
S/390 cluster
technology: Parallel
Sysplex

This paper describes a clustered multiprocessor
system developed for the general-purpose,
large-scale copmercial marketplace. The
system (SI390 Parallel SysplexTM) is based
on an architecture designed to combine the
benefits of full data sharing and parallel
processing in a highly scalable clustered
computing environment. The Parallel Sysplex
offers significant advantages in the
areas of cost, performance range, and
availability.

P arallel and clustered systems initially found in
numerically intensive markets are gaining in-

creasing acceptance in commercial segments as well.
The architectural elements of these systems span a
broad spectrum that includes massively parallel pro-
cessors that focus on high performance for numer-
ically intensive workloads' and cluster operating sys-
tems that deliver high system availability. * This paper
describes new clustering functions that are imple-
mented by IBM's Si390" processors and OSi390" oper-
ating system.

The Si390 cluster (parallel system complex, or Par-
allel Sysplex") contains innovative multisystem data-
sharing technology, allowing direct, concurrent
read/write access to shared data from all processing
nodes in the parallel configuration, without sacrific-
ing performance or data integrity. Each node is able
to concurrently cache shared data in local processor

172 NICK ET AL

by J. M. Nick
6. 6. Moore
J.-Y. Chung
N. S. Bowen

memory through hardware-assisted cluster-wide se-
rialization and coherency controls. This in turn en-
ables work requests associated with a single work-
load, such as business transactions or database
queries, to be dynamically distributed for parallel ex-
ecution on nodes in the sysplex cluster, based on
available processor capacity. Through this state-of-
the-art cluster technology, the power of multiple
OSi390 systems can be harnessed to work in concert
on common workloads, taking the commercial
strengths of the OSi390 platform to improved levels
of competitive price/performance, scalable growth,
and continuous availability.

In this paper we review the Si390 Parallel Sysplex ar-
chitecture, its core technology components, and the
customer business objectives that shaped the over-
all system structure. In Part I we discuss the objec-
tives that guided the Parallel Sysplex designers and
introduce the technology components of the Paral-
lel Sysplex cluster. Part I1 presents an overview of
the coupling facility (CF) and coupling support fa-
cility architectures, and discusses the scalability of
the si390 Parallel Sysplex. A concluding section sum-
marizes the key points contained in the paper.

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8670/97/55.00 0 1997 IBM IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

PART I

Design overview

This section summarizes the key design points for
the si390 Parallel Sysplex and relevant design ratio-
nale. We begin with a set of objectives that guided
the overall system structure. This is followed by a
description of design benefits derived from its data-
sharing capabilities. Then, alternative cluster archi-
tecture models are discussed. Finally, Parallel Sys-
plex technology functions are introduced.

Customer business objectives. One key customer
business objective was to reduce the total cost of com-
puting for Si390 systems. There are many examples
of systems that use low-cost microprocessors as a
building block for a large system. In order to obtain
the same cost advantages as these systems, the most
dramatic change for Si390 meant replacing the Si390
bipolar processor technology with complementary
metal-oxide semiconductor (CMOS) microprocessor
technology and clustering multiple systems together
to meet aggregate capacity requirements. This
strategic decision enabled the Si390 systems to
leverage industry-standard CMOS technology for
price/performance advantage, both in terms of re-
duced base manufacturing costs and significant on-
going customer savings in reduced power, cooling,
and floor space requirements.

A closely related objective was to provide a commer-
cial platform that would support the nondisruptive
addition of the scalable processing capacity, in in-
crements matching the growth of workload require-
ments for customers, without requiring re-engineer-
ing of customer applications or repartitioning of
databases. Satisfying this objective was critical to the
design of the Parallel Sysplex shared-data cluster ar-
chitecture, which will be discussed later in this pa-
per. Prior to Parallel Sysplex, Si390 customers had
been forced to contain the capacity requirements of
a workload within the technology limits imposed by
the size of the largest single symmetric multiproces-
sor system available. Workload growth beyond these
limits required splitting the workload and reparti-
tioning the database between the nodes-a complex,
resource-intensive process not supportive of cus-
tomer business objectives.

A third key business objective was to address the in-
creasing customer demands for improved applica-
tion availability, not only in terms of failure recov-
ery, but for the more important reduction of planned

IEM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

outage times. Today, there is less opportunity for
planned systems shutdowns in the global economic
environment. Here again, meeting this objective was
key to the Parallel Sysplex cluster design.

Another key business objective was to protect invest-
ments customers have in existing applications. There
were two aspects to this objective. First, the Parallel
Sysplex technology had to be introduced in a com-
patible manner with existing applications. Second,
the benefits of parallel processing had to be trans-
parently applied to applications through exploitation
of the technology by application subsystems and da-
tabase managers. With few exceptions, these objec-
tives have been met. The Parallel Sysplex technol-
ogy extensions to the Si390 architecture (introducing
new CPU instructions, new channel subsystem tech-
nology, etc.) are fully compatible with the base Si390
architecture. The IBM subsystem transaction man-
agers in the Customer Information Control System
(CICS") and the Information Management System
(IMS*), and the key subsystem database managers

ploited the data-sharing technology while preserv-
ing their existing interfaces.

A final objective was to logically present a single-
system image to users, applications, and the network,
and to provide a single point of control to the sys-
tems operations staff. Meeting this objective was key
to controlling the overall cost of managing a mul-
tisystem configuration. In a Parallel Sysplex environ-
ment, many cluster technology components, both
hardware and software, have been developed to meet
this objective. New data-sharing technology hard-
ware enables multiple-system nodes to serve com-
mon workloads with the appearance of a single large
computing resource. Base operating system cluster
 service^"^ provide robust intersystem communica-
tion, system monitoring, and automatic failure take-
over mechanisms. Shared consoles are provided for
managing multiple operating systems and multiple
underlying hardware system nodes with a single point
of control. Key system profiles, catalogs, and other
resources can be shared across the clustered systems
to enable efficient "cloning" of system definitions.
Through these and other means, systems manage-
ment costs do not increase linearly as a function of
the number of systems in the sysplex. Rather, total
cost of computing efficiencies of scale accrue through
the coordinated management facilities of the Par-
allel Sysplex cluster.

such as DATABASE 2" (DB2") and IMS-DB, have ex-

Data-sharing design benefits. Given the customer
business objectives outlined above, the Parallel Sys-
plex shared-data architecture and technology was
critical to delivering the following system benefits:
dynamic workload balancing, continuous availabil-
ity, and continuous operations.

Dynamic workload balancing. A key aspect of being
responsive to changing business needs in a commer-
cial parallel processing environment involves the abil-
ity to dynamically adjust system resources to best sat-
isfy workload performance objectives in terms of
throughput and response times. In the Si390 Parallel
Sysplex environment, the high-performance data-
sharing technology provides the means for OW390 and
its subsystems to support dynamic workload balanc-
ing across the collection of systems in the configura-
tion. Functionally, workload balancing can occur at
two levels. During initial connection to the cluster,
clients can be dynamically distributed and bound to
server instances across the set of cluster nodes to ef-
fectively spread the workload. Subsequently, work
requests submitted by a given client (such as trans-
actions) can be executed on any system in the clus-
ter based on available processing capacity. The work
requests do not have to be directed to a specific sys-
tem node due to data-to-processor affinity, which is
typically the case with alternative data-partitioning
parallel systems, wherein buffer coherency and se-
rialization controls are not cluster-wide in scope. In
a Parallel Sysplex cluster environment, work will nor-
mally execute on the system on which the request
is received, but in cases of “over-utilization’’ on a
given node, work can be directed for execution on
other less-utilized system nodes in the cluster. For
both on-line transaction processing (OLTP) and de-
cision-support workloads, dynamic workload balanc-
ing across systems can be made transparent to the
customer applications or users.

Continuous availability. Within a Parallel Sysplex
cluster it is possible to construct a parallel process-
ing environment with no single points of failure. Par-
allel Sysplex hardware components such as sysplex
timers and coupling facilities (to be discussed in de-
tail later) can be redundantly configured. The sys-
plex timer serves as a common time reference source
for systems in the sysplex, distributing synchroniz-
ing clock signals to all nodes. The coupling facility
(CF) is the key Parallel Sysplex technology compo-
nent providing state-of-the-art cluster data-sharing
functions. If a coupling facility fails, critical data con-
tents can be “rebuilt” into an alternate CF under
OS/390 system and subsystem control. Since all sys-

174 NICK ET AL.

tems in the Parallel Sysplex can have concurrent ac-
cess to all critical applications and data, the loss of
a system due to either hardware or software failure
does not necessitate loss of application availability.
Peer instances of a failing subsystem executing on
remaining healthy system nodes can take over re-
covery responsibility for resources held by the fail-
ing instance. Alternatively, the failing subsystem can
be automatically restarted on still-healthy systems
using automatic restart capabilities to perform re-
covery for work in progress at the time of the fail-
ure. While the failing subsystem instance is unavail-
able, new work requests can be redirected to other
data-sharing instances of the subsystem on other clus-
ter nodes to provide continuous application avail-
ability across the failure and subsequent recovery.

Continuous operations. The same availability char-
acteristics associated with handling unscheduled out-
ages are applicable to planned outages as well. A sys-
tem can be removed from the Parallel Sysplex for
planned hardware or software reconfiguration, main-
tenance, or upgrade. New work can be dynamically
redistributed across the remaining set of active sys-
tems. Once the system is ready to be brought back
on line, it can be reintroduced into the sysplex in a
nondisruptive manner and participate in dynamic
workload balancing as described earlier.

New system nodes can be introduced into the Par-
allel Sysplex in a similar fashion. That is, the already-
running systems continue to execute work concur-
rent with the activation of the new system node. Once
the new system is active, it can become a full par-
ticipant in dynamic workload balancing. New work
requests are naturally driven at an increased rate to
that system until its utilization has reached steady
state with respect to the demand for overall proces-
sor resources across all system nodes in the Parallel
Sysplex. This capability eliminates the need to shut
down the entire cluster to repartition the databases
and retune workloads for each system to distribute
work evenly after introduction of the new system into
the configuration, as is typically required with a data-
partitioning parallel processing system.

A further design objective for the Parallel Sysplex
was for new releases of om90 and its key subsystems
to support the current and the next release migra-
tion coexistence. This allows new software product
release levels to be rolled through the Parallel Sys-
plex one system at a time, providing continuous ap-
plication availability across the systematic migration
install process.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Cluster architecture models. Clustering, as a way of
organizing computer systems, was surveyed by Pfis-
ter6 who identified a cluster as “a type of parallel or
distributed system that consists of a collection of in-
terconnected whole computers and is utilized as a
single, unified computing resource.” The individual
cluster nodes can be either uniprocessor or symmet-
ric multiprocessor (sMP) systems. Although the com-
puters may be connected by a high-speed commu-
nication mechanism, they do not share any central
(main) storage.

Another viewpoint ’x8 classifies parallel systems based
on conformance to one of the following architecture
models, each having its own strengths and weakness-
es: the shared-nothing model, the shared-disk model,
and the shared-everything model.

The shared-nothing (data-partitioning) model. Each
system owns a portion of the database, and each por-
tion can only be read or modified by the owning sys-
tem. Data partitioning enables each system to locally
cache its portion of the database in processor mem-
ory without requiring cross-system communication
to provide data access concurrency and coherency
controls. Scalability characteristics are excellent with
this approach.

However, there are limitations imposed in a com-
mercial processing environment by such a design

Significant capacity planning skills and cost
are required to tune the overall system to match the
processing capacity for each cluster node with the
projected workload access rate to data owned by that
node. Real-time workload demand fluctuations can
over- or under-utilize processor resources. Repar-
titioning of the cluster databases to introduce new
cluster nodes for additional capacity requires the en-
tire cluster to be shut down.

