengths and weakness-
es: the shared-nothing model, the shared-disk model,
and the shared-everything model.

The shared-nothing (data-partitioning) model. Each
system owns a portion of the database, and each por-
tion can only be read or modified by the owning sys-
tem. Data partitioning enables each system to locally
cache its portion of the database in processor mem-
ory without requiring cross-system communication
to provide data access concurrency and coherency
controls. Scalability characteristics are excellent with
this approach.

However, there are limitations imposed in a com-
mercial processing environment by such a design
point.*! Significant capacity planning skills and cost
are required to tune the overall system to match the
processing capacity for each cluster node with the
projected workload access rate to data owned by that
node. Real-time workload demand fluctuations can
over- or under-utilize processor resources. Repar-
titioning of the cluster databases to introduce new
cluster nodes for additional capacity requires the en-
tire cluster to be shut down.

The shared-disk (shared-data) model. All of the disks
containing databases are accessible by all of the sys-
tems. The basic strength of this approach is that it
allows a workload to be dynamically balanced across
nodes of a cluster, which also has potential benefits
for availability and continuous operations, as dis-
cussed earlier. However, the major drawback to
shared-data models prior to the Parallel Sysplex ar-
chitecture has been poor scalability characteristics.

In shared-data configurations, distributed lock man-
agement protocols are employed to provide concur-
rency (serialization) controls across the cluster, gen-
erally involving message passing between the systems

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

on mainline paths to obtain and release locks. This is
necessary to ensure that only one system is allowed to
modify a given shared-data item at a time. Global (clus-
ter-wide) buffer coherency controls are required in or-
der to ensure that the currency of data items cached
in local buffers in the local processor memory for each
system can be determined prior to buffer reuse.

One approach to a shared-disk architecture employs

broadcast-invalidate mechanisms to provide coher-
ency control, sending cross-invalidate signals to all

The $/390 Parallel
Sysplex architecture
is characterized as a
shared-data model.

other nodes whenever a system updates a copy of a
shared-data item locally. This is done to inform the
other nodes that their locally cached copy of the
shared-data item is now “down level.” This approach
scales poorly as the number of nodes in the cluster
increase. An alternative approach avoids the broad-
cast-invalidate protocol, by continuing to hold the
lock on a valid locally cached data item after the
transaction ends. This allows the cached copy to be
subsequently reused focally with integrity. Owner-
ship of the lock is released only in the presence of
contention from other systems. However, with this
approach, only one system can maintain a current
local cache copy of a given data item in memory at
a time, that is, while the lock on that data item is
held. Ownership of the current data item copy trans-
fers or “pings” from one system to another as ref-
erences to those data are made.

Regardless of the global coherency protocols used,
these cross-system “ping” effects occur whenever a
system determines that it does not have a current
copy of a needed shared-data item. This typically re-
sults in the data being pushed out to shared disk by
the system in the cluster owning a current copy,
where the data are then fetched by the requesting
system node. These multisystem data transfer 1/Os
can cause significant performance degradation in the
cluster if a high degree of multisystem interest in the
shared data is present.

NICK ET AL. 175

176 NicK ET AL

The shared-everything model. Central storage, as well
as disks, are shared by all of the processors. This ap-
proach is used in structuring an SMP. An SMP is not
a clustered system by itself, but can serve as the sys-
tem building block for individual nodes of a cluster.
Shared-everything architectures have processing ef-
ficiency advantages when applied across a relatively
small number of processors, but do not generally
scale well as the number of processors increases.
Also, single points of failure compromise the avail-
ability characteristics of the processing system.

A more detailed comparison of alternative cluster
architectures with respect to performance and scal-
ability is discussed in Reference 10.

Parallel Sysplex cluster technology. The $/390 Par-
allel Sysplex architecture is generally characterized
as a shared-data model. Its fundamental distinguish-
ing characteristic over traditional shared-disk architec-
tures is that the Parallel Sysplex technology enables
multiple systems to cache the same data concurrently
in local processor memory with full read/write access
control and globally managed cache coherency, with
high-performance and near-linear scalability.

Specialized hardware and software cluster technol-
ogy is introduced to address the fundamental per-
formance obstacles that have traditionally plagued
data-sharing parallel-processing systems. The core
hardware technologies are embodied in the CF (for
data sharing) and the coupling support facility (for
communication between processors and the CF) com-
ponents of the system and are discussed in detail later
in this paper. Some of the most critical functions pro-
vided are outlined below:

» Hardware-assisted global concurrency controls.
Specialized hardware is provided to support low-
overhead, fine-grained global lock management
with hardware-assisted lock contention detection.
In the absence of lock contention, locks can be ef-
ficiently granted and released without intersystem
software message passing.

~ Hardware-assisted global buffer coherency con-
trols. The CF and coupling support facilities com-
bine to track the locally cached shared-data items
for each system, providing low-overhead mecha-
nisms for global buffer cross-invalidation. The
cross-invalidate operations do not involve software
message passing, nor do they interfere with nor-
mal processor instruction execution. Cross-inval-
idate signals are only sent to nodes with registered
interest in a data item being updated—not broad-

cast to all nodes in the cluster. Further, local buffer
coherency can be checked by the program buffer
managers on each node via new CPU instructions
that access local processor memory.
s Synchronous locking and buffer coherency request
handling. High-speed, low-latency links using
streamlined protocols are provided, allowing lock-
ing, caching, and queuing operations directed to
a CF to generally be completed instruction synchro-
nously. That is, in certain cases, delaying further
CPU instruction processing while the CF executes
an operation CPU-instruction-synchronously con-
sumes fewer machine cycles than would otherwise
be consumed by allowing CPU instruction process-
ing to continue while the CF executes the opera-
tion asynchronously, thus forcing the software to
perform a task switch to suspend and later resume
the requesting unit of work (after the CF completes
the operation). This can be contrasted with the in-
tersystem software message-passing costs to ob-
tain and release a lock in typical distributed soft-
ware lock management protocols, or with the
several milliseconds that are required for a typical
disk operation.
Global shared-buffer cache. The CF has its own pro-
cessor memory that can serve as a global cache to
enable high-speed local buffer refresh following a
local cache miss. The operation to retrieve data
from the coupling facility can be performed CPU-
synchronously if the requested data item is up to
4 kilobytes in size. Data transfers of up to 64K are
performed asynchronous to the initiating CPU. In
either case, the cost of a disk I/O or intersystem
message passing to “ping” ownership of the data
item from one system to another is avoided when
the data are resident in the coupling facility.
~ Hardware-assisted shared queuing constructs. The
CF supports general-purpose data-sharing queu-
ing functions that are applicable for a wide range
of cluster-wide uses, including workload distribu-
tion, intersystem message passing, and the main-
tenance of shared control block state information.

S$/390 Parallel Sysplex cluster

This section provides an overview of the technical
capabilities of the $/390 Parallel Sysplex. It covers the
overall system structure, the basic operating system
support for parallel processing, and the advanced
technology introduced to enable efficient clustering
or “coupling” of system nodes.

System model. An /390 Parallel Sysplex'"!? is a clus-
ter of interconnected processing nodes with attach-

IBM SYSTEMS JOURNAL, YOL 36, NO 2, 1997

Figure 1 Parallel Sysplex system model

PROCESSING
NODE/

ES/2000 BIPOLAR SYSTEM
PROCESSING NODE 1

ESCON = ENTERPRISE SYSTEMS CONNECTION
k<32

ments to shared storage devices, network control-
lers, and core cluster technology components,
consisting of coupling facilities, coupling support fa-
cilities, and sysplex timers. (See Figure 1.) A cou-
pling facility (CF) enables high-performance read/
write sharing of data by applications running on each
node of the cluster through global locking and cache
coherency management mechanisms. It also provides
cluster-wide queuning mechanisms for workload dis-
tribution and message passing between nodes. An-
other component, a coupling support facility, resides
on each of the processing nodes and is responsible
for communications between the nodes and the cou-
pling facility. A sysplex timer serves as a common
time reference source for systems in the sysplex, dis-
tributing synchronizing clock signals to all nodes. This
enables local processor time stamps to be used re-
liably on each node and synchronized with respect

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

SHARED DATA VIA LOCK
AND CACHE TECHNOLOGY

WORKLOAD DISTRIBUTION
AND MESSAGE PASSING
VIA QUEUE TECHNOLOGY

SYSPLEX TIMER

SHARED DATA

PROCESSING
NODE k

$/390 CMOS SYSTEM
PROCESSING NODE 1

to all other cluster nodes, without requiring any soft-
ware serialization or message passing to maintain
global time consistency. The synchronized time
reference source facilitates real-time or post-process-
ing merges of transaction manager logs across sys-
tems, for example, to provide coordinated transac-
tion and database recovery across the cluster for a
shared workload.

The Parallel Sysplex currently supports up to 32 pro-
cessing nodes where each node is a symmetric mul-
tiprocessor containing between 1 and 10 processors.
The nodes do not have to be homogeneous; that is,
mixed configurations supporting both $/390 CMOS
processor systems and traditional ES/9000™ bipolar sys-
tems can be deployed. The basic processor design
has a long history of fault-tolerant features.!* The
disks are fully connected to all processors. The /O

NICK ET AL.

178 Nick ET AL

architecture has many advanced reliability and per-
formance features (e.g., multiple paths with auto-
matic reconfiguration for availability). The basic I/O
architecture is described in Reference 14 and one
aspect of the dynamic I/O configuration is described
in Reference 15.

The cluster is organized in this fashion to increase
the number of processors that can be applied effec-
tively to large business problems, on-line transaction
processing, extensive queries, and applications on dif-
ferent systems that need to concurrently access and
update a single database. For example, a cluster with
three ten-way SMP nodes can utilize 30 processors
to work on a problem, with effective performance
increasing nearly linearly with the number of pro-
cessing nodes. "% On the other hand, if an attempt
is made to include more than ten processors in an
SMP, incremental effective capacity diminishes rap-
idly. This is due to increasing interprocessor com-
munication to provide interlocked-update access to
memory, processor cache invalidation, and operat-
ing system overhead to manage processor resources.

