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We examine the problems encountered in 
extending DATABASE 2” (DB2@) for Multiple 
Virtual StoragelEnterprise Systems Architecture 
(MVSIESATM), also  called OB2 for OS13.WTM, an 
industrial-strength  relational database 
management system  originally  designed  for  a 
single-system  environment, to support the 
multisystem shared-data architecture. The 
multisystem data sharing  function  was  delivered 
in  OB2 Verskon 4. OB2 data sharing  requires  a 
System1390  Parallel  SysplexTM  environment 
because  DB2’s use  of the coupling  facility 
technology  plays  a central role in delivering 
highly  efficient  and  scalable data sharing 
functions.  We  call  this the shared-data 
architecture because the coupling  facility is a 
unique feature that it employs. 

0 ne approach to improving the capacity and 
availability  characteristics of a single-system da- 

tabase management system (DBMS) is to use  mul- 
tiple systems. Before the introduction of the 
System/390* (s/390*) Parallel Sysplex*, there were 
two major architectures in  use  in the multisystem 
environment: the shared-disk (SDi) architecture, also 
called data sharing, and  the shared-nothing (SN) or 
partitioned architecture.2  The Si390 Parallel Sysplex 
introduces a third multisystem architecture called the 
shared-data (SDa) architecture. 

With SDi, all the disks containing the databases are 
accessible from all the sharing systems and each sys- 
tem has its own  buffer pool (BP) to cache data in pro- 

cessor storage for fast reference. Every  system that 
has an instance of the DBMS executing on it may ac- 
cess and modify  any portion of the  database on the 
shared disks. Because each instance has its own 
buffer pool and because conflicting  accesses to the 
same data may  be made from different systems, the 
interactions among the systems  must be controlled, 
using various synchronization protocols. This neces- 
sitates global  locking and protocols for the mainte- 
nance of buffer coherency. SDi is the approach used 
in IBM’s Information Management SystemNirtual 
Storage (IMS*/VS) data sharing p r o d ~ c t , ~ - ~  and 
Amoeba project,6 and DEC‘s VAX* * DBMS and VAX 
Rdb/vMs* * . 7-9 

With SN, each system  owns a portion of the  data- 
base and only that portion may be directly read  or 
modified by that system. That is, the database is par- 
titioned among the multiple  systems. The kind of syn- 
chronization protocols needed for SDi are not needed 
for SN. But a transaction that accesses data in  mul- 
tiple systems  would need a form of two-phase com- 
mit protocolJfl,”  to coordinate its  activities. This is 
the approach taken in Tandem’s Nonstop” * S Q L ’ ~  
(System Query Language), Teradata’s DBC/1012,’3 
and the University of Wisconsin’s  Gamma.14 
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SDi has many advantages over SN. Some of them 
are: workload balancing, horizontal growth €or ca- 
pacity,  single-system  image, and availability. Data do 
not have to be split across different systems for rea- 
sons of capacity or availability. SDi gives the possi- 
bility of improved availability for data and  service. 
However, the performance penalty of intersystem 
message  passing and increased disk  access to imple- 
ment the global  locking and buffer coherency func- 
tions is a heavy price to pay to gain the advantages 
of SDi. By using the coupling facility for high-speed 
global locking and buffer coherency functions, the 
SDa architecture can deliver all the benefits of SDi 
without the heavy performance penalties that  are 
otherwise suffered. 

This paper describes the problems associated with 
and the design approaches needed for migrating an 
industrial-strength  relational DBMS from a single-sys- 
tem  environment to the SDa environment.  We  describe 
the design approaches taken by the DATABASE 2” 
(DB2”) for Multiple Virtual Storage/Enterprise Sys- 
tems Architecture (MVSIESA”) Version 4 (hereafter 
referred to as DB2 V4) data sharing function’s for ef- 
ficient intersystem concurrency control and mainte- 
nance of coherency among the different systems’ 
local buffers in the SDa architecture. Use of the cou- 
pling  facility (CF)  is a key element of DB2’s data  shar- 
ing  design. 

The rest of the  paper is organized as  follows: First 
we  give a brief  overview of the DB2 SDa architecture. 
Next  we describe the global  locking problem, how 
DB2 data sharing uses the CF to implement fast global 
locking,  and  how “retained locks” are used to rnain- 
tain data integrity across a failure of a DB2 DBMS in- 
stance. We describe the intersystem  buffer  coherency 
problem and how DB2 uses the CF to solve  this prob- 
lem. We also describe how DB2 logging and data  re- 
covery  work  with data sharing. Then we describe the 
DB2 design for recovering from various CF-related 
failures and, finally,  we summarize. 

A brief  description of Dl32 data sharing 

The N-way multisystem data sharing function that 
was introduced in DB2 v 4  provides DB2 applications 
with full read  and write concurrent access to  data- 
bases, on shared direct access storage devices 
(DASDS), between multiple DB2 subsystems. The DB2 
subsystems may reside on  the same or on different 
MVS images. The set of DB2 subsystems sharing the 
data belong to a DB2 data sharing group. Each DB2 
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subsystem  is a member of the group. Data sharing 
is an optional feature of DB2 v4. 

DB2 data sharing requires the services of the Si390 
Parallel  Sysplex.  This  means that an MVS sysplex  must 
be established with MVSESA Version 5 or higher and 
at least one CF must be configured into  the sysplex 
(two or more CFS are recommended for performance 
and availability reasons) and also at least one sys- 
plex timer must  be configured. (Two  sysplex timers 
are recommended to remove the “single  point of fail- 
ure.”I6) 

As  shown in Figure 1, all the members of a DB2 data 
sharing group must reside within a single MVS sys- 
plex,  which can contain multiple DB2 groups. Also, 
a nonsharing DB2 subsystem  may reside within the 
same MVS sysplex  as another DB2 data sharing group. 

A transaction accesses data belonging to  a DB2 group 
from within a single member of the group. Appli- 
cations and transactions are unaware that  data  shar- 
ing is taking place across the DB2 group, and do  not 
know  if their particular data are being  actively shared 
or not. DB2 automatically manages all of the mul- 
tisystem concurrency and buffer coherency issues, 
which are transparent to  the applications. 

DB2 assumes that all data  are capable of being shared 
across the group. Actual sharing is controlled by 
workload scheduling, DASD connectivity, and autho- 
rization. DB2 activates its multisystem concurrency 
and coherency controls only when data  are actually 
shared between systems. DB2 data sharing supports 
data access concurrency at every  level  normally sup- 
ported by DB2 (table space, table, page, or row). 

Each member of a DB2 data sharing group must  have 
access to  shared DASD containing: 

The MVS user catalog, pointed to by the MVS mas- 
ter integrated catalog facility (ICF) catalog on each 
MVS 
A single shared DB2 catalog and directory 
Shared DB2 databases 
The ICF user catalogs €or the  shared databases 
The recovery  log data sets and  bootstrap  data sets 
(BSDSS) belonging to each DB2 member 

Figure 2 gives more information about the DB2 data 
sharing group topology. A single DB2 catalog and di- 
rectory provides for a single definition of all shared 
DB2 objects. Changes to  the definitional data can be 
made from any DB2 member and need to be made 
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Figure 1 DB2 data sharing group configuration 

only once to be put  into effect across the  entire DB2 
data sharing group. 

DB2 uses the following CF structures for data  shar- 
ing: 

The CF lock structure for global  locking 
Group buffer  pools (GBPS), which are CF cache 
structures used for inter-DB2  buffer coherency. Up 
to 60 GBPs may be defined, corresponding to  the 
60 buffer pools that may be defined in a single DB2 
member. 
The  shared communications area (SCA), which  is 
a CF list structure used for recording the excep- 
tion status of databases and for supporting other 

The MVS central processing complexes (CPCS) are 
connected to the CFS with CF channels and high-speed 
fiber optic links that allow MVS to interact synchro- 
nously  with the CFS, without task switching. 

