
S/390 cluster 
technology: Parallel 
Sysplex 

This paper describes  a clustered multiprocessor 
system  developed  for the general-purpose, 
large-scale copmercial marketplace. The 
system (SI390 Parallel SysplexTM) is based 
on an architecture designed to combine the 
benefits of full data sharing and parallel 
processing  in  a  highly  scalable clustered 
computing environment. The Parallel Sysplex 
offers  significant advantages in the 
areas of cost, performance range, and 
availability. 

P arallel and clustered systems  initially found in 
numerically intensive markets are gaining in- 

creasing acceptance in commercial segments as  well. 
The architectural elements of these systems span a 
broad spectrum that includes massively parallel pro- 
cessors that focus on high performance for numer- 
ically  intensive workloads' and cluster operating sys- 
tems that deliver  high  system  availability. * This paper 
describes new clustering functions that  are imple- 
mented by IBM's Si390" processors and OSi390" oper- 
ating system. 

The Si390 cluster (parallel system  complex, or Par- 
allel  Sysplex") contains innovative  multisystem data- 
sharing technology, allowing direct, concurrent 
read/write access to shared data from all processing 
nodes in the parallel configuration, without sacrific- 
ing performance or  data integrity. Each node is able 
to concurrently cache shared  data in local processor 
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memory through hardware-assisted cluster-wide se- 
rialization and coherency controls. This in turn  en- 
ables work requests associated with a single  work- 
load, such as business transactions or  database 
queries, to be dynamically distributed for parallel ex- 
ecution on nodes in the sysplex cluster, based on 
available processor capacity. Through this state-of- 
the-art cluster technology, the power of multiple 
OSi390 systems  can be harnessed to work  in concert 
on common workloads, taking the commercial 
strengths of the OSi390 platform to improved levels 
of competitive price/performance, scalable growth, 
and continuous availability. 

In this paper we  review the Si390 Parallel Sysplex ar- 
chitecture, its core technology components, and the 
customer business objectives that shaped the over- 
all  system structure. In Part I we discuss the objec- 
tives that guided the Parallel Sysplex designers and 
introduce the technology components of the Paral- 
lel  Sysplex cluster. Part I1 presents an overview of 
the coupling facility (CF) and coupling support fa- 
cility architectures, and discusses the scalability of 
the si390 Parallel Sysplex. A concluding section sum- 
marizes the key points contained in the  paper. 
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PART I 

Design  overview 

This section summarizes the key  design points for 
the si390 Parallel Sysplex and relevant design ratio- 
nale. We begin with a set of objectives that guided 
the overall system structure. This is  followed by a 
description of design benefits derived from its data- 
sharing capabilities. Then, alternative cluster archi- 
tecture models are discussed.  Finally, Parallel Sys- 
plex  technology functions are introduced. 

Customer business objectives. One key customer 
business  objective was to reduce the total cost of com- 
puting for Si390 systems. There  are many examples 
of systems that use  low-cost microprocessors as a 
building  block for a large system. In  order  to obtain 
the same cost advantages as these systems, the most 
dramatic change for Si390 meant replacing the Si390 
bipolar processor technology  with complementary 
metal-oxide semiconductor (CMOS) microprocessor 
technology and clustering multiple systems together 
to meet aggregate capacity requirements. This 
strategic decision enabled the Si390 systems to 
leverage industry-standard CMOS technology for 
price/performance advantage, both in terms of re- 
duced base manufacturing costs and significant on- 
going customer savings  in reduced power, cooling, 
and floor space requirements. 

A closely related objective  was to provide a commer- 
cial platform that would support  the nondisruptive 
addition of the scalable processing capacity,  in in- 
crements matching the growth of workload require- 
ments for customers, without requiring re-engineer- 
ing of customer applications or repartitioning of 
databases. Satisfying  this objective was critical to  the 
design of the Parallel Sysplex shared-data cluster ar- 
chitecture, which  will be discussed later in this pa- 
per. Prior to Parallel Sysplex, Si390 customers had 
been forced to contain the capacity requirements of 
a workload within the technology limits imposed by 
the size of the largest single symmetric multiproces- 
sor system  available. Workload growth  beyond these 
limits required splitting the workload and reparti- 
tioning the database between the nodes-a complex, 
resource-intensive process not supportive of cus- 
tomer business objectives. 

A third key  business objective was to address the in- 
creasing customer demands for improved applica- 
tion  availability, not only  in terms of failure recov- 
ery, but for the more important reduction of planned 
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outage times. Today, there is  less opportunity for 
planned systems shutdowns in the global economic 
environment. Here again, meeting this  objective  was 
key to  the Parallel Sysplex cluster design. 

Another key business  objective  was to protect invest- 
ments customers have in  existing  applications. There 
were two aspects to this objective. First, the Parallel 
Sysplex  technology had to be introduced in a com- 
patible manner with  existing applications. Second, 
the benefits of parallel processing had  to be trans- 
parently applied to applications through exploitation 
of the technology by application subsystems and da- 
tabase managers. With few exceptions, these objec- 
tives  have been  met.  The Parallel Sysplex technol- 
ogy extensions to  the Si390 architecture (introducing 
new CPU instructions, new channel subsystem tech- 
nology, etc.) are fully compatible with the base Si390 
architecture. The IBM subsystem transaction man- 
agers in the Customer Information Control System 
(CICS") and  the Information Management System 
(IMS*), and  the key  subsystem database managers 

ploited the data-sharing technology  while preserv- 
ing their existing interfaces. 

A final objective was to logically present  a single- 
system  image to users,  applications, and the network, 
and  to provide a single point of control to the sys- 
tems operations staff. Meeting this  objective  was  key 
to controlling the overall cost of managing a mul- 
tisystem configuration. In a Parallel Sysplex environ- 
ment, many cluster technology components, both 
hardware and software,  have been developed to meet 
this objective. New data-sharing technology hard- 
ware enables multiple-system nodes to serve com- 
mon workloads with the appearance of a single large 
computing resource. Base operating system cluster 
 service^"^ provide robust intersystem communica- 
tion, system monitoring, and automatic failure take- 
over mechanisms. Shared consoles are provided for 
managing multiple operating systems and multiple 
underlying hardware system nodes with a single point 
of control. Key system  profiles, catalogs, and  other 
resources can be shared across the clustered systems 
to enable efficient  "cloning" of system definitions. 
Through these  and  other means, systems manage- 
ment costs do not increase linearly as a function of 
the number of systems  in the sysplex. Rather,  total 
cost of computing efficiencies of scale  accrue through 
the coordinated management facilities of the Par- 
allel  Sysplex cluster. 

such as DATABASE 2" (DB2") and IMS-DB, have  ex- 



Data-sharing  design  benefits. Given the customer 
business  objectives outlined above, the Parallel Sys- 
plex shared-data architecture and technology  was 
critical to delivering the following  system benefits: 
dynamic workload balancing, continuous availabil- 
ity, and continuous operations. 

Dynamic  workload  balancing. A key aspect of being 
responsive to changing business needs in a commer- 
cial parallel processing environment involves the abil- 
ity to dynamically  adjust  system resources to best sat- 
isfy workload performance objectives in terms of 
throughput and response times. In  the Si390 Parallel 
Sysplex environment, the high-performance data- 
sharing technology  provides the means for OW390 and 
its subsystems to support dynamic workload balanc- 
ing across the collection of systems  in the configura- 
tion. Functionally, workload balancing can occur at 
two levels. During initial connection to the cluster, 
clients can be dynamically distributed and bound to 
server instances across the set of cluster nodes to ef- 
fectively spread  the workload. Subsequently, work 
requests submitted by a given client (such as trans- 
actions) can be executed on any  system  in the clus- 
ter based on available processing capacity. The work 
requests do  not have to be directed to a specific sys- 
tem node  due  to data-to-processor affinity,  which  is 
typically the case with alternative data-partitioning 
parallel systems, wherein buffer coherency and se- 
rialization controls are  not cluster-wide in scope. In 
a Parallel Sysplex cluster environment, work will nor- 
mally execute on the system on which the request 
is received, but in cases of “over-utilization’’ on a 
given node, work can be directed for execution on 
other less-utilized system nodes in the cluster. For 
both on-line transaction processing (OLTP) and de- 
cision-support  workloads,  dynamic  workload  balanc- 
ing across systems can be made transparent  to  the 
customer applications or users. 

Continuous  availability. Within a Parallel Sysplex 
cluster it  is  possible to construct a parallel process- 
ing environment with no single points of failure. Par- 
allel Sysplex hardware components such as sysplex 
timers and coupling facilities (to  be discussed in de- 
tail later) can be redundantly configured. The sys- 
plex timer serves as a common time reference source 
for systems  in the sysplex, distributing synchroniz- 
ing  clock  signals to all nodes. The coupling facility 
(CF) is the key Parallel Sysplex  technology compo- 
nent providing state-of-the-art cluster data-sharing 
functions. If a coupling  facility  fails,  critical data con- 
tents can be  “rebuilt”  into  an  alternate CF under 
OS/390 system and subsystem control. Since all  sys- 
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tems in the Parallel Sysplex can have concurrent ac- 
cess to all critical applications and  data, the loss of 
a system due  to  either hardware or software failure 
does not necessitate loss of application availability. 
Peer instances of a failing subsystem executing on 
remaining healthy system nodes can take over re- 
covery responsibility for resources held by the fail- 
ing instance. Alternatively, the failing subsystem can 
be automatically restarted on still-healthy systems 
using automatic restart capabilities to perform re- 
covery for work in progress at  the time of the fail- 
ure. While the failing  subsystem instance is  unavail- 
able, new  work requests can be redirected to  other 
data-sharing instances of the subsystem on other clus- 
ter nodes to provide continuous application avail- 
ability across the  failure  and subsequent recovery. 

Continuous  operations. The same availability char- 
acteristics  associated  with  handling  unscheduled out- 
ages are applicable to planned outages as  well. A sys- 
tem can be removed from the Parallel Sysplex for 
planned hardware or software  reconfiguration,  main- 
tenance, or upgrade. New  work can be dynamically 
redistributed across the remaining set of active  sys- 
tems. Once the system  is ready to be brought back 
on line, it can be reintroduced into  the sysplex  in a 
nondisruptive manner and participate in dynamic 
workload balancing as described earlier. 

New  system nodes can be introduced into  the  Par- 
allel  Sysplex  in a similar fashion. That is, the already- 
running systems continue to execute work concur- 
rent with the activation of the new  system node. Once 
the new  system is active, it can become a full par- 
ticipant in dynamic workload balancing. New  work 
requests are naturally driven at an increased rate  to 
that system until its utilization has reached steady 
state with respect to  the demand for overall proces- 
sor resources across all  system nodes in the Parallel 
Sysplex. This capability eliminates the  need  to  shut 
down the  entire cluster to  repartition  the databases 
and  retune workloads for each system to distribute 
work  evenly after introduction of the new  system into 
the configuration, as is typically required with a data- 
partitioning parallel processing system. 