The shared-disk (shared-data) model. All of the disks
containing databases are accessible by all of the sys-
tems. The basic strength of this approach is that it
allows a workload to be dynamically balanced across
nodes of a cluster, which also has potential benefits
for availability and continuous operations, as dis-
cussed earlier. However, the major drawback to
shared-data models prior to the Parallel Sysplex ar-
chitecture has been poor scalability characteristics.

In shared-data configurations, distributed lock man-
agement protocols are employed to provide concur-
rency (serialization) controls across the cluster, gen-
erally involving message passing between the systems

IBM SYSTEMS JOURNAL, VOL 36, NO 2 , 1997

on mainline paths to obtain and release locks. This is
necessary to ensure that only one system is allowed to
mod@ a given shared-data item at a time. Global (clus-
ter-wide) buffer coherency controls are required in or-
der to ensure that the currency of data items cached
in local buffers in the local processor memory for each
system can be determined prior to buffer reuse.

One approach to a shared-disk architecture employs
broadcast-invalidate mechanisms to provide coher-
ency control, sending cross-invalidate signals to all

The S/390 Parallel
Sysplex architecture
is characterized as a
shared-data model.

other nodes whenever a system updates a copy of a
shared-data item locally. This is done to inform the
other nodes that their locally cached copy of the
shared-data item is now “down level.” This approach
scales poorly as the number of nodes in the cluster
increase. An alternative approach avoids the broad-
cast-invalidate protocol, by continuing to hold the
lock on a valid locally cached data item after the
transaction ends. This allows the cached copy to be
subsequently reused locally with integrity. Owner-
ship of the lock is released only in the presence of
contention from other systems. However, with this
approach, only one system can maintain a current
local cache copy of a given data item in memory at
a time, that is, while the lock on that data item is
held. Ownership of the current data item copy trans-
fers or “pings” from one system to another as ref-
erences to those data are made.

Regardless of the global coherency protocols used,
these cross-system “ping” effects occur whenever a
system determines that it does not have a current
copy of a needed shared-data item. This typically re-
sults in the data being pushed out to shared disk by
the system in the cluster owning a current copy,
where the data are then fetched by the requesting
system node. These multisystem data transfer I/OS
can cause significant performance degradation in the
cluster if a high degree of multisystem interest in the
shared data is present.

The shared-evelything model. Central storage, as well
as disks, are shared by all of the processors. This ap-
proach is used in structuring an SMP. An SMP is not
a clustered system by itself, but can serve as the sys-
tem building block for individual nodes of a cluster.
Shared-everything architectures have processing ef-
ficiency advantages when applied across a relatively
small number of processors, but do not generally
scale well as the number of processors increases.
Also, single points of failure compromise the avail-
ability characteristics of the processing system.

I A more detailed comparison of alternative cluster
architectures with respect to performance and scal- I

l ability is discussed in Reference 10.

Parallel Sysplex cluster technology. The Si390 Par-
allel Sysplex architecture is generally characterized
as a shared-data model. Its fundamental distinguish-
ing characteristic over traditional shared-disk architec-
tures is that the Parallel Sysplex technology enables
multiple systems to cache the same data concurrently
in local processor memory with full readhvrite access
control and globally managed cache coherency, with
high-pe$onnance and near-linear scalability.

Specialized hardware and software cluster technol-
ogy is introduced to address the fundamental per-
formance obstacles that have traditionally plagued
data-sharing parallel-processing systems. The core
hardware technologies are embodied in the CF (for
data sharing) and the coupling support facility (for
communication between processors and the CF) com-
ponents of the system and are discussed in detail later
in this paper. Some of the most critical functions pro-
vided are outlined below:

Hardware-assisted global concurrency controls.
Specialized hardware is provided to support low-
overhead, fine-grained global lock management
with hardware-assisted lock contention detection.
In the absence of lock contention, locks can be ef-
ficiently granted and released without intersystem
software message passing.
Hardware-assisted global buffer coherency con-
trols. The CF and coupling support facilities com-
bine to track the locally cached shared-data items
for each system, providing low-overhead mecha-
nisms for global buffer cross-invalidation. The
cross-invalidate operations do not involve software
message passing, nor do they interfere with nor-
mal processor instruction execution. Cross-inval-
idate signals are only sent to nodes with registered
interest in a data item being updated-not broad-

I 176 NICK ET AL.

cast to all nodes in the cluster. Further, local buffer
coherency can be checked by the program buffer
managers on each node via new CPU instructions
that access local processor memory.
Synchronous locking and buffer coherency request
handling. High-speed, low-latency links using
streamlined protocols are provided, allowing lock-
ing, caching, and queuing operations directed to
a CF to generally be completed instruction synchro-
nously. That is, in certain cases, delaying further
CPU instruction processing while the CF executes
an operation cpu-instruction-synchronously con-
sumes fewer machine cycles than would otherwise
be consumed by allowing CPU instruction process-
ing to continue while the CF executes the opera-
tion asynchronously, thus forcing the software to
perform a task switch to suspend and later resume
the requesting unit of work (after the CF completes
the operation). This can be contrasted with the in-
tersystem software message-passing costs to ob-
tain and release a lock in typical distributed soft-
ware lock management protocols, or with the
several milliseconds that are required for a typical
disk operation.
Global shared-buffer cache. The CF has its own pro-
cessor memory that can serve as a global cache to
enable high-speed local buffer refresh following a
local cache miss. The operation to retrieve data
from the coupling facility can be performed CPU-
synchronously if the requested data item is up to
4 kilobytes in size. Data transfers of up to 64K are
performed asynchronous to the initiating CPU. In
either case, the cost of a disk I/O or intersystem
message passing to "ping" ownership of the data
item from one system to another is avoided when
the data are resident in the coupling facility.
Hardware-assisted shared queuing constructs. The
CF supports general-purpose data-sharing queu-
ing functions that are applicable for a wide range
of cluster-wide uses, including workload distribu-
tion, intersystem message passing, and the main-
tenance of shared control block state information.

W390 Parallel Sysplex cluster

This section provides an overview of the technical
capabilities of the S/390 Parallel Sysplex. It covers the
overall system structure, the basic operating system
support for parallel processing, and the advanced
technology introduced to enable efficient clustering
or "coupling" of system nodes.

System model. An S/390 Parallel Sysplex"~'2 is a clus-
ter of interconnected processing nodes with attach-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 1 Parallel Sysplex system model

PROCESSING
NODE j

SHARED DATA VIA LOCK

PROCESSING
NODE k

ments to shared storage devices, network control-
lers, and core cluster technology components,
consisting of coupling facilities, coupling support fa-
cilities, and sysplex timers. (See Figure 1.) A cou-
pling facility (CF) enables high-performance read/
write sharing of data by applications running on each
node of the cluster through global locking and cache
coherency management mechanisms. It also provides
cluster-wide queuing mechanisms for workload dis-
tribution and message passing between nodes. An-
other component, a coupling support facility, resides
on each of the processing nodes and is responsible
for communications between the nodes and the cou-
pling facility. A sysplex timer serves as a common
time reference source for systems in the sysplex, dis-
tributing synchronizing clock signals to all nodes. This
enables local processor time stamps to be used re-
liably on each node and synchronized with respect

to all other cluster nodes, without requiring any soft-
ware serialization or message passing to maintain
global time consistency. The synchronized time
reference source facilitates real-time or post-process-
ing merges of transaction manager logs across sys-
tems, for example, to provide coordinated transac-
tion and database recovery across the cluster for a
shared workload.

The Parallel Sysplex currently supports up to 32 pro-
cessing nodes where each node is a symmetric mul-
tiprocessor containing between l and 10 processors.
The nodes do not have to be homogeneous; that is,
mixed configurations supporting both Si390 CMOS
processor systems and traditional ES/9000* bipolar sys-
tems can be deployed. The basic processor design
has a long history of fault-tolerant features.I3 The
disks are fully connected to all processors. The I/O

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

architecture has many advanced reliability and per-
formance features (e.g., multiple paths with auto-
matic reconfiguration for availability). The basic I/O
architecture is described in Reference 14 and one
aspect of the dynamic I/O configuration is described
in Reference 15.

The cluster is organized in this fashion to increase
the number of processors that can be applied effec-
tively to large business problems, on-line transaction
processing, extensive queries, and applications on dif-
ferent systems that need to concurrently access and
update a single database. For example, a cluster with
three ten-way SMP nodes can utilize 30 processors
to work on a problem, with effective performance
increasing nearly linearly with the number of pro-
cessing nodes.‘’J6 On the other hand, if an attempt
is made to include more than ten processors in an
SMP, incremental effective capacity diminishes rap-
idly. This is due to increasing interprocessor com-
munication to provide interlocked-update access to
memory, processor cache invalidation, and operat-
ing system overhead to manage processor resources.

Base OW390 cluster services. A set of operating sys-
tem services are provided as building blocks for con-
struction and management of multisystem applica-
tions, subsystems, and components. These are
described in detail later; here we only briefly cover
some of the most relevant aspects.

First, a set of cluster group membership services are
provided. These allow processes to join or leave mul-
tisystem logical groups, communicate with other
group members, and be notified of events related to
the group.

Second, the ability to provide efficient, shared ac-
cess to operating system resource state data is pro-
vided. These state data are located on coupling datu
sets and many advanced functions are provided, in-
cluding serialized access to the data (with special
time-out logic to handle faulty processor nodes) and
duplexing of the disks containing the state data. In
addition, there are availability enhancements for
planned and unplanned changes to the coupling data
sets (e.g., “hot-switching’’ of the duplexed disks).

Third, processor “heartbeat” monitoring is provided.
In addition to standard monitoring of the health of
each node, functions are also provided to automat-
ically terminate a failing node and disconnect the
node from its externally attached devices. This en-
ables other multisystem components to be designed

178 NICK ET AL.

with a “fail-stop” strategy (performing peer recov-
ery for a failing node with assurance that the faulty
processor does not suddenly resume processing and
interfere with recovery of shared resources). This sys-
tem isolation function is system fencing and is ex-
ploited by OSi390 as part of sysplexpartitioning actions.
Sysplex partitioning is the term used to describe the
set of actions peer systems take to remove another
system node from the cluster, including physical iso-
lation, freeing of shared resources, and cleanup of
state information related to the system being re-
moved. More information is provided in the section
on system fencing.

Although the use of multiple interconnected micro-
processors can aggregate large amounts of processing
power, low cost can only be achieved if the processors
are efficiently utilized. Therefore, the ability to dynam-
ically and automatically manage system resources is
a key objective. A new component, the workload
manager,I7 was designed to meet this objective.

A multisystem automatic restart manager (ARM) fa-
cility is provided as a base operating system cluster
component. The ARM component is fully integrated
in the Parallel Sysplex structure and provides signif-
icantly more functions than a traditional “restart”
service. First, it utilizes the shared-state support pre-
viously described so that at any given point in time
the ARM is aware of the state of processes on all sys-
tems (i.e., even of processes that “exist” on failed
nodes). Second, the ARM is tied into the processor
heartbeat functions so that it is immediately made
aware of node failures. Third, the ARM is integrated
with the workload manager so that it can provide a
target restart system based on the current resource
utilization across the available nodes. Finally, the
ARM contains many features to provide improved re-
starts such as affinity of related processes, restart se-
quencing, and recovery when subsequent failures oc-
cur. These services are described more fully in
Reference 3.