Base OS/390 cluster services. A sct of operating sys-
tem services are provided as building blocks for con-
struction and management of multisystem applica-
tions, subsystems, and components. These are
described in detail later; here we only briefly cover
some of the most relevant aspects.

First, a set of cluster group membership services are
provided. These allow processes to join or leave mul-
tisystem logical groups, communicate with other
group members, and be notified of events related to
the group.

Second, the ability to provide efficient, shared ac-
cess to operating system resource state data is pro-
vided. These state data are located on coupling data
sets and many advanced functions are provided, in-
cluding serialized access to the data (with special
time-out logic to handle faulty processor nodes) and
duplexing of the disks containing the state data. In
addition, there are availability enhancements for
planned and unplanned changes to the coupling data
sets (e.g., “hot-switching” of the duplexed disks).

Third, processor “heartbeat” monitoring is provided.
In addition to standard monitoring of the health of
each node, functions are also provided to automat-
ically terminate a failing node and disconnect the
node from its externally attached devices. This en-
ables other multisystem components to be designed

with a “fail-stop” strategy (performing peer recov-
ery for a failing node with assurance that the faulty
processor does not suddenly resume processing and
interfere with recovery of shared resources). This sys-
tem isolation function is system fencing and is ex-
ploited by 05/390 as part of sysplex partitioning actions.
Sysplex partitioning is the term used to describe the
set of actions peer systems take to remove another
system node from the cluster, including physical iso-
lation, freeing of shared resources, and cleanup of
state information related to the system being re-
moved. More information is provided in the section
on system fencing.

Although the use of multiple interconnected micro-
processors can aggregate large amounts of processing
power, low cost can only be achieved if the processors
arc efficiently utilized. Therefore, the ability to dynam-
ically and automatically manage system resources is
a key objective. A new component, the workload
manager,!” was designed to meet this objective,

A multisystem automatic restart manager (ARM) fa-
cility is provided as a base operating system cluster
component. The ARM component is fully integrated
in the Parallel Sysplex structure and provides signif-
icantly more functions than a traditional “restart”
service. First, it utilizes the shared-state support pre-
viously described so that at any given point in time
the ARM is aware of the state of processes on all sys-
tems (i.e., even of processes that “exist” on failed
nodes). Second, the ARM is tied into the processor
heartbeat functions so that it is immediately made
aware of node failures. Third, the ARM is integrated
with the workload manager so that it can provide a
target restart system based on the current resource
utilization across the available nodes. Finally, the
ARM contains many features to provide improved re-
starts such as affinity of related processes, restart se-
quencing, and recovery when subsequent failures oc-
cur. These services are described more fully in
Reference 3.

Coupling facility. At the heart of the Parallel Sys-
plex coupling technology is the coupling facility (CF),
a new component providing hardware assists for a
rich and diverse set of multisystem data-sharing func-
tions. The coupling facility architecture provides
three behavioral models to enable efficient cluster-
ing protocols:

* Lock model: supports high-performance, fine-

grained global locking and contention detection
» Cache model: provides global coherency controls

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 2 CF connection processing

FUNCTION DATA SET

(1) ALLOCATE STRUGTURE ON FIRST CONNEGT

(2) CREATE LOCAL STATE VEGTOR FOR A USER

(3) ATTACH USER TO A STRUCTURE

(4) RECORD STRUCTURE AND USER STATUS

(6A) RETURN STRUCTURE ATTRIBUTES

INFORM USER ABOUT CONNECTED PEER PROGRAMS
INFGRM PEER PROGRAMS ABOUT NEW CONNECTED USER
(7) REPORT STRUCTURE-RELATED STATUS CHANGES

for distributed local processor caches and a high-
performance shared data cache

» Queue (list) model: provides a rich set of queuing
constructs in support of workload distribution,
message passing, and sharing of state information.

Physically, the CF consists of hardware and special-
ized microcode (control code) that implements the
$/390 Parallel Sysplex architecture extensions. The CF
control code runs on the latest generations of $/390
processors. CFs are attached to other $/390 proces-
sors running the 0S/390 or MVS operating system via
high-speed coupling links. The coupling links use spe-
cialized protocols for highly optimized transport of
commands and responses to and from the CF. The
coupling links are fiber-optic channels providing 100
megabyte per second data transfer rates. Commands
to the CF can be executed synchronously or asynchro-
nously to further CPU instruction processing, with
CPU-synchronous command completion times mea-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

sured in microseconds, thereby avoiding the asyn-
chronous execution overheads associated with task
switching and processor cache disruptions. Multiple
CFs can be connected for availability, performance,
and capacity reasons.

Logically, the CF storage resources can be dynam-
ically partitioned and allocated into CF structures, sub-
scribing to one of the three defined behavioral mod-
els: lock, cache, and queue models. Specific commands
are supported by each model and, while allocated,
CF structure resources can only be manipulated by
commands for that structure type as specified at ini-
tial structure allocation. Multiple CF structures of the
same or different types can exist concurrently in the
same coupling facility.

CF connection processing. A CF structure is allocated

when the first attempt is made by a program to con-
nect to that structure by name (see Figure 2). CF al-

NICK ET AL.

179

180 Nick ET AL

location commands (Step 1 in Figure 2) are provided
to specify the type of structure to allocate, the
amount of storage to assign, and optional structure
attributes that depend on the intended usage of the
program. The location of the structure (given mul-
tiple coupling facilities to choose from) and its size
are determined by 08/390 based on customer-supplied
coupling facility resource management policy infor-
mation. As part of the connection request, the op-
erating system creates a local state vector via the
DEFINE VECTOR instruction (Step 2), if warranted.
Local state vectors are described in the next section
on coupling support facility.

The vector token returned by DEFINE VECTOR, which
serves as an identifier for the vector, is passed to the
CF in an attach command (Step 3). The command
establishes a binding between the program and the
CF structure; the token is subsequently used by the
CF to deliver secondary commands (not shown in the
figure) targeting the vector during execution of spe-
cific other CF commands. At the completion of the
allocation and attach processes, the operating sys-
tem records information concerning the structure
and user status in a function data set (Step 4), re-
turns structure attributes to the requesting program
(Step SA), and informs the program about all cur-
rent peer programs connected to the CF structure
(Step 5B). Other connectors are similarly informed
about the presence of the new connector (Step 6).
Two of the notifications are presented by 08/390 to
user program event exits, which were specified on
the 08/390 connection service interface, and which
are used to inform programs about any subsequent
status changes (Step 7) related to the CF structure,
The structure persists as long as there are connec-
tors to it, and can optionally persist even in the ab-
sence of any attached program users. Related ser-
vices and CF commands are provided for disconnect
and structure deallocation.

General CF characteristics. In Part I on architecture,
the CF models will be discussed in some detail; how-
ever, it is worthwhile to introduce some general be-
havioral characteristics as a frame of reference. The
CF supports a number of key functions to facilitate
reliable resource management and communication
with attached system processing nodes. Some of the
functions are;

1. Global commands are provided to control CF re-
source management and ownership, to ensure
that resource management policies are cohesively
administered by the systems comprising a single

sysplex cluster. Assignment of CF resources by the
attached operating system nodes is predicated on
authority-based conditional execution of com-
mands requesting resource allocation.

. Asset of pathing commands are provided that en-

able each attached system to establish reliable
communications with an attached CF. Informa-
tion is exchanged as part of path validation that
uniquely identifies the CF and each processing
node so that reliable pathing configuration tables
can be constructed and reverified across link fail-
ures. These mechanisms ensure that commands
directed from attached systems to a CF or vice
versa (such as cross-invalidate commands) are not
inadvertently executed on the wrong target pro-
cessor due to miscabling of physical links.

. Specialized hardware and operating system soft-

ware protocols are supported to guarantee the in-
tegrity of command delivery, even in the presence
of link failures, without introducing sympathy
sickness across nodes in the cluster.

Through these link recovery mechanisms, for ex-
ample, a write command to the coupling facility
initiated by a program on one node of the cluster
does not have to fail, even if the resultant cross-
invalidate signal cannot be delivered to another
target node caching a down-level version of the
data item. The target system node is gnaranteed
to observe the fact that its link to the CF was im-
paired prior to reliance on the integrity of its lo-
cal state vectors. Upon detection of such a fail-
ure, the affected operating system takes recovery
actions to cause data-sharing programs, on that
node only, to reregister their interest in shared
resources with the CF. This is accomplished by
over-indicating the invalid state of local cache vec-
tors (or the nonempty state of list-notification vec-
tors) when loss of connectivity is detected.

. Commands to the CF are executed atomically, i.e.,

they are completed in their entirety or they are
backed out at the CF in the event of failure. They
never complete with partial results being stored.
This greatly simplifies the recovery logic for sys-
tems attached to the CF.

. Further, this behavior extends to the execution

of concurrent commands in parallel at the CF. Par-
tial results of a command execution are nor ob-
servable to other commands while that command

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 3 Coupling support facilities

COUPLING SUPPORT FACILITY COUPLING SUPPORT FACILITY COUPLING SUPPORT FACILITY
IN SYSTEM 1 IN SYSTEM 2 IN SYSTEM 3
[“‘“‘ SN

5/380 90
PROCESSING PROCESSING
NODES NODES

4
PROCESSING
NODES

is still in progress. These atomicity properties en-
able programs connected to the CF to rely on the
implicit serialization of command execution. This
eliminates the need for programs to obtain ex-
plicit multisystem software serialization in order
to execute a single command, such as inserting
a work element onto a shared queue.

6. While the ensuing discussions focus on one or
more systems connected to a single CF, it is gen-
erally anticipated that two CFs will be configured
to provide redundancy. 0$/390 provides a recov-
ery service to exploiting programs to coordinate
the repopulation of the contents of a CF struc-
ture into an alternate CF, for either failure or
planned reconfiguration.

Coupling support facility. Specialized hardware pro-
vided on each processing node in the Paratlel Sys-
plex cluster is responsible for controlling commu-
nication between the processor and the CF. This

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

COUPLING FACIITY (0F)

specialized hardware is called a coupling support fa-
cility, as depicted in Figure 3. The coupling support
facility consists of new $/390 CPU instructions, high-
speed links, and link microprocessors. It also utilizes
processor memory to contain local state vectors.
These vectors are used to locally track the state of
resources maintained in the CF. Aswill be seen, these
local state vectors are key to avoiding unnecessary
communication between the processing node and the
CF to observe critical state information.