A further design objective for the Parallel Sysplex 
was for new releases of om90 and its key  subsystems 
to support the  current  and  the next release migra- 
tion coexistence. This allows  new software product 
release levels to  be rolled through the Parallel Sys- 
plex one system at a time, providing continuous ap- 
plication availability across the systematic migration 
install process. 
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Cluster architecture models. Clustering, as a way  of 
organizing computer systems,  was  surveyed by Pfis- 
ter6 who identified a cluster as “a type of parallel or 
distributed system that consists of a collection of in- 
terconnected whole computers and is  utilized as a 
single,  unified computing resource.” The individual 
cluster nodes can be  either uniprocessor or symmet- 
ric multiprocessor (sMP) systems. Although the com- 
puters may be connected by a high-speed commu- 
nication mechanism, they do  not  share any central 
(main) storage. 

Another viewpoint ’x8 classifies parallel systems  based 
on conformance to one of the following architecture 
models, each having  its  own strengths and weakness- 
es: the shared-nothing model, the shared-disk model, 
and the shared-everything model. 

The  shared-nothing  (data-partitioning)  model. Each 
system  owns a portion of the database, and each por- 
tion can  only be read or modified by the owning  sys- 
tem. Data partitioning enables each system to locally 
cache its portion of the database in processor mem- 
ory without requiring cross-system communication 
to provide data access concurrency and coherency 
controls. Scalability characteristics are excellent  with 
this approach. 

However, there  are limitations imposed in a com- 
mercial processing environment by such a design 

Significant  capacity planning skills and cost 
are required to tune the overall system to match the 
processing capacity for each cluster node with the 
projected workload  access rate to data owned by that 
node. Real-time workload demand fluctuations can 
over- or under-utilize processor resources. Repar- 
titioning of the cluster databases to introduce new 
cluster nodes for additional capacity requires the  en- 
tire cluster to  be shut down. 

The  shared-disk  (shared-data)  model. All of the disks 
containing databases are accessible by all of the sys- 
tems. The basic strength of this approach is that it 
allows a workload to be dynamically balanced across 
nodes of a cluster, which  also  has potential benefits 
for availability and continuous operations, as  dis- 
cussed earlier. However, the major drawback to 
shared-data models prior to  the Parallel Sysplex ar- 
chitecture has been poor scalability characteristics. 

In shared-data configurations, distributed lock man- 
agement protocols are employed to provide concur- 
rency (serialization) controls across the cluster, gen- 
erally  involving  message  passing  between the systems 
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on  mainline paths to obtain and  release  locks. This is 
necessary to ensure that only one system  is  allowed to 
mod@ a given shared-data  item at a time.  Global  (clus- 
ter-wide)  buffer  coherency  controls are required  in or- 
der to ensure that the currency of data items  cached 
in  local  buffers  in the local  processor  memory  for  each 
system  can be determined prior to buffer  reuse. 

One approach to a shared-disk architecture employs 
broadcast-invalidate mechanisms to provide coher- 
ency control, sending cross-invalidate signals to all 

The S/390 Parallel 
Sysplex  architecture 
is characterized  as a 
shared-data  model. 

other nodes whenever a system updates a copy of a 
shared-data item locally. This is done to inform the 
other nodes that their locally cached copy of the 
shared-data item is  now “down  level.” This approach 
scales poorly as the number of nodes in the cluster 
increase. An alternative approach avoids the broad- 
cast-invalidate protocol, by continuing to hold the 
lock on a valid  locally cached data item after the 
transaction ends. This allows the cached copy to  be 
subsequently reused locally  with integrity. Owner- 
ship of the lock  is released only in the presence of 
contention from other systems.  However,  with this 
approach, only one system can maintain a current 
local cache copy of a given data item in memory at 
a time, that is,  while the lock on  that  data item is 
held. Ownership of the current data item copy trans- 
fers or “pings” from one system to another as ref- 
erences to those data  are made. 

Regardless of the global coherency protocols used, 
these cross-system “ping” effects occur whenever a 
system determines that it does not have a current 
copy of a needed  shared-data item. This typically re- 
sults in the  data being pushed out  to  shared disk by 
the system  in the cluster owning a current copy, 
where the  data  are  then fetched by the requesting 
system node. These multisystem data transfer I/OS 
can  cause  significant performance degradation in the 
cluster if a high degree of multisystem interest in the 
shared data is present. 



The  shared-evelything  model. Central storage, as  well 
as  disks, are shared by all of the processors. This ap- 
proach is  used  in structuring an SMP. An SMP is not 
a clustered system by itself, but can serve as the sys- 
tem building  block for individual nodes of a cluster. 
Shared-everything architectures have  processing ef- 
ficiency advantages when applied across a relatively 
small number of processors, but do not generally 
scale well as the number of processors increases. 
Also, single points of failure compromise the avail- 
ability characteristics of  the processing system. 

I A more detailed comparison of alternative cluster 
architectures with respect to performance and scal- I 

l ability  is  discussed  in Reference 10. 

Parallel Sysplex cluster technology. The Si390 Par- 
allel  Sysplex architecture is generally characterized 
as a shared-data model. Its fundamental distinguish- 
ing  characteristic  over  traditional  shared-disk  architec- 
tures is that the Parallel Sysplex  technology  enables 
multiple  systems to cache the same data concurrently 
in  local  processor  memory  with  full  readhvrite  access 
control  and  globally  managed  cache  coherency, with 
high-pe$onnance  and  near-linear  scalability. 

Specialized hardware and software cluster technol- 
ogy is introduced to address the fundamental per- 
formance obstacles that have traditionally plagued 
data-sharing parallel-processing systems. The core 
hardware technologies are embodied in the CF (for 
data sharing) and  the coupling support facility (for 
communication  between  processors and the CF) com- 
ponents of the system and are discussed  in detail later 
in  this paper. Some of the most  critical functions pro- 
vided are outlined below: 

Hardware-assisted global concurrency controls. 
Specialized hardware is provided to support low- 
overhead, fine-grained global lock management 
with hardware-assisted lock contention detection. 
In the absence of lock contention, locks can be ef- 
ficiently granted and released without intersystem 
software message  passing. 
Hardware-assisted global buffer coherency con- 
trols. The CF and coupling support facilities com- 
bine to track the locally cached shared-data items 
for each system, providing low-overhead mecha- 
nisms for global buffer cross-invalidation. The 
cross-invalidate operations do not involve  software 
message  passing, nor do they interfere with nor- 
mal processor instruction execution. Cross-inval- 
idate signals are only sent to nodes with registered 
interest in a data item being updated-not broad- 
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cast to all nodes in the cluster. Further, local buffer 
coherency can be checked by the program buffer 
managers on each node via  new CPU instructions 
that access local processor memory. 
Synchronous  locking and buffer coherency request 
handling. High-speed, low-latency links using 
streamlined protocols are provided, allowing  lock- 
ing, caching, and queuing operations directed to 
a CF to generally  be completed instruction synchro- 
nously. That is, in certain cases, delaying further 
CPU instruction processing while the CF executes 
an operation cpu-instruction-synchronously con- 
sumes fewer machine cycles than would otherwise 
be consumed by allowing CPU instruction process- 
ing to continue while the CF executes the  opera- 
tion asynchronously, thus forcing the software to 
perform a task  switch to suspend and later resume 
the requesting unit of work (after the CF completes 
the  operation). This can be contrasted with the in- 
tersystem software message-passing  costs to ob- 
tain and release a lock in typical distributed soft- 
ware lock management protocols, or with the 
several milliseconds that  are  required for a typical 
disk operation. 
Global  shared-buffer  cache. The CF has  its own pro- 
cessor memory that can serve as a global cache to 
enable high-speed local buffer refresh following a 
local cache miss. The  operation  to retrieve data 
from the coupling facility  can be performed CPU- 
synchronously if the requested data item is up to 
4 kilobytes  in  size. Data transfers of up to 64K are 
performed asynchronous to  the initiating CPU. In 
either case, the cost of a disk I/O or intersystem 
message  passing to "ping" ownership of the  data 
item from one system to another is avoided when 
the  data  are resident in the coupling facility. 
Hardware-assisted shared queuing constructs. The 
CF supports general-purpose data-sharing queu- 
ing functions that  are applicable for a wide range 
of cluster-wide uses,  including workload distribu- 
tion, intersystem message  passing, and  the main- 
tenance of shared control block state information. 

W390 Parallel Sysplex  cluster 

This section provides an overview of the technical 
capabilities of the S/390 Parallel Sysplex. It covers the 
overall  system structure,  the basic operating system 
support for parallel processing, and  the advanced 
technology introduced to enable efficient clustering 
or "coupling" of system nodes. 

System  model. An S/390 Parallel Sysplex"~'2 is a clus- 
ter of interconnected processing nodes with attach- 
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Figure 1 Parallel Sysplex  system  model 
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ments to  shared storage devices, network control- 
lers, and  core cluster technology components, 
consisting of coupling facilities, coupling support fa- 
cilities, and sysplex timers. (See Figure 1.) A cou- 
pling  facility (CF) enables high-performance read/ 
write sharing of data by applications running on each 
node of the cluster through global  locking and cache 
coherency management mechanisms. It also  provides 
cluster-wide queuing mechanisms for workload dis- 
tribution and message  passing between nodes. An- 
other component, a coupling support facility, resides 
on each of the processing nodes and is responsible 
for communications between the nodes and the cou- 
pling  facility. A sysplex timer serves  as a common 
time reference source for systems in the sysplex,  dis- 
tributing  synchronizing  clock  signals to all  nodes.  This 
enables local processor time stamps to be used re- 
liably on each node and synchronized with respect 

to all other cluster nodes, without requiring any soft- 
ware serialization or message  passing to maintain 
global time consistency. The synchronized time 
reference source facilitates real-time or post-process- 
ing merges of transaction manager logs across sys- 
tems, for example, to provide coordinated transac- 
tion and  database recovery across the cluster for a 
shared workload. 

The Parallel Sysplex currently supports up  to 32 pro- 
cessing nodes where each node is a symmetric mul- 
tiprocessor containing between l and 10 processors. 
The nodes do not have to be homogeneous; that is, 
mixed configurations supporting both Si390 CMOS 
processor  systems and traditional ES/9000* bipolar sys- 
tems can be deployed. The basic processor design 
has a long history of fault-tolerant features.I3 The 
disks are fully connected to all processors. The I/O 
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architecture has many advanced reliability and  per- 
formance features (e.g., multiple paths with auto- 
matic reconfiguration for availability). The basic I/O 
architecture is described in Reference 14 and  one 
aspect of the dynamic I/O configuration is described 
in Reference 15. 