As shown  in Figure 2, each DB2 member writes to 
its own recovery  log and BSDS. However, the logs and 
BSDSs must reside on shared DASD so that all DB2 
members  have  access for recovery purposes. DB2 data 
sharing requires a sysplex timer to give a common 
time source across the sysplex, so that log records 
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Figure 2 DB2 data sharing use of the coupling facility 
~ ~~ 

can be retrieved from multiple systems,  in time se- 
quence, for recovery from media failure. 

Inherent in the DB2 data sharing architecture is the 
ability to deliver much higher levels of capacity and 
availability to DB2 users, because access to  the DB2 
databases is no longer constrained through a single 
DB2 DBMS instance. Also,  with the  data sharing ca- 
pacity, DB2 installations can now add to their DB2 
systems in a horizontal, more granular fashion by 
nondisruptively adding new DB2 members (along 
with  new CPCS) into  the  data sharing group as the 
need arises. And because there  are multiple paths 
to  the DB2 data, installations can choose how to best 
balance their DB2 workload across the  data sharing 
group to satisfy their business needs. 

To achieve  maximum  value  from  its SDa architecture, 
DB2 v4 is designed to provide highly  efficient global 
locking and caching capabilities through use of the 
CF. To demonstrate  the performance and scalability 
of these  data sharing capabilities, the IBM Santa 
Teresa Laboratory has measured results for the IBM 
Relational Warehouse Workload (IRWW). l7 This 
workload consists of seven transactions of varying 
profiles; some are update-intensive while others  are 
read-intensive. There  are seven tables that vary  in 
size and update intensity. All the tables are actively 
shared for both reading and writing  when running 
this workload on multiple DB2 members. The mea- 
sured results show 13.29 percent data sharing over- 
head for the workload  in  two-way DB2 sharing (two 
DB2 members, each running on its own  CPC), and 
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13.55 percent data sharing  overhead  in  three-way DB2 
sharing (three DB2 members,  each running on its own 
CPC) . l 8  

The term “overhead” here means the additional CPU 
(central processing unit) capacity that is needed fur 
each DB2 member in the  data sharing group to pro- 
vide equivalent throughput as the same number of 
DB2s would provide in a nonshared environment. 
(E.g., if two nonsharing DB2 DBMS instances could 
in aggregate deliver 200 transactions per second us- 
ing n units of CPU capacity each, then assuming a 15 
percent  “data sharing overhead,” if these two DB2s 
were coupled together for data sharing, the two DB2s 
in aggregate would  deliver 170 transactions per sec- 
ond using the same n units of CPU capacity each.) 
Note that as the number of sharing DB2 members 
increases from two to  three,  the  data sharing over- 
head increases almost linearly; that is, an initial “en- 
abling” cost  is incurred in moving from a nonshared 
configuration to  a two-way shared configuration 
(13.29 percent in the case of IRWW), but little or  no 
additional overhead is incurred (0.26 percent in the 
case of IRWW) when  increasing from two-way to 
three-way sharing. 

In the rest of this paper we explore some of the chal- 
lenges encountered in extending the single-system 
architecture of DB2 to handle concurrent multisys- 
tem read  and write  access to  the DB2 databases, and 
how these challenges were met through use of the 
SI390 Parallel Sysplex coupling technology. 

Global locking 

To support SDi or SDa, a global  lock manager is re- 
quired. Examples of global lock managers are  the 
Amoeba lock manager developed at  the IBM Alma- 
den Research Center‘ and the vmcluster”” lock 
manager developed by DEC.’,’ 

Figure 3 shows a logical representation of the DB2 
data sharing global  locking structure. In this figure, 
one sysplex is shown that contains n MVS systems 
(MVS1, MVS2, . . . , MVSn) and  one CF lock structure. 
Also,  there is a DB2 data sharing member configured 
on each of the n MVS systems (DB2A runs on MVS1, 
DB2B runs on MVS2, and so on). Each DB2 member 
is associated  with its own internal resource lock man- 
ager (IRLM). Each IRLM can be viewed  as a local  lock 
manager  (LLM) that can  autonomously  provide intra- 
DB2 locking (“local locking”) functions. Each IRLM, 
in turn, may communicate via the MVS cross-system 
extended services (XES) component to  the CF lock 
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structure when  inter-DB2  locking (“global locking”) 
functions are required. XES and the CF lock struc- 
ture can be viewed as the global  lock manager (GLM) 
that tracks resources locked  at each LLM. At the GLM, 
locks are owned by LLMS, whereas at  the LLMS, locks 
are owned by transactions. If the GLM detects lock 
conflict between LLMS, then  the MVS cross-system 
coupling facility (XCF) component is used to com- 
municate  between  systems to resolve the conflict. XCF 
can be configured to use channel-to-channel (CTC) 
connections for signaling or  to use CF list structures 
(or  a combination of the two). 

The CF lock structure is  subdivided into two parts: 

1. Lock table: used to quickly detect possible inter- 

2. Record list:  used to  keep track of modify  locks 
DB2 lock  conflict 

and  retained locks 

When DB2 must interact with the CF lock structure 
for global locking, this interaction occurs synchro- 
nously, without having to suspend and resume the 
task. The use  of the CF for global locking  is one of 
the key distinctions between SDa and SDi. With SDi, 
the DBMS instances must use intersystem message 
passing to do global locking. With message  passing, 
whenever a transaction requests a global lock, the 
transaction is suspended so that the “lock” message 
and the “acknowledgment” message  can be sent and 
received. The time it takes to send these messages 
is measured in  milliseconds  (e.g., 20 msec).  With SDa, 
in contrast, a global  lock can be granted through  a 
synchronous interaction with the CF. This CF inter- 
action is  measured  in  microseconds  (e.g., 100 psec). ’’ 
It is only when inter-DB2  lock  conflict  is detected in 
the CF lock table that intersystem messaging  must 
be used. 

The premise is that all DB2 data  are shareable. Thus 
any  lock that is taken by a transaction on a database 
resource (table space, table, page,  row, etc.) is aglobal 
lock because the database resource on which that 
lock  is held has the potential of being accessed from 
multiple DB2 members. A global  lock is one  that  pro- 
vides  intra-DB2 and inter-DB2 concurrency control. 
In contrast, a local lock provides only  intra-DB2 con- 
currency control. In data sharing, almost all  locks 
are global  locks. 

When a global  lock is requested (e.g., on a  database 
page), D B ~  interfaces with  its  associated LLM (IRLM), 
as  it  would  normally do in a single-system environ- 
ment. IRLM then checks  its  local structures to de- 
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imize the number of times that  the GLM must be no- 
tified about a global lock request. This has been ac- 
complished through two  main  design thrusts: 

1. Suppressing the propagation of global  locks to the 
GLM, unless it  is  necessary for: 

Explicit hierarchical locking (EHL) 
Propagating only the most restrictive state per 
resource per LLM 

2. Lock avoidance for: 
Type 2 indexes 
Support for  the uncommitted read isolation 
level 

These optimizations are explained in the next four 
sections. 

Explicit hierarchical locking. The explicit hierarchi- 
cal  locking (EHL) optimization implies the follow- 
ing: based on the  current inter-DB2  locking interest 
for a resource, the GLM may tell an LLM that  the LLM 
can grant locks  locally on resources lower  in the hi- 
erarchy (than  to  the requested resource). When the 
GLM first detects that multiple LLMS hold a lock on 
a resource that is higher in the hierarchy, the GLM 
notifies the affected LLMS that they should (1) prop- 
agate  to  the GLM locks that  are currently held on 
resources lower  in the hierarchy that now  have the 
potential for intersystem lock  conflict, and (2) start 
propagating to the GLM new  lock requests on the  re- 
sources. 2o 

D B ~  data sharing implements the EHL optimization 
by converting the  current DB2 implicit  lock hierar- 
chy (the lock manager is not aware of the hierarchy) 
to  an explicit  lock hierarchy (the lock manager now 
becomes aware of the hierarchy). DB2 has always 
locked database objects in an implicitly hierarchical 
fashion. That is,  gross-level, or  “parent” locks are 
obtained first (table space, partition, table), usually 
in intent-share (IS) or intent-exclusive (IX) states, and 
then the locks on the lower  level, finer granularity 
database resources (page, row), are subsequently ob- 
tained as they are  read  or  updated.  The implicit  hi- 
erarchical locking  scheme has allowed DB2 to (1) sup- 
port lock escalation, and (2) allow users to have an 
option to specify the locking granularity, i.e., the  ta- 
ble space, table, page, or row  level. 