The coupling support facility provides several crit-
ical functions, discussed next.

Coupling facility command delivery. The coupling sup-
port facility provides the means by which a program
sends commands to the CF to request that locking,
caching, and queuing actions are to be performed.
The coupling support facility supports both synchro-
nous and asynchronous modes of command deliv-
ery. Synchronous commands are completed at the

NICK ET AL 181

end of the CPU instruction initiating the command,
based on highly optimized, low-latency transport pro-
tocols. Asynchronous commands are completed after
the CPU instruction initiating the command is ended,
with the completion notice being sent to the operating
system via a new notification mechanism that avoids
the necessity of raising a processor interruption.

Secondary command execution. The coupling support
facility executes secondary commands that are sent
by a CF to the processing node as part of performing
certain command operations at the CF. With one ex-
ception, the secondary commands direct the coupling
support facility to update state information in the
local state vectors to reflect updated resource status
at the CF. A secondary command may, for example,
store an invalid-buffer indication at a processing node
to signal that the node no longer has the latest ver-
sion of a locally cached data item.

Local state vector control. The coupling support facility
introduces a set of CPU instructions that interrogate
and update local state vectors. A DEFINE VECTOR
instruction dynamically allocates, deallocates, or
changes the size of a local state vector. The vectors
are in protected storage and are only accessible via
a coupling-support-facility-assigned unique token.
This ensures that programs do not inadvertently
overlay vectors for which they have no access author-
ity. Instructions are provided to test and manipulate
bits in the state vectors conveying the state of asso-
ciated resources, and are described in the context of
their use. There are three kinds of local state vec-
tors used: (1) Local cache vectors are used in con-
junction with CF cache structures to track local buffer
coherency; (2) list-notification vectors are used with
CF list structures to provide notification of CF list
empty/nonempty state transitions; and (3) list-noti-
fication vectors are also employed by the coupling
support facility to indicate the completion of asyn-
chronous command operations. Usage scenarios for
each of these types of vectors are described later in
sections on cache structures, list structures, and com-
mand delivery.

Hardware-assisted system isolation. The coupling sup-
port facility also provides a system fencing function
that isolates a failing system node from being able
to access shared external resources during cluster
fail-over recovery scenarios. This capability is dis-
cussed further later in this paper.

We discuss a detailed architectural review of the cou-
pling support facility functions later in this paper.

182 wNick ET AL

PART Il

Coupling facility architecture

This section introduces three types of CF storage
structures that are used to enable high-performance,
highly scalable, read/write data sharing across a Par-
allel Sysplex cluster. We discuss the features of CF
lock, cache, and list structures and outline the
software-controlled caching protocols that are im-
plemented using CF cache structures.

Lock structures. The CF lock model supports high-
performance, finely grained lock resource manage-
ment, maximizing concurrency and minimizing com-
munication overhead associated with multisystem
serialization protocols. This model enables a special-
ized lock manager (e.g., a database lock manager)
to be extended into a multisystem environment.

The CF lock structure provides a hardware-assisted
global lock contention detection mechanism for use
by distributed lock managers, such as the IMS Re-
source Lock Manager. The lock structure supports
a program-specifiable number of lock table entries
that are used to record shared or exclusive interest
in software locks that map via software hashing to
a given CF lock table entry (see Figure 4). Interest
in each lock table entry is tracked for all peers con-
nected to the CF structure across the systems in the
sysplex. Each entry has a global byte to contain the
system identifier of the first system to register ex-
clusive interest in any of the lock resource names
that hash to that lock table entry, and a share bit
string that identifies, by position, systems that have
share interest in that hash class.

0$/390 provides locking services to obtain, release,
and modify lock ownership state information for pro-
gram-specified lock requests. To request lock own-
ership, a program passes the software lock resource
name, the hash class value (to use as the index to
the coupling facility lock table entry), the shared or
exclusive interest, user data (used to negotiate pro-
tocol-specific hierarchical lock ownership states), and
program-specified lock information (recorded in the
entry for use in recovery processing). If the system
does not already have a registered compatible inter-
est in the specified lock table entry, 05/390 will issue
a command to the CF to perform the registration.

Through use of efficient hashing algorithms and gran-
ular serialization scope, false lock resource conten-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 4 Lock structure

0S/390-A

USER 1

HASH

LOCK VALUE

[~ RESOURCE NAME
HASH VALUE
S/E
USER DATA

I~ LOCK RECOVERY DATA

REQUEST
LOCK
OWNERSHIP

08/390 LOCKING SERVICES

1

REGISTRATION
COMMAND

USERID

LOCK TABLE ENTRY semtuaselp

G = GLOBAL BYTE
S = SHARE BIT STRING

tion is kept to a minimum. This allows the majority
of requests for locks to be granted synchronously
(cpU-instruction-synchronously) to the requesting
system, where synchronous execution times are mea-
sured in microseconds. Only in exception cases in-
volving lock contention is lock negotiation required,
wherein the CF returns the identity of the systems
currently holding locks in an incompatible state with
the current request to enable selective cross-system
communication for lock negotiation.

08/390 provides a rich set of cross-system lock man-
agement services to coordinate lock contention ne-
gotiation and resolution, lock request suspension and
completion, and recording of persistent lock infor-
mation in the CF. In the event of system or lock man-
ager failure, other systems can interrogate the re-
corded recovery information for the failing system
to quickly determine the set of locks held at the time
of failure, enabling efficient lock recovery. The CF
lock structure and supported protocols are discussed
in detail in Reference 18.

IBM SYSTEMS JOURNAL, VOL 38, NO 2, 1997

LOCK TABLE

Cache structures. A CF cache structure provides the
functions needed for multisystem shared-data cache
coherency management. The purpose of this model
is to enable an existing buffer manager (e.g., a da-
tabase buffer manager) to be extended into a clus-
tered system environment. It permits each system
node to locally cache shared data in processor mem-
ory with full data integrity and optimal performance.
Additionally, data can be optionally cached globally in
the CF cache structure for high-speed local-buffer re-
fresh. As a global shared cache, the CF can be viewed
as a second-level cache between local-processor mem-
ory and shared disk in the storage hierarchy.

A CF cache structure contains a global buffer direc-
tory that tracks multisystem interest in shared-data
items cached in one or more system local buffer
pools. A separate directory entry is maintained in
the CF structure for each uniquely named data item.
A directory entry is created the first time a command
requests registration of interest in the data item or
awrite operation is performed to place the dataitem

NICK ET AL. 183

Figure 5 Cache entry

into the shared cache. The directory entry contains
control information for the data item used in exe-
cution of CF commands targeting that entry. For ex-
ample, the directory entry contains the program-pro-
vided unique name of the data item (which serves
as the means for finding the directory entry via in-
ternal hash on the name on cache structure com-
mands). Also, the directory entry contains a user reg-
istry identifying each system that has a valid
registered interest in that data item, along with the
local cache vector index being used to track the in-
terest each database manager has in the data item
cached in its local buffer pool. The directory entry
contains an internal pointer to the CF-cached ver-
sion of the data item if present, as well as a bit in-
dicating whether the data item is cached in a changed
or unchanged state with respect to the permanently
stored version of the data item on shared disk (see
Figure 5).

The CF cache structure architecture was designed to
support three basic caching protocols:

* Directory-only cache. A directory-only cache uti-
lizes the global buffer coherency tracking mech-
anisms provided by the CF, but does not store data
in the cache structure. This allows read/write shar-
ing of data with local buffer coherency, but refresh
of down-level local copies of data items is via ac-

184 nNick ET AL

cess to the shared disk containing the data item,
and all updates are written permanently to disk as
part of the write operation.

Store-through cache. When used as a store-
through cache, in addition to the global buffer co-
herency tracking, updated data items are written
to the cache structure as well as to shared disk.
The directory entries for these data items are
marked as unchanged, since the version of the data
in the CF matches the version hardened on disk.
This enables rapid buffer refresh of down-level lo-
cal buffer copies from the global CF cache, avoid-
ing 1/0s to the shared disk.

Store-in cache. When used as a store-in cache, the
database manager writes updated data items to the
CF cache structure synchronous to the commit of
the updates. This protocol has additional perfor-
mance advantages over the previous protocols as
it enables fast commit of write operations. How-
ever, here the data are written to the cache struc-
ture as changed with respect to the disk version
of the data. The database manager is responsible
for casting out changed data items from the global
cache to shared disk as part of a periodic scrub-
bing operation to free up global cache resources
for reclaim. Further, an additional recovery bur-
den is placed on the database manager to recover
changed data items from logs in the event of a CF
structure failure.

iBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Reclaim processing. The CF cache architecture pro-
vides commands and processes to efficiently man-
age shared cache directory and data resources. Each
directory entry in the CF cache (and related data
when present) is associated with a program-speci-
fied storage class when the directory entry is created.
When read or write command references are made
to a named data item being tracked or cached in the
CF, that entry is marked by the CF as being the most
recently referenced entry for the storage class. Di-
rectory entries are maintained in the storage class
in least-recently-used (LRU) order for purposes of
reclaiming unchanged directory and data resources
from the cache to satisfy new resource requests. Mul-
tiple storage classes in the CF cache allow programs
to group data sets being cached according to per-
formance class priority, and commands are provided
to direct CF resource reclaim algorithms in accor-
dance with the priorities established for the storage
classes.

CF directory and data reclamation for unchanged
data items is performed automatically by the CF in
response to demand. If it is necessary to reclaim an
aged directory entry to satisfy a new request and
there is registered interest being actively tracked for
one or more connected programs in the targeted en-
try, cross-invalidate signals are directed to the local
cache vectors for those programs to reflect the fact
that their interest is no longer being tracked. Note
that the CF does not perform reclaim processing for
changed data items in the cache structure.