Coupling facility. At the heart of the Parallel Sys-
plex coupling technology is the coupling facility (CF),
a new component providing hardware assists for a
rich and diverse set of multisystem data-sharing func-
tions. The coupling facility architecture provides
three behavioral models to enable efficient cluster-
ing protocols:

Lock model: supports high-performance, fine-
grained global locking and contention detection
Cache model: provides global coherency controls

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 2 CF connection processing

L

@ ALLOCATE STRUCTURE ON FIRST CONNECT

@ CREATE L C X " STATE VECTOR FOR A USER

@ ATTACH USER TO A STRUCTURE
@ RECORD STRUCTURE AND USER STATUS

@ REfURN STRUCTURE ATTRIBUTES

@ INFORM USER ABOUT CONNECTED PEER PROQRAMS

@ INFORM PEER PROGRAMS ABOUT NEW CONNECTED USER
@ REPORT STRUCTURE-REIATED STATUS CHANGES

for distributed local processor caches and a high-
performance shared data cache
Queue (list) model: provides a rich set of queuing
constructs in support of workload distribution,
message passing, and sharing of state information.

Physically, the CF consists of hardware and special-
ized microcode (control code) that implements the
Si390 Parallel Sysplex architecture extensions. The CF
control code runs on the latest generations of Si390
processors. CFS are attached to other Si390 proces-
sors running the OW390 or MVS operating system via
high-speed coupling links. The coupling links use spe-
cialized protocols for highly optimized transport of
commands and responses to and from the CF. The
coupling links are fiber-optic channels providing 100
megabyte per second data transfer rates. Commands
to the CF can be executed synchronously or asynchro-
nously to further CPU instruction processing, with
cpu-synchronous command completion times mea-

sured in microseconds, thereby avoiding the asyn-
chronous execution overheads associated with task
switching and processor cache disruptions. Multiple
CFs can be connected for availability, performance,
and capacity reasons.

Logically, the CF storage resources can be dynam-
ically partitioned and allocated into CFstruchres, sub-
scribing to one of the three defined behavioral mod-
els: lock, cache, and queue models. Specific commands
are supported by each model and, while allocated,
CF structure resources can only be manipulated by
commands for that structure type as specified at ini-
tial structure allocation. Multiple CF structures of the
same or different types can exist concurrently in the
same coupling facility.

CF connection processing. A CF structure is allocated
when the first attempt is made by a program to con-
nect to that structure by name (see Figure 2). CF al-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

amount of storage to assign, and optional structure
attributes that depend on the intended usage of the
program. The location of the structure (given mul-
tiple coupling facilities to choose from) and its size
are determined by OS/390 based on customer-supplied
coupling facility resource management policy infor-
mation. As part of the connection request, the op-
erating system creates a local state vector via the
DEFINE VECTOR instruction (Step 2), if warranted.
Local state vectors are described in the next section
on coupling support facility.

The vector token returned by DEFINE VECTOR, which
serves as an identifier for the vector, is passed to the
CF in an attach command (Step 3). The command
establishes a binding between the program and the
CF structure; the token is subsequently used by the
CF to deliver secondary commands (not shown in the
figure) targeting the vector during execution of spe-
cific other CF commands. At the completion of the
allocation and attach processes, the operating sys-
tem records information concerning the structure
and user status in a function data set (Step 4), re-
turns structure attributes to the requesting program
(Step 5A), and informs the program about all cur-
rent peer programs connected to the CF structure
(Step 5B). Other connectors are similarly informed
about the presence of the new connector (Step 6).
Two of the notifications are presented by OSi390 to
user program event exits, which were specified on
the OW390 connection service interface, and which
are used to inform programs about any subsequent
status changes (Step 7) related to the CF structure.
The structure persists as long as there are connec-
tors to it, and can optionally persist even in the ab-
sence of any attached program users. Related ser-
vices and CF commands are provided for disconnect
and structure deallocation.

General CFchuructeristics. In Part I1 on architecture,
the CF models will be discussed in some detail; how-
ever, it is worthwhile to introduce some general be-
havioral characteristics as a frame of reference. The
CF supports a number of key functions to facilitate
reliable resource management and communication
with attached system processing nodes. Some of the
functions are:

1. Global commands are provided to control CF re-
source management and ownership, to ensure
that resource management policies are cohesively
administered by the systems comprising a single

180 NICK ET AL.

authority-based conditional execution of com-
mands requesting resource allocation.

2. A set of pathing commands are provided that en-
able each attached system to establish reliable
communications with an attached CF. Informa-
tion is exchanged as part of path validation that
uniquely identifies the CF and each processing
node so that reliable pathing configuration tables
can be constructed and reverified across link fail-
ures. These mechanisms ensure that commands
directed from attached systems to a CF or vice
versa (such as cross-invalidate commands) are not
inadvertently executed on the wrong target pro-
cessor due to miscabling of physical links.

3. Specialized hardware and operating system soft-
ware protocols are supported to guarantee the in-
tegrity of command delivery, even in the presence
of link failures, without introducing sympathy
sickness across nodes in the cluster.

Through these link recovery mechanisms, for ex-
ample, a write command to the coupling facility
initiated by a program on one node of the cluster
does not have to fail, even if the resultant cross-
invalidate signal cannot be delivered to another
target node caching a down-level version of the
data item. The target system node is guaranteed
to observe the fact that its link to the CF was im-
paired prior to reliance on the integrity of its lo-
cal state vectors. Upon detection of such a fail-
ure, the affected operating system takes recovery
actions to cause data-sharing programs, on that
node only, to reregister their interest in shared
resources with the CF. This is accomplished by
over-indicating the invalid state of local cache vec-
tors (or the nonempty state of list-notification vec-
tors) when loss of connectivity is detected.

4. Commands to the CF are executed atomically, i.e.,
they are completed in their entirety or they are
backed out at the CF in the event of failure. They
never complete with partial results being stored.
This greatly simplifies the recovery logic for sys-
tems attached to the CF.

5. Further, this behavior extends to the execution
of concurrent commands in parallel at the CF. Par-
tial results of a command execution are not ob-
servable to other commands while that command

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Fi igure 3 Coupling support facilities

COUPUNG SUPPORT FAClUTY COUPUNG SUPPORT FACIlurv
IN SYSTEM 1

COUPUNG SUPWRT FAClUTY
IN SYSTEM 2 IN SYSTEM 9

r

NO1 11

is still in progress. These atomicity properties en-
able programs connected to the CF to rely on the
implicit serialization of command execution. This
eliminates the need for programs to obtain ex-
plicit multisystem software serialization in order
to execute a single command, such as inserting
a work element onto a shared queue.

6. While the ensuing discussions focus on one or
more systems connected to a single CF, it is gen-
erally anticipated that two CFS will be configured
to provide redundancy. OSi390 provides a recov-
ery service to exploiting programs to coordinate
the repopulation of the contents of a CF struc-
ture into an alternate cF, for either failure or
planned reconfiguration.

Coupling support facility. Specialized hardware pro-
vided on each processing node in the Parallel Sys-
plex cluster is responsible for controlling commu-
nication between the processor and the CF. This

specialized hardware is called a coupling support fa-
cility, as depicted in Figure 3. The coupling support
facility consists of new S/390 CPU instructions, high-
speed links, and link microprocessors. It also utilizes
processor memory to contain local state vectors.
These vectors are used to locally track the state of
resources maintained in the CF. As will be seen, these
local state vectors are key to avoiding unnecessary
communication between the processing node and the
CF to observe critical state information.

The coupling support facility provides several crit-
ical functions, discussed next.

Coupling facility command delivery. The coupling sup-
port facility provides the means by which a program
sends commands to the CF to request that locking,
caching, and queuing actions are to be performed.
The coupling support facility supports both synchro-
nous and asynchronous modes of command deliv-
ery. Synchronous commands are completed at the

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

end of the CPU instruction initiating the command,
based on highly optimized, low-latency transport pro-
tocols. Asynchronous commands are completed after
the CPU instruction initiating the command is ended,
with the completion notice being sent to the operating
system via a new notification mechanism that avoids
the necessity of raising a processor interruption.

Seconda y command execution. The coupling support
facility executes secondary commands that are sent
by a CF to the processing node as part of performing
certain command operations at the CF. With one ex-
ception, the secondary commands direct the coupling
support facility to update state information in the
local state vectors to reflect updated resource status
at the CF. A secondary command may, for example,
store an invalid-buffer indication at a processing node
to signal that the node no longer has the latest ver-
sion of a locally cached data item.

Local state vector control. The coupling support facility
introduces a set of CPU instructions that interrogate
and update local state vectors. A DEFINE VECTOR
instruction dynamically allocates, deallocates, or
changes the size of a local state vector. The vectors
are in protected storage and are only accessible via
a coupling-support-facility-assigned unique token.
This ensures that programs do not inadvertently
overlay vectors for which they have no access author-
ity. Instructions are provided to test and manipulate
bits in the state vectors conveying the state of asso-
ciated resources, and are described in the context of
their use. There are three kinds of local state vec-
tors used: (1) Local cache vectors are used in con-
junction with CF cache structures to track local buffer
coherency; (2) list-notification vectors are used with
CF list structures to provide notification of CF list
empty/nonempty state transitions; and (3) list-noti-
fication vectors are also employed by the coupling
support facility to indicate the completion of asyn-
chronous command operations. Usage scenarios for
each of these types of vectors are described later in
sections on cache structures, list structures, and com-
mand delivery.

Hardware-assisted system isolation. The coupling sup-
port facility also provides a systemfencing function
that isolates a failing system node from being able
to access shared external resources during cluster
fail-over recovery scenarios. This capability is dis-
cussed further later in this paper.

We discuss a detailed architectural review of the cou-
pling support facility functions later in this paper.

182 NICK ET AL.

PART II

Coupling facility architecture

This section introduces three types of CF storage
structures that are used to enable high-performance,
highly scalable, read/write data sharing across a Par-
allel Sysplex cluster. We discuss the features of CF
lock, cache, and list structures and outline the
software-controlled caching protocols that are irn-
plemented using CF cache structures.

Lock structures. The CF lock model supports high-
performance, finely grained lock resource manage-
ment, maximizing concurrency and minimizing com-
munication overhead associated with multisystem
serialization protocols. This model enables a special-
ized lock manager (e.g., a database lock manager)
to be extended into a multisystem environment.

The CF lock structure provides a hardware-assisted
global lock contention detection mechanism for use
by distributed lock managers, such as the IMS Re-
source Lock Manager. The lock structure supports
a program-specifiable number of lock table entries
that are used to record shared or exclusive interest
in software locks that map via software hashing to
a given CF lock table entry (see Figure 4). Interest
in each lock table entry is tracked for all peers con-
nected to the CF structure across the systems in the
sysplex. Each entry has a global byte to contain the
system identifier of the first system to register ex-
clusive interest in any of the lock resource names
that hash to that lock table entry, and a share bit
string that identifies, by position, systems that have
share interest in that hash class.

OW390 provides locking services to obtain, release,
and modify lock ownership state information for pro-
gram-specified lock requests. To request lock own-
ership, a program passes the software lock resource
name, the hash class value (to use as the index to
the coupling facility lock table entry), the shared or
exclusive interest, user data (used to negotiate pro-
tocol-specific hierarchical lock ownership states), and
program-specified lock information (recorded in the
entry for use in recovery processing). If the system
does not already have a registered compatible inter-
est in the specified lock table entry, OW390 will issue
a command to the CF to perform the registration.