With EHL, using page locking  in a simple table space 
as an example (the same concepts apply for row  lock- 
ing and for partitioned or segmented table spaces), 
the locking protocol is to first  lock the  parent  re- 
source (table space) and remember the IRLM lock 
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“token”  that is associated with that  parent resource. 
Then, as the “children” (pages) are locked, DB2 
passes the  parent lock token associated with the  ta- 
ble space to which the page belongs so that the as- 
sociation of the child to  the  parent is made known 
to IRLM.  By explicitly  knowing the hierarchical re- 
lationship between parent and child, IRLM, working 
with the GLM, can dynamically determine whether 
there is  inter-DB2 interest on the  parent and then 
propagate or  not  propagate  the lock requests on the 
children to  the GLM accordingly. 

Figure 4 shows an example. Here  are two DB2 data 
sharing members, DB2A and DB2B, and transactions 
executing  in each DB2 member that  are accessing 
pages in the same table space (Tsl). Each DB2 mem- 
ber communicates with its own LLM (IRLMA and 
IRLMB). For simplicity, XES is left out of this picture, 
and  the GLM is represented by the CF. The following 
events happen in time-sequence order: 

1. On D B ~ A ,  Transaction 1 gets an IS lock on TS1. 
Because this is the first  lock on TS1 from DB2A 
and because the table space is the highest  level 
in the DB2 lock hierarchy, this Is lock on TS1 is 
propagated by IRLMA to the GLM. 

2. On DB2A, Transaction 2 gets an IS lock on TS1. 
Because IRLMA has already propagated an equally 
or more restrictive lock state  to  the GLM for TS1 
(an IS lock has already been propagated on be- 
half  of Transaction l), the IS lock for Transac- 
tion 2 does not need to be propagated. 

3. On DB2B, Transaction 3 gets an IS lock on TS1. 
Because this  is the first  lock on TS1 from DB2B and 
because the table space is the highest level  in the 
DB2 lock hierarchy, this IS lock on TS1 is propa- 
gated by IRLMB to  the GLM. 

4. On DB2A, Transaction 1 gets a  share (S) lock on 
Page 1. (Because Page 1 is contained in TS1,  TS1 
is the  parent of Page 1.) Because the highest  level 
inter-DB2 interest on the  parent lock (TS1) is read- 
only (RO), the s lock on the child (Page 1) is 
granted locally by IRLMA without propagating it 
to  the GLM. There is no chance of  inter-DB2 lock 
contention on  the children. (Only s locks  can be 
requested on the children so far because no trans- 
action has yet indicated an  intent  to  update TS1; 
that happens in the next step.) 

5. On DBZB, Transaction 4 gets an IX lock on TS1, 
indicating an intent  to  update  one  or more pages 
in TS1. Because the IX state is more restrictive than 
any  lock state that has  previously been propagated 
from IRLMB for TS1 (only IS has previously been 
propagated), this IX lock  is propagated by IRLMB 
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Figure 4 Scenario showing lock propagation 

I 

to  the GLM. Also, at this point the s lock that was 
acquired by DB2A on the Page 1 child  in step 4 
must  be propagated to the GLM, because now that 
DB2B has established a lock on TS1 that indicates 
an intent to update pages belonging to TSI, there 
is the potential that s locks on the TS1 children 
(pages) from DB2A could hit contention with  ex- 
clusive (X) locks on the TS1 children (pages) from 
DB2B. 

6. On DB2B, Transaction 3 gets an s lock on Page 
1. This lock does not have to be propagated to 
the GLM because DB2A still has RO interest in the 
parent (TSl), and thus any s locks on the children 
from DB2B still cannot possibly hit contention with 
S locks on those children from DB2A. 

7. On DB2B, Transaction 4 gets an X lock on Page 
2. This lock  must be propagated by IRLMB to the 
GLM because DB2A has RO interest in the  parent 



(Tsl), and so X locks on the children from DB2B 
have the potential of conflicting  with s locks on 
those same children from DB2A. 

When data are not actually inter-DB~ read/write (RIW) 
shared, EHL allows DB2 locking  in a data sharing  envi- 
ronment to have  nearly equivalent performance as 
in a DB2 with no data sharing. The only added cost 
is that of propagating to the GLM some of the  parent 
locks. 

Propagating only  the  most restrictive state. At  the GLM 
level,  locks are owned by LLMS and not by transac- 
tions. Therefore, once an LLM has made a lock state 
on a given resource known to  the GLM, subsequent 
locks granted by the LLM on that resource in an equal 
or less restrictive state do not need to be commu- 
nicated to  the GLM. 

In the example just described, the Is lock on TS1 ac- 
quired by Transaction 2 does not need to be prop- 
agated to  the GLM because an equally or more re- 
strictive  lock state has already been propagated from 
IRLMA for Ts1. 

Type 2 indexes. Type 2 indexes are  a new  type of in- 
dex structure introduced in DB2 v 4  in  which there is 
no locking  within the index;  locks are acquired only 
on the  data. This is  in contrast with  Type 1 indexes 
from previous releases of DB2 (and which are still 
supported in v4) inwhich locks are obtained not only 
on the data but  also on the pages (or subpages)  within 
the index. With Type 2 indexes,  many of the locks 
that were obtained in previous releases of DB2 can 
now  be avoided and this can  significantly reduce the 
locking intensity of a given workload, which  will  in 
turn significantly reduce the overhead for data  shar- 
ing  global  locking for the workload. 

Uncommitted read isolation level. DB2 V4 also intro- 
duces the uncommitted read (UR) isolation level to 
allow applications to avoid  locking and thus to read 
uncommitted data. Of course many  applications can- 
not tolerate reading uncommitted data, but for those 
that can, the UR isolation level provides an effective 
way to improve concurrency and performance. And, 
as mentioned earlier, any  avoidance of locks  in a data 
sharing environment reduces overhead. 

Modify locks and retained locks. With SDa and SDi, 
if one of the DBMS instances fails, then  the data can 
still be accessed through any of the surviving DBMS 
instances because all of the  data can be accessed by 
all of the DBMSS. (This is not  true with SN). How- 
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ever, if there were transactions that were in progress 
and had not yet reached a point of consistency at 
the time of the failure, then the portions of the da- 
tabase that these transactions had locked for update 
must be protected in some way, so that  the surviving 
DBMS instances are prevented from accessing the in- 
consistent data. 

DB2 data sharing uses modi& locks and retained locks 
to provide this protection. A modify  lock  is a lock 
held on a resource that is in the process of being up- 
dated,  or modified. If a DB2 member fails, then all 
the modify  locks  held by the DB2 member at  the time 
of the failure are converted into retained locks. Re- 
tained locks persist across the failure, and thus can 
continue to protect database resources that were in 
an inconsistent state  at  the time of the failure from 
being  accessed by other DB2 members. Retained 
locks are held at the GLM level and thus  are owned 
by the LLMS, not by transactions. Retained locks are 
not needed for resources that were accessed  as RO 
at the time of the failure; these locks can be released. 

Retained locks continue to be held until the failed 
D B ~  member completes its restart recovery  and  brings 
the database resources back to  a consistent state. If 
another DB2 member attempts to obtain a lock on 
a resource while there is  still an incompatible re- 
tained lock on that resource, IRLM immediately re- 
jects the request, and the user receives the message 
“resource unavailable.” (There is  an installation op- 
tion  available  in DB2 that, if activated, causes IRLM 
to wait for a period of time for a retained lock to 
become available instead of immediately rejecting 
the request; this option would probably be  used  only 
when there is automation in place to automatically 
restart failed DB2 members, for example through use 
of the MVS automatic restart manager facility.) 