The cluster is organized in  this fashion to increase 
the number of processors that can be applied effec- 
tively to large business problems, on-line transaction 
processing,  extensive queries, and applications on dif- 
ferent systems that need to concurrently access and 
update  a single database. For example, a cluster with 
three ten-way SMP nodes can utilize 30 processors 
to work on a problem, with  effective performance 
increasing nearly linearly with the number of pro- 
cessing  nodes.‘’J6 On  the  other hand, if an attempt 
is made to include more than ten processors in an 
SMP, incremental effective  capacity diminishes rap- 
idly. This is due to increasing interprocessor com- 
munication to provide interlocked-update access to 
memory, processor cache invalidation, and operat- 
ing  system overhead to manage processor resources. 

Base OW390 cluster services. A set of operating sys- 
tem services are provided as building  blocks for con- 
struction and management of multisystem applica- 
tions, subsystems, and components. These  are 
described in detail later;  here we  only  briefly cover 
some of the most relevant aspects. 

First, a set of cluster group membership services are 
provided. These allow processes to join or leave  mul- 
tisystem  logical groups, communicate with other 
group members, and be notified of events related  to 
the group. 

Second, the ability to provide efficient, shared ac- 
cess to operating system resource state  data is pro- 
vided. These  state  data  are located on coupling  datu 
sets and many advanced functions are provided, in- 
cluding serialized access to  the  data (with special 
time-out logic to handle faulty processor nodes) and 
duplexing of the disks containing the  state  data. In 
addition, there  are availability enhancements for 
planned and unplanned changes to the coupling data 
sets (e.g., “hot-switching’’ of the duplexed disks). 

Third, processor “heartbeat” monitoring is provided. 
In addition to  standard monitoring of the  health of 
each node, functions are also provided to automat- 
ically terminate  a failing node and disconnect the 
node from its externally attached devices. This en- 
ables other multisystem components to be designed 
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with a “fail-stop” strategy (performing peer recov- 
ery for a failing node with assurance that the faulty 
processor does not suddenly resume processing and 
interfere with  recovery of shared resources). This sys- 
tem isolation function is  system fencing and is  ex- 
ploited by OSi390 as part of sysplexpartitioning actions. 
Sysplex partitioning is the  term used to describe the 
set of actions peer systems take to remove another 
system node from the cluster, including physical  iso- 
lation, freeing of shared resources, and cleanup of 
state information related to  the system being re- 
moved. More information is provided in the section 
on system  fencing. 

Although the use of multiple interconnected micro- 
processors  can  aggregate  large  amounts of processing 
power, low cost  can  only  be  achieved if the processors 
are efficiently  utilized. Therefore, the ability to dynam- 
ically and automatically manage system resources is 
a key objective. A new component, the workload 
manager,I7 was designed to meet this objective. 

A multisystem automatic restart manager (ARM) fa- 
cility  is provided as a base operating system cluster 
component. The ARM component is  fully integrated 
in the Parallel Sysplex structure and provides signif- 
icantly more functions than a traditional “restart” 
service. First, it  utilizes the shared-state support pre- 
viously described so that  at any  given point in time 
the ARM is aware of the  state of processes on all  sys- 
tems (i.e.,  even of processes that “exist” on failed 
nodes). Second, the ARM is tied into  the processor 
heartbeat functions so that it is immediately made 
aware of node failures. Third,  the ARM is integrated 
with the workload manager so that it can provide a 
target restart system based on the current resource 
utilization across the available nodes. Finally, the 
ARM contains many features to provide  improved re- 
starts such as  affinity  of related processes, restart se- 
quencing, and recovery  when subsequent failures oc- 
cur. These services are described more fully in 
Reference 3. 

Coupling facility. At  the  heart of the Parallel Sys- 
plex  coupling  technology  is the coupling  facility (CF), 
a new component providing hardware assists for a 
rich  and  diverse  set of multisystem data-sharing func- 
tions. The coupling facility architecture provides 
three behavioral models to enable efficient cluster- 
ing protocols: 

Lock model: supports high-performance, fine- 
grained global locking and  contention detection 
Cache model: provides global coherency controls 
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Figure 2 CF connection  processing 
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for distributed local processor caches and a high- 
performance shared data cache 
Queue (list) model: provides a rich set of queuing 
constructs in support of workload distribution, 
message  passing, and sharing of state information. 

Physically, the CF consists of hardware and special- 
ized microcode (control code) that implements the 
Si390 Parallel Sysplex architecture extensions. The CF 
control code runs on the latest generations of Si390 
processors. CFS are attached to  other Si390 proces- 
sors running the OW390 or MVS operating system  via 
high-speed coupling links. The coupling  links  use spe- 
cialized protocols for highly optimized transport of 
commands and responses to and from the CF. The 
coupling  links are fiber-optic channels providing 100 
megabyte per second data transfer rates. Commands 
to the CF can  be  executed  synchronously or asynchro- 
nously to further CPU instruction processing, with 
cpu-synchronous command completion times mea- 

sured in microseconds, thereby avoiding the asyn- 
chronous execution overheads associated with task 
switching and processor cache disruptions. Multiple 
CFs can be connected for availability, performance, 
and capacity reasons. 

Logically, the CF storage resources can be dynam- 
ically partitioned and  allocated into CFstruchres,  sub- 
scribing to one of the three defined  behavioral  mod- 
els:  lock, cache,  and queue models.  Specific  commands 
are  supported by each model and, while allocated, 
CF structure resources can  only be manipulated by 
commands for  that  structure type as specified at ini- 
tial structure allocation. Multiple CF structures of the 
same or different types  can  exist concurrently in the 
same coupling facility. 

CF connection processing. A CF structure is allocated 
when the first attempt is made by a program to con- 
nect to  that  structure by name (see Figure 2). CF al- 
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amount of storage to assign, and optional structure 
attributes  that  depend  on  the  intended usage of the 
program. The location of the  structure (given  mul- 
tiple coupling facilities to choose from) and its size 
are determined by OS/390 based on customer-supplied 
coupling facility resource management policy infor- 
mation. As part of the connection request, the  op- 
erating system creates a local state vector via the 
DEFINE VECTOR instruction (Step 2), if warranted. 
Local state vectors are described in the next section 
on coupling support facility. 

The vector token returned by DEFINE VECTOR, which 
serves as an identifier for  the vector, is passed to  the 
CF in an attach command (Step 3). The command 
establishes a binding between the program and  the 
CF structure;  the token is subsequently used by the 
CF to deliver secondary commands (not shown  in the 
figure) targeting the vector during execution of spe- 
cific other CF commands. At  the completion of  the 
allocation and  attach processes, the  operating sys- 
tem records information concerning the  structure 
and user status in a function data set (Step 4), re- 
turns structure attributes  to the requesting program 
(Step 5A), and informs the program about all cur- 
rent  peer programs connected to  the CF structure 
(Step 5B). Other connectors are similarly informed 
about  the presence of the new connector (Step 6). 
Two of the notifications are  presented by OSi390 to 
user program event exits,  which were specified on 
the OW390 connection service interface, and which 
are used to inform programs about any subsequent 
status changes (Step 7) related to  the CF structure. 
The  structure persists as long as there  are connec- 
tors to it, and can optionally persist even  in the  ab- 
sence of  any attached program users. Related ser- 
vices and CF commands are provided for disconnect 
and  structure deallocation. 

General  CFchuructeristics. In Part I1 on architecture, 
the CF models will be discussed  in some detail; how- 
ever, it is  worthwhile to  introduce some general be- 
havioral characteristics as a  frame of reference. The 
CF supports a number of  key functions to facilitate 
reliable resource management and communication 
with attached system processing nodes. Some of the 
functions are: 

1. Global commands are provided to control CF re- 
source management and ownership, to  ensure 
that resource management policies are cohesively 
administered by the systems comprising a single 
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authority-based conditional execution of com- 
mands requesting resource allocation. 

2. A set of pathing commands are provided that  en- 
able each attached system to establish reliable 
communications with an  attached CF. Informa- 
tion is exchanged as  part  of  path validation that 
uniquely identifies the CF and each processing 
node so that reliable pathing configuration tables 
can be constructed and reverified across link fail- 
ures. These mechanisms ensure  that commands 
directed from attached systems to a CF or vice 
versa  (such  as  cross-invalidate  commands) are not 
inadvertently executed on  the wrong target pro- 
cessor due  to miscabling of physical  links. 

3. Specialized hardware and operating system soft- 
ware protocols are supported to guarantee the in- 
tegrity of command delivery,  even  in the presence 
of link failures, without introducing sympathy 
sickness across nodes in the cluster. 

Through these link  recovery mechanisms, for ex- 
ample, a write command to  the coupling facility 
initiated by a program on one  node of the cluster 
does not have to fail, even if the resultant cross- 
invalidate signal cannot be delivered to  another 
target node caching a down-level version of the 
data item. The target system node is guaranteed 
to observe the fact that its link to  the CF was  im- 
paired prior to reliance on the integrity of its lo- 
cal state vectors. Upon detection of such a fail- 
ure, the affected operating system takes recovery 
actions to cause data-sharing programs, on that 
node only, to reregister their interest in shared 
resources with the CF. This is accomplished by 
over-indicating the invalid state of local  cache  vec- 
tors (or the nonempty state of list-notification  vec- 
tors) when  loss of connectivity  is detected. 

4. Commands to the CF are executed  atomically,  i.e., 
they are completed in their entirety or they are 
backed out at the CF in the event of failure. They 
never complete with partial results being stored. 
This greatly simplifies the recovery  logic for sys- 
tems attached to the CF. 

5. Further, this behavior extends to the execution 
of concurrent commands  in parallel at the CF. Par- 
tial results of a command execution are not ob- 
servable to other commands while that command 
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Fi igure 3 Coupling  support facilities 
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is  still  in progress. These atomicity properties  en- 
able programs connected to  the CF to rely on the 
implicit serialization of command execution. This 
eliminates the need for programs to obtain ex- 
plicit  multisystem software serialization in order 
to execute a single command, such as inserting 
a work element onto  a shared queue. 

6. While the ensuing discussions focus on one or 
more systems connected to a single CF, it  is gen- 
erally anticipated that two CFS will be configured 
to provide redundancy. OSi390 provides a recov- 
ery  service to exploiting programs to coordinate 
the repopulation of the  contents of a CF struc- 
ture  into an alternate cF, for either failure or 
planned reconfiguration. 