Through use of efficient hashing algorithms and gran-
ular serialization scope, false lock resource conten-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 4 Lock structure

REWEST

OWNERSHIP

i I

usm 1 I OW390 LOCKING SERVICES
I

LOCK
HASH

’ VALUE

G - G L O W EYlE
S = SHARE BIT STRlNG

tion is kept to a minimum. This allows the majority
of requests for locks to be granted synchronously
(mu-instruction-synchronously) to the requesting
system, where synchronous execution times are mea-
sured in microseconds. Only in exception cases in-
volving lock contention is lock negotiation required,
wherein the CF returns the identity of the systems
currently holding locks in an incompatible state with
the current request to enable selective cross-system
communication for lock negotiation.

os1390 provides a rich set of cross-system lock man-
agement services to coordinate lock contention ne-
gotiation and resolution, lock request suspension and
completion, and recording of persistent lock infor-
mation in the CF. In the event of system or lock man-
ager failure, other systems can interrogate the re-
corded recovery information for the failing system
to quickly determine the set of locks held at the time
of failure, enabling efficient lock recovery. The CF
lock structure and supported protocols are discussed
in detail in Reference 18.

Cache structures. A CF cache structure provides the
functions needed for multisystem shared-data cache
coherency management. The purpose of this model
is to enable an existing buffer manager (e.g., a da-
tabase buffer manager) to be extended into a clus-
tered system environment. It permits each system
node to locally cache shared data in processor mem-
ory with full data integrity and optimal performance.
Additionally, data can be optionally cached globally in
the CF cache structure for high-speed local-buffer re-
fresh. As a global shared cache, the CF can be viewed
as a second-level cache between local-processor mem-
ory and shared disk in the storage hierarchy.

A CF cache structure contains a global buffer direc-
tory that tracks multisystem interest in shared-data
items cached in one or more system local buffer
pools. A separate directory entry is maintained in
the CF structure for each uniquely named data item.
A directory entry is created the first time a command
requests registration of interest in the data item or
a write operation is performed to place the data item

IEM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 NICK ET AL. 183

Figure 5 Cache entty

into the shared cache. The directory entry contains
control information for the data item used in exe-
cution of CF commands targeting that entry. For ex-
ample, the directory entry contains the program-pro-
vided unique name of the data item (which serves
as the means for finding the directory entry via in-
ternal hash on the name on cache structure com-
mands). Also, the directory entry contains a user reg-
istry identifying each system that has a valid
registered interest in that data item, along with the
local cache vector index being used to track the in-
terest each database manager has in the data item
cached in its local buffer pool. The directory entry
contains an internal pointer to the CF-cached ver-
sion of the data item if present, as well as a bit in-
dicating whether the data item is cached in a changed
or unchanged state with respect to the permanently
stored version of the data item on shared disk (see
Figure 5) .

The CF cache structure architecture was designed to
support three basic caching protocols:

Directory-only cache. A directory-only cache uti-
lizes the global buffer coherency tracking mech-
anisms provided by the CF, but does not store data
in the cache structure. This allows read/write shar-
ing of data with local buffer coherency, but refresh
of down-level local copies of data items is via ac-

184 NICK ET AL.

cess to the shared disk containing the data item,
and all updates are written permanently to disk as
part of the write operation.
Store-through cache. When used as a store-
through cache, in addition to the global buffer co-
herency tracking, updated data items are written
to the cache structure as well as to shared disk.
The directory entries for these data items are
marked as unchanged, since the version of the data
in the CF matches the version hardened on disk.
This enables rapid buffer refresh of down-level lo-
cal buffer copies from the global CF cache, avoid-
ing I/OS to the shared disk.
Store-in cache. When used as a store-in cache, the
database manager writes updated data items to the
CF cache structure synchronous to the commit of
the updates. This protocol has additional perfor-
mance advantages over the previous protocols as
it enables fast commit of write operations. How-
ever, here the data are written to the cache struc-
ture as changed with respect to the disk version
of the data. The database manager is responsible
for casting out changed data items from the global
cache to shared disk as part of a periodic scrub-
bing operation to free up global cache resources
for reclaim. Further, an additional recovery bur-
den is placed on the database manager to recover
changed data items from logs in the event of a CF
structure failure.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Reclaim processing. The CF cache architecture pro-
vides commands and processes to efficiently man-
age shared cache directory and data resources. Each
directory entry in the CF cache (and related data
when present) is associated with a program-speci-
fied storage class when the directory entry is created.
When read or write command references are made
to a named data item being tracked or cached in the
CF, that entry is marked by the CF as being the most
recently referenced entry for the storage class. Di-
rectory entries are maintained in the storage class
in least-recently-used (LRU) order for purposes of
reclaiming unchanged directory and data resources
from the cache to satisfy new resource requests. Mul-
tiple storage classes in the CF cache allow programs
to group data sets being cached according to per-
formance class priority, and commands are provided
to direct CF resource reclaim algorithms in accor-
dance with the priorities established for the storage
classes.

CF directory and data reclamation for unchanged
data items is performed automatically by the CF in
response to demand. If it is necessary to reclaim an
aged directory entry to satisfy a new request and
there is registered interest being actively tracked for
one or more connected programs in the targeted en-
try, cross-invalidate signals are directed to the local
cache vectors for those programs to reflect the fact
that their interest is no longer being tracked. Note
that the CF does not perform reclaim processing for
changed data items in the cache structure.

Castout processing for changed data items. To facil-
itate use as a store-in cache, the CF mechanisms al-
low efficient retrieval of changed data items from the
cache so that they can be written to disk rendering
them unchanged and available for subsequent re-
claim. The directory entry contains a castout class
field used to group changed data items together on
common castout class queues (program-specified)
so that physically coresident data items can be re-
trieved and written to the same disk volume in a sin-
gle 1/0 operation. Refer again to Figure 5.

Further, each directory entry contains a castout lock
that prevents multiple program processes from cast-
ing out the same data item to disk concurrently. Fail-
ure to provide this mechanism could result in inter-
leaved write updates being cast out to disk out of
sequence with respect to the order in which the up-
dates were made to the CF cache entry. The castout
lock is set during execution of a read-for-castout
command that marks the data item unchanged and

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

returns the data to the program. Note that the data
item is not eligible for CF reclaim while the castout
lock is held. When the program completes the disk
110, it issues an unlock-castout-lock command to
cause the CF to release the castout lock, rendering
the data item eligible for reclaim.

However, it is desirable to allow new write opera-
tions to continue to make updates to a CF directory
entry concurrent with castout processing for that en-
try. Thus, the architecture enables writes to an entry
to store updated data while the castout lock is held
by another program process. Data integrity is pre-
served by setting the change bit for the entry on again,
which will persist when the castout process releases
the castout lock (i.e., the data item will not be el-
igible for reclaim when the castout lock is released).

Reference 19 contains greater detail about these pro-
cesses and how they relate to exploitation of a cou-
pling facility by IBM’S DB2.

Read scenario. In order to describe how the CF sup-
ports protocols enabling distributed local caches to
maintain coherency with respect to one another, it
is best to walk through two scenarios. First a read
scenario is discussed, followed by a write scenario.

Refer to Figure 6 for the following discussion. When
a database manager, such as IBM’s DB2, first connects
to a CF cache structure via OSi390 system services, the
operating system allocates a local cache vector in pro-
tected processor storage on behalf of the database
manager. The local cache vector is used to track the
coherency of data cached in the local buffer pool.
os/390 passes the local cache vector token to the CF
as part of attaching the program user (DB2) to the
cache structure, as previously described in the sec-
tion “coupling facility.” The database manager as-
sociates each buffer in the buffer pool with a unique
bit position in the local cache vector. When the da-
tabase manager receives a request for access to a data
item (named “ A ’ in this scenario), it acquires a lock
on the data. The lock may be a global lock obtained
through access to a CF lock structure, for example.
Next, the program attempts to locate “A” in the
local buffer pool at Step 1. If “A” is located, then
the currency of the locally cached copy of “A” needs
to be determined. This is accomplished using a
TEST VECTOR ENTRIES instruction in Step 2, passing
the vector token and the local cache vector index for
that local buffer as input to the instruction. The
TEST VECTOR ENTRIES interrogates the vector in pro-
tected processor storage and sets a condition code