Castout processing for changed data items. To facil-
itate use as a store-in cache, the CF mechanisms al-
low efficient retrieval of changed data items from the
cache so that they can be written to disk rendering
them unchanged and available for subsequent re-
claim. The directory entry contains a castout class
field used to group changed data items together on
common castout class queues (program-specified)
so that physically coresident data items can be re-
trieved and written to the same disk volume in a sin-
gle 1/0 operation. Refer again to Figure 5.

Further, each directory entry contains a castout lock
that prevents multiple program processes from cast-
ing out the same data item to disk concurrently. Fail-
ure to provide this mechanism could result in inter-
leaved write updates being cast out to disk out of
sequence with respect to the order in which the up-
dates were made to the CF cache entry. The castout
lock is set during execution of a read-for-castout
command that marks the data item unchanged and

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

returns the data to the program. Note that the data
item is not eligible for CF reclaim while the castout
lock is held. When the program completes the disk
/O, it issues an unlock-castout-lock command to
cause the CF to release the castout lock, rendering
the data item eligible for reclaim.

However, it is desirable to allow new write opera-
tions to continue to make updates to a CF directory
entry concurrent with castout processing for that en-
try. Thus, the architecture enables writes to an entry
to store updated data while the castout lock is held
by another program process. Data integrity is pre-
served by setting the change bit for the entry on again,
which will persist when the castout process releases
the castout lock (i.e., the data item will not be el-
igible for reclaim when the castout lock is released).

Reference 19 contains greater detail about these pro-
cesses and how they relate to exploitation of a cou-
pling facility by IBM’s DB2.

Read scenario. In order to describe how the CF sup-
ports protocols enabling distributed local caches to
maintain coherency with respect to one another, it
is best to walk through two scenarios. First a read
scenario is discussed, followed by a write scenario.

Refer to Figure 6 for the following discussion. When
a database manager, such as IBM’s DB2, first connects
to a CF cache structure via 0S/390 system services, the
operating system allocates a local cache vector in pro-
tected processor storage on behalf of the database
manager. The local cache vector is used to track the
coherency of data cached in the local buffer pool.
087390 passes the local cache vector token to the CF
as part of attaching the program user (DB2) to the
cache structure, as previously described in the sec-
tion “coupling facility.” The database manager as-
sociates each buffer in the buffer pool with a unique
bit position in the local cache vector. When the da-
tabase manager receives a request for access to a data
item (named “A” in this scenario), it acquires a lock
on the data. The lock may be a global lock obtained
through access to a CF lock structure, for example.
Next, the program attempts to locate “A” in the
local buffer pool at Step 1. If “A” is located, then
the currency of the locally cached copy of “A” needs
to be determined. This is accomplished using a
TEST VECTOR ENTRIES instruction in Step 2, passing
the vector token and the local cache vector index for
that local buffer as input to the instruction. The
TEST VECTOR ENTRIES interrogates the vector in pro-
tected processor storage and sets a condition code

NICK ET AL 185

Figure 6 Read scenario

PROGRAM USER (Ui1)

®;«

READ “p”

LOCK “A"
s‘rEp@ LOCATE “A” IN LOCAL BUFFER POOL.
IF “A” IN LOCAL BUFFER POOL

@ TEST LOCAL CACHE ENTRY
IF LOCAL CACHE ENTRY VALID
RN “A”

RETU
1F INVALID OR NOT IN LOCAL BUFFER POOL
ASSIGN LOCAL. BUFFER AND LOCAL CACHE ENTRY

READ “A” FROM CF AND REGISTER

IF “A" NOT IN CF
READ “A” FROM DISK

IF UNCHANGED DATA IS TO BE CACHED
WRITE*A" TO CF

RETURN “A”
UNLOCK “A"

® @@

indicating whether the local copy of “A” is valid or
invalid (down level). Note that this check is a pro-
cessor storage reference and involves no communi-
cation with the CF. If the locally cached copy of “A”
is valid, it is returned to the requestor from the local
buffer pool and the lock on “A” is released.

If “A” is not in the local buffer pool or the cached
copy was invalid, the program assigns a buffer in the
pool to contain the data item. Then, at Step 3, the
program issues a read-and-register command to the
CF to register its interest in those data with the CF,
passing the program-specified data item name and
the local cache vector index associated with the lo-
cal buffer where the data item is being cached. In
addition, the program can provide the name of the
old data item that was cached in the assigned buffer
before it was reassigned to contain “A” as input to
the command, for example “B.” 0$/390, as part of
passing the command to the CF, first sets the spec-
ified local cache vector bit optimistically to the valid
state via a SET VECTOR ENTRY instruction. Upon re-
ceipt of the read-and-register command, the CF finds

186 Nick ET AL

A =DATA ITEM
U1t = PROGRAM USER
V =VALID
.= LOCAL CACHE VECTOR INDEX

or assigns a directory entry for data item “A” and
updates the user registry for the requesting con-
nected program user (U1), saving the local cache vec-
tor index and marking the user as having a registered
interest in “A.” If the data for “A” are present in
the CF cache from a prior write operation, the data
are returned to the program and stored in the local
buffer pool as part of the command execution. Also,
if the “old” named data item “B” has a current di-
rectory entry present in the cache structure and it
still reflects U1 as being validly registered for that
data item with the same local cache vector index be-
ing tracked, then Ur’s interest in “B” is deregistered,
as the local cache vector index is now being used to
track interest in “A.” If the read-and-register com-
mand fails for any reason, the operating system is-
sues a SET VECTOR ENTRY instruction to reset the
target local cache vector bit to the invalid state.

If the cF did not have a copy of the data in its cache,
then the program issues an IO to retrieve the data
item from disk at Step 4. If the program desires to
place the unchanged data item into the CF cache so

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 7 Write scenario

I

03/390-A ‘
[PROGRAMUSER UY)

08/390-8

WRITE A" ,
LOCK AND OBTAIN “A” (SEE READ *A")
STEP (1) UPDATE “A” IN LOCAL BUFFER POOL
(2)(3) WRITE "A” TO CF (CHG/UNCHG)
(4) IF DATA IS TO BE CACHED UNCHANGED
WRITE “A” TO DASD
UNLOCK “A"

that it may be fetched subsequently for rapid buffer
refresh when a local read miss occurs, a write-when-
registered or write-and-register command is issued
to store the data item at the CF in Step 5. At this
point the data item can be returned to the request-
ing program and the lock on “A” released.

Write scenario. Refer to Figure 7 for the following
discussion. Assume here that a request is made to
the database manager to update data item “A.” As
before, the database manager locks and locates “A”
in its local buffer pool and tests the validity of the
locally cached copy. The program uses the local copy
if current or retrieves a current copy if not, as de-
scribed in the previous section. Then, at Step 1, the
program updates the local copy of data item “A.”

At Step 2, if it desires to store the updated data in
the CF, the program issues a write- when-registered
(WWR) or write-and-register (WAR) command to the
CF, passing the data and the local cache vector index
being used to track interest. If the program intends
to write the data to disk as part of a store-through

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

A= DATA ITEM

U1 = PROGRAM USER

-U2= PROGRAM USER

V= VALID

V' INVALID

#= LOCAL CACHE VECTOR INDEX

caching protocol, then an indication is specified on
the write command to set the change bit as “un-
changed” in the directory entry for “A.” If the pro-
tocol is to use the CF cache as a store-in cache, then
the change bit setting is designated to the “changed”
state.

The difference between the WwR and WAR com-
mands is that the WAR command will allocate a di-
rectory entry for “A” if one is not present and will
unconditionally over-write the existing data for “A”
if already present in the CF (on the presumption that
the program holds an exclusive lock on the data item
“A” and knows it has a current copy). The WWR com-
mand conditionally performs the write operation
only if the writer is currently registered at the CF as
having a valid local copy of “A.” This capability is
important for programs holding a lock on a specific
record within data item “A,” but not a lock on the
entire data item. The validity check at the CF entry
on the WWR command ensures that concurrent up-
dates to different records associated with the same
data item cached in the CF cannot result in one sys-

Nick ET AL. 187

tem writing a down-level version of the data item
into the CF. Without this validity check, a program
could test its local cache vector index contents as be-
ing valid and then proceed to update the local copy,
missing the cross-invalidate signal issued on behalf
of another update to a different record just after the
test of the local vector bit.

Alternatively, if the CF cache is being used solely to
provide cluster-wide buffer coherency tracking as
part of a directory-only caching protocol, an inval-
idate-complement-copies (ICC) command is issued
to the CF at Step 2 instead of a write command to
cause the cross-invalidate function to be performed
without storing data in the CF cache for “A.”

At Step 3, as part of execution of the WWR, WAR,
or 1CC command at the CF, the user registry for “A”
is checked to determine whether there are any other
connected users who have a valid interest in “A,”
meaning that they have a locally cached copy of “A”
which still reflects the valid state. If so, the CF marks
those users as invalid in the user registry and then
sends a cross-invalidate command via the coupling
links in parallel to those systems having a registered
interest in that data item. The CF issues the cross-
invalidate command, specifying the local cache vec-
tor token and local cache vector index uniquely iden-
tifying the specific vector and bit which is to be
manipulated on the attached processor node. Spe-
cialized coupling link hardware provides processing
for buffer invalidation signals sent by the CF to at-
tached systems. The coupling support facility link mi-
croprocessor receives the cross-invalidate command
and updates the CF-specified bit in the data manag-
er’s local cache vector to indicate the local copy is
no longer valid. This process does not involve any
processor interruption or software involvement on
the target system. Work continues without any dis-
ruption. After the CF has observed completion of all
buffer invalidation signals, it responds to the system
that initiated the data update process. Again, this
entire process can be performed synchronously (CPU-
instruction-synchronously) to the updating system,
with completion times measured in microseconds.

At Step 4, if the database manager has written the
data item to the cache structure as unchanged (store-
through) or not at all (directory-only cache proto-
col), then it will write the data item to disk at this
point. This step is bypassed if the CF cache is being
used as a store-in cache for fast commit of write up-
dates to avoid incurring disk /O costs synchronous
to mainline program processing.

188 nick ET AL

At this point, the issuing database manager is free
to release its serialization on the shared-data item.