Coupling support facility. Specialized hardware pro- 
vided on each processing node in the Parallel Sys- 
plex cluster is responsible for controlling commu- 
nication between the processor and the CF. This 

specialized hardware is called a coupling  support fa- 
cility, as depicted in Figure 3. The coupling support 
facility consists of new S/390 CPU instructions, high- 
speed links, and link microprocessors. It also utilizes 
processor memory to contain local  state  vectors. 
These vectors are used to locally track the state of 
resources maintained in the CF. As will be seen, these 
local state vectors are key to avoiding unnecessary 
communication  between the processing node and the 
CF to observe critical state information. 

The coupling support facility provides several crit- 
ical functions, discussed  next. 

Coupling  facility command delivery. The coupling  sup- 
port facility provides the means by which a program 
sends commands to  the CF to request that locking, 
caching, and queuing actions are  to  be performed. 
The coupling support facility supports both synchro- 
nous and asynchronous modes of command deliv- 
ery. Synchronous commands are completed at  the 
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end of the CPU instruction initiating the command, 
based on highly optimized,  low-latency transport pro- 
tocols.  Asynchronous  commands are completed after 
the CPU instruction  initiating the command  is ended, 
with the completion  notice  being  sent to the operating 
system  via a new  notification  mechanism that avoids 
the necessity of raising a processor interruption. 

Seconda y command execution. The coupling support 
facility executes secondary commands that  are  sent 
by a CF to  the processing node as part of performing 
certain command operations  at  the CF. With one ex- 
ception, the secondary commands direct the coupling 
support facility to update  state information in the 
local state vectors to reflect updated resource status 
at  the CF. A secondary command may, for example, 
store an invalid-buffer  indication at a processing node 
to signal that  the  node  no longer has the latest ver- 
sion of a locally cached data item. 

Local state vector  control. The coupling support facility 
introduces a set of CPU instructions that interrogate 
and  update local state vectors. A DEFINE VECTOR 
instruction dynamically allocates, deallocates, or 
changes the size of a local state vector. The vectors 
are in protected storage and are only  accessible  via 
a coupling-support-facility-assigned unique token. 
This ensures that programs do not inadvertently 
overlay  vectors for which  they  have no access author- 
ity. Instructions are provided to test and manipulate 
bits in the  state vectors conveying the  state of asso- 
ciated resources, and are described in the context of 
their use. There are  three kinds of local state vec- 
tors used: (1) Local cache vectors are used in con- 
junction with CF cache structures to track  local  buffer 
coherency; (2) list-notification vectors are used  with 
CF list structures to provide notification of CF list 
empty/nonempty state transitions; and (3) list-noti- 
fication vectors are also employed by the coupling 
support facility to indicate the completion of asyn- 
chronous command operations. Usage scenarios for 
each of these types of vectors are described later in 
sections on cache structures, list structures, and com- 
mand delivery. 

Hardware-assisted system isolation. The coupling sup- 
port facility also provides a systemfencing function 
that isolates a failing system node from being able 
to access shared external resources during cluster 
fail-over recovery scenarios. This capability is  dis- 
cussed further  later in this paper. 

We  discuss a detailed architectural review  of the cou- 
pling support facility functions later in this paper. 
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PART II 

Coupling  facility  architecture 

This section introduces three types of CF storage 
structures that  are used to enable high-performance, 
highly scalable, read/write data sharing across a Par- 
allel  Sysplex cluster. We discuss the  features of CF 
lock, cache, and list structures and outline the 
software-controlled caching protocols that  are irn- 
plemented using CF cache structures. 

Lock structures. The CF lock model supports high- 
performance, finely grained lock resource manage- 
ment, maximizing  concurrency and minimizing  com- 
munication overhead associated with  multisystem 
serialization protocols. This model enables a special- 
ized  lock manager (e.g., a database lock manager) 
to be extended into a multisystem environment. 

The CF lock structure provides a hardware-assisted 
global  lock contention detection mechanism for use 
by distributed lock managers, such as the IMS Re- 
source Lock Manager. The lock structure supports 
a program-specifiable number of lock table entries 
that  are used to record shared or exclusive interest 
in software locks that  map via software hashing to 
a given CF lock table entry (see Figure 4). Interest 
in each lock table entry is tracked for all peers  con- 
nected to  the CF structure across the systems  in the 
sysplex. Each entry has a global byte to contain the 
system identifier of the first  system to register ex- 
clusive interest in  any of the lock resource names 
that hash to that lock table entry, and a share bit 
string that identifies, by position, systems that have 
share interest in that hash class. 

OW390 provides locking  services to obtain, release, 
and modify  lock  ownership state information for pro- 
gram-specified  lock requests. To request lock  own- 
ership, a program passes the software lock resource 
name, the hash class value (to use  as the index to 
the coupling facility  lock table entry), the  shared or 
exclusive interest, user data (used to negotiate pro- 
tocol-specific  hierarchical  lock  ownership states), and 
program-specified lock information (recorded in the 
entry for use in  recovery processing). If the system 
does not already have a registered compatible inter- 
est in the specified  lock table entry, OW390 will issue 
a command to  the CF to perform the registration. 

Through use of  efficient hashing  algorithms  and  gran- 
ular serialization scope, false lock resource conten- 
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Figure 4 Lock structure 
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tion is kept  to a minimum. This allows the majority 
of requests for locks to be granted synchronously 
(mu-instruction-synchronously) to  the requesting 
system, where synchronous  execution times are mea- 
sured in microseconds. Only in exception cases  in- 
volving  lock contention is  lock negotiation required, 
wherein the CF returns  the identity of the systems 
currently holding locks  in an incompatible state with 
the  current request to enable selective  cross-system 
communication for lock negotiation. 

os1390 provides a rich set of cross-system  lock man- 
agement services to coordinate lock contention ne- 
gotiation and resolution, lock request suspension and 
completion, and recording of persistent lock infor- 
mation in the CF. In the event of system or lock man- 
ager failure, other systems  can interrogate  the  re- 
corded recovery information for the failing  system 
to quickly determine  the set of locks held at  the time 
of failure, enabling efficient  lock  recovery. The CF 
lock structure and supported protocols are discussed 
in detail in Reference 18. 

Cache structures. A CF cache structure provides the 
functions needed for multisystem shared-data cache 
coherency management. The purpose of this model 
is to enable an existing  buffer manager (e.g., a da- 
tabase buffer manager) to be extended into a clus- 
tered system environment. It permits each system 
node to  locally  cache  shared data in processor  mem- 
ory  with full data integrity  and  optimal  performance. 
Additionally, data can be optionally  cached  globally  in 
the CF cache structure for high-speed  local-buffer re- 
fresh. As a global shared cache, the CF can  be  viewed 
as a second-level  cache  between  local-processor  mem- 
ory  and  shared  disk  in the storage  hierarchy. 

A CF cache structure contains a global  buffer direc- 
tory that tracks multisystem interest in shared-data 
items cached in one  or more system  local  buffer 
pools. A separate directory entry is maintained in 
the CF structure for each uniquely named data item. 
A directory entry is created the first time a command 
requests registration of interest in the  data item or 
a write operation is performed to place the  data item 
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Figure 5 Cache entty 

into  the  shared cache. The directory entry contains 
control information for the  data item used in  exe- 
cution of CF commands targeting that entry. For ex- 
ample, the directory entry contains the program-pro- 
vided unique name of the  data item (which  serves 
as the means for finding the directory entry via in- 
ternal hash on  the name on cache structure com- 
mands). Also, the directory entry contains a user  reg- 
istry  identifying each system that has a valid 
registered interest in that  data item, along with the 
local cache vector index  being  used to track the in- 
terest each database manager has in the  data item 
cached in its local buffer pool. The directory entry 
contains an internal pointer to  the CF-cached ver- 
sion of the  data item if present, as well as a bit in- 
dicating whether the  data item is cached  in a changed 
or unchanged state with respect to the permanently 
stored version of the  data item on shared disk (see 
Figure 5) .  

The CF cache structure architecture was designed to 
support three basic  caching protocols: 

Directory-only cache. A directory-only cache uti- 
lizes the global buffer coherency tracking mech- 
anisms provided by the CF, but does not store data 
in the cache structure. This allows read/write shar- 
ing of data with  local  buffer coherency, but refresh 
of down-level local copies of data items is  via  ac- 
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cess to the shared disk containing the  data item, 
and all updates  are written permanently to disk as 
part of the write operation. 
Store-through cache. When used  as a  store- 
through cache, in addition to  the global buffer co- 
herency tracking, updated  data items are written 
to the cache structure as  well  as to shared disk. 
The directory entries for these data items are 
marked as unchanged, since the version of the data 
in the CF matches the version hardened on disk. 
This enables rapid buffer refresh of down-level lo- 
cal  buffer copies from the global CF cache, avoid- 
ing I/OS to  the shared disk. 
Store-in cache. When used  as a  store-in cache, the 
database manager writes updated data items to the 
CF cache structure synchronous to the commit of 
the updates. This protocol has additional perfor- 
mance advantages over the previous protocols as 
it enables fast commit of write operations. How- 
ever, here  the  data  are written to  the cache struc- 
ture as changed with respect to  the disk version 
of the data. The  database manager is responsible 
for casting out changed data items from the global 
cache to  shared disk as part of a periodic scrub- 
bing operation to free  up global cache resources 
for reclaim. Further,  an additional recovery bur- 
den is placed on the  database manager to recover 
changed data items from logs  in the event of a CF 
structure failure. 
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Reclaim processing. The CF cache architecture pro- 
vides commands and processes to efficiently man- 
age shared cache directory and data resources. Each 
directory entry in the CF cache (and related  data 
when present) is associated with a program-speci- 
fied storage class  when the directory entry is created. 
When read  or write command references are made 
to  a named data item being tracked or cached in the 
CF, that entry is marked by the CF as being the most 
recently referenced entry for the storage class. Di- 
rectory entries  are maintained in the storage class 
in least-recently-used (LRU)  order for purposes of 
reclaiming unchanged directory and data resources 
from the cache to satisfy  new resource requests. Mul- 
tiple storage classes  in the CF cache allow programs 
to group data sets being cached according to per- 
formance class  priority, and commands are provided 
to direct CF resource reclaim algorithms in accor- 
dance with the priorities established for the storage 
classes. 

CF directory and  data reclamation for unchanged 
data items is performed automatically by the CF in 
response to demand. If it  is  necessary to reclaim an 
aged directory entry to satisfy a new request and 
there is registered interest being actively tracked for 
one or more connected programs in the targeted en- 
try, cross-invalidate signals are directed to  the local 
cache vectors for those programs to reflect the fact 
that their interest is no longer being tracked. Note 
that the CF does not perform reclaim processing for 
changed data items in the cache structure. 