As an example, suppose transaction TX1 on DB2A 
wants to  update page PI in table space TS1 and also 
wants to read page ~2 in table space TS2. In this  ex- 
ample, TX1 first gets the “intent-exclusive” (IX) lock 
on TSl as a modify  lock and the “intent-share’’ (Is) 
lock on TS2 as a nonmodify  lock.  Next Tx1  attempts 
to read ~2 and gets a  share (S) lock on ~2 as a non- 
modify  lock.  Finally, TX1 decides to  update P1 and 
gets the exclusive (X) lock on PI as a modify  lock. 
Now, before TX1 commits, suppose that DB2A fails. 
Then,  the modify  locks that were held at the time 
of the failure are converted to retained locks to  per- 
sist  beyond the life of DB2A. So the IX modify  lock 
on TS1 and the x modify  lock on page PI are con- 
verted to retained locks. (The IS lock on TS2 and the 
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s lock on page ~2 are not converted to  retained be- 
cause these locks were held for RO purposes; these 
locks are released when DB2A fails.) 

To continue with the example, suppose transaction 
TX2 on DB2B wants to do  the same thing that TX1 

Once the retained locks are 
purged, other DB2 members 
can  again  read  and update 
these  database resources. 

did. TX2 first requests the I x  lock on TS1 as a modify 
lock, and IRLM grants the lock  even though there is 
a  retained lock on TS1 because the requested state 
(IX) is compatible with the retained state (IX). Next 
TX2 requests the Is lock on TS2 as a nonmodify  lock 
and IRLM grants the lock. (There is no retained lock 
on TS2.) Next m 2  attempts to read PZ and  gets a share 
(s) lock on ~2 as a nonmodify  lock, and again this 
is granted.  (There is no retained lock on ~ 2 . )  Finally 
TX2 is ready to  update PI and requests the exclusive 
(X) lock on PI as a modify  lock. But this  lock  is re- 
jected because it  is incompatible with the  retained 
x lock that is  held on PI by the failed DB2A. (Note 
that even if TXZ had wanted only an S lock on PI, this 
too would  have been rejected by IRLM because an 
s lock  is  also incompatible with the retained x lock.) 

To complete the example, now DB2A restarts, and 
as part of the  restart recovery process, the incom- 
plete work that had been done by TX1 prior to  the 
failure is backed out. After the  restart recovery pro- 
cess has brought the  database resources that DB2A 
was  working on back to  a consistent state, DB2A 
“purges” the  retained locks that  are still held on its 
behalf. Once the retained locks are purged, other 
DB2 members can once again freely read  and  update 
these database resources according to  the normal 
rules on intertransaction locking. 

Modify  locks and retained locks are kept  in the record 
list portion of the CF lock structure. Each IRLM also 
keeps a local  copy of all the retained locks for fast 
reference. The redundancy in tracking the retained 
locks  is an important availability consideration. Be- 
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cause of this redundancy, the retained locks can sur- 
vive a failure of the CF or of all the IRLMs in the group. 

When DB2 requests a modify  lock, IRLM, through 
MVS XES services,  must interact with the CF lock 
structure for two distinct operations: 

1. The lock table must be consulted for inter-mz 

2. The record list  must be updated to track the mod- 
lock compatibility checking. 

ify lock on a resource. 

These two operations  are bundled in one call to  the 
CF and occur synchronously to  the requesting task. 
An interaction with the CF for a modify  lock  is  slightly 
more expensive than  an interaction for  a nonmodify 
lock; a nonmodify  lock does not need an entry in the 
record list. 

Intersystem  buffer  coherency 

We begin this section with an overview of DB2 data 
buffering without data sharing. DB2 uses in-memory 
database buffering to minimize  physical Iio activity 
between the CPC and DASD. A cached database page 
is concurrently referenced or serially updated by mul- 
tiple transactions within a DB2 subsystem (i.e., DB2 
caches database pages beyond transaction usage). 
Currently, DB2 supports 50 buffer pools of4K (thou- 
sand) page size  buffers and ten buffer pools of 32K 
page size  buffers. A 4K page size  buffer pool sup- 
ports data access for 4K page size page sets. Apuge 
set is a synonym for a table space or  an index space, 
if no distinction is required between them. 

Each buffer pool is subdivided into two levels. The 
first  level is the virtual bufferpool, which  is allocated 
from ~ ~ 2 ’ s  address space (i.e., the buffer space invir- 
tual storage is backed by central, expanded, or aux- 
iliary storage). All database references and  updates 
are performed against buffers  in the virtual buffer 
pools. The second level  is the hiperpool, which  is 
backed  only by expanded memory. The hiperpool is 
optional and, if defined, is internally mapped to one 
or more DB2-owned expanded-storage-only hip- 
erspaces. Hiperpools are only used to cache mod- 
erately referenced clean pages. To prevent double 
buffering of database pages, a cached database page 
can reside either in the virtual buffer pool or in its 
corresponding hiperpool, not both. 

DB2 applies deferred-write logic to  updated pages 
and does not write updated pages to disk at commit 
time. (Only  logs are forced to  the log data  sets at 
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commit time.) This “no force at commit” policy pro- 
vides  significant performance advantages for trans- 
action response time and concurrency. It also  im- 
proves DASD and CPU efficiency by batching together 
multiple updates and multiple pages on each disk 
write operation. 

An  overview of DB2 data  buffering  with  data shar- 
ing. With SDi or SDa, because there are multiple DBMS 
instances all  with equal access to the shared data- 
bases, a single page may be cached in multiple DBMS 
buffer pools. Assume that page locking  is used. (For 
D B ~ ,  the page size is equal  to  the block  size, where 
a block  is a unit read from or written to disk.) The 
locking protocol to read  or write a page is: acquire 
a  share (s) lock to read the page, and acquire an ex- 
clusive (X) lock to  update  the page. This protocol 
implies that  there can be multiple readers or a sin- 
gle updater of the page within a DB2 data sharing 
group. 

To provide transactional semantics, the X locks that 
are obtained on the  updated pages are held until the 
transaction reaches a point of consistency (until the 
transaction either commits or rolls back). With page- 
level  locking in SDi or SDa, because of the global  lock- 
ing  mechanism that has already been discussed, we 
do not have to be concerned with the intersystem 
buffer coherency problem as long as the transaction 
locks remain held; the x locks that  are held by the 
transaction on the updated pages prevent the other 
sharing DBMS instances from updating or referenc- 
ing those same pages under locks. But as soon as the 
transaction reaches a point of consistency and re- 
leases its X locks on the pages that it has updated, 
a different transaction that is  executing on a second 
DBMS instance can obtain the locks on those same 
pages and can manipulate them in the local buffer 
pool of its corresponding DBMS instance. And, if 
proper controls are  not in place, the cache coher- 
ency  problem  can  be  readily  visualized-a  down-level 
version of the page (a version of the page that does 
not reflect the latest committed updates  to  the  data) 
might be read into  the local buffer pool from exter- 
nal storage (e.g., disk) or previously cached in the 
local  buffer pool of the second DBMS instance and 
used  as-is. 

To prevent these problems, SDi or SDa systems  must 
implement some form of intersystem cache coher- 
ency protocols. DB2 data sharing does this by using 
a force-at-commit  policy for updated database pages. 
Force-at-commit implies the following: 
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bers can read  the latest version. 
2. The now  down-level  versions  of the page that are 

cached in other DB2 buffer  pools  have to be cross- 
invalidated (XIed). 

In the  other DB2 members, any subsequent access to 
the XIed buffer pool page needs to detect  the invalid 
condition of the page and  to refresh the  current ver- 
sion of the page from external storage. 