NICK ET AL. 185

Figure 6 Read scenario
~~~~~~~~ 

ASSIGN LOCAL BUFFER AND LG€AL CACHE ENTRY’ 

@ READ “A” FROM  CF AND REGISTER 

@ IF “A” NOT IN CF 
READ “A“  FROM DISK 

@ ~ ~ ~ ~ o ~ ~ A ~ A  1s TO BE CACHE5 
A w DATA ITEM 

v = VA!JO 
# = LOCAL GAGHE VECTOR INDEX 

RETURN “A“  U1 =e PR0s;RPJuI USER 

UNLOCK “A” 

indicating whether the local copy of “A” is  valid or 
invalid  (down  level). Note  that this  check  is a  pro- 
cessor storage reference and involves no communi- 
cation with the CF. If the locally cached copy of “ A ’  
is valid, it is returned to the  requestor from the local 
buffer pool and the lock on “ A  is released. 

If “A” is not in the local buffer pool or the cached 
copy  was  invalid, the program assigns a buffer  in the 
pool to contain the data item. Then, at Step 3, the 
program issues a read-and-register command to the 
CF to register its interest in those data with the CF, 
passing the program-specified data item name and 
the local cache vector index associated with the lo- 
cal  buffer where the  data item is being cached. In 
addition, the program can provide the name of the 
old data item that was cached in the assigned  buffer 
before it was reassigned to contain “A” as input to 
the command, for example “B.” OSi390, as part of 
passing the command to the CF, first sets the spec- 
ified  local cache vector bit  optimistically to  the valid 
state via a SET VECTOR ENTRY instruction. Upon re- 
ceipt of the read-and-register command, the CF finds 

or assigns a directory entry for data item “ A ’  and 
updates the user registry for the requesting con- 
nected program user (uI), saving the local cachevec- 
tor index and marking the user as having a registered 
interest in “A.” If the  data for “A” are present in 
the CF cache from a  prior write operation,  the  data 
are  returned  to  the program and stored in the local 
buffer pool as part of the command execution. Also, 
if the “old” named data item “B” has a  current di- 
rectory entry present in the cache structure and it 
still reflects UI as  being  validly registered for that 
data item with the same local cache vector index be- 
ing tracked, then ul’s interest in “B” is deregistered, 
as the local cache vector index  is  now being used to 
track interest in “A.” If the read-and-register com- 
mand fails for any reason, the  operating system  is- 
sues a SET VECTOR ENTRY instruction to reset the 
target local cache vector bit to  the invalid state. 

If the CF did not have a copy of the  data in its cache, 
then  the program issues an I/O to retrieve the  data 
item from disk at Step 4. If the program desires to 
place the unchanged data item into the CF cache so 

IBM SYSTEMS JOURNAL, VOL 36, NO 2,  1997 



Figure 7 Write  scenario 

that it  may be fetched subsequently for rapid buffer 
refresh when a local read miss occurs, a write-when- 
registered or write-and-register command is  issued 
to  store  the  data item at the CF in Step 5.  At this 
point the  data item can be returned  to  the request- 
ing program and  the lock on  “A” released. 

Write scenario. Refer  to Figure 7 for the following 
discussion.  Assume here  that  a request is made to 
the  database manager to  update  data item “A.” As 
before, the database manager locks and locates “ A  
in  its  local  buffer pool and tests the validity of the 
locally cached copy. The program  uses the local  copy 
if current or retrieves a current copy if not, as de- 
scribed in the previous section. Then, at Step l, the 
program updates the local  copy of data item “A.” 

At Step 2, if it desires to  store the updated data in 
the CF, the program issues a write- when-registered 
( W R )  or write-and-register (WAR) command to  the 
CF,  passing the  data  and  the local cache vector index 
being used to track interest. If the program intends 
to write the  data to disk as part of a store-through 

caching protocol, then  an indication is  specified on 
the write command to set the change bit as “un- 
changed” in the directory entry for “A.” If the pro- 
tocol is to use the CF cache as a store-in cache, then 
the change bit setting is designated to  the “changed” 
state. 

The  difference between the W R  and WAR com- 
mands is that  the WAR command will allocate a di- 
rectory entry for “ A ’  if one is not present and will 
unconditionally over-write the existing data for “A” 
if already present in the CF (on the presumption that 
the program holds an exclusive  lock on the  data item 
“A’ and  knows  it  has a current copy). The WWR com- 
mand conditionally performs the write operation 
only if the writer is currently registered at the CF as 
having a valid  local  copy of “A.” This capability  is 
important for programs holding a lock on a specific 
record within data item “A,”  but  not  a lock on the 
entire  data item. The validity check at the CF entry 
on the WWR command ensures that concurrent up- 
dates to different records associated with the same 
data item cached in the CF cannot result in one sys- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 NICK ET AL. 187 



tem writing a down-level version of the  data item 
into  the CF. Without this validity check, a program 
could test its local cache vector index contents as be- 
ing  valid and then proceed to update  the local copy, 
missing the cross-invalidate signal issued on behalf 
of another  update  to a different record just after the 
test of the local vector bit. 

Alternatively, if the CF cache is  being used solely to 
provide cluster-wide buffer coherency tracking as 
part of a directory-only caching protocol, an inval- 
idate-complement-copies (KC) command is  issued 
to the CF at  Step 2 instead of a write command to 
cause the cross-invalidate function to  be performed 
without storing data in the CF cache for “A.” 

At Step 3, as part of execution of the WWR, WAR, 
or ICC command at the CF, the user registry for “A” 
is checked to  determine whether there  are any other 
connected users who  have a valid interest in “A,” 
meaning that they have a locally cached copy  of “A” 
which  still reflects the valid state. If so, the CF marks 
those users as invalid  in the user registry and then 
sends a cross-invalidate command via the coupling 
links in parallel to those systems  having a registered 
interest in that  data item. The CF issues the cross- 
invalidate command, specifying the local cache vec- 
tor token and local cache vector index uniquely iden- 
tifying the specific vector and bit  which  is to be 
manipulated on  the attached processor node. Spe- 
cialized coupling link hardware provides processing 
for buffer invalidation signals sent by the CF to  at- 
tached systems. The coupling support facility link mi- 
croprocessor receives the cross-invalidate command 
and updates the CF-specified  bit  in the  data manag- 
er’s  local cache vector to indicate the local copy  is 
no longer valid. This process does not involve  any 
processor interruption or software involvement on 
the target system. Work continues without any  dis- 
ruption. After  the CF has observed completion of all 
buffer invalidation signals,  it responds to  the system 
that initiated the  data  update process. Again, this 
entire process  can be performed synchronously (CPU- 
instruction-synchronously) to  the updating system, 
with completion times measured in microseconds. 

At Step 4, if the  database manager has written the 
data item to  the cache structure as unchanged (store- 
through) or  not at all (directory-only cache proto- 
col), then it will write the  data item to disk at this 
point. This step is  bypassed if the CF cache is  being 
used as a store-in cache for fast commit of write up- 
dates to avoid incurring disk I/O costs synchronous 
to mainline program processing. 

By exploiting the cache coherency and global buffer 
cache management mechanisms previously de- 
scribed, it  can be seen that  the CF and related Si390 
Parallel Sysplex cluster technology provide the ba- 
sis for high-performance, scalable read/write data 
sharing with integrity across multiple systems,  avoid- 
ing the message-passing overheads typically  associ- 
ated with data-sharing parallel systems. 

Queue (list) structures. The CF queue  or list struc- 
ture  supports general-purpose multisystem queuing 
constructs that  are applicable for a wide range of 
uses, including workload distribution, intersystem 
message passing, and maintaining shared  control 
block state information. As depicted in Figure 8, a 
list structure includes a program-specified number 
of list headers. List structures can support queuing 
of entries in last in, first out/first in, first out 
(LIFOIFIFO) order  or  in collating sequence by  key 
under program control. Individual list entries  are 
dynamically created when  first written and  queued 
to a designated list header. List entries can option- 
ally  have a corresponding data block attached at  the 
time of creation or subsequent list entry update. Ex- 
isting entries can be read, updated, deleted, or moved 
between list headers atomically, without the need for 
explicit software multisystem serialization in order 
to insert or remove entries from a list. Compound 
operations are  supported, such as read-and-delete, 
write-and-move, etc. 

Optionally, the list structure can contain a program- 
specified number of lock entries. When so specified, 
the  structure is referred to as a serialized  list  struc- 
ture. In the serialized  list structure, locks are obtained 
in an exclusive mode only. The individual locks are 
solely under software control and do not architec- 
turally map  to any other list objects; however,  it  is 
common to map a given  lock entry to a list header 
(queue) in the list structure. Lock operations include 
the ability to obtain ownership of a lock, release the 
lock, test whether a specific  lock  is held, and exe- 
cute a list command only  while a given  lock  is not 
held. A powerful construct of the list model is the 
ability to combine a locking operation with a queu- 
ing operation  to  the list structure in a single com- 
pound command, using the success of the locking 
operation as a condition for execution of the  queu- 
ing action. A common exploitation of the serialized 
list structure is to request conditional execution of 
mainline CF commands as long as a specified  lock 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



F igure 8 List  structure 

OSY390-A 

I I 

GS = GLOBAL SUMMARY 
LS = LOCAL SUMMARY 

is not held. Recovery operations requiring a static 
view  of a list or  the  entire  structure can set the lock 
causing mainline operations  to be rejected. Such a 
protocol avoids the necessity for mainline processes 
to explicitly  gain or release the lock for every request, 
but still  allows such requests to be suspended or re- 
jected in the presence of long-running recovery op- 
erations. OW390 supports the ability to  either suspend 
a serialized list request if the requested lock  is not 
available, or  to conditionally obtain  the lock and re- 
turn control to  the program if the lock  is not imme- 
diately available. 

There  are several mechanisms by which a list entry 
can be accessed, depending on  structure  attributes 
specified as part of list structure allocation. Entries 
can be accessed by a program-provided key,  which 
is  also used to  queue  the entries collated in  keyed 
sequence on a given  list. Note  that multiple entries 
of the same key  can reside on the same list. Alter- 
natively,  list entries can be  accessed by a program- 
assigned name, which  is guaranteed  to  be unique 
across the list structure when the entry is created. 
List entries can always be accessed  in LIFOiFIFO or- 

der from the head or tail of the list. Further, all  list 
entries are  created with a CF assigned list-entry iden- 
tifier (LEID). The LEID is guaranteed to be unique 
for the life of the list structure  and provides a direct 
means of locating an individual  list entry even if it 
is not otherwise tagged with a key or name. 

Each list header in the  structure has a set of list con- 
trols associated with it. The controls contain thresh- 
old values for the number of list entries  or  data el- 
ements  that can reside on a given  list header, so that 
a single program user cannot exhaust all of the list 
structure resources as a “r~naway’~ rogue program. 
The list  controls  also contain a list cursor value,  which 
enables multiple concurrent programs on different 
systems  to cooperatively browse through a list. Each 
program reads the entry adjacent to  the last one  read 
by any peer program, without each system  having to 
communicate with respect to  the  current cursor po- 
sition within the  shared list. The list controls further 
contain list  assignment  key  controls,  whereby the pro- 
gram can seed the initial and maximum  key values 
so entries  created  on a list can be assigned a gen- 
erated key in sequence by the CF, without the  pro- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 NICK ET AL. 189 



Figure 9 List  notification 

I 

gram having to know the last key  assigned on list en- 
try creation by a  peer program on  another  node. 

One of the controls, a list authority value (LAU), can 
be set by a program dynamically and used as a com- 
parative operand  on list structure commands di- 
rected  to  the  targeted list, causing commands to be 
rejected if the comparative check on LAU fails. This 
is a useful mechanism to change list ownership or 
state with guaranteed  failure of  any commands is- 
sued by peer programs unaware of the changed own- 
ership or  state for that list. 

Other list structure objects can  be  atomically com- 
pared or replaced as part of list structure command 
executions to cause conditional execution only if all 
comparative checks succeed. In addition to  the LAU 
check, execution can be conditional based on suc- 
cessful compare or replace of lock value, list num- 
ber,  or version number. Every individual list entry 
supports a version number value that is initialized 
and modified by the programs and can serve as a 
means of reflecting any  list entry state change (such 