Castout processing for changed data  items. To facil- 
itate use  as a store-in cache, the CF mechanisms al- 
low efficient retrieval of changed data items from the 
cache so that they can be written to disk rendering 
them unchanged and available for subsequent re- 
claim. The directory entry contains a castout class 
field  used to group changed data items together on 
common castout class queues (program-specified) 
so that physically coresident data items can be  re- 
trieved and written to the same disk  volume  in a sin- 
gle 1/0 operation.  Refer again to Figure 5.  

Further, each directory entry contains a castout lock 
that prevents multiple program processes from cast- 
ing out the same data item to disk concurrently. Fail- 
ure to provide this mechanism could result in inter- 
leaved  write updates being cast out to disk out of 
sequence with respect to  the  order in  which the up- 
dates were made to  the CF cache entry. The castout 
lock  is set during execution of a read-for-castout 
command that marks the  data item unchanged and 
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returns  the  data to the program. Note that  the  data 
item is not eligible for CF reclaim while the castout 
lock  is held. When the program completes the disk 
110, it  issues an unlock-castout-lock command to 
cause the CF to release the castout lock, rendering 
the  data item eligible for reclaim. 

However, it  is desirable to allow  new write opera- 
tions to continue  to make updates to  a CF directory 
entry concurrent with castout processing for that  en- 
try. Thus, the architecture enables writes to an entry 
to  store  updated  data while the castout lock  is held 
by another program process. Data integrity is pre- 
served by setting the change  bit for the entry on  again, 
which will persist when the castout process releases 
the castout lock  (i.e., the  data item will not be el- 
igible for reclaim when the castout lock  is released). 

Reference 19 contains greater detail about these pro- 
cesses and how  they relate to exploitation of a cou- 
pling  facility by IBM’S DB2. 

Read scenario. In order  to describe how the CF sup- 
ports protocols enabling distributed local caches to 
maintain coherency with respect to  one  another, it 
is best to walk through two scenarios. First a  read 
scenario is discussed, followed by a write scenario. 