In SDi, the buffer coherency task is accomplished by 
using  disk storage to externalize the  updated pages, 
and by using intersystem message  passing to send 
the XI signals. When the transaction reaches a point 
of consistency, the DBMS must  use I/O protocols to 
write each updated page to disk, and it  must  also  send 
messages to (and receive acknowledgments from) 
each peer DBMS to ensure  that  the  updated pages 
are cross-invalidated. When another DBMS detects 
that  a buffered page has been cross-invalidated, it 
must  use I/O protocols to refresh the page from disk. 
Because of the long latencies involved  with the disk 
I/O and message-passing operations (on the order of 
several milliseconds for each disk or message-pass- 
ing interaction), the performance penalties for main- 
taining buffer coherency in SDi can be severe. 

In SDa, CF cache structures are used, instead of  disk 
storage and message  passing, to maintain intersys- 
tem buffer coherency when the force-at-commit pro- 
tocol must be used.” In the DB2 implementation, we 
call a CF cache structure  agroup bufferpool, or GBP. 
A CF cache structure is an intelligent external store 
that handles both caching the pages and sending the 
XI signals. In SDa, a DBMS can use the high-speed CF 
channels and fiber optic links to write each updated 
page to the CF. The CF can actually store the page 
in its central storage and  then send the XI signals. 
The time it takes to write (or  read)  a 4K page to (or 
from) the CF cache structure is measured in  micro- 
seconds (e.g., 175 Fsec).lg  The XI signals are  pro- 
cessed by the CF channel hardware on the receiving 
systems without causing  any processor interrupts. 
When a DBMS instance detects that  a locally  buff- 
ered page has been cross-invalidated, it can usually 
refresh the page from a CF cache structure very 
quickly and avoid  invoking I/O protocols to retrieve 
the page from disk. 

The use of the CF cache structures for intersystem 
buffer coherency is another distinguishing factor of 
SDa from SDi. Because CF interactions are much faster 
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than disk and message-passing interactions, the read 
and write operations  to the CF can be  done synchro- 
nously to  the program logic, without the task-switch- 
ing overhead that is  necessary to deal with the long 
latencies of disk I ~ O  and message  passing. 

For good performance, DB2 uses the CF cache struc- 
tures (GBPS) as “store-in’’ caches, such that  the ver- 
sion of the page in a GBP can be more recent than 
the  one on disk. For example, when force-at-com- 
mit  is applied, the updated page is written to the GBP 
so that  the latest version of the page resides there, 
and  the version of the page that resides on disk  is 
now down-level. 

In  data sharing, DB2 data continues to be cached in 
each DB2 member’s  local  buffer  pools.  All references 
and updates to DB2 pages continue to be done 
through the virtual buffer pools. The GBPS are used 
only to maintain i n t e r - ~ ~ z  buffer  coherency, and can- 
not be directly referenced by DB2 application pro- 
grams. The buffer manager (BM) component of DB2 
automatically manages the caching of the  data in the 
buffer  pools;  application programs are not aware that 
a GBP may be in use. 

The sections that follow  give more detail about the 
way GBPs are used to maintain inter-D~2 buffer co- 
herency. 

Coherency protocol to read a page. Figure 5 shows 
a comparison of a simple transaction flow for read- 
ing a page between a single-system and a  data  shar- 
ing environment. The first difference we see is that 
the page lock must be global for  data sharing, as  ex- 
plained earlier. The second difference is that when 
the BM finds the page cached in the local  buffer pool, 
before the page can be used it  must  first be checked 
to  see if it is  still  valid. (It might  have been cross- 
invalidated.) If the page is  valid, the only extra over- 
head that was incurred for data sharing was the ex- 
tra expense of the global lock (if it  was propagated 
to  the GLM) and of checking the validity of the page. 

If the page was found to be invalid  in the local buffer 
pool, then the extra data sharing overhead of refresh- 
ing the page from external storage might  have been 
incurred. But  usually the page can be refreshed from 
the GBP, which  is a relatively quick operation (e.g., 
175 psec for a 4K page), without having to go to disk. 

To check page validity, the BM consults a bit array 
in the hardware storage area (HSA) of the CPC. This 
bit array is  also referred to as a “local cache vector.” 
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cating whether or not the associated cached page is 
valid or invalid. 

Looking again at the flowchart  in Figure 5, if the  re- 
quested page is not found in the local  buffer pool, 
then in the single  system the BM would read  the page 
from disk. In data sharing, before going to disk to 
get the page, the BM first  issues a “read-and-regis- 
ter” (RAR) request to the CF to attempt  to read the 
page from the GBP, and to register the page for XI 
(the read and the register are bundled in  one CF re- 
quest): 

If the page is found in the GBP, it  is returned,  and 
the page is registered for XI. If this happens, the 
data sharing case  actually performs better than the 
single-system  case because the page is refreshed 
from the CF much faster than it  would be from  disk. 
This raises the interesting possibility of using the 
CF as a fast intersystem cache. DB2 provides an  op- 
tion that can be activated at  the page set or  par- 
tition level to cache clean data in the GBP so that 
data have a  greater chance of being able to  be  read 
in from the CF instead of from disk. This option 
is explained further in a  later section. 
If the page is not found in the GBP, it is  still  reg- 
istered for XI, but  the BM must read  the page from 
disk. If this happens (which  is the more likely case), 
then  the extra data sharing overhead is the extra 
call to  the CF to register the page for XI, which  is 
not necessary in the single  system. 

Coherency  protocol  to  update a page. A typical trans- 
action flow for updating a page with data sharing, 
assuming page-level locking,  follows: 

The transaction globally  locks the page in X mode. 
The transaction updates the page  in the buffer  pool. 
Prior to releasing the X lock at commit time, the 
BM issues a CF request to write the  updated page 
to the GBP. The CF in turn sends the XI signals to 
the  other systems where the page is cached. A CF 
channel on each receiving  system processes the x1 
signal, without causing a processor interrupt, by 
flipping the corresponding bit in the bit array in 
the HSA to “invalid.” The page is written to  the 
GBP as “changed,” and now the version of the page 
on disk is down-level  with respect to the one stored 
in the GBP. 

The data sharing  coherency overhead associated  with 
the  update transaction is the writing of the updated 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



Figure 5 DB2 data sharing read protocol 

pages  with the force-at-commit policy,  which in- Castout. A GBP can be viewed as an extension of the 
creases the transaction path length, thus marginally DB2 members' associated local  buffer  pool. A GBP 
increasing transaction response time and lock hold is  used for intersystem  buffer  coherency;  it  is not used 
time. The CF write request for a  4Kpage should nor- as permanent storage. When a changed page  is writ- 
mally  occur  synchronously to the transaction (no task ten  to  a GBP, it  must eventually be written to  per- 
switching). manent storage on DASD. The process of writing the 
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changed pages from a GBP to DASD is called “cast- 
out.” 

Because there is no direct link from a CF to DASD, 
the DB2 castout process must read  the changed page 
into processor storage, and then write the page from 
processor storage out to DASD. The castout of a page 
consists of the following  logical steps: 

1. A DB2 reads  the page for castout. A castout (CO) 
indicator is set on in the CF hardware for this  page. 
Its purpose is to prevent more than  one DB2 from 
attempting to castout the same page. The co in- 
dicator does not block transactions from access- 
ing the page in the GBP for read or write purposes. 
When a DB2 member reads a page for castout, 
the page is read into  a DB2 private storage buffer 
(not  into  the buffer pool). 

2. The DB2 writes the page to disk. The write com- 
mands are batched to include several pages. 

3.  The DB2 resets the CO indicator. Normally, at this 
time the page is marked as “clean” in the GBP. 
(If a new updated version of the page has been 
written to  the GBP while the co indicator was set 
on,  then when the co indicator is reset, the page 
remains marked as changed in the GBP.) 

It is important to note that once a page is marked 
as clean it remains cached in the GBP. This gives 
the performance advantage of refreshing pages 
into  the local  buffer pools from the CF instead of 
from disk. 

A page marked as clean in the GBP becomes a 
candidate to be ‘‘stolen’’ (reclaimed), using a 
“least-recently used” methodology, so that  the CF 
storage can  be reassigned as new pages are writ- 
ten to the GBP. 