as update of the list entry data contents). 

190 NICK ET AL. 

Refer to Figure 9 for the following  discussion of list 
notification. Programs can register interest in spe- 
cific  list headers used  as shared work queues or in- 
bound message queues at  the cF, for the purpose of 
being notified when a monitored list becomes non- 
empty. This provides initiative to the program to is- 
sue commands to retrieve list entries  that have been 
placed on the list. The program registers interest in 
monitoring a specific  list  via a list structure command, 
register-list-monitor, passing the list-notification  vec- 
tor index to be used to track interest in that list, as 
indicated in Step 1 in Figure 9. 

When an entry is added  to  the list  causing  it to go 
from an empty to nonempty state, as at Step 2, the 
CF sends a list notification command indicating an 
empty-to-nonempty list state transition to registered 
users at Step 3. The list-notification (LN) vector to- 
ken (passed in on the initial attach command when 
the program connected to  the list structure) is pro- 
vided along with the LN vector index on the list-no- 
tification command. The command is received by the 
coupling support facility  link microprocessor on the 
target system and  the specified list-notification vec- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



tor bit and associated list vector summary bits are 
updated  to reflect the list-state-transition, as  will be 
described next. 

Each list-notification  vector has a local-summary (LS) 
bit that indicates the overall contents of the vector 
as either inactive (all vector bits are set to ones in- 
dicating empty list state) or active (at least one bit 
is reset to zero indicating nonempty list state).  There 
is  also one global summary (GS) bit for  the process- 
ing node; it indicates the overall contents, either in- 
active  (all  vectors are inactive) or active (at least one 
vector is active), for all of the list-notification vec- 
tors at  the node. 

The coupling support facility  first sets the specified 
LN vector bit to  the nonempty state. Then  the local 
summary bit for that vector is set to  the active state. 
Finally, the global summary bit for the  node is set 
to  the active state. Setting the local  summary and 
the global  summary to the active state serves  as the 
means for the operating system to observe the fact 
that an LN signal has been received; this is detected 
during normal dispatcher processing when looking 
for new  work units to dispatch. 

As  with the cache  buffer  invalidation  signal  handling, 
there is no processor interruption, processor cache 
disruption, or software task context switch caused 
as a result of processing the list state transition com- 
mand. 

The program steps in polling for list nonempty state 
transitions are (1) test the global summary, then (2) 
test the local summary if necessary, and finally ( 3 )  
test individual vector bits to identify the specific  lists 
that have transition to  a nonempty state. 

The first test is made by the dispatcher routine of 
the operating system; if no vectors are active, nor- 
mal dispatcher processing continues. 

Tests of the summary bits  use the TEST VECTOR 

amines bits  in a list-notification vector. 
SUMMARY instruction. TEST VECTOR ENTRIES ex- 

Summary bits are placed in the inactive state using 
the SET VECTOR SUMMARY instruction in response 
to observing that one  or more vectors has been 
placed into the active state during dispatcher poll- 
ing. First the global summary is reset. Then  the lo- 
cal summary bit is tested and reset if necessary. This 
is done by the operating system prior to proceeding 
with testing of the  state of individual  list vector en- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

tries, so as not  to lose dispatching initiative for sub- 
sequent list-notification events. 

Once the operating system has determined  that an 
LN vector has experienced at least one empty-to-non- 
empty list state transition, it proceeds to drive each 
target user’s  list transition exit at Step 4. The user 
exit routine then executes the TEST VECTOR ENTRIES 
instruction to determine which  lists  have entered  the 
nonempty state at Step 5.  

Note  that when the last entry on a CF list is deleted, 
list-notification commands signaling a nonempty-to- 
empty-state transition are sent to registered con- 
nected programs. The GS and LS summary bits are 
not altered as part of a nonempty-to-empty-state 
transition. The specified LN vector bit  is set to in- 
dicate the empty state of the list at  the CF. 

Given a responsive operating system  polling means, 
the above  mechanism  avoids the undesired overhead 
of processor interruptions during program execution 
and the corresponding cache disruption effects that 
ensue at points in processing where the dispatcher 
is not intending to  preempt  the CPU to dispatch an- 
other unit of work. 

Summary of the CF architecture. From the functions 
previously described, it can be seen that  the CF pro- 
vides a rich  and  diverse set of capabilities upon which 
programs can build  efficient, reliable, and scalable 
protocols for sharing data in a clustered system. 
Highlighted functions and design characteristics in- 
clude: 

Global  concurrency  controls  and  hardware-assisted 
lock contention detection 
Global buffer coherency controls for distributed 
caches 
High-speed shared cache with cpu-synchronous 
access 
Shared queues for workload distribution and mes- 
sage  passing 
Cross-invalidate signal  delivery without processor 
interruption  or global broadcast required 
Local processor mirroring of global shared-re- 
source state via local state vectors 
Atomic CF command properties  to minimize soft- 
ware serialization requirements and simplify re- 
covery processes 

Coupling  support  facility  architecture 

This section outlines several aspects of the coupling 
support facility architecture. 

NICK ET AL. 191 



Figure 10 SEND MESSAGE instruction 

SEND MESSAGE 

1 

MESSAGE-COMMAND  BLOCK 

b 

MkSSAGE-OPERATION  BLOCK 

SEND TO 
COUPLING 
FACILITY 

i 
DATA BUFFERS MESSAGE-RESPONSE BLOCK 

RECEIVED FROM 
COUPLING 
FACILITY 

First, the SEND MESSAGE instruction is described. 
The instruction is  used to deliver a command request 
to  a CF from an attached processor node. Next,  links 
between a coupling support facility and a CF are con- 
sidered.  These links carry command and response 
information, as well  as cross-invalidate and list- 
notification commands from the CF. Finally,  system 
fencing functions are described. 

Command  delivery. An exchange of command and 
response information between a coupling support fa- 
cility and  a CF is  called a message operation.  It is 
important  to distinguish this mechanism from mes- 
sage-passing protocols between software programs 
on different nodes of a cluster or communication 
flows in a networked environment. In the context of 
this  discussion, a message is the  transport unit for 
exchanging commands and responses with CF micro- 
code over a high-speed link,  with an architecture for 
the express purpose of supporting efficient data-shar- 
ing functions across nodes of the Parallel Sysplex 
cluster. When an operating system  invokes the  op- 
eration,  the command information is  specified  in 

main storage; it  includes a command code, operands, 
and  output  data for a write-to-cF command. Re- 
sponse information is  placed  in  main storage to sum- 
marize the results of command execution and input 
data  are also stored for  a  read command. 

The program issues SEND MESSAGE to start  a mes- 
sage operation (see Figure 10). The instruction des- 
ignates a message subchannel and a message-oper- 
ation block  in main storage. The subchannel is 
associated with a specific CF and identifies the links 
(there can be several) that may be used for the op- 
eration. Os/390 activates as many  message subchan- 
nels as can be effectively used for parallel execution 
of multiple CF commands. 

After  the coupling support facility selects a link for 
communication, the operation is performed by send- 
ing the command to  the cF, transferring data as ap- 
propriate, decoding and executing the command, 
formulating a response, and storing response infor- 
mation in main storage. While executing the com- 

192 NICK ET AL. IBM SYSTEMS JOURNAL,  VOL 36, NO 2, 1997 



mand, the CF may send secondary commands to one 9 Data count-This  is the number of meaningful 
or more processing nodes. bytes stored in the  data buffers. The data count is 

zero when the write (W) bit  in the message-com- 
The  message-operation  block. Figure 10 illustrates pa- mand block  is one. 
rameters for this operation: Response-This  is information summarizing the 

results of command execution. 
Asynchronous (A)-When the A bit is one,  the 
message operation is performed asynchronously 
to continued instruction processing-the SEND 
MESSAGE instruction is completed before the com- 
mand reaches the CF. Otherwise, CPU instruction 
processing is delayed and the  entire  operation is 
performed during the execution of SEND MESSAGE. 
Notification (N)-When the N bit  is one, the list- 
notification vector bit designated by the notifica- 
tion descriptor is reset to signal the completion of 
the  operation. 

9 Message-command-block address and command 
length-These are  the main-storage locations of 
a coupling command and the number of bytes in 
the command. 
Data buffer  descriptors-These are  the main-stor- 
age locations and sizes of the  data buffers used by 
the command. The aggregate data  area can con- 
tain up to 64 kilobytes (KB). The buffer contents 
are sent to the CF when the write  bit  in the message- 
command block  is one;  the CF returns  data  to  the 
buffers when the write bit  is zero. 

The  message-command  block. This contains informa- 
tion that is sent to the CF: 

Command code-This  specifies the command to 
be performed. 
Write (W)-When the  W bit  is one,  a write op- 
eration is  performed-information  is transferred 
from the data buffers to a CF structure. Otherwise, 
a read operation is  performed-information  is trans- 
ferred from a CF structure to the data buffers. 
Command information-These are operands that 
complete the command specification. 

The  message-response  block. This is the destination 
for information that is returned by the CF. It  starts 
at the location immediately  following  byte 255 of the 
message-command block. The following are  stored 
in the block: 

Response count-This  is the number of meaning- 
ful bytes stored in the message-response  block. The 
count spans information stored starting at byte 0 
of the block. The information  includes the response 
count,  the  data  count,  and  the response field. 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

Asynchronous vs synchronous  operation. In contrast 
to an I/O operation with a disk or network device, 
which takes many  milliseconds to complete and is 
always performed asynchronously to continued in- 
struction processing, a coupling support facility  mes- 
sage operation is performed synchronously or asyn- 
chronously to instruction processing, depending on 
the option selected by the program. 

A general guideline is to use synchronous operation 
for commands that transfer at most 4 KB of data (not 
counting the bytes in the message-command block). 
Most frequently used commands (for example,  lock- 
ing commands), commands that enqueue or dequeue 
work requests or messages, and commands that read 
or write 4 KB of data from or to a cache structure, 
satisfy the guideline. 

Commands that transfer more than 4 KB of data  or 
are otherwise known to be long-running should use 
the asynchronous option. Other work can be pro- 
cessed  while the command is being executed. 

Completion of the  message  operation. No 1/0 or  other 
interruption is generated for a message operation. 
This design reduces processor overhead. For exam- 
ple, an  interruption  at  the  end of a disk operation 
normally stops the processing of a higher priority 
task,  invokes an interruption handler to save the ma- 
chine state, causes a lower priority work request to 
be  placed on a system queue, results in castouts from 
caches and translation-lookaside  buffers,  and restores 
the old machine state  to  return  to  the  interrupted 
task. This disruption is avoided using the techniques 
described next. 

When the program selects the synchronous option 
for a message operation, control is returned  at  the 
end of the  operation  (end-op) of the SEND MESSAGE 
instruction with the message operation completed. 
Status of the  operation is then  determined as indi- 
cated in the condition code for  a TEST MESSAGE in- 
struction. 

When the program selects the asynchronous option, 
it can designate a list-notification vector bit that is 
to be reset when the operation is completed. The 

NICK ET AL. 193 



Figure 11 List-notiiication  vector  used  to  indicate  completions 

TEST VECTOR SUMMARY 
SET VECTOR  SUMMARY 

TEST  VECTOR  ENTRIES 
SET VECTOR  ENTRY 

TOR 

c THE COMPLFnON  COUPLING SIGNAL SUPPORT FROM  FACILRY GS = GLOBAL SUMMARY 
LS LOCAL SUMMARY 

operating system tests for completion when, in the 
normal course of events,  it  is searching for a new  unit 
of work to dispatch. 

NotGcation of asynchronous  message  completion. The 
coupling support facility  exploits list-notification lo- 
cal state vectors to signal  asynchronous  message  com- 
pletions  to the operating system.  List  notificationvec- 
tors were previously introduced. The operating 
system establishes a  separate completion vector for 
each CF to which the processor is connected. Each 
bit  in a given  vector is associated  with a different  mes- 
sage subchannel used for communication with that 
CF. The operating system  issues a DEFINE VECTOR 
instruction to  set up a list-notification vector in pro- 
tected processor storage. The coupling support fa- 
cility  assigns a list-notification token to serve as the 
name for  the vector; the token is  used  in various CPU 
instructions and coupling commands. A vector that 