By exploiting the cache coherency and global buffer
cache management mechanisms previously de-
scribed, it can be seen that the CF and related $/390
Parallel Sysplex cluster technology provide the ba-
sis for high-performance, scalable read/write data
sharing with integrity across multiple systems, avoid-
ing the message-passing overheads typically associ-
ated with data-sharing parallel systems.

Queue (list) structures. The CF queue or list struc-
ture supports general-purpose multisystem queuing
constructs that are applicable for a wide range of
uses, including workload distribution, intersystem
message passing, and maintaining shared control
block state information. As depicted in Figure §, a
list structure includes a program-specified number
of list headers. List structures can support queuing
of entries in last in, first out/first in, first out
(LIFO/FIFO) order or in collating sequence by key
under program control. Individual list entries are
dynamically created when first written and queued
to a designated list header. List entries can option-
ally have a corresponding data block attached at the
time of creation or subsequent list entry update. Ex-
isting entries can be read, updated, deleted, or moved
between list headers atomically, without the need for
explicit software multisystem serialization in order
to insert or remove entries from a list. Compound
operations are supported, such as read-and-delete,
write-and-move, etc.

Optionally, the list structure can contain a program-
specified number of lock entries. When so specified,
the structure is referred to as a serialized list struc-
ture. In the serialized list structure, locks are obtained
in an exclusive mode only. The individual locks are
solely under software control and do not architec-
turally map to any other list objects; however, it is
cormmmon to map a given lock entry to a list header
(queue) in the list structure. Lock operations include
the ability to obtain ownership of a lock, release the
lock, test whether a specific lock is held, and exe-
cute a list command only while a given lock is not
held. A powerful construct of the list model is the
ability to combine a locking operation with a queu-
ing operation to the list structure in a single com-
pound command, using the success of the locking
operation as a condition for execution of the queu-
ing action. A common exploitation of the serialized
list structure is to request conditional execution of
mainline CF commands as long as a specified lock

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 8 List structure

08/390-A

LISTNOTIFICATION VECTOR _

08/390-8B

E

TR
S

e

LIST-NOTIFICATION VECTOR

GS = GLOBAL SUMMARY
LS = LOCAL SUMMARY

is not held. Recovery operations requiring a static
view of a list or the entire structure can set the lock
causing mainline operations to be rejected. Such a
protocol avoids the necessity for mainline processes
to explicitly gain or release the lock for every request,
but stilf allows such requests to be suspended or re-
jected in the presence of long-running recovery op-
erations. 0S/390 supports the ability to either suspend
a serialized list request if the requested lock is not
available, or to conditionally obtain the lock and re-
turn control to the program if the lock is not imme-
diately available.

There are several mechanisms by which a list entry
can be accessed, depending on structure attributes
specified as part of list structure allocation. Entries
can be accessed by a program-provided key, which
is also used to queue the entries collated in keyed
sequence on a given list. Note that multiple entries
of the same key can reside on the same list. Alter-
natively, list entries can be accessed by a program-
assigned name, which is guaranteed to be unique
across the list structure when the entry is created.
List entries can always be accessed in LIFO/FIFO or-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

der from the head or tail of the list. Further, all list
entries are created with a CF assigned list-entry iden-
tifier (LEID). The LEID is guaranteed to be unique
for the life of the list structure and provides a direct
means of locating an individual list entry even if it
is not otherwise tagged with a key or name.

Each list header in the structure has a set of list con-
trols associated with it. The controls contain thresh-
old values for the number of list entries or data ei-
ements that can reside on a given list header, so that
a single program user cannot exhaust all of the list
structure resources as a “runaway” rogue program.
The list controls also contain a list cursor value, which
enables multiple concurrent programs on different
systems to cooperatively browse through a list. Each
program reads the entry adjacent to the last one read
by any peer program, without each system having to
communicate with respect to the current cursor po-
sition within the shared list. The list controls further
contain list assignment key controls, whereby the pro-
gram can seed the initial and maximum key values
s0 entries created on a list can be assigned a gen-
erated key in sequence by the CF, without the pro-

NICK ET AL. 189

190 nNick ET AL

Figure 9 List notification

rlist-moniftor . g
L TEST VECTOR A2y
S CENTRIES. A
- T e

0S/390-8
| wiite-ist-ent

(1)USER Ut REGISTERED

(2)EMPTY TO NOT EMPTY TRANSITION OCCURS
WHEN FIRST LIST ENTRY PLAGED ON LIST

(3)NOTIFICATION DELIVERED
(4)05/390-A GIVES CONTROL TO USER'S (U1} EXIT
{5)USER TESTS CURRENT STATE

gram having to know the last key assigned on list en-
try creation by a peer program on another node.

One of the controls, a list authority value (LAU), can
be set by a program dynamically and used as a com-
parative operand on list structure commands di-
rected to the targeted list, causing commands to be
rejected if the comparative check on LAU fails. This
is a useful mechanism to change list ownership or
state with guaranteed failure of any commands is-
sued by peer programs unaware of the changed own-
ership or state for that list.

Other list structure objects can be atomically com-
pared or replaced as part of list structure command
executions to cause conditional execution only if all
comparative checks succeed. In addition to the LAU
check, execution can be conditional based on suc-
cessful compare or replace of lock value, list num-
ber, or version number. Every individual list entry
supports a version number value that is initialized
and modified by the programs and can serve as a
means of reflecting any list entry state change (such
as update of the list entry data contents).

@S = GLOBAL SUMMARY
LS = LOCAL SUMMARY
N = NON-EMPTY STATE
U1, U2 = USERS

Refer to Figure 9 for the following discussion of list
notification. Programs can register interest in spe-
cific list headers used as shared work queues or in-
bound message queues at the CF, for the purpose of
being notified when a monitored list becomes non-
empty. This provides initiative to the program to is-
sue commands to retrieve list entries that have been
placed on the list. The program registers interest in
monitoring a specific list via a list structure command,
register-list-monitor, passing the list-notification vec-
tor index to be used to track interest in that list, as
indicated in Step 1 in Figure 9.

When an entry is added to the list causing it to go
from an empty to nonempty state, as at Step 2, the
CF sends a list notification command indicating an
empty-to-nonempty list state transition to registered
users at Step 3. The list-notification (LN) vector to-
ken (passed in on the initial attach command when
the program connected to the list structure) is pro-
vided along with the LN vector index on the list-no-
tification command. The command is received by the
coupling support facility link microprocessor on the
target system and the specified list-notification vec-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

tor bit and associated list vector summary bits are
updated to reflect the list-state-transition, as will be
described next.

Each list-notification vector has a local-summary (1S)
bit that indicates the overall contents of the vector
as either inactive (all vector bits are set to ones in-
dicating empty list state) or active (at least one bit
is reset to zero indicating nonempty list state). There
is also one global summary (GS) bit for the process-
ing node; it indicates the overall contents, either in-
active (all vectors are inactive) or active (at least one
vector is active), for all of the list-notification vec-
tors at the node.

The coupling support facility first sets the specified
LN vector bit to the nonempty state. Then the local
summary bit for that vector is set to the active state.
Finally, the global summary bit for the node is set
to the active state. Setting the local summary and
the global summary to the active state serves as the
means for the operating system to observe the fact
that an LN signal has been received; this is detected
during normal dispatcher processing when looking
for new work units to dispatch.

Aswith the cache buffer invalidation signal handling,
there is no processor interruption, processor cache
disruption, or software task context switch caused
as a result of processing the list state transition com-
mand.

The program steps in polling for list nonempty state
transitions are (1) test the global summary, then (2)
test the local summary if necessary, and finally (3)
test individual vector bits to identify the specific lists
that have transition to a nonempty state.

The first test is made by the dispatcher routine of
the operating system; if no vectors are active, nor-
mal dispatcher processing continues.

Tests of the summary bits use the TEST VECTOR
SUMMARY instruction. TEST VECTOR ENTRIES ex-
amines bits in a list-notification vector.

Summary bits are placed in the inactive state using
the SET VECTOR SUMMARY instruction in response
to obscrving that one or more vectors has been
placed into the active state during dispatcher poll-
ing. First the global summary is reset. Then the lo-
cal summary bit is tested and reset if necessary. This
is done by the operating system prior to proceeding
with testing of the state of individual list vector en-

IBM SYSTEMS JOURNAL, VOL 38, NO 2, 1997

tries, so as not to lose dispatching initiative for sub-
sequent list-notification events.

Once the operating system has determined that an
LN vector has experienced at least one empty-to-non-
empty list state transition, it proceeds to drive each
target user’s list transition exit at Step 4. The user
exit routine then executes the TEST VECTOR ENTRIES
instruction to determine which lists have entered the
nonempty state at Step 5.

Note that when the last entry on a CF list is deleted,
list-notification commands signaling a nonempty-to-
empty-state transition are sent to registered con-
nected programs. The GS and LS summary bits are
not altered as part of a nonempty-to-empty-state
transition. The specified LN vector bit is set to in-
dicate the empty state of the list at the CF.

Given a responsive operating system polling means,
the above mechanism avoids the undesired overhead
of processor interruptions during program execution
and the corresponding cache disruption effects that
ensue at points in processing where the dispatcher
is not intending to preempt the CPU to dispatch an-
other unit of work.

Summary of the CF architecture. From the functions
previously described, it can be seen that the CF pro-
vides a rich and diverse set of capabilities upon which
programs can build efficient, reliable, and scalable
protocols for sharing data in a clustered system.
Highlighted functions and design characteristics in-
clude:

* Global concurrency controls and hardware-assisted
lock contention detection

» Global buffer coherency controls for distributed
caches

* High-speed shared cache with CPU-synchronous
access

¢ Shared queues for workload distribution and mes-
sage passing

s Cross-invalidate signal delivery without processor
interruption or global broadcast required

¢ Local processor mirroring of global shared-re-
source state via local state vectors

¢ Atomic CF command properties to minimize soft-
ware serialization requirements and simplify re-
COVEry processes

Coupling support facility architecture

This section outlines several aspects of the coupling
support facility architecture.

Nick ET AL 191

Figure 10 SEND MESSAGE instruction

SEND MESSAGE SUBCHANNEL .