Just as the castout write commands are batched 
to minimize  disk interactions, so too  are  the  re- 
sets of the castout indicators to minimize CF in- 
teractions. 

D B ~  uses a robust algorithm for castout that has the 
following important characteristics: 

Nonblocking: Transactions are not prevented from 
read and write access to  the  data while they are 
being processed for castout. 
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Fault tolerant: Failure of the DB2 that is casting out 
does not disable the castout activity. Instead, it  is 
automatically taken over by some other DB2 in the 
data sharing group. 
Distributed load: No single DB2 in the data sharing 
group is burdened with the  entire castout load. In- 
stead,  the work  is shared by the DB2s. 

The castout work  is performed by “castout engines,” 
which run as MVS system request blocks  (system dis- 
patchable units of work) in the DBMl address space. 
Castout “ownership” is automatically  assigned to DB2 
members on a page set or partition basis. (The term 
“page set” will be used throughout the remainder of 
this paper  to generically refer to a page set or a  par- 
tition of a  partitioned page set, unless a distinction 
needs to be made.) The first DB2 to  update  the page 
set becomes the castout owner for that page set. Sub- 
sequent DB2s that  update  the page set become the 
“backup” owners. A backup owner may assume 
castout responsibility for the page set if the original 
owner releases its Riw interest, or if the original 
owner should fail. (If a DB2 member fails, MVS au- 
tomatically  cleans up any castout indicators that have 
been set for  that member.) 

Castout is scheduled based on changed-page thresh- 
olds. This is  similar to  the way DB2 schedules writes 
of changed database pages from the buffer pool to 
disk  today. There  are two castout thresholds that DB2 
monitors: 

Castout class threshold 
GBP threshold 

Castout class threshold. In each GBP, the CF manages 
a fixed number of castout class queues. (The current 
CF models support  a maximum of 1024 castout class 
queues and D B ~  requests the maximum.) Whenever 
DB2 writes an updated page to  the GBP, it must spec- 
ify the castout class queue  to which the page belongs. 
DB2 internally maps the updated pages that belong 
to the same page set to  the same castout class queue, 
using a hashing algorithm to assign a castout queue 
number to  a page set. Due  to  the limited number of 
castout class queues, it  is  possible that more than 
one page set gets mapped into  the same castout class 
queue. 

When the CF write operation for a page completes, 
as part of the feedback, the CF indicates how  many 
changed pages are in the associated castout class 
queue. If this number exceeds the “castout class 
threshold” value, then the D B ~  member that is the 
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castout owner of the page set is notified to initiate 
castout operations for the page set. 

The castout class threshold default is 10 percent. 
(Once the number of pages  in the castout  class queue 
reaches 10 percent of the total number of pages in 
the GBP, then  the threshold is reached.) The instal- 
lation can dynamically alter this value via an  oper- 
ator command. 

GBP threshold. DB2’s castout algorithm uses a two- 
level  logical hierarchy of DB2 members that commu- 
nicate via messages. At  the lower  level of the hier- 
archy are DB2 members in charge of castout for page 
sets, and at the upper level  is the DB2 member in 
charge of castout for the whole GBP structure. The 
DB2 at the higher level accomplishes its  work by call- 
ing upon services of DB2s at  the lower  level. This two- 
level  hierarchy ensures that castout will be done even 
if thresholds are not being reached on the castout 
class queues. (E.g.,  maybe the updates are evenly  dis- 
tributed among several castout class queues and no 
single castout class has reached the threshold.) The 
two-level  hierarchy  also ensures that castout process- 
ing occurs for page sets that might not have a cast- 
out owner (e.g., due to  one  or more DB2 member 
failures). 

The DB2 at the higher level of this castout hierarchy 
is called the GBP structure castout owner. One DB2 
member establishes itself as the  structure castout 
owner for  a given GBP, and the  other DB2 members 
interacting with that GBP establish themselves as 
backup owners for the structure. One of the backup 
owners will assume the ownership if the original 
owner terminates normally (e.g., the DB2 member is 
stopped via an operator command) or abnormally 
(e.g., the DB2 member fails). 

On the completion of a timer interval, the  structure 
castout owner  wakes up and queries the number of 
changed pages  in the GBP (with one CF interaction). 
If the number of changed pages exceeds the GBP 
threshold value, then the  structure owner notifies a 
subset of the page set castout owners on a round- 
robin basis to castout enough pages to get  back  down 
to  a reverse threshold. (Normally, the reverse thresh- 
old is 10 percent below the GBP threshold. E.g., if 
the GBP threshold is 50 percent, then  the reverse 
threshold is 40 percent.) 

The GBP threshold default is 50 percent. (Once the 
number of changed pages in the GBP reaches 50 per- 
cent of the  total number of pages  in the GBP, then 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

the threshold is reached.) The installation can 
dynamically alter this value via an operator com- 
mand. 

Reducing  the  overheads associated with  buffer co- 
herency. A key design  goal of DB2 data sharing is that 
overheads should be incurred only when there is ac- 
tual inter-DB2 R/W sharing of the  data. If there is no 
such sharing, then transactions should require little 
or no added path length for data sharing protocols. 
The explicit hierarchical locking optimization allows 
us to achieve this objective with respect to global 
locking. But for inter-DB2  buffer coherency proto- 
cols, we need a different mechanism, because the 
caching of data in the buffer pool is not directly re- 
lated to transaction locking.  Said another way, the 
“physical” (device-oriented) interactions that  take 
place at the buffer manager level are  not directly re- 
lated to the “logical” (transaction-oriented) inter- 
actions that take place at the data manager level. For 
example: 

A transaction may hold an IX lock on a table 
space without ever actually updating any page 
belonging to  that table space. (This may be 
especially common when the  plan22 is bound 
with ACQUIRE(ALL0CATE) or in thread reuse 
situations where the plan is bound with 
RELEASE(DEALLOCATE).) 
Transaction locks are not obtained on index page 
sets, so the cache coherency controls for index 
pages  could not be  directly  tied to transaction locks 
held on the indexes (index coherency controls 
would need to  be tied to  the locks held on the as- 
sociated table spaces, which may overstate the ac- 
tual intersystem read  or write activity  on the in- 
dex). 
Pages belonging to  a page set may remain cached 
in the buffer pool long after transaction locks  have 
been released. 

In this section we describe ways that buffer coher- 
ency overhead can be avoided or reduced by the BM 
being aware of the inter-DBz  physical read or write 
activity on a page set. The key observation is that 
overhead for page set coherency should exist  only 
if there is at least one updating DB2 and other DB2s 
are using that page set. This may seem obvious;  how- 
ever, the challenge is for a DBMS to react appropri- 
ately to the dynamics of intersystem interest changes. 
We  explain why dynamic adjustment of interest is 
worth the  trouble,  rather  than always incurring the 
overhead required for  the most conservative case. 
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Table 1 Page set  physical  interest  level  dynamics 

The mechanism by which the BM dynamically tracks 
the inter-DB2 interest is called “physical  locking” (P- 
locking).  Physical  locks  (P-locks) are acquired by the 
BM on the page set to declare the physical read or 
write interest of a DB2 member in the page set.  The 
physical read or write interest reflects the actual phys- 
ical  access characteristics of the transactions that  are 
running on  that DB2 member; this is  in contrast to 
the logical interest of the transactions, which  is man- 
ifested in the transaction locks  (“logical  locks,” or 
L-locks) that reflect the logical data access intent of 
the transactions. When dealing with  buffer coher- 
ency  issues, it is the actual physical read or update 
operations against the  data  that we are concerned 
with, not the logical intent to read or update the data. 
Thus the DB2 data sharing buffer coherency proto- 
cols are controlled by P-locks, not by L-locks. 