Refer to Figure 6 for the following  discussion. When 
a database manager, such as IBM’s DB2, first connects 
to  a CF cache structure via OSi390 system  services, the 
operating system  allocates a local  cache  vector  in pro- 
tected processor storage on behalf of the database 
manager. The local cache vector is  used to track the 
coherency of data cached in the local buffer pool. 
os/390 passes the local cache vector token to  the CF 
as part of attaching the program user (DB2) to  the 
cache structure, as previously described in the sec- 
tion “coupling facility.” The  database manager as- 
sociates each buffer  in the buffer pool with a unique 
bit position in the local cache vector. When the da- 
tabase manager receives a request for access to  a data 
item (named “ A ’  in this scenario), it acquires a lock 
on the  data.  The lock may be a global  lock obtained 
through access to  a CF lock structure, for example. 
Next, the program attempts  to locate “A” in the 
local  buffer pool at Step 1. If “A” is located, then 
the currency of the locally  cached  copy of “A” needs 
to be  determined. This is accomplished using a 
TEST VECTOR ENTRIES instruction in Step 2, passing 
the vector token and  the local cache vector index for 
that local  buffer  as input to  the instruction. The 
TEST VECTOR ENTRIES interrogates the vector  in pro- 
tected processor storage and sets  a condition code 
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Figure 6 Read scenario 
~~~~~~~~ 
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indicating whether the local copy of “A” is  valid or 
invalid  (down  level). Note  that this  check  is a  pro- 
cessor storage reference and involves no communi- 
cation with the CF. If the locally cached copy of “ A ’  
is valid, it is returned to the  requestor from the local 
buffer pool and the lock on “ A  is released. 

If “A” is not in the local buffer pool or the cached 
copy  was  invalid, the program assigns a buffer  in the 
pool to contain the data item. Then, at Step 3, the 
program issues a read-and-register command to the 
CF to register its interest in those data with the CF, 
passing the program-specified data item name and 
the local cache vector index associated with the lo- 
cal  buffer where the  data item is being cached. In 
addition, the program can provide the name of the 
old data item that was cached in the assigned  buffer 
before it was reassigned to contain “A” as input to 
the command, for example “B.” OSi390, as part of 
passing the command to the CF, first sets the spec- 
ified  local cache vector bit  optimistically to  the valid 
state via a SET VECTOR ENTRY instruction. Upon re- 
ceipt of the read-and-register command, the CF finds 

or assigns a directory entry for data item “ A ’  and 
updates the user registry for the requesting con- 
nected program user (uI), saving the local cachevec- 
tor index and marking the user as having a registered 
interest in “A.” If the  data for “A” are present in 
the CF cache from a  prior write operation,  the  data 
are  returned  to  the program and stored in the local 
buffer pool as part of the command execution. Also, 
if the “old” named data item “B” has a  current di- 
rectory entry present in the cache structure and it 
still reflects UI as  being  validly registered for that 
data item with the same local cache vector index be- 
ing tracked, then ul’s interest in “B” is deregistered, 
as the local cache vector index  is  now being used to 
track interest in “A.” If the read-and-register com- 
mand fails for any reason, the  operating system  is- 
sues a SET VECTOR ENTRY instruction to reset the 
target local cache vector bit to  the invalid state. 

If the CF did not have a copy of the  data in its cache, 
then  the program issues an I/O to retrieve the  data 
item from disk at Step 4. If the program desires to 
place the unchanged data item into the CF cache so 
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Figure 7 Write  scenario 

that it  may be fetched subsequently for rapid buffer 
refresh when a local read miss occurs, a write-when- 
registered or write-and-register command is  issued 
to  store  the  data item at the CF in Step 5.  At this 
point the  data item can be returned  to  the request- 
ing program and  the lock on  “A” released. 

Write scenario. Refer  to Figure 7 for the following 
discussion.  Assume here  that  a request is made to 
the  database manager to  update  data item “A.” As 
before, the database manager locks and locates “ A  
in  its  local  buffer pool and tests the validity of the 
locally cached copy. The program  uses the local  copy 
if current or retrieves a current copy if not, as de- 
scribed in the previous section. Then, at Step l, the 
program updates the local  copy of data item “A.” 

At Step 2, if it desires to  store the updated data in 
the CF, the program issues a write- when-registered 
( W R )  or write-and-register (WAR) command to  the 
CF,  passing the  data  and  the local cache vector index 
being used to track interest. If the program intends 
to write the  data to disk as part of a store-through 

caching protocol, then  an indication is  specified on 
the write command to set the change bit as “un- 
changed” in the directory entry for “A.” If the pro- 
tocol is to use the CF cache as a store-in cache, then 
the change bit setting is designated to  the “changed” 
state. 

The  difference between the W R  and WAR com- 
mands is that  the WAR command will allocate a di- 
rectory entry for “ A ’  if one is not present and will 
unconditionally over-write the existing data for “A” 
if already present in the CF (on the presumption that 
the program holds an exclusive  lock on the  data item 
“A’ and  knows  it  has a current copy). The WWR com- 
mand conditionally performs the write operation 
only if the writer is currently registered at the CF as 
having a valid  local  copy of “A.” This capability  is 
important for programs holding a lock on a specific 
record within data item “A,”  but  not  a lock on the 
entire  data item. The validity check at the CF entry 
on the WWR command ensures that concurrent up- 
dates to different records associated with the same 
data item cached in the CF cannot result in one sys- 
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tem writing a down-level version of the  data item 
into  the CF. Without this validity check, a program 
could test its local cache vector index contents as be- 
ing  valid and then proceed to update  the local copy, 
missing the cross-invalidate signal issued on behalf 
of another  update  to a different record just after the 
test of the local vector bit. 

Alternatively, if the CF cache is  being used solely to 
provide cluster-wide buffer coherency tracking as 
part of a directory-only caching protocol, an inval- 
idate-complement-copies (KC) command is  issued 
to the CF at  Step 2 instead of a write command to 
cause the cross-invalidate function to  be performed 
without storing data in the CF cache for “A.” 

At Step 3, as part of execution of the WWR, WAR, 
or ICC command at the CF, the user registry for “A” 
is checked to  determine whether there  are any other 
connected users who  have a valid interest in “A,” 
meaning that they have a locally cached copy  of “A” 
which  still reflects the valid state. If so, the CF marks 
those users as invalid  in the user registry and then 
sends a cross-invalidate command via the coupling 
links in parallel to those systems  having a registered 
interest in that  data item. The CF issues the cross- 
invalidate command, specifying the local cache vec- 
tor token and local cache vector index uniquely iden- 
tifying the specific vector and bit  which  is to be 
manipulated on  the attached processor node. Spe- 
cialized coupling link hardware provides processing 
for buffer invalidation signals sent by the CF to  at- 
tached systems. The coupling support facility link mi- 
croprocessor receives the cross-invalidate command 
and updates the CF-specified  bit  in the  data manag- 
er’s  local cache vector to indicate the local copy  is 
no longer valid. This process does not involve  any 
processor interruption or software involvement on 
the target system. Work continues without any  dis- 
ruption. After  the CF has observed completion of all 
buffer invalidation signals,  it responds to  the system 
that initiated the  data  update process. Again, this 
entire process  can be performed synchronously (CPU- 
instruction-synchronously) to  the updating system, 
with completion times measured in microseconds. 

At Step 4, if the  database manager has written the 
data item to  the cache structure as unchanged (store- 
through) or  not at all (directory-only cache proto- 
col), then it will write the  data item to disk at this 
point. This step is  bypassed if the CF cache is  being 
used as a store-in cache for fast commit of write up- 
dates to avoid incurring disk I/O costs synchronous 
to mainline program processing. 

By exploiting the cache coherency and global buffer 
cache management mechanisms previously de- 
scribed, it  can be seen that  the CF and related Si390 
Parallel Sysplex cluster technology provide the ba- 
sis for high-performance, scalable read/write data 
sharing with integrity across multiple systems,  avoid- 
ing the message-passing overheads typically  associ- 
ated with data-sharing parallel systems. 

Queue (list) structures. The CF queue  or list struc- 
ture  supports general-purpose multisystem queuing 
constructs that  are applicable for a wide range of 
uses, including workload distribution, intersystem 
message passing, and maintaining shared  control 
block state information. As depicted in Figure 8, a 
list structure includes a program-specified number 
of list headers. List structures can support queuing 
of entries in last in, first out/first in, first out 
(LIFOIFIFO) order  or  in collating sequence by  key 
under program control. Individual list entries  are 
dynamically created when  first written and  queued 
to a designated list header. List entries can option- 
ally  have a corresponding data block attached at  the 
time of creation or subsequent list entry update. Ex- 
isting entries can be read, updated, deleted, or moved 
between list headers atomically, without the need for 
explicit software multisystem serialization in order 
to insert or remove entries from a list. Compound 
operations are  supported, such as read-and-delete, 
write-and-move, etc. 

Optionally, the list structure can contain a program- 
specified number of lock entries. When so specified, 
the  structure is referred to as a serialized  list  struc- 
ture. In the serialized  list structure, locks are obtained 
in an exclusive mode only. The individual locks are 
solely under software control and do not architec- 
turally map  to any other list objects; however,  it  is 
common to map a given  lock entry to a list header 
(queue) in the list structure. Lock operations include 
the ability to obtain ownership of a lock, release the 
lock, test whether a specific  lock  is held, and exe- 
cute a list command only  while a given  lock  is not 
held. A powerful construct of the list model is the 
ability to combine a locking operation with a queu- 
ing operation  to  the list structure in a single com- 
pound command, using the success of the locking 
operation as a condition for execution of the  queu- 
ing action. A common exploitation of the serialized 
list structure is to request conditional execution of 
mainline CF commands as long as a specified  lock 
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F igure 8 List  structure 
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is not held. Recovery operations requiring a static 
view  of a list or  the  entire  structure can set the lock 
causing mainline operations  to be rejected. Such a 
protocol avoids the necessity for mainline processes 
to explicitly  gain or release the lock for every request, 
but still  allows such requests to be suspended or re- 
jected in the presence of long-running recovery op- 
erations. OW390 supports the ability to  either suspend 
a serialized list request if the requested lock  is not 
available, or  to conditionally obtain  the lock and re- 
turn control to  the program if the lock  is not imme- 
diately available. 

There  are several mechanisms by which a list entry 
can be accessed, depending on  structure  attributes 
specified as part of list structure allocation. Entries 
can be accessed by a program-provided key,  which 
is  also used to  queue  the entries collated in  keyed 
sequence on a given  list. Note  that multiple entries 
of the same key  can reside on the same list. Alter- 
natively,  list entries can be  accessed by a program- 
assigned name, which  is guaranteed  to  be unique 
across the list structure when the entry is created. 
List entries can always be accessed  in LIFOiFIFO or- 

der from the head or tail of the list. Further, all  list 
entries are  created with a CF assigned list-entry iden- 
tifier (LEID). The LEID is guaranteed to be unique 
for the life of the list structure  and provides a direct 
means of locating an individual  list entry even if it 
is not otherwise tagged with a key or name. 

Each list header in the  structure has a set of list con- 
trols associated with it. The controls contain thresh- 
old values for the number of list entries  or  data el- 
ements  that can reside on a given  list header, so that 
a single program user cannot exhaust all of the list 
structure resources as a “r~naway’~ rogue program. 
The list  controls  also contain a list cursor value,  which 
enables multiple concurrent programs on different 
systems  to cooperatively browse through a list. Each 
program reads the entry adjacent to  the last one  read 
by any peer program, without each system  having to 
communicate with respect to  the  current cursor po- 
sition within the  shared list. The list controls further 
contain list  assignment  key  controls,  whereby the pro- 
gram can seed the initial and maximum  key values 
so entries  created  on a list can be assigned a gen- 
erated key in sequence by the CF, without the  pro- 
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Figure 9 List  notification 

I 

gram having to know the last key  assigned on list en- 
try creation by a  peer program on  another  node. 

One of the controls, a list authority value (LAU), can 
be set by a program dynamically and used as a com- 
parative operand  on list structure commands di- 
rected  to  the  targeted list, causing commands to be 
rejected if the comparative check on LAU fails. This 
is a useful mechanism to change list ownership or 
state with guaranteed  failure of  any commands is- 
sued by peer programs unaware of the changed own- 
ership or  state for that list. 

Other list structure objects can  be  atomically com- 
pared or replaced as part of list structure command 
executions to cause conditional execution only if all 
comparative checks succeed. In addition to  the LAU 
check, execution can be conditional based on suc- 
cessful compare or replace of lock value, list num- 
ber,  or version number. Every individual list entry 
supports a version number value that is initialized 
and modified by the programs and can serve as a 
means of reflecting any  list entry state change (such 
as update of the list entry data contents). 
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Refer to Figure 9 for the following  discussion of list 
notification. Programs can register interest in spe- 
cific  list headers used  as shared work queues or in- 
bound message queues at  the cF, for the purpose of 
being notified when a monitored list becomes non- 
empty. This provides initiative to the program to is- 
sue commands to retrieve list entries  that have been 
placed on the list. The program registers interest in 
monitoring a specific  list  via a list structure command, 
register-list-monitor, passing the list-notification  vec- 
tor index to be used to track interest in that list, as 
indicated in Step 1 in Figure 9. 

When an entry is added  to  the list  causing  it to go 
from an empty to nonempty state, as at Step 2, the 
CF sends a list notification command indicating an 
empty-to-nonempty list state transition to registered 
users at Step 3. The list-notification (LN) vector to- 
ken (passed in on the initial attach command when 
the program connected to  the list structure) is pro- 
vided along with the LN vector index on the list-no- 
tification command. The command is received by the 