indicates the completion of message operations is 
shown  in Figure 11. 

Each list-notificationvector has a local-summary (LS) 
bit that indicates the overall contents of the vector 

as either inactive (all vector bits are set to ones) or 
active (at least one bit  is reset to zero). 

There is  also one global summary (GS) for the  pro- 
cessing node; it indicates the overall contents, either 
inactive (all vectors are inactive) or active (at least 
one vector is active), for all of the list-notification 
vectors at  the node. 

The coupling support facility sets the local  and  global 
summary  bits to the active state after  it  resets a vector 
bit to indicate the completion of a message operation. 

The program steps in  polling for the completion of 
asynchronous operations  are  to test the global sum- 
mary first, then test the local  summary if necessary, 
and finally test individual vector bits to identify the 
completed operations. The first test is made by the 
dispatcher routine for the operating system; if no  vec- 
tors are active, normal dispatcher processing con- 
tinues. 

Tests of the summary bits  use the TEST VECTOR 
SUMMARY instruction. The TEST VECTOR ENTRIES 
instruction  examines  bits  in a list-notification  vector. 

194 NICK ET AL IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



Figure 12 Coupling  facility link 

,"""""""""""""""""" 
i COUPLING  SUPPORT  FACILITY 

"_""""""""""""""""", 
COUPLING  FACILITY 

8 ,  

CROSS- 

(XI) COMMAND 
INVALIDATE 

LIST- 
NOTlFlCATlON 
@N) COMMAND 

List-notification vector bits are set using the SET 
VECTOR ENTRY instruction; this is done by the  op- 
erating system  as part of initiating an asynchronous 
SEND MESSAGE operation. Summary bits are placed 
in the inactive state using the SET VECTOR SUMMARY 
instruction in response to observing that  one  or more 
vectors have been placed into  the active state  dur- 
ing dispatcher polling. This is done by the  operating 
system prior to testing the individual vector bits for 
completed operations, so as not to lose dispatching 
initiative. Once the operating system  has determined 
that  one  or more subchannels have completed ex- 
ecution of a message operation, it proceeds to ex- 
ecute the TEST MESSAGE instruction to observe sta- 
tus for those requests. 

As discussed earlier for list notification, the above 
mechanism  avoids the undesired overhead of pro- 
cessor interrupts during program execution and the 
corresponding cache disruption effects that ensue at 
points in  processing where the dispatcher is not in- 
tending to preempt the CPU to dispatch another unit 
of work. 

Links  between  the  coupling  support  facility  and  the 
CF. A connection between a coupling support fa- 
cility and  a CF is called a CF link. The links provide 

transfer rates of 100 megabytes per second with  low- 
access latency. 

Each link  is arranged to provide two information 
flows. Information in one flow  is sent from the cou- 
pling support facility to  the CF. Information in the 
other flow  is sent from the CF to  the coupling sup- 
port facility. The information in the flows need not 
be associated with the same coupling command. 

A number of message operations may  be executed 
concurrently on a single  link. The operations are split 
into  short intervals of time during which  only a seg- 
ment of information is transferred over the link. The 
intervals are sequenced in response to demands 
made by the coupling support facility and the CF. 

Buffers at each end of the link contain areas for com- 
mand information, data, and response information. 
They are allocated for use on a dynamic  basis to com- 
pensate for speed mismatches among the link, the 
coupling support facility, and the CF. Figure 12 shows 
an example of a CF linkwith its two information flows. 
There  are four buffers at each end of the link. The 
figure  suggests that  one of the write commands, to- 
gether with the data to  be written, have been sent 
from the coupling support facility to  the CF, which 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



has not yet completed the command. At  the same 
time, one of the read commands has entered  a buffer 
at  the coupling support facility, and has just started 
to cross the link. Both commands were invoked by 
the operating system. 

Independently of the commands sent by the oper- 
ating system, the CF has sent secondary list-notifi- 
cation (LN) and cross-invalidate commands (XI) to 
the coupling support facility as part of the execution 
of coupling  commands that were  received from other 
processing nodes (not shown). The LN command is 
being executed by the coupling support facility  link 
microprocessor. The XI command is “in flight” over 
the link to  the coupling support facility. 

A response for each command will be returned when 
command execution is completed. 

System  fencing. Key to cluster availability  is the 
means to “failover” applications to a healthy node 
when the  node on which they are running is deemed 
to be failing. In  order  to recover resources owned 
by the failing node, that  node has to  be reliably 
known to be in a terminated state so that it can no 
longer access shared resources. The CF and coupling 
support facility provide the means to isolate a  pro- 
cessor from accessing  any shared resources in the 
cluster (i.e., to “fence” it) so that cluster recovery 
can take place. 

As part of an availability failover protocol, each 
Osi390 system  periodically broadcasts “heartbeat sig- 
nals” to  the  other operating systems of the cluster. 
When signals are missed, indicating that  a system 
has probably failed, a peer system  (any of the remain- 
ing healthy nodes) assumes recovery  responsibility 
for any resources held by the failing system. How- 
ever this does not guarantee  that  the faulty system 
is  actually  in a terminated state. It could be in a tem- 
porarily hung state  or looping-disabled for an exces- 
sive period of time. The recovery  system  must cause 
the failing system to become isolated from the clus- 
ter before it takes recovery actions, which  may in- 
clude completing or backing out transactions for the 
failing  system and releasing its database locks. Then, 
the workload of the failing  system  is distributed to 
other systems. 

Isolation from the cluster is achieved by establish- 
ing a channel subsystem state to screen the 110 and 
message operations of a processing node. The not- 
isolated state is set when the node is  initialized;  when 
the  state changes to isolated, any  new I/O or mes- 

196 NICK ET AL. 

sage operations initiated from the isolated node are 
rejected by its channel subsystem. 

Figure 13 shows an isolation scenario. First, an  op- 
erating system sends an activate-fencing command 
to initialize the fencing function at its processing 
node. The command is sent by  way  of a CF; it stores 
a nonzero fencing-authority value at the node. The 
operating system  also distributes the authority value 
to peer systems  in the cluster. 

When heartbeats  are missed for a period of time in 
excess of a  predetermined failure interval, another 
system  in the cluster can take action to partition the 
failing  system from the sysplex. The recovery  system 
issues an isolate command via the SEND MESSAGE 
instruction to interdict any I/O and message oper- 
ations attempted by the failing  system. The command 
specifies a fencing-authority  test  value;  it  is  forwarded 
by the CF to  the coupling support facility at the fail- 
ing node as indicated on the isolate command. 

The coupling support facility executes the isolate 
command, as  follows. When the fencing-authority 
value at the node is nonzero and  matches the fencing- 
authority test value, the channel-subsystem state is 
set to isolated and an  I/o-termination process is 
started. A response to  the isolate command indicates 
whether or not all  active I/O and message operations 
have ended; if they have not,  the termination pro- 
cess continues at  the failing node and the takeover 
system reissues the command until a response in- 
dicates that all operations have ended. If all oper- 
ations have not completed in a reasonable time pe- 
riod, the recovery  system can reissue the isolate 
command, specifying that  the I/O termination pro- 
cess should terminate long-running I/O operations 
at a channel control word (CCW) boundary. If a  pro- 
gram-determined period of time expires again with- 
out completion of the isolation process, the recov- 
ery  system reissues the isolate command specifying 
immediate termination of any still-outstanding I/O 
operations. This will terminate any apparently hung 
ccw operations. In this manner, the system  isola- 
tion process is executed to allow quiescing of out- 
standing I/O operations if possible so as to not leave 
shared resources in an indeterminate  state of com- 
pletion. In addition, the system isolation process 
causes reset of channel interfaces from the target sys- 
tem so that any serialized state information main- 
tained in shared-disk controllers (such as device re- 
serves, etc.) are released. 

IBM SYSTEMS  JOURNAL,  VOL 36, NO 2, 1997 



Figure 13 System  fencing  using  a  coupling  facility 

PROCESSING  NODE f PROCESSING  NODE n 
r 

CHANNEL SUBSYSTEM *....................... 

ISOLATE r 
ACTIVATE 
FENCING 

Once the response from the isolate command indi- 
cates that all I/O operations have been completed or 
terminated, the failing  system  has been isolated from 
the cluster. Resource recovery and workload redis- 
tribution can proceed on  other systems in the  Par- 
allel  Sysplex cluster. 

Summary  of coupling  support  facility  architecture. 
The coupling support facility architecture provides 
a set of essential  functions in the Parallel Sysplex  clus- 
ter. They are: 

Efficient command transport for communication 

cpu-synchronous command  delivery and execution 
Asynchronous command completjon without I/O 
interruption 
CPU instructions  for  manipulation of local state vec- 
tors and local tracking of CF resource state to  min- 
imize unnecessary signaling  traffic between nodes 
System isolation functions to support robust fail- 
over protocols 

with the CF 

Parallel Sysplex  scalability 

Figure 14 depicts effective total-system capacity as 
a function of the number of physically configured 
CPUS in a processing system. The line labeled IDEAL 
shows a 1:l correspondence between  physical capac- 
ity and effective  capacity. That is,  as a CPU is added 
to  the processing  system,  its  full uniprocessor capac- 
ity would be effectively applied to program execu- 
tion. Real configurations, of course, do not exhibit 
this ideal behavior. 

The symmetric multiprocessor (SMP) line shows be- 
havior of an SMP as additional CPUS are  added  to  the 
same single  physical  system. SMP systems provide 
maximum  effective throughput at relatively  small 
numbers of engines, but as more CPUS are added to 
the SMP system, incremental effective  capacity be- 
gins to diminish rapidly, limiting ultimate scalabil- 
ity. This is attributable  to  the overheads associated 
with interprocessor serialization, memory cross-in- 
validation, and communication required in the hard- 
ware to support conceptual sequencing of instruc- 
tions across CPUS, cache coherency, and serialized 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 NICK ET AL. 197 



t 

PHYSICAL CAPAGllY 

updates to storage performed atomically to CPU in- 
struction execution. These processes are performed 
in the hardware without the benefit of knowledge of 
software serialization that may already be held on 
storage being manipulated at a much more coarse 
level. In addition, SMP overheads are incurred in the 
system  software due to software  serialization  and  com- 
munication to manage  common  system  resources. 

The Si390 Parallel Sysplex  scalability characteristics 
are excellent.  Physical  capacity introduced to the con- 
figuration via the addition of more data-sharing sys- 
tems in the sysplex (where each system  can be an 
SMP or uniprocessor) provides near-linear effective 
capacity growth  as  well. Performance studies con- 
ducted in a Parallel Sysplex environment consisting 
of multiple IBM Si390 model 9672 CMOS systems run- 
ning a 100 percent data-sharing CICS database con- 
trol facility (CICSIDBCTL) workload demonstrated an 
incremental overhead cost of less than half a  per- 
cent for each system added to the configuration. In 
addition, the initial data-sharing cost associated 
with the transition from a single-system non-data- 
sharing configuration to  a two-node data-sharing 
configuration  was measured at less than 18 percent. l 6  

These results  testify to the excellent  scalability of the 
Si390 Parallel Sysplex. This topic is  discussed  in de- 
tail  in Reference 10. 

198 NICK ET AL. 

Several key  design characteristics unfold when con- 
sidering fundamental properties desired in an ideal 
large-scale server system capable of handling both 
current and emerging commercial application work- 
loads. One  important  attribute is the ability to le- 
verage the power of multiple processors to meet the 
processing  capacity demands of business-critical 
workloads. This leads to the need to  treat these mul- 
tiple processors as a single large-scale computing re- 
source from several  perspectives. Clients of the mul- 
tiprocessing server want to view the server system 
as a single node in the network. Applications should 
be able to be executed seamlessly across the mul- 
tiprocessing system,  accessing processing resources 
from whichever CPU the application logic happens 
to reside on. Systems administrators need the abil- 
ity to manage the multiprocessing system from a sin- 
gle point of control. To maximize  system through- 
put and  provide  consistent  response  times to mission- 
critical applications, it  is desirable to be able to direct 
arriving  work requests for execution on any proces- 
sor having  available capacity in a highly responsive 
and dynamic manner. If the processing compute de- 
mands grow and exceed the capacity of the existing 
server system,  it  is desirable to add an additional CPU 