Table 1 shows  how the BM component for each DB2 
member declares its physical interest level  in a given 
page set. As the table indicates, a DB2 member can 
have  any one of three levels of physical interest in 
a given page set: 

No interest. The DB2 member does not have the 
page set physically open,  and thus is not accessing 
the page set for read or update operations. No P- 
lock  is held on the page set. 
RO interest. The DB2 member has the page set open 
for RO access, and thus transactions running on 
this member are reading data belonging to  the page 
set,  but  not updating any of the  data.  The P-lock 
on the page set is  held  in RO mode. 
RIW interest. The DB2 member has the page set 
open for RIW access, and thus transactions running 
on this member may be reading or updating data 
belonging to this page set. The P-lock on the page 
set is held in R/w mode. 

The term pseudo open refers  to  the point in time 
when the page set is  first  physically updated by any 
transaction running on a DB2 member after the page 
set was  previously in  an RO state. (Le., at pseudo 
open,  the BM converts the DB2 member’s physical 
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interest on the page set from RO to RIW status.) Con- 
versely, the termpseudo close refers to  the point in 
time when the BM determines  that  the page set has 
not been updated recently and converts the DB2 
member’s physical interest on  the page set from R/W 
state back to RO state. (In DB2, pseudo close  is con- 
trolled by the PCLOSET and PCLOSEN installation pa- 
rameters.) By converting the member’s interest back 
to an RO state,  the BM can narrow the ranges of log 
records that must be scanned for media recovery or 
restart recovery for  the page set. 

It is important  to  note  that P-locks are  fundamen- 
tally different from the transaction locks  (L-locks) 
discussed earlier. The purpose of P-locks is to  en- 
sure  that  the  proper cache coherency protocols are 
used in a multisystem environment; P-locks have no 
meaning  in a single-system environment. In contrast, 
the purpose of L-locks  is to control intertransaction 
logical  consistency for concurrent data access; 
L-locks  have meaning both in a single-system and 
a multisystem environment. P-locks are owned by 
the DB2 member, while  L-locks are owned by the 
transaction. 

Another key  difference between P-locks and L-locks 
is that P-locks are negotiable. That is, if one of the 
DB2 members changes the  state of its P-lock on a  re- 
source (page set or  partition)  due  to  a change in the 
physical  access characteristics on  the resource (e.g., 
the DB2 member is  going from RO to RIW physical 
interest on  a page set)  the  other DB2 members that 
hold a P-lock on that resource will be  notified by their 
respective LLMs of this change in the inter-DB2 in- 
terest on the P-lock, and each DB2 member can then 
dynamically make any  necessary adjustments in the 
cache  coherency  processing for the resource and then 
downgrade or upgrade its P-lock state (negotiate the 
P-lock)  accordingly. The P-lock negotiation process 
allows DB2 to react dynamically to the changes of in- 
ter-DB2 interest and to enact intersystem buffer co- 
herency protocols only when there is actual physical 
inter-DB2 RIW sharing of a page set. 

Table 2 summarizes the DB2 data sharing buffer co- 
herency protocols that  are enacted by a DB2 mem- 
ber for each of the five different physical “access lev- 
els” that  the member may  have for a particular page 
set. A DB2 member’s access  level for  a page set de- 
pends on two factors: (1) the member’s  physical in- 
terest level  in the page set (RO or RIW), and (2) the 
aggregate of the interest levels of the  other DB2 mem- 
bers (RO, m, or none). Using the P-locking mech- 
anism just described, a DB2 member can dynamically 
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adjust between access  levels as the physical data ac- 
cess characteristics of the workload vary  over time. 

If its access  level on  a page set is 2,4, or 5 ,  then  the 
member must  use the GBP to maintain buffer coher- 
ency for that page set. In these cases we  say that for 
this member the page set isgroup-buffer-pool-depen- 
dent (GBP-dependent). If its  access  level on a page 
set is 1 or 3, then the DB2 member does not need to 
use the GBP to maintain  buffer  coherency for the page 
set. In these cases we  say that  the page set is non- 
GBP-dependent.  Non-GBP-dependent page sets in- 
cur only the insignificant overhead needed to ma- 
nipulate the page set P-lock during page set open 
and close events. 

Note also that  a DB2 member with a page set access 
level of 4 can avoid the page validity check when  it 
finds a page belonging to that page set in its local 
BP. In this case the member can take advantage of 
its knowledge that all other DB2 members in the 
group have at most RO physical interest in this page 
set, and therefore any page  belonging to it that this 
member  finds in  its  local BP cannot  possibly  have been 
cross-invalidated by an update from another DB2. 

Handling subpage  concurrency. For DB2, the page 
size  is the same as the block  size, where a block  is 
a unit of disk (or CF) that is read or written. There- 
fore, when page-level transaction locking is in  effect 
with DB2 data sharing, DB2 can ensure  that physical 
consistency23 of the pages  is maintained, because the 
global page lock ensures that only one transaction 
process can update  the page at  a given time. How- 
ever,  when subpage concurrency is allowed  (e.g.,  row- 
level  locking on data pages) the global transaction 
lock is not held at the block  level. Unless prevented, 
transactions running on different DB2 members could 
be allowed to  update  the same block (page) at  the 
same time, with one DB2 member possibly  backing 
out the  updates of another as the block gets written 
to external storage. 
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In  a single-system environment, DB2 obtains page 
latches to ensure  that physical  consistency of the 
pages is maintained; that is,  only one transaction can 
move the bits around on the page at a time, and read- 
ers are not permitted to look at the page until the 
updater has finished. DB2 supports exclusive (X) and 
share (S) modes for its page latches. 

A latch is a memory-based serialization technique; 
that is, the control of which transaction holds the X 
latch, or which transactions hold the S latch (and 
which transactions are waiting for the latch) on a 
given resource is accomplished by using compare- 
and-swap logic on a specific area in virtual memory 
associated with that resource (usually a control 
block).  However,  in a multisystem data sharing envi- 
ronment, because we  now have distributed memo- 
ries (each DB2 member has its  own virtual memory 
spaces), the memory-based latching technique no 
longer guarantees serialization across all the trans- 
actions. We need to extend the scope of the page 
latch across all DB2 members to maintain the phys- 
ical  consistency of the page when subpage concur- 
rency  is  allowed. 

To  do this, DB2 uses a P-lock on the page as  a “glob- 
al page latch.” The page P-lock has similar proper- 
ties to  the page set P-lock  described earlier. The page 
P-lock is owned by the DB2 member (not  the trans- 
action), and the page P-lock  is negotiable. Because 
the P-lock  is not owned by any transaction, the P- 
lock on a page can be released before (or after)  the 
transactions that  are updating the page reach a point 
of consistency. Therefore, using the page P-lock, two 
different transactions running on two different DB2 
members can obtain x locks on different rows in the 
same page and each transaction can updatez4 its X- 
locked  row without requiring that  the  other trans- 
action reaches a point of consistency. The scenario 
could be as  follows: 
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1. Transaction 1 on DB2A acquires an X L-lock on 
Row 1 of Page 1. 

2. Transaction 2 on DB2B acquires an X L-lock on 
Row 2 of Page 1. 

3. Transaction 1 updates Page 1 in DB2As local BP 
to reflect the new contents of Row 1. Updates  to 
pages are always done  under  the X page latch. 
Before the  update is  allowed, DB2A acquires the 
X mode P-lock on Page 1. Once the P-lock  is ob- 
tained, Transaction 1 moves the bits around on 
Page 1 to update Row 1. The P-lock must be ob- 
tained after the page latch is already held. This 
order is important because it prevents the P-lock 
from being “stolen” from the updating transac- 
tion by another DB2 member (see step 5). 

4. Transaction 2 attempts to update Page 1 in DB2Bs 
local BP to manipulate the  contents of Row 2 on 
the page. Before the  update is  allowed, DB2B re- 
quests the X mode P-lock on Page 1. However, 
the P-lock cannot immediately  be granted because 
DB2A still holds it. 

5.  DB2A is notified by its LLM that DB2B is request- 
ing the X mode P-lock on Page 1. DB2A responds 
by writing  its updated copy of Page 1 to  the GBP 
(thus cross-invalidating any  locally cached copy 
of Page 1 that DB2B might have) and then releas- 
ing  its  P-lock. The writing of the page to  the GBP 
must be  done  under  the local page latch. Note 
that  the P-lock  can be released even though 
Transaction 1 still has not reached a point of con- 
sistency. 