coupling support facility  link microprocessor on the 
target system and  the specified list-notification vec- 
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tor bit and associated list vector summary bits are 
updated  to reflect the list-state-transition, as  will be 
described next. 

Each list-notification  vector has a local-summary (LS) 
bit that indicates the overall contents of the vector 
as either inactive (all vector bits are set to ones in- 
dicating empty list state) or active (at least one bit 
is reset to zero indicating nonempty list state).  There 
is  also one global summary (GS) bit for  the process- 
ing node; it indicates the overall contents, either in- 
active  (all  vectors are inactive) or active (at least one 
vector is active), for all of the list-notification vec- 
tors at  the node. 

The coupling support facility  first sets the specified 
LN vector bit to  the nonempty state. Then  the local 
summary bit for that vector is set to  the active state. 
Finally, the global summary bit for the  node is set 
to  the active state. Setting the local  summary and 
the global  summary to the active state serves  as the 
means for the operating system to observe the fact 
that an LN signal has been received; this is detected 
during normal dispatcher processing when looking 
for new  work units to dispatch. 

As  with the cache  buffer  invalidation  signal  handling, 
there is no processor interruption, processor cache 
disruption, or software task context switch caused 
as a result of processing the list state transition com- 
mand. 

The program steps in polling for list nonempty state 
transitions are (1) test the global summary, then (2) 
test the local summary if necessary, and finally ( 3 )  
test individual vector bits to identify the specific  lists 
that have transition to  a nonempty state. 

The first test is made by the dispatcher routine of 
the operating system; if no vectors are active, nor- 
mal dispatcher processing continues. 

Tests of the summary bits  use the TEST VECTOR 

amines bits  in a list-notification vector. 
SUMMARY instruction. TEST VECTOR ENTRIES ex- 

Summary bits are placed in the inactive state using 
the SET VECTOR SUMMARY instruction in response 
to observing that one  or more vectors has been 
placed into the active state during dispatcher poll- 
ing. First the global summary is reset. Then  the lo- 
cal summary bit is tested and reset if necessary. This 
is done by the operating system prior to proceeding 
with testing of the  state of individual  list vector en- 
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tries, so as not  to lose dispatching initiative for sub- 
sequent list-notification events. 

Once the operating system has determined  that an 
LN vector has experienced at least one empty-to-non- 
empty list state transition, it proceeds to drive each 
target user’s  list transition exit at Step 4. The user 
exit routine then executes the TEST VECTOR ENTRIES 
instruction to determine which  lists  have entered  the 
nonempty state at Step 5.  

Note  that when the last entry on a CF list is deleted, 
list-notification commands signaling a nonempty-to- 
empty-state transition are sent to registered con- 
nected programs. The GS and LS summary bits are 
not altered as part of a nonempty-to-empty-state 
transition. The specified LN vector bit  is set to in- 
dicate the empty state of the list at  the CF. 

Given a responsive operating system  polling means, 
the above  mechanism  avoids the undesired overhead 
of processor interruptions during program execution 
and the corresponding cache disruption effects that 
ensue at points in processing where the dispatcher 
is not intending to  preempt  the CPU to dispatch an- 
other unit of work. 

Summary of the CF architecture. From the functions 
previously described, it can be seen that  the CF pro- 
vides a rich  and  diverse set of capabilities upon which 
programs can build  efficient, reliable, and scalable 
protocols for sharing data in a clustered system. 
Highlighted functions and design characteristics in- 
clude: 

Global  concurrency  controls  and  hardware-assisted 
lock contention detection 
Global buffer coherency controls for distributed 
caches 
High-speed shared cache with cpu-synchronous 
access 
Shared queues for workload distribution and mes- 
sage  passing 
Cross-invalidate signal  delivery without processor 
interruption  or global broadcast required 
Local processor mirroring of global shared-re- 
source state via local state vectors 
Atomic CF command properties  to minimize soft- 
ware serialization requirements and simplify re- 
covery processes 

Coupling  support  facility  architecture 

This section outlines several aspects of the coupling 
support facility architecture. 
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Figure 10 SEND MESSAGE instruction 
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First, the SEND MESSAGE instruction is described. 
The instruction is  used to deliver a command request 
to  a CF from an attached processor node. Next,  links 
between a coupling support facility and a CF are con- 
sidered.  These links carry command and response 
information, as well  as cross-invalidate and list- 
notification commands from the CF. Finally,  system 
fencing functions are described. 

Command  delivery. An exchange of command and 
response information between a coupling support fa- 
cility and  a CF is  called a message operation.  It is 
important  to distinguish this mechanism from mes- 
sage-passing protocols between software programs 
on different nodes of a cluster or communication 
flows in a networked environment. In the context of 
this  discussion, a message is the  transport unit for 
exchanging commands and responses with CF micro- 
code over a high-speed link,  with an architecture for 
the express purpose of supporting efficient data-shar- 
ing functions across nodes of the Parallel Sysplex 
cluster. When an operating system  invokes the  op- 
eration,  the command information is  specified  in 

main storage; it  includes a command code, operands, 
and  output  data for a write-to-cF command. Re- 
sponse information is  placed  in  main storage to sum- 
marize the results of command execution and input 
data  are also stored for  a  read command. 

The program issues SEND MESSAGE to start  a mes- 
sage operation (see Figure 10). The instruction des- 
ignates a message subchannel and a message-oper- 
ation block  in main storage. The subchannel is 
associated with a specific CF and identifies the links 
(there can be several) that may be used for the op- 
eration. Os/390 activates as many  message subchan- 
nels as can be effectively used for parallel execution 
of multiple CF commands. 

After  the coupling support facility selects a link for 
communication, the operation is performed by send- 
ing the command to  the cF, transferring data as ap- 
propriate, decoding and executing the command, 
formulating a response, and storing response infor- 
mation in main storage. While executing the com- 
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mand, the CF may send secondary commands to one 9 Data count-This  is the number of meaningful 
or more processing nodes. bytes stored in the  data buffers. The data count is 

zero when the write (W) bit  in the message-com- 
The  message-operation  block. Figure 10 illustrates pa- mand block  is one. 
rameters for this operation: Response-This  is information summarizing the 

results of command execution. 
Asynchronous (A)-When the A bit is one,  the 
message operation is performed asynchronously 
to continued instruction processing-the SEND 
MESSAGE instruction is completed before the com- 
mand reaches the CF. Otherwise, CPU instruction 
processing is delayed and the  entire  operation is 
performed during the execution of SEND MESSAGE. 
Notification (N)-When the N bit  is one, the list- 
notification vector bit designated by the notifica- 
tion descriptor is reset to signal the completion of 
the  operation. 

9 Message-command-block address and command 
length-These are  the main-storage locations of 
a coupling command and the number of bytes in 
the command. 
Data buffer  descriptors-These are  the main-stor- 
age locations and sizes of the  data buffers used by 
the command. The aggregate data  area can con- 
tain up to 64 kilobytes (KB). The buffer contents 
are sent to the CF when the write  bit  in the message- 
command block  is one;  the CF returns  data  to  the 
buffers when the write bit  is zero. 

The  message-command  block. This contains informa- 
tion that is sent to the CF: 

Command code-This  specifies the command to 
be performed. 
Write (W)-When the  W bit  is one,  a write op- 
eration is  performed-information  is transferred 
from the data buffers to a CF structure. Otherwise, 
a read operation is  performed-information  is trans- 
ferred from a CF structure to the data buffers. 
Command information-These are operands that 
complete the command specification. 

The  message-response  block. This is the destination 
for information that is returned by the CF. It  starts 
at the location immediately  following  byte 255 of the 
message-command block. The following are  stored 
in the block: 

Response count-This  is the number of meaning- 
ful bytes stored in the message-response  block. The 
count spans information stored starting at byte 0 
of the block. The information  includes the response 
count,  the  data  count,  and  the response field. 
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Asynchronous vs synchronous  operation. In contrast 
to an I/O operation with a disk or network device, 
which takes many  milliseconds to complete and is 
always performed asynchronously to continued in- 
struction processing, a coupling support facility  mes- 
sage operation is performed synchronously or asyn- 
chronously to instruction processing, depending on 
the option selected by the program. 

A general guideline is to use synchronous operation 
for commands that transfer at most 4 KB of data (not 
counting the bytes in the message-command block). 
Most frequently used commands (for example,  lock- 
ing commands), commands that enqueue or dequeue 
work requests or messages, and commands that read 
or write 4 KB of data from or to a cache structure, 
satisfy the guideline. 

Commands that transfer more than 4 KB of data  or 
are otherwise known to be long-running should use 
the asynchronous option. Other work can be pro- 
cessed  while the command is being executed. 

Completion of the  message  operation. No 1/0 or  other 
interruption is generated for a message operation. 
This design reduces processor overhead. For exam- 
ple, an  interruption  at  the  end of a disk operation 
normally stops the processing of a higher priority 
task,  invokes an interruption handler to save the ma- 
chine state, causes a lower priority work request to 
be  placed on a system queue, results in castouts from 
caches and translation-lookaside  buffers,  and restores 
the old machine state  to  return  to  the  interrupted 
task. This disruption is avoided using the techniques 
described next. 

When the program selects the synchronous option 
for a message operation, control is returned  at  the 
end of the  operation  (end-op) of the SEND MESSAGE 
instruction with the message operation completed. 
Status of the  operation is then  determined as indi- 
cated in the condition code for  a TEST MESSAGE in- 
struction. 

When the program selects the asynchronous option, 
it can designate a list-notification vector bit that is 
to be reset when the operation is completed. The 
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Figure 11 List-notiiication  vector  used  to  indicate  completions 
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operating system tests for completion when, in the 
normal course of events,  it  is searching for a new  unit 
of work to dispatch. 

NotGcation of asynchronous  message  completion. The 
coupling support facility  exploits list-notification lo- 
cal state vectors to signal  asynchronous  message  com- 
pletions  to the operating system.  List  notificationvec- 
tors were previously introduced. The operating 
system establishes a  separate completion vector for 
each CF to which the processor is connected. Each 
bit  in a given  vector is associated  with a different  mes- 
sage subchannel used for communication with that 
CF. The operating system  issues a DEFINE VECTOR 
instruction to  set up a list-notification vector in pro- 
tected processor storage. The coupling support fa- 
cility  assigns a list-notification token to serve as the 
name for  the vector; the token is  used  in various CPU 
instructions and coupling commands. A vector that 
indicates the completion of message operations is 
shown  in Figure 11. 

Each list-notificationvector has a local-summary (LS) 
bit that indicates the overall contents of the vector 

as either inactive (all vector bits are set to ones) or 
active (at least one bit  is reset to zero). 

There is  also one global summary (GS) for the  pro- 
cessing node; it indicates the overall contents, either 
inactive (all vectors are inactive) or active (at least 
one vector is active), for all of the list-notification 
vectors at  the node. 

The coupling support facility sets the local  and  global 
summary  bits to the active state after  it  resets a vector 
bit to indicate the completion of a message operation. 

The program steps in  polling for the completion of 
asynchronous operations  are  to test the global sum- 
mary first, then test the local  summary if necessary, 
and finally test individual vector bits to identify the 
completed operations. The first test is made by the 
dispatcher routine for the operating system; if no  vec- 
tors are active, normal dispatcher processing con- 
tinues. 

Tests of the summary bits  use the TEST VECTOR 
SUMMARY instruction. The TEST VECTOR ENTRIES 
instruction  examines  bits  in a list-notification  vector. 
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Figure 12 Coupling  facility link 
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List-notification vector bits are set using the SET 
VECTOR ENTRY instruction; this is done by the  op- 
erating system  as part of initiating an asynchronous 
SEND MESSAGE operation. Summary bits are placed 
in the inactive state using the SET VECTOR SUMMARY 
instruction in response to observing that  one  or more 
vectors have been placed into  the active state  dur- 
ing dispatcher polling. This is done by the  operating 
system prior to testing the individual vector bits for 
completed operations, so as not to lose dispatching 
initiative. Once the operating system  has determined 
that  one  or more subchannels have completed ex- 
ecution of a message operation, it proceeds to ex- 
ecute the TEST MESSAGE instruction to observe sta- 
tus for those requests. 

As discussed earlier for list notification, the above 
mechanism  avoids the undesired overhead of pro- 
cessor interrupts during program execution and the 
corresponding cache disruption effects that ensue at 
points in  processing where the dispatcher is not in- 
tending to preempt the CPU to dispatch another unit 
of work. 

Links  between  the  coupling  support  facility  and  the 
CF. A connection between a coupling support fa- 
cility and  a CF is called a CF link. The links provide 

transfer rates of 100 megabytes per second with  low- 
access latency. 

Each link  is arranged to provide two information 
flows. Information in one flow  is sent from the cou- 
pling support facility to  the CF. Information in the 
other flow  is sent from the CF to  the coupling sup- 
port facility. The information in the flows need not 
be associated with the same coupling command. 

A number of message operations may  be executed 
concurrently on a single  link. The operations are split 
into  short intervals of time during which  only a seg- 
ment of information is transferred over the link. The 
intervals are sequenced in response to demands 
made by the coupling support facility and the CF. 

Buffers at each end of the link contain areas for com- 
mand information, data, and response information. 
They are allocated for use on a dynamic  basis to com- 
pensate for speed mismatches among the link, the 
coupling support facility, and the CF. Figure 12 shows 
an example of a CF linkwith its two information flows. 
There  are four buffers at each end of the link. The 
figure  suggests that  one of the write commands, to- 
gether with the data to  be written, have been sent 