MESSAGE-OPERATION BLOGK
| ASYNCHRONOUS (4) BIT
NOTIFICATIQNNB!T :

NOTIFICATION
- DESCRIPTOR

MESSAGE»G(}MMAND-
BLOCK ADDRESS! | :

r73<:amwm LENGTH

MESSAGE~COMMAND BLOCK

SENDTO

COUPLING

“DATABUFFER' .
‘DESCRIPTORS

FACILITY

3
-
.

First, the SEND MESSAGE instruction is described.
The instruction is used to deliver a command request
to a CF from an attached processor node. Next, links
between a coupling support facility and a CF are con-
sidered. These links carry command and response
information, as well as cross-invalidate and list-
notification commands from the CF. Finally, system
fencing functions are described.

Command delivery. An exchange of command and
response information between a coupling support fa-
cility and a CF is called a message operation. It is
important to distinguish this mechanism from mes-
sage-passing protocols between software programs
on different nodes of a cluster or communication
flows in a networked environment. In the context of
this discussion, a message is the transport unit for
exchanging commands and responses with CF micro-
code over a high-speed link, with an architecture for
the express purpose of supporting efficient data-shar-
ing functions across nodes of the Parallel Sysplex
cluster. When an operating system invokes the op-
eration, the command information is specified in

1092 NICK ET AL.

DATA BUFFERS MESSAGE RESPONSE BLOCK

BUFFERO., . REGEIVED FROM
BUFFER1. COUPLING
it FACILITY

main storage; it includes a command code, operands,
and output data for a write-to-CF command. Re-
sponse information is placed in main storage to sum-
marize the results of command execution and input
data are also stored for a read command.

The program issues SEND MESSAGE to start a mes-
sage operation (see Figure 10). The instruction des-
ignates a message subchannel and a message-oper-
ation block in main storage. The subchannel is
associated with a specific CF and identifies the links
(there can be several) that may be used for the op-
eration. 0S/390 activates as many message subchan-
nels as can be effectively used for parallel execution
of multiple CF commands.

After the coupling support facility selects a link for
communication, the operation is performed by send-
ing the command to the CF, transferring data as ap-
propriate, decoding and executing the command,
formulating a response, and storing response infor-
mation in main storage. While executing the com-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

mand, the CF may send secondary commands to one
or more processing nodes.

The message-operation block. Figure 10 illustrates pa-
rameters for this operation:

s Asynchronous (A)—When the A bit is one, the
message operation is performed asynchronously
to continued instruction processing—the SEND
MESSAGE instruction is completed before the com-
mand reaches the CF. Otherwise, CPU instruction
processing is delayed and the entire operation is
performed during the execution of SEND MESSAGE.

s Notification (N)—When the N bit is one, the list-
notification vector bit designated by the notifica-
tion descriptor is reset to signal the completion of
the operation.

» Message-command-block address and command
length—These are the main-storage locations of
a coupling command and the number of bytes in
the command.

s Data buffer descriptors—These are the main-stor-
age locations and sizes of the data buffers used by
the command. The aggregate data area can con-
tain up to 64 kilobytes (KB). The buffer contents
are sent 1o the CF when the write bit in the message-
command block is one; the CF returns data to the
buffers when the write bit is zero.

The message-command block. This contains informa-
tion that is sent to the CF:

s Command code—This specifies the command to
be performed.

s Write (W)—When the W bit is one, a write op-
eration is performed—information is transferred
from the data buffers to a CF structure. Otherwise,
aread operation is performed—information is trans-
ferred from a CF structure to the data buffers.

s Command information—These are operands that
complete the command specification.

The message-response block. This is the destination
for information that is returned by the CF. It starts
at the location immediately following byte 255 of the
message-command block. The following are stored
in the block:

s Response count—This is the number of meaning-
ful bytes stored in the message-response block. The
count spans information stored starting at byte 0
of the block. The information includes the response
count, the data count, and the response field.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

* Data count—This is the number of meaningful
bytes stored in the data buffers. The data count is
zero when the write (W) bit in the message-com-
mand block is one.

s Response—This is information summarizing the
results of command execution.

Asynchronous vs synchronous operation. In contrast
to an YO operation with a disk or network device,
which takes many milliseconds to complete and is
always performed asynchronously to continued in-
struction processing, a coupling support facility mes-
sage operation is performed synchronously or asyn-
chronously to instruction processing, depending on
the option selected by the program.

A general guideline is to use synchronous operation
for commands that transfer at most 4 KB of data (not
counting the bytes in the message-command block).
Most frequently used commands (for example, lock-
ing commands), commands that enqueue or dequeue
work requests or messages, and commands that read
or write 4 KB of data from or to a cache structure,
satisfy the guideline.

Commands that transfer more than 4 KB of data or
are otherwise known to be long-running should use
the asynchronous option. Other work can be pro-
cessed while the command is being executed.

Completion of the message operation. No 1/O or other
interruption is generated for a message operation.
This design reduces processor overhead. For exam-
ple, an interruption at the end of a disk operation
normally stops the processing of a higher priority
task, invokes an interruption handler to save the ma-
chine state, causes a lower priority work request to
be placed on a system queue, results in castouts from
caches and translation-lookaside buffers, and restores
the old machine state to return to the interrupted
task. This disruption is avoided using the techniques
described next.

When the program selects the synchronous option
for a message operation, control is returned at the
end of the operation (end-op) of the SEND MESSAGE
instruction with the message operation completed.
Status of the operation is then determined as indi-
cated in the condition code for a TEST MESSAGE in-
struction.

When the program selects the asynchronous option,
it can designate a list-notification vector bit that is
to be reset when the operation is completed. The

NICK ET AL. 193

Figure 11

List-notification vector used to indicate completions

TEST VECTOR SUMMARY
SET VECTOR SUMMARY

DEFINE VECTOR

COMPLETION SIGNAL FROM
THE COUPLING SUPPORT FACILITY

TEST VECTOR ENTRIES

{ SET VECTOR ENTRY

LIST-NOTIFIGATION VECTOR

GS = GLOBAL SUMMARY
LS = LOCAL SUMMARY

operating system tests for completion when, in the
normal course of events, it is searching for a new unit
of work to dispatch.

Notification of asynchronous message completion. The
coupling support facility exploits list-notification lo-
cal state vectors to signal asynchronous message com-
pletions to the operating system. List notification vec-
tors were previously introduced. The operating
system establishes a separate completion vector for
each CF to which the processor is connected. Each
bit in a given vector is associated with a different mes-
sage subchannel used for communication with that
CF. The operating system issues a DEFINE VECTOR
instruction to set up a list-notification vector in pro-
tected processor storage. The coupling support fa-
cility assigns a list-notification token to serve as the
name for the vector; the token is used in various CPU
instructions and coupling commands. A vector that
indicates the completion of message operations is
shown in Figure 11.

Each list-notification vector has a local-summary (LS)
bit that indicates the overall contents of the vector

194 NicK ET AL

as either inactive (all vector bits are set to ones) or
active (at least one bit is reset to zero).

There is also one global summary (GS) for the pro-
cessing node; it indicates the overall contents, either
inactive (all vectors are inactive) or active (at least
one vector is active), for all of the list-notification
vectors at the node.

The coupling support facility sets the local and global
summary bits to the active state after it resets a vector
bit to indicate the completion of a message operation.

The program steps in polling for the completion of
asynchronous operations are to test the global sum-
mary first, then test the local summary if necessary,
and finally test individual vector bits to identify the
completed operations. The first test is made by the
dispatcher routine for the operating system; if no vec-
tors are active, normal dispatcher processing con-
tinues.

Tests of the summary bits use the TEST VECTOR

SUMMARY instruction. The TEST VECTOR ENTRIES
instruction examines bits in a list-notification vector.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 12 Coupling facility link

| COUPLING SUPPORT FAGILITY ! COUPLING FACILITY

! LINK 5

| ; CROSS-

: ; INVALIDATE
|; ; (1) COMMAND
(UST

; : NOTIFICATION
! X ; (LN) COMMAND
| READ R

! CACHE see >

| READ ;

+ 1

! WRITE 3

| LIST ees memmmep !

T R A R R

List-notification vector bits are set using the SET
VECTOR ENTRY instruction; this is done by the op-
erating system as part of initiating an asynchronous
SEND MESSAGE operation. Summary bits are placed
in the inactive state using the SET VECTOR SUMMARY
instruction in response to observing that one or more
vectors have been placed into the active state dur-
ing dispatcher polling. This is done by the operating
system prior to testing the individual vector bits for
completed operations, so as not to lose dispatching
initiative. Once the operating system has determined
that one or more subchannels have completed ex-
ecution of a message operation, it proceeds to ex-
ecute the TEST MESSAGE instruction to observe sta-
tus for those requests.

As discussed earlier for list notification, the above
mechanism avoids the undesired overhead of pro-
cessor interrupts during program execution and the
corresponding cache disruption effects that ensue at
points in processing where the dispatcher is not in-
tending to preempt the CPU to dispatch another unit
of work.

Links between the coupling support facility and the

CF. A connection between a coupling support fa-
cility and a CF is called a CF link. The links provide

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

transfer rates of 100 megabytes per second with low-
access latency.

Each link is arranged to provide two information
flows. Information in one flow is sent from the cou-
pling support facility to the CF. Information in the
other flow is sent from the CF to the coupling sup-
port facility. The information in the flows need not
be associated with the same coupling command.

A number of message operations may be executed
concurrently on a single link. The operations are split
into short intervals of time during which only a seg-
ment of information is transferred over the link. The
intervals are sequenced in response to demands
made by the coupling support facility and the CF.

Buffers at each end of the link contain areas for com-
mand information, data, and response information.
They are allocated for use on a dynamic basis to con-
pensate for speed mismatches among the link, the
coupling support facility, and the CF. Figure 12 shows
an example of a CF link with its two information flows.
There are four buffers at each end of the link. The
figure suggests that one of the write commands, to-
gether with the data to be written, have been sent
from the coupling support facility to the CF, which

NIcK €T AL. 105

196 NiCK ET AL

has not yet completed the command. At the same
time, one of the read commands has entered a buffer
at the coupling support facility, and has just started
to cross the link. Both commands were invoked by
the operating system.