to  the existing server system and grow the applica- 
tion workload transparently, without requiring work- 
load splitting of customer applications across proces- 
sors or repartitioningof databases to dedicate portions 
of the  database to individual processors of the large- 
scale server system. 

Fundamental to satisfying  all of the desired design 
characteristics outlined is the ability to share data 
and processing resources across the CPUS of the large- 
scale server system, without significantly impairing 
performance in support of resource sharing. This fur- 
ther requires that  the multiprocessing server system 
is  designed to provide  low-latency, high-performance 
global serialization controls across its set of CPUS, as 
well  as provide the mechanisms to have multipro- 
cessor coherency controls so that shared data can 
be cached simultaneously in local processor mem- 
ory of multiple CPUS with guaranteed coherency 
properties intact. 

Within limits, the symmetric multiprocessor (SMP) 
is the multiprocessing building block,  which has all 
of these design characteristics, and is in the market- 
place today. It has been in existence  in various forms 
in the information technology industry for 25 years, 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



having  evolved considerably in terms of capability 
and sophistication over that period of time. 

Unfortunately, the sMP does have  critical limitations 
that have driven the industry to search for yet a  bet- 
ter technology  answer. The two fundamental short- 
comings of an SMP are its limits  in both scalability 
and availability. As CPus are  added to the SMP, in- 
cremental capacity diminishes rapidly beyond a rel- 
atively small number of CPUS, due  to interprocessor 
communication in support of concurrency and co- 
herency controls as  well  as software-related resource 
management costs. Further,  the SMP represents a sin- 
gle point of failure, not only from a hardware per- 
spective, but more significantly from a software view 
as it runs a single version of the  operating system 
and  supported applications. 

These shortcomings and the ever-increasing demand 
for additional processing capacity and improved 
availability for commercial-processing workloads 
continue to drive the need to scale  capacity  beyond 
the limits of a physical SMP system and exploit  mul- 
tiple  system nodes for both scale  and  availability. This 
has led to  the emerging prominence of clustered sys- 
tems comprised of multiple SMP or uniprocessor 
nodes. Clustered systems also offer potential advan- 
tages in  systems management economies-of-scale 
given the relative homogeneity of systems  within the 
cluster. 

Typically, clustered systems provide high degrees of 
scalability by partitioning workloads and related  da- 
tabases across the cluster nodes to avoid the  need 
for cross-node buffer coherency and serialization 
controls, which  can  significantly compromise scal- 
ability  beyond a relatively  small number of nodes if 
software-based  message-passing  mechanisms are de- 
ployed to accomplish these functions.  However,  such 
“shared-nothing” clustered  system  environments  sac- 
rifice  key desired characteristics of an ideal large- 
scale commercial server in order  to meet the scal- 
ability and availability  objectives. Without data- 
sharing capabilities characteristic of an SMP server, 
it  is not possible to dynamically balance work based 
on processor capacity. Nor is  it possible, for exam- 
ple, to add a node to  the cluster for additional ca- 
pacity  growth without having to split the application 
or repartition databases, which require a cluster-wide 
outage. 

The Si390 Parallel Sysplex  is an advanced commer- 
cial  processing clustered system,  combining  many at- 
tributes of an SMP in terms of seamless  access to mul- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

Parallel Sysplex supports high-performance multi- 
system read/write data sharing with local cache co- 
herency, enabling the aggregate capacity of multi- 
ple OW390 systems to  be applied against common 
workloads. This in turn facilitates dynamic workload 
balancing, maximizes processor utilization, and pro- 
vides consistent response times. Further, through 
data sharing and dynamic workload balancing, con- 
tinuous availabilityand continuous operations char- 
acteristics are improved for  the clustered system,  as 
nodes can be dynamically  removed or  added  to  the 
cluster in a nondisruptive manner. 

The Parallel Sysplex cluster technologies effectively 
address the overhead issues  typically associated with 
shared-data model architectures, such as: global se- 
rialization message-passing protocols, global broad- 
cast cross-invalidate cache coherency protocols, and 
intersystem “ping” between systems and shared I/O 
devices. The Parallel Sysplex cluster technologies in- 
tegrate  a comprehensive shared-data architecture 
model with specialized hardware-assists and opti- 
mized software protocols to provide a highly scal- 
able and robust commercial parallel-processing plat- 
form. 

Key  technology functions provided include: 

Global  concurrency controls and  hardware-assisted 

Global buffer coherency controls for distributed 

High-speed shared cache with cpu-synchronous 

Shared queues for workload distribution and mes- 

Hardware-assisted system isolation for system  fail- 

lock contention detection 

caches 

access 

sage passing 

over recovery 

The Parallel Sysplex cluster is an integral part of the 
OSi3YO platform and is the foundation on which a 
growing number of  new  subsystem and operating sys- 
tem enhancements are based. With the  maturation 
of the technology and delivery of sysplex exploita- 
tion by the traditional on-line transaction process- 
ing and decision support workloads well  underway, 
the Parallel Sysplex focus is shifting to support new 
application environments, such  as commercial par- 
allel Web-server applications, and cluster-enabled 
object business servers to distributed clients. 

NICK ET AL. 199 



The S/390 Parallel Sysplex cluster represents  the next 
step in the evolution of large-scale commercial-pro- 
cessing server systems. 

*Trademark or registered  trademark of International Business 
Machines Corporation. 

Cited references 

1. R. Duncan, “A Survey of Parallel  Computer  Architectures,” 
Computer 23, No. 2,  5-16 (1990). 

2. A. Azagury, D. Dolev, J. Marberg, and  J. Satran, “Highly 
Available Cluster:  A Case Study,” Proceedings of the 24th 
IEEE Symposium on Fault-Tolerant Computing (June 1994), 

3. N. S. Bowen, C. A. Polyzois, and R. D. Regan. “Restart Ser- 
vices for Highly Available Systems,” Proceedings of the  7th 
IEEE Symposium on Paralleland Distributed Processing (Oc- 
tober 1995), pp. 596-601. 

4. M. D. Swanson and C. P. Vignola, “MVSIESA Coupled-Sys- 
tems  Considerations,” IBM Journal of Research and Devel- 
opment 36, No. 4, 667-682 (1992). 

5. MVSiESA Programming: SysplexServices Guide, GC28-1495- 
02, IBM Corporation (June, 1995); available through IBM 
branch offices. Chapter 6 describes coupling-facility cache 
structures, chapter 7 describes list structures,  and  chapter 8 
describes lock structures. 

6. G. F. Pfister, In Search of Clusters: The  ComingBattle in Lowly 
Parallel Computing, Prentice Hall, Upper Saddle River, NJ 
(1995). 

7. A. Bihde, “An Analysis of Three Transaction Processing Ar- 
chitectures,” Proceedings of the Fourteenth International Con- 
ference on Very Large Data Bases (Los Angeles, CA), Mor- 
gan Kaufmann Publishers, Inc., Palo Alto, CA (August, 1988), 

8. C. Mohan, H. Pirahesh, W. G. Tang,  and Y. Wang, “Paral- 
lelism in Relational Database Management Systems,” 1BM 
Systems Journal 33, No. 2, 349-369 (1994). 

9. P. S. Yu and A. Dan, “Performance Analysis of Aflinity Clus- 
tering on  Transaction Processing Coupling Architecture,” 
IEEE Transactions on Knowledge and Data Engineering 6, No. 
5, 764-786 (October 1994). 

10. G. M. King, D. M. Dias, and P. S. Yu, “Cluster  Architectures 
and Si390 Parallel Sysplex Scalability,” IBM Systems Journal 
36, No. 2,  221-241  (1997, this issue). 

11. Sysplex Overview-Introducing Data Sharing and Parallelism 
in a Sysplex, GC28-1208-00, IBM Corporation (April 1994); 
available through  IBM  branch offices. 

12. J. Nick, J.-Y. Chung, and N. Bowen, “Overview of IBM 
Systemi390 Parallel Sysplex-A Commercial Parallel Process- 
ing System,” Proceedings of the 10th IEEE International Par- 
allelprocessing Symposium, Hawaii (April 1996), pp. 488-495. 

13. L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding, 
“Design for Fault-Tolerance in System ESi9000 Model 900,” 
Proceedings of the 22nd Symposium on Fault-Tolerant Com- 

14. S. A. Calta, J. A. deVeer, E. Loizides, and R. N. Strangwayes, 
“Enterprise Systems Connection  (ESCON) Architecture- 
System Overview,” IBMJournal of Research and Development 
36, No. 4,  535-552 (1992). 

15. R. Cwiakala, J. D. Haggar, and  H. M. Yudenfriend,  “MVS 
DynamicReconfiguration Management,”IBMJoumalofRe- 
search and Development 36, No. 4,  633-646 (1992). 

pp. 404-413. 

pp. 339-350. 

puting (July 1992), pp. 38-47. 

200 NICK ET AL. 

16. Si390MVS Parallel SysplexPerformance, SG24-4356-01, IBM 
Corporation  (March 1996); available through IBM branch 
offices. 

17. J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and  D. Dillen- 
berger,  “Adaptive Algorithms for Managing a  Distributed 
Data Processing Workload,” I5M Systems Journal 36, No. 2, 
242-283  (1997, this issue). 

18. N. S. Bowen, D. A.  Elko, J. F. Isenberg, and G. W. Wang, 
“A Locking Facility for  Parallel Systems,” IBM Systems Jour- 
nal 36, No. 2,  202-220 (1997, this issue). 

19. J. W. Josten, C. Mohan, I. Narang, and J. 2. Teng, “DB2’s 
Use of the Coupling Facility for Data Sharing,” IBMSystems 
Journal 36, No. 2,  327-351  (1997, this issue). 

Accepted for publication December 20, 1996. 

Jeffrey M. Nick IBMS/390Division, 522 South Road, Poughkeep- 
sie, New York 12601 (electronic mai1:jeff-nick@vnet.ibm.com). Mr. 
Nick is a  Senior Technical Staff Member working in the OSi390 
System Architecture  and Design area.  He joined IBM in 1980 as 
a developer in the Si390 MVS  operating system. During his ca- 
reer  at IBM, he has held positions in MVS system design and 
development, and as  a  large systems technical specialist focused 
on  continuous availability issues. Mr. Nick has lead architecture 
responsibility for the design of Si390 parallel processing technol- 
ogy and is presently focused on leveraging that technology for 
new application environments on the OSi390 platform. He is 
widely recognized as  a leading technical expert  on Si390 Parallel 
Sysplex. He received a Corporate Award for his contribution in 
the design and  development  for  the Parallel Sysplex coupling fa- 
cility. Mr. Nick currently has 18 patents in the field of operating 
systems technology and has published several papers in technical 
journals. He has also given tutorials on  the Parallel Sysplexworld- 
wide. 

Brian B. Moore IBMSi390Division, 522 South  Road, Poughkeep- 
sie, New York 12601 (electronic mail: bbmoore@vnet.ibm.com). Dr. 
Moore is a  Senior Technical Staff Member and member of the 
IBM Academy of Technology. He joined IBM in 1962, where he 
has bad assignments in processor development, systems architec- 
ture,  and  operating system design. He holds 17 patents  and is an 
inventor on two other  patent applications; all are in the area of 
data processing. He has received a Sixth-Level Invention Achieve- 
ment Award and two Outstanding  Contribution Awards. Dr. 
Moore received the  B.E.E. degree in electrical engineering from 
Rensselaer Polytechnic Institute in 1961, the M.A. and Ph.D. de- 
grees in mathematics  from Syracuse University in 1969 and 1974, 
and the M.B.A. degree  from Marist College in  1981. 

Jen-Yao  Chung IBM Research Division, Thomas J. Watson Re- 
search Center, P.O. Box 704, Yorktown Heights, New  York 10598 
(electronic mail:jychung@watson.ibm.com). Dr. Chung has been 
with the  Thomas J. Watson Research Center, Hawthorne, NY, 
as  a research staff member since June 1989. He currently is the 
manager of the  data intensive computing department  and is work- 
ing on  parallel  Web server World  Wide Web access to database 
and transaction systems, and parallel systems performance  man- 
agement.  His research interests include Web server, database  per- 
formance, parallel processing, job scheduling and load balancing 
in real-time systems, object-oriented programming environments, 
and operating system design. He has published papers in these 
areas  and filed two patent applications. Dr.  Chung received the 
B.S. degree in computer science and information engineering from 
National Taiwan University in 1982, and  the M.S. and Ph.D. de- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



grees in computer science from  the University of Illinois at Ur- 
bana-Champaign in 1986 and 1989, respectively. He has received 
an IBM Technical Achievement Award, a  Research Division 
Technical Group Award, a  Research Division Award, and one 
IEEE Outstanding  Paper Award. He served as industrial chair, 
program committee  member,  and session chair in several work- 
shops  and  conferences. Dr. Chung is a  senior  member of IEEE 
and  a  member of ACM. 

Nicholas S. Bowen IBM Research  Division, Thomas .I. Watson 
Research  Center, P. 0. Box 704, Yorktown Heights,  New York 10598 
(electronic  mail: bowenn@watson.ibm.com). Dr. Bowen received 
the B.S. degree from the University of Vermont,  the M.S. degree 
in computer engineering from Syracuse University, and the Ph.D. 
in electrical and computer engineering from the University of Mas- 
sachusetts at Amherst. He joined IBM at East Fishkill in 1983 
and moved to  the Research  Center in 1986, where he is currently 
the department group  manager of servers. He is a  senior  mem- 
ber of IEEE  and a  member of ACM. His research  interests are 
operatingsystems, computer architecture, and fault-tolerant com- 
puting. 

Reprint Order No. (3321-5640. 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 NICK ET E 