from the coupling support facility to  the CF, which 
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has not yet completed the command. At  the same 
time, one of the read commands has entered  a buffer 
at  the coupling support facility, and has just started 
to cross the link. Both commands were invoked by 
the operating system. 

Independently of the commands sent by the oper- 
ating system, the CF has sent secondary list-notifi- 
cation (LN) and cross-invalidate commands (XI) to 
the coupling support facility as part of the execution 
of coupling  commands that were  received from other 
processing nodes (not shown). The LN command is 
being executed by the coupling support facility  link 
microprocessor. The XI command is “in flight” over 
the link to  the coupling support facility. 

A response for each command will be returned when 
command execution is completed. 

System  fencing. Key to cluster availability  is the 
means to “failover” applications to a healthy node 
when the  node on which they are running is deemed 
to be failing. In  order  to recover resources owned 
by the failing node, that  node has to  be reliably 
known to be in a terminated state so that it can no 
longer access shared resources. The CF and coupling 
support facility provide the means to isolate a  pro- 
cessor from accessing  any shared resources in the 
cluster (i.e., to “fence” it) so that cluster recovery 
can take place. 

As part of an availability failover protocol, each 
Osi390 system  periodically broadcasts “heartbeat sig- 
nals” to  the  other operating systems of the cluster. 
When signals are missed, indicating that  a system 
has probably failed, a peer system  (any of the remain- 
ing healthy nodes) assumes recovery  responsibility 
for any resources held by the failing system. How- 
ever this does not guarantee  that  the faulty system 
is  actually  in a terminated state. It could be in a tem- 
porarily hung state  or looping-disabled for an exces- 
sive period of time. The recovery  system  must cause 
the failing system to become isolated from the clus- 
ter before it takes recovery actions, which  may in- 
clude completing or backing out transactions for the 
failing  system and releasing its database locks. Then, 
the workload of the failing  system  is distributed to 
other systems. 

Isolation from the cluster is achieved by establish- 
ing a channel subsystem state to screen the 110 and 
message operations of a processing node. The not- 
isolated state is set when the node is  initialized;  when 
the  state changes to isolated, any  new I/O or mes- 
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sage operations initiated from the isolated node are 
rejected by its channel subsystem. 

Figure 13 shows an isolation scenario. First, an  op- 
erating system sends an activate-fencing command 
to initialize the fencing function at its processing 
node. The command is sent by  way  of a CF; it stores 
a nonzero fencing-authority value at the node. The 
operating system  also distributes the authority value 
to peer systems  in the cluster. 

When heartbeats  are missed for a period of time in 
excess of a  predetermined failure interval, another 
system  in the cluster can take action to partition the 
failing  system from the sysplex. The recovery  system 
issues an isolate command via the SEND MESSAGE 
instruction to interdict any I/O and message oper- 
ations attempted by the failing  system. The command 
specifies a fencing-authority  test  value;  it  is  forwarded 
by the CF to  the coupling support facility at the fail- 
ing node as indicated on the isolate command. 

The coupling support facility executes the isolate 
command, as  follows. When the fencing-authority 
value at the node is nonzero and  matches the fencing- 
authority test value, the channel-subsystem state is 
set to isolated and an  I/o-termination process is 
started. A response to  the isolate command indicates 
whether or not all  active I/O and message operations 
have ended; if they have not,  the termination pro- 
cess continues at  the failing node and the takeover 
system reissues the command until a response in- 
dicates that all operations have ended. If all oper- 
ations have not completed in a reasonable time pe- 
riod, the recovery  system can reissue the isolate 
command, specifying that  the I/O termination pro- 
cess should terminate long-running I/O operations 
at a channel control word (CCW) boundary. If a  pro- 
gram-determined period of time expires again with- 
out completion of the isolation process, the recov- 
ery  system reissues the isolate command specifying 
immediate termination of any still-outstanding I/O 
operations. This will terminate any apparently hung 
ccw operations. In this manner, the system  isola- 
tion process is executed to allow quiescing of out- 
standing I/O operations if possible so as to not leave 
shared resources in an indeterminate  state of com- 
pletion. In addition, the system isolation process 
causes reset of channel interfaces from the target sys- 
tem so that any serialized state information main- 
tained in shared-disk controllers (such as device re- 
serves, etc.) are released. 
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Figure 13 System  fencing  using  a  coupling  facility 
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Once the response from the isolate command indi- 
cates that all I/O operations have been completed or 
terminated, the failing  system  has been isolated from 
the cluster. Resource recovery and workload redis- 
tribution can proceed on  other systems in the  Par- 
allel  Sysplex cluster. 

Summary  of coupling  support  facility  architecture. 
The coupling support facility architecture provides 
a set of essential  functions in the Parallel Sysplex  clus- 
ter. They are: 

Efficient command transport for communication 

cpu-synchronous command  delivery and execution 
Asynchronous command completjon without I/O 
interruption 
CPU instructions  for  manipulation of local state vec- 
tors and local tracking of CF resource state to  min- 
imize unnecessary signaling  traffic between nodes 
System isolation functions to support robust fail- 
over protocols 

with the CF 

Parallel Sysplex  scalability 

Figure 14 depicts effective total-system capacity as 
a function of the number of physically configured 
CPUS in a processing system. The line labeled IDEAL 
shows a 1:l correspondence between  physical capac- 
ity and effective  capacity. That is,  as a CPU is added 
to  the processing  system,  its  full uniprocessor capac- 
ity would be effectively applied to program execu- 
tion. Real configurations, of course, do not exhibit 
this ideal behavior. 

The symmetric multiprocessor (SMP) line shows be- 
havior of an SMP as additional CPUS are  added  to  the 
same single  physical  system. SMP systems provide 
maximum  effective throughput at relatively  small 
numbers of engines, but as more CPUS are added to 
the SMP system, incremental effective  capacity be- 
gins to diminish rapidly, limiting ultimate scalabil- 
ity. This is attributable  to  the overheads associated 
with interprocessor serialization, memory cross-in- 
validation, and communication required in the hard- 
ware to support conceptual sequencing of instruc- 
tions across CPUS, cache coherency, and serialized 
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updates to storage performed atomically to CPU in- 
struction execution. These processes are performed 
in the hardware without the benefit of knowledge of 
software serialization that may already be held on 
storage being manipulated at a much more coarse 
level. In addition, SMP overheads are incurred in the 
system  software due to software  serialization  and  com- 
munication to manage  common  system  resources. 

The Si390 Parallel Sysplex  scalability characteristics 
are excellent.  Physical  capacity introduced to the con- 
figuration via the addition of more data-sharing sys- 
tems in the sysplex (where each system  can be an 
SMP or uniprocessor) provides near-linear effective 
capacity growth  as  well. Performance studies con- 
ducted in a Parallel Sysplex environment consisting 
of multiple IBM Si390 model 9672 CMOS systems run- 
ning a 100 percent data-sharing CICS database con- 
trol facility (CICSIDBCTL) workload demonstrated an 
incremental overhead cost of less than half a  per- 
cent for each system added to the configuration. In 
addition, the initial data-sharing cost associated 
with the transition from a single-system non-data- 
sharing configuration to  a two-node data-sharing 
configuration  was measured at less than 18 percent. l 6  

These results  testify to the excellent  scalability of the 
Si390 Parallel Sysplex. This topic is  discussed  in de- 
tail  in Reference 10. 
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Several key  design characteristics unfold when con- 
sidering fundamental properties desired in an ideal 
large-scale server system capable of handling both 
current and emerging commercial application work- 
loads. One  important  attribute is the ability to le- 
verage the power of multiple processors to meet the 
processing  capacity demands of business-critical 
workloads. This leads to the need to  treat these mul- 
tiple processors as a single large-scale computing re- 
source from several  perspectives. Clients of the mul- 
tiprocessing server want to view the server system 
as a single node in the network. Applications should 
be able to be executed seamlessly across the mul- 
tiprocessing system,  accessing processing resources 
from whichever CPU the application logic happens 
to reside on. Systems administrators need the abil- 
ity to manage the multiprocessing system from a sin- 
gle point of control. To maximize  system through- 
put and  provide  consistent  response  times to mission- 
critical applications, it  is desirable to be able to direct 
arriving  work requests for execution on any proces- 
sor having  available capacity in a highly responsive 
and dynamic manner. If the processing compute de- 
mands grow and exceed the capacity of the existing 
server system,  it  is desirable to add an additional CPU 
to  the existing server system and grow the applica- 
tion workload transparently, without requiring work- 
load splitting of customer applications across proces- 
sors or repartitioningof databases to dedicate portions 
of the  database to individual processors of the large- 
scale server system. 

Fundamental to satisfying  all of the desired design 
characteristics outlined is the ability to share data 
and processing resources across the CPUS of the large- 
scale server system, without significantly impairing 
performance in support of resource sharing. This fur- 
ther requires that  the multiprocessing server system 
is  designed to provide  low-latency, high-performance 
global serialization controls across its set of CPUS, as 
well  as provide the mechanisms to have multipro- 
cessor coherency controls so that shared data can 
be cached simultaneously in local processor mem- 
ory of multiple CPUS with guaranteed coherency 
properties intact. 

Within limits, the symmetric multiprocessor (SMP) 
is the multiprocessing building block,  which has all 
of these design characteristics, and is in the market- 
place today. It has been in existence  in various forms 
in the information technology industry for 25 years, 
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having  evolved considerably in terms of capability 
and sophistication over that period of time. 

Unfortunately, the sMP does have  critical limitations 
that have driven the industry to search for yet a  bet- 
ter technology  answer. The two fundamental short- 
comings of an SMP are its limits  in both scalability 
and availability. As CPus are  added to the SMP, in- 
cremental capacity diminishes rapidly beyond a rel- 
atively small number of CPUS, due  to interprocessor 
communication in support of concurrency and co- 
herency controls as  well  as software-related resource 
management costs. Further,  the SMP represents a sin- 
gle point of failure, not only from a hardware per- 
spective, but more significantly from a software view 
as it runs a single version of the  operating system 
and  supported applications. 

These shortcomings and the ever-increasing demand 
for additional processing capacity and improved 
availability for commercial-processing workloads 
continue to drive the need to scale  capacity  beyond 
the limits of a physical SMP system and exploit  mul- 
tiple  system nodes for both scale  and  availability. This 
has led to  the emerging prominence of clustered sys- 
tems comprised of multiple SMP or uniprocessor 
nodes. Clustered systems also offer potential advan- 
tages in  systems management economies-of-scale 
given the relative homogeneity of systems  within the 
cluster. 

Typically, clustered systems provide high degrees of 
scalability by partitioning workloads and related  da- 
tabases across the cluster nodes to avoid the  need 
for cross-node buffer coherency and serialization 
controls, which  can  significantly compromise scal- 
ability  beyond a relatively  small number of nodes if 
software-based  message-passing  mechanisms are de- 
ployed to accomplish these functions.  However,  such 
“shared-nothing” clustered  system  environments  sac- 
rifice  key desired characteristics of an ideal large- 
scale commercial server in order  to meet the scal- 
ability and availability  objectives. Without data- 
sharing capabilities characteristic of an SMP server, 
it  is not possible to dynamically balance work based 
on processor capacity. Nor is  it possible, for exam- 
ple, to add a node to  the cluster for additional ca- 
pacity  growth without having to split the application 
or repartition databases, which require a cluster-wide 
outage. 

The Si390 Parallel Sysplex  is an advanced commer- 
cial  processing clustered system,  combining  many at- 
tributes of an SMP in terms of seamless  access to mul- 
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Parallel Sysplex supports high-performance multi- 
system read/write data sharing with local cache co- 
herency, enabling the aggregate capacity of multi- 
ple OW390 systems to  be applied against common 
workloads. This in turn facilitates dynamic workload 
balancing, maximizes processor utilization, and pro- 
vides consistent response times. Further, through 
data sharing and dynamic workload balancing, con- 
tinuous availabilityand continuous operations char- 
acteristics are improved for  the clustered system,  as 
nodes can be dynamically  removed or  added  to  the 
cluster in a nondisruptive manner. 

The Parallel Sysplex cluster technologies effectively 
address the overhead issues  typically associated with 
shared-data model architectures, such as: global se- 
rialization message-passing protocols, global broad- 
cast cross-invalidate cache coherency protocols, and 
intersystem “ping” between systems and shared I/O 
devices. The Parallel Sysplex cluster technologies in- 
tegrate  a comprehensive shared-data architecture 
model with specialized hardware-assists and opti- 
mized software protocols to provide a highly scal- 
able and robust commercial parallel-processing plat- 
form. 

Key  technology functions provided include: 

Global  concurrency controls and  hardware-assisted 

Global buffer coherency controls for distributed 

High-speed shared cache with cpu-synchronous 

Shared queues for workload distribution and mes- 

Hardware-assisted system isolation for system  fail- 

lock contention detection 

caches 

access 

sage passing 

over recovery 

The Parallel Sysplex cluster is an integral part of the 
OSi3YO platform and is the foundation on which a 
growing number of  new  subsystem and operating sys- 
tem enhancements are based. With the  maturation 
of the technology and delivery of sysplex exploita- 
tion by the traditional on-line transaction process- 
ing and decision support workloads well  underway, 
the Parallel Sysplex focus is shifting to support new 
application environments, such  as commercial par- 
allel Web-server applications, and cluster-enabled 
object business servers to distributed clients. 
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The S/390 Parallel Sysplex cluster represents  the next 
step in the evolution of large-scale commercial-pro- 
cessing server systems. 

*Trademark or registered  trademark of International Business 
Machines Corporation. 
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