Independently of the commands sent by the oper-
ating system, the CF has sent secondary list-notifi-
cation (LN) and cross-invalidate commands (XI) to
the coupling support facility as part of the execution
of coupling commands that were received from other
processing nodes (not shown). The LN command is
being executed by the coupling support facility link
microprocessor. The XI command is “in flight” over
the link to the coupling support facility.

A response for each command will be returned when
command execution is completed.

System fencing. Key to cluster availability is the
means to “failover” applications to a healthy node
when the node on which they are running is deemed
to be failing. In order to recover resources owned
by the failing node, that node has to be reliably
known to be in a terminated state so that it can no
longer access shared resources. The CF and coupling
support facility provide the means to isolate a pro-
cessor from accessing any shared resources in the
cluster (i.e., to “fence” it) so that cluster recovery
can take place.

As part of an availability failover protocol, each
08/390 system periodically broadcasts “heartbeat sig-
nals” to the other operating systems of the cluster.
When signals are missed, indicating that a system
has probably failed, a peer system (any of the remain-
ing healthy nodes) assumes recovery responsibility
for any resources held by the failing system. How-
ever this does not guarantee that the faulty system
is actually in a terminated state. It could be in a tem-
porarily hung state or looping-disabled for an exces-
sive period of time. The recovery system must cause
the failing system to become isolated from the clus-
ter before it takes recovery actions, which may in-
clude completing or backing out transactions for the
failing system and releasing its database locks. Then,
the workload of the failing system is distributed to
other systems.

Isolation from the cluster is achieved by establish-
ing a channel subsystem state to screen the 1/0 and
message operations of a processing node. The not-
isolated state is set when the node is initialized; when
the state changes to isolated, any new /O or mes-

sage operations initiated from the isolated node are
rejected by its channel subsystem.

Figure 13 shows an isolation scenario. First, an op-
erating system sends an activate-fencing command
to initialize the fencing function at its processing
node. The command is sent by way of a CF; it stores
a nonzero fencing-authority value at the node. The
operating system also distributes the authority value
to peer systems in the cluster.

When heartbeats are missed for a period of time in
excess of a predetermined failure interval, another
system in the cluster can take action to partition the
failing system from the sysplex. The recovery system
issues an isolate command via the SEND MESSAGE
instruction to interdict any /O and message oper-
ations attempted by the failing system. The command
specifies a fencing-authority test value; it is forwarded
by the CF to the coupling support facility at the fail-
ing node as indicated on the isolate command.

The coupling support facility executes the isolate
command, as follows. When the fencing-authority
value at the node is nonzero and matches the fencing-
authority test value, the channel-subsystem state is
set to isolated and an YO-termination process is
started. A response to the isolate command indicates
whether or not all active /O and message operations
have ended; if they have not, the termination pro-
cess continues at the failing node and the takeover
gystem reissues the command until a response in-
dicates that all operations have ended. If all oper-
ations have not completed in a reasonable time pe-
riod, the recovery system can reissue the isolate
command, specifying that the 1/0 termination pro-
cess should terminate long-running I/O operations
at a channel control word (CCW) boundary. If a pro-
gram-determined period of time expires again with-
out completion of the isolation process, the recov-
ery system reissues the isolate command specifying
immediate termination of any still-outstanding I/0
operations. This will terminate any apparently hung
CCW operations. In this manner, the system isola-
tion process is executed to allow quiescing of out-
standing 1I/O operations if possible so as to not leave
shared resources in an indeterminate state of com-
pletion. In addition, the system isolation process
causes reset of channel interfaces from the target sys-
tem so that any serialized state information main-
tained in shared-disk controllers (such as device re-
serves, etc.) are released.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 13 System fencing using a coupling facility

PROCESSING NODE 1

CHANMEL:
SUBSYSTEM . .1 AUTHOR
STATE L

ACTIVATE
FENCING

R R R R R R A R RN RN RN NN NN

ISOLATE

PROCESSING NODE N

"

CHANNEL SUBSYSTEM

COUPLING FACILITY

Once the response from the isolate command indi-
cates that all /0 operations have been completed or
terminated, the failing system has been isolated from
the cluster. Resource recovery and workload redis-
tribution can proceed on other systems in the Par-
allel Sysplex cluster.

Summary of coupling support facility architecture.
The coupling support facility architecture provides
a set of essential functions in the Paralle] Sysplex clus-
ter. They are:

» Efficient command transport for communication
with the CF

s CPU-synchronous command delivery and execution

s Asynchronous command completion without /O
interruption

s CPU instructions for manipulation of local state vec-
tors and local tracking of CF resource state to min-
imize unnecessary signaling traffic between nodes

» System isolation functions to support robust fail-
over protocols

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Parallel Sysplex scalability

Figure 14 depicts effective total-system capacity as
a function of the number of physically configured
CPUs in a processing system. The line labeled IDEAL
shows a 1:1 correspondence between physical capac-
ity and effective capacity. That is, as a CPU is added
to the processing system, its full uniprocessor capac-
ity would be effectively applied to program execu-
tion. Real configurations, of course, do not exhibit
this ideal behavior.

The symmetric multiprocessor (SMP) line shows be-
havior of an SMP as additional CPUs are added to the
same single physical system. SMP systems provide
maximum effective throughput at relatively small
numbers of engines, but as more CPUs are added to
the sSMP system, incremental effective capacity be-
gins to diminish rapidly, limiting ultimate scalabil-
ity. This is attributable to the overheads associated
with interprocessor serialization, memory cross-in-
validation, and communication required in the hard-
ware to support conceptual sequencing of instruc-
tions across CPUs, cache coherency, and serialized

NicK T AL. 197

Figure 14 Parallel Sysplex scalability

—

&
L4

EFFECTIVE CAPACITY

SYMMETRIC MULTIPROCESSOR

2

PHYSICAL CAPACITY

updates to storage performed atomically to CPU in-
struction execution. These processes are performed
in the hardware without the benefit of knowledge of
software serialization that may already be held on
storage being manipulated at a much more coarse
level. In addition, SMP overheads are incurred in the
system software due to software serialization and com-
munication to manage common System resources.

The $/390 Parallel Sysplex scalability characteristics
are excellent. Physical capacity introduced to the con-
figuration via the addition of more data-sharing sys-
tems in the sysplex (where each system can be an
SMP or uniprocessor) provides near-linear effective
capacity growth as well. Performance studies con-
ducted in a Parallel Sysplex environment consisting
of multiple IBM $/390 model 9672 CMOS systems run-
ning a 100 percent data-sharing CICS database con-
trol facility (CICS/DBCTL) workload demonstrated an
incremental overhead cost of less than half a per-
cent for each system added to the configuration. In
addition, the initial data-sharing cost associated
with the transition from a single-system non-data-
sharing configuration to a two-node data-sharing
configuration was measured at less than 18 percent. '

These results testify to the excellent scalability of the
$/390 Parallel Sysplex. This topic is discussed in de-
tail in Reference 10.

198 nick ET AL

Conclusion

Several key design characteristics unfold when con-
sidering fundamental properties desired in an ideal
large-scale server system capable of handling both
current and emerging commercial application work-
loads. One important attribute is the ability to le-
verage the power of multiple processors to meet the
processing capacity demands of business-critical
workloads. This leads to the need to treat these mul-
tiple processors as a single large-scale computing re-
source from several perspectives. Clients of the mul-
tiprocessing server want to view the server system
as a single node in the network. Applications should
be able to be executed seamlessly across the mul-
tiprocessing system, accessing processing resources
from whichever CPU the application logic happens
to reside on. Systems administrators need the abil-
ity to manage the multiprocessing system from a sin-
gle point of control. To maximize system through-
put and provide consistent response times to mission-
critical applications, it is desirable to be able to direct
arriving work requests for execution on any proces-
sor having available capacity in a highly responsive
and dynamic manner. If the processing compute de-
mands grow and exceed the capacity of the existing
server system, it is desirable to add an additional CPU
to the existing server system and grow the applica-
tion workload transparently, without requiring work-
load splitting of customer applications across proces-
sors or repartitioning of databases 1o dedicate portions
of the database to individual processors of the large-
scale server system.

Fundamental to satisfying all of the desired design
characteristics outlined is the ability to share data
and processing resources across the CPUs of the large-
scale server system, without significantly impairing
performance in support of resource sharing. This fur-
ther requires that the multiprocessing server system
is designed to provide low-latency, high-performance
global serialization controls across its set of CPUs, as
well as provide the mechanisms to have multipro-
cessor coherency controls so that shared data can
be cached simultaneously in local processor mem-
ory of multiple CPUs with guaranteed coherency
properties intact.

Within limits, the symmetric multiprocessor (SMP)
is the multiprocessing building block, which has all
of these design characteristics, and is in the market-
place today. It has been in existence in various forms
in the information technology industry for 25 years,

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

having evolved considerably in terms of capability
and sophistication over that period of time.

Unfortunately, the SMP does have critical limitations
that have driven the industry to search for yet a bet-
ter technology answer. The two fundamental short-
comings of an SMP are its limits in both scalability
and availability. As CPUs are added to the SMP, in-
cremental capacity diminishes rapidly beyond a rel-
atively small number of CPUs, due to interprocessor
communication in support of concurrency and co-
herency controls as well as software-related resource
management costs. Further, the SMP represents a sin-
gle point of failure, not only from a hardware per-
spective, but more significantly from a software view
as it runs a single version of the operating system
and supported applications.

These shortcomings and the ever-increasing demand
for additional processing capacity and improved
availability for commercial-processing workloads
continue to drive the need to scale capacity beyond
the limits of a physical SMP system and exploit mul-
tiple system nodes for both scale and availability. This
has led to the emerging prominence of clustered sys-
tems comprised of multiple SMP or uniprocessor
nodes. Clustered systems also offer potential advan-
tages in systems management economies-of-scale
given the relative homogeneity of systems within the
cluster.

Typically, clustered systems provide high degrees of
scalability by partitioning workloads and related da-
tabases across the cluster nodes to avoid the need
for cross-node buffer coherency and serialization
controls, which can significantly compromise scal-
ability beyond a relatively small number of nodes if
software-based message-passing mechanisms are de-
ployed to accomplish these functions. However, such
“shared-nothing” clustered system environments sac-
rifice key desired characteristics of an ideal large-
scale commercial server in order to meet the scal-
ability and availability objectives. Without data-
sharing capabilities characteristic of an SMP server,
it is not possibie to dynamically balance work based
on processor capacity. Nor is it possible, for exam-
ple, to add a node to the cluster for additional ca-
pacity growth without having to split the application
or repartition databases, which require a cluster-wide
outage.

The $/390 Parallel Sysplex is an advanced commer-

cial processing clustered system, combining many at-
tributes of an SMP in terms of seamless access to mul-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

tiprocessing resources, with the scalability and
continuous availability characteristics of clusters. The
Parallel Sysplex supports high-performance multi-
system read/write data sharing with local cache co-
herency, enabling the aggregate capacity of multi-
ple 0S/390 systems to be applied against common
workloads. This in turn facilitates dynamic workload
balancing, maximizes processor utilization, and pro-
vides consistent response times. Further, through
data sharing and dynamic workload balancing, con-
tinuous availability and continuous operations char-
acteristics are improved for the clustered system, as
nodes can be dynamically removed or added to the
cluster in a nondisruptive manner.

The Parallel Sysplex cluster technologies effectively
address the overhead issues typically associated with
shared-data model architectures, such as: global se-
rialization message-passing protocols, global broad-
cast cross-invalidate cache coherency protocols, and
intersystem “ping” between systems and shared 1/0
devices. The Parallel Sysplex cluster technologies in-
tegrate a comprehensive shared-data architecture
model with specialized hardware-assists and opti-
mized software protocols to provide a highly scal-
able and robust commercial parallel-processing plat-
form.

Key technology functions provided include:

Global concurrency controls and hardware-assisted
lock contention detection

Global buffer coherency controls for distributed
caches

High-speed shared cache with CPU-synchronous
access

Shared queues for workload distribution and mes-
sage passing

» Hardware-assisted system isolation for system fail-
Over recovery

The Parallel Sysplex cluster is an integral part of the
087390 platform and is the foundation on which a
growing number of new subsystem and operating sys-
tem enhancements are based. With the maturation
of the technology and delivery of sysplex exploita-
tion by the traditional on-line transaction process-
ing and decision support workloads well underway,
the Parallel Sysplex focus is shifting to support new
application environments, such as commercial par-
allel Web-server applications, and cluster-enabled
object business servers to distributed clients.

Nick ET AL 199

200 nNick ET AL

The $/390 Parallel Sysplex cluster represents the next
step in the evolution of large-scale commercial-pro-
cessing server systems.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. R. Duncan, “A Survey of Parallel Computer Architectures,”
Computer 23, No. 2, 5-16 (1990).

2. A. Azagury, D. Dolev, J. Marberg, and J. Satran, “Highly
Available Cluster: A Case Study,” Proceedings of the 24th
IEEE Symposium on Fault-Tolerant Computing (June 1994),
pp. 404-413.

3. N.S. Bowen, C. A. Polyzois, and R. D. Regan, “Restart Ser-
vices for Highly Available Systems,” Proceedings of the 7th
IEEE Symposium on Parallel and Distributed Processing (Oc-
tober 1995), pp. 596-601.

4. M. D.Swanson and C. P. Vignola, “MVS/ESA Coupled-Sys-
tems Considerations,” IBM Journal of Research and Devel-
opment 36, No. 4, 667-682 (1992).

5. MVS/ESA Programming: Sysplex Services Guide, GC28-1495-
02, IBM Corporation (June, 1995); available through 1BM
branch offices. Chapter 6 describes coupling-facility cache
structures, chapter 7 describes list structures, and chapter 8
describes lock structures.

6. G.F.Pfister, In Search of Clusters: The Coming Battle in Lowly
Parallel Computing, Prentice Hall, Upper Saddle River, NJ
(1995).

7. A.Bihde, “An Analysis of Three Transaction Processing Ar-
chitectures,” Proceedings of the Fourteenth International Con-
ference on Very Large Data Bases (Los Angeles, CA), Mor-
gan Kaufmann Publishers, Inc., Palo Alto, CA (August, 1988),
pp- 339-350.

8. C. Mohan, H. Pirahesh, W. G. Tang, and Y. Wang, “Paral-
lelism in Relational Database Management Systems,” IBM
Systems Journal 33, No. 2, 349-369 (1994).

9. P.S. Yuand A. Dan, “Performance Analysis of Affinity Clus-
tering on Transaction Processing Coupling Architecture,”
IEEE Transactions on Knowledge and Data Engineering 6, No.
5, 764-786 (October 1994).

10. G. M. King, D. M. Dias, and P. S. Yu, “Cluster Architectures
and $/390 Parallel Sysplex Scalability,” IBM Systems Journal
36, No. 2, 221-241 (1997, this issue).

11. Sysplex Overview—Introducing Data Sharing and Parallelism
in a Sysplex, GC28-1208-00, IBM Corporation (April 1994);
available through IBM branch offices.

12. J. Nick, J.-Y. Chung, and N. Bowen, “Overview of IBM
System/390 Parallel Sysplex—A Commercial Parallel Process-
ing System,” Proceedings of the 10th IEEE International Par-
allel Processing Symposium, Hawaii (April 1996), pp. 488-495.

13. L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding,
“Design for Fault-Tolerance in System ES/9000 Model 900,”
Proceedings of the 22nd Symposium on Fault-Tolerant Com-
puting (July 1992), pp. 38-47.

14. S. A. Calta, J. A. deVeer, E. Loizides, and R. N. Strangwayes,
“Enterprise Systems Connection (ESCON) Architecture—
System Overview,” IBM Journal of Research and Development
36, No. 4, 535-552 (1992).

15. R. Cwiakala, J. D. Haggar, and H. M. Yudenfriend, “MVS
Dynamic Reconfiguration Management,” IBM Journal of Re-
search and Development 36, No. 4, 633-646 (1992).

16. S/390 MV'S Parallel Syspiex Performance, SG24-4356-01, IBM
Corporation (March 1996); available through IBM branch
offices.

17. J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D. Dillen-
berger, “Adaptive Algorithms for Managing a Distributed
Data Processing Workload,” IBM Systems Journal 36, No. 2,
242-283 (1997, this issue).

18. N. S. Bowen, D. A. Elko, J. F. Isenberg, and G. W. Wang,
“A Locking Facility for Parallel Systems,” IBM Systemns Jour-
nal 36, No. 2, 202-220 (1997, this issue).

19. J. W. Josten, C. Mohan, I. Narang, and J. Z. Teng, “DB2’s
Use of the Coupling Facility for Data Sharing,” IBM Systems
Journal 36, No. 2, 327-351 (1997, this issue).

Accepted for publication December 20, 1996.

Jeffrey M. Nick IBM S/390 Division, 522 South Road, Poughkeep-
sie, New York 12601 (electronic mail: jeff_nick@vnet.ibm.com). Mr.
Nick is a Senior Technical Staff Member working in the OS/390
System Architecture and Design area. He joined IBM in 1980 as
a developer in the $/390 MVS operating system. During his ca-
reer at IBM, he has held positions in MVS system design and
development, and as a large systems technical specialist focused
on continuous availability issues. Mr. Nick has lead architecture
responsibility for the design of $/390 parallel processing technol-
ogy and is presently focused on leveraging that technology for
new application environments on the OS/390 platform. He is
widely recognized as a leading technical expert on S/390 Parallel
Sysplex. He received a Corporate Award for his contribution in
the design and development for the Parallel Sysplex coupling fa-
cility. Mr. Nick currently has 18 patents in the field of operating
systems technology and has published several papers in technical
journals. He has also given tutorials on the Parallel Sysplex world-
wide.

Brian B. Moore IBM $/390 Division, 522 South Road, Poughkeep-
sie, New York 12601 (electronic mail: bbmoore@vnet.ibm.com). Dr.
Moore is a Senior Technical Staff Member and member of the
IBM Academy of Technology. He joined IBM in 1962, where he
has had assignments in processor development, systems architec-
ture, and operating system design. He holds 17 patents and is an
inventor on two other patent applications; all are in the area of
data processing. He has received a Sixth-Level Invention Achieve-
ment Award and two Outstanding Contribution Awards. Dr.
Moore received the B.E.E. degree in electrical engineering from
Rensselaer Polytechnic Institute in 1961, the M.A. and Ph.D. de-
grees in mathematics from Syracuse University in 1969 and 1974,
and the M.B.A. degree from Marist College in 1981.

Jen-Yao Chung IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: jychung@watson.ibm.com). Dr. Chung has been
with the Thomas J. Watson Research Center, Hawthorne, NY,
as a research staff member since June 1989. He currently is the
manager of the data intensive computing department and is work-
ing on parallel Web server World Wide Web access to database
and transaction systems, and parallel systems performance man-
agement. His research interests include Web server, database per-
formance, parallel processing, job scheduling and load balancing
in real-time systems, object-oriented programming environments,
and operating system design. He has published papers in these
areas and filed two patent applications. Dr. Chung received the
B.S. degree in computer science and information engineering from
National Taiwan University in 1982, and the M.S. and Ph.D. de-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

grees in computer science from the University of Illinois at Ur-
bana-Champaign in 1986 and 1989, respectively. He has received
an IBM Technical Achievement Award, a Research Division
Technical Group Award, a Research Division Award, and one
IEEE Outstanding Paper Award. He served as industrial chair,
program committee member, and session chair in several work-
shops and conferences. Dr. Chung is a senior member of IEEE
and a member of ACM.

Nicholas S. Bowen IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: bowenn@watson.ibm.com). Dr. Bowen received
the B.S. degree from the University of Vermont, the M.S. degree
in computer engineering from Syracuse University, and the Ph.D.
in electrical and computer engineering from the University of Mas-
sachusetts at Amherst. He joined IBM at East Fishkill in 1983
and moved to the Research Center in 1986, where he is currently
the department group manager of servers. He is a senior mem-
ber of IEEE and a member of ACM. His research interests are
operating systems, computer architecture, and fault-tolerant com-
puting.

Reprint Order No. G321-5640.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Nick ET AL 201