6. DB2B is granted the X mode P-lock on Page 1. 
Under  the P-lock on the page and the local page 
latch, DB2B reads Page 1 into its local BP from the 
GBP. This version of Page 1 reflects Transaction 
1’s updates to Row 1. 

7. Transaction 2 moves the bits around on Page 1 
to update Row 2. 

8. Transaction 1 commits its update to Row 1. The 
force-at-commit protocol is invoked, but Page 1 
is found to be “clean” in DB2As local BP (because 
it had already been written in step 5) ,  thus Page 
1 is not written. 

9. Transaction 2 commits its update  to Row 2. The 
force-at-commit protocol is invoked, and Page 1 
is found to be “dirty” in DB2B’s local BP, thus Page 
1 (containing both Transaction 1’s latest update 
to Row 1 and Transaction 2’s latest update to Row 
2) is written to the GBP (and DB2As locally cached 
version of Page 1, which does not reflect Trans- 
action 2’s latest update  to Row 2, is cross-inval- 
idated). 
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Page P-locks are  not required in  all  cases-they are 
only required when  accessing a GBP-dependent page 
set and subpage concurrency is  allowed on the page 
and the page access  is one of the following: 

1. The transaction is updating the page. The page 
P-lock  is obtained in X mode to  guarantee  inter- 
DB2 write-write serialization on the page. 

2. The transaction is reading the page and must  have 
the guarantee  that it  is operating against the most 
recent version of the page. The page P-lock  is ob- 
tained in S mode. In general, this means that only 
those transactions with an isolation level of re- 
peatable readz5 need to get the S mode page P- 
lock. 

It is important  to  note  that page P-locks are only re- 
quired when the page set is  GBP-dependent. If the 
page set is non-GBP-dependent, the page P-lock is 
not required. So by dynamically tracking the  inter- 
DB2 physical interest on the page set, the  added cost 
of page P-locking can be avoided if the page set is 
not physically  inter-DB2 RIW shared. 

It is  also important to note  that  the P-lock  is  system- 
owned, not transaction-owned. So if a transaction 
needs to access a page in a manner that requires a 
P-lock on  the page, the P-lock may already be held 
by that DB2 member due to a  read  or  update  to  the 
page from a previous transaction on that DB2. 

Using GBP as a global cache. Because the access 
speed of the CF is  significantly faster than  that of 
DASD, there may be a price-performance gain 
achieved by caching clean pages of data in the GBP 
when  heavy  inter-DB2 sharing is expected on a page 
set. Caching clean pages in the GBP can reduce the 
number of disk  accesses by allowing pages to be read 
from DASD once, and thereafter be retrieved from 
the GBP. 

The GBPCACHE clause on a CREATEiALTER 
TABLESPACE~INDEX statement allows the user to 
specify  how the GBP should be used for the page set 
(or partition) to support inter-DB2 sharing activity 
in the DB2 data sharing environment. A GBP can be 
used by page sets that have  different sharing require- 
ments. To facilitate this support,  the GBPCACHE 
clause allows the specification of CHANGED or ALL. 

For  a GBP-dependent page set with the GBPCACHE 
CHANGED (this is the default) attribute,  the GBP is 
used only for coherency, and therefore DB2 only 
writes updated pages to  the GBP. Clean pages are 
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required to be registered to  the GBP for cross-inval- 
idation purposes only. Note  that when registering a 
locally cached clean page to the GBP, the CF only has 
to allocate a directory entry (without the backing 
storage for the  data) if the page is not currently reg- 
istered or cached in the GBP.  If a local hiperpool ex- 
ists,  it  is  used  as another level cache for clean pages 
that belong to GBPCACHE CHANGED type  page sets. 

If a page set is defined with the GBPCACHE ALL at- 
tribute, in addition to writing the  updated pages to 
the GBP, DB2 will also write the clean pages to the 
GBP as they are read in from DASD. In this case, the 
GBP is used to improve read performance as well as 
to maintain coherency. To prevent double caching, 
clean pages are not cached locally  in a hiperpool, if 
one exists, for GBPCACHE ALL type page sets. 

Logging and data recovery 

When a DBMS is extended for SDi or SDa, one of the 
key  decisions  is whether or not to support a real-time 
merged log. For the purposes of this  discussion, the 
merged log  implies: 

The log sequence number (LSN) assigned  is a 
monotonically increasing number across the  data 
sharing group. 
It is possible to read the log records merged across 
all  systems by providing their LSNS. 

The choice of supporting a merged log or not affects 
restart recovery, media recovery, and buffer coher- 
ency schemes. When an existing DBMS is  being mod- 
ified for SDi or SDa, it may not be practical to sup- 
port  a merged log because of development and 
migration costs. The migration could be of both logs 
and  data. However, if a merged log  is not used, then 
each system  will  have  its  own  log and assign  its LSNS 
independently. If the DBMS keeps the LSN of the last 
update  to  the page in the page header26 then the re- 
covery algorithm assumes that  the LSN is a mono- 
tonically  increasing number. When LSNs are assigned 
independently by each DBMS instance and the page 
can be updated by different systems, the LSN in the 
page header is no longer a monotonically increas- 
ing number, and the recovery  algorithm will not work 
correctly. 

The solution to this problem is to redefine the se- 
mantics of the LSN field  as the version  identifier (id) 
of the page,  which is a monotonically  increasing  num- 
ber.  The version id  is increased each time the page 
is updated. For restart recovery, the version id  is 
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tracked in the log record. Therefore,  the recovery 
algorithm would  apply the following rule: if the ver- 
sion id  in the log record is greater  than  the version 
id  in the page-LSN field, then apply the log record.” 

The advantages of this approach are  that  the log 
code, the log data sets, and  the databases need not 
be migrated to move from the single-system to  the 
multisystem data sharing architecture. However, the 
log records need to be extended. 

To support the log merge capability, DB2 relies on 
the sysplex timer to provide a synchronized time 
source across systems. In the  data sharing environ- 
ment, the log record sequence number. (LRSN) is a 
6-byte  value equal  to  or  greater  than  the 8-byte time 
stamp value truncated to six bytes. DB2 uses the LRSN 
for  data page versioning. A key feature of this mech- 
anism  is that  the LRSNS assigned are group-wide 
unique without having a global counter. In the non- 
data-sharing environment, DB2 continues to use the 
log relative byte address for  data page versioning. ** 
Because the LRSN is derived from the first six bytes 
of the time stamp, we must be careful that two con- 
secutive updates  to  the same page are not made us- 
ing the same LRSN value; the first six bytes of the 
time stamp will increment once every  16  microsec- 
onds, so if two updates are made to  the same page 
within the same 16  microsecond interval, the second 
update could use the same LRSN as the first, thus not 
increasing the page version id from one  update of 
the page to  the next. To prevent this from happen- 
ing,  when generating the LRSN value for an update 
to  a page, DB2 always passes the existing LRSN page 
version id to  the DB2 log manager, and  the log man- 
ager always ensures that  the new LRSNvahe  is  higher 
than the previous one. 

When enabling an existing DBZ subsystem for  data 
sharing, no database migration is necessary to con- 
vert from using relative-byte-address page version- 
ing to using LRSN page versioning. The system  clock 
moves faster than  the RBA value, so a higher page 
version id  is  always assigned. 

The log component is structured with a local  log man- 
ager that resides in  every DB2 member and writes to 
its own BSDS and log data sets. These BSDSs and logs 
must reside on shared DASD, because whenever data 
recovery requires that  a merged log stream be ap- 
plied to the  data,  the log-merge function will, on be- 
half  of the recovery process, read  the DB2 member 
log records that  are needed for the recovery and 
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merge them in time sequence order.  The log-merge 
process may run  on any DB2 member in the group. 

To  restart  a DB2 subsystem,  only the subsystem’s  log 
is needed;  no merging is necessary. 

CF-related failures 

The following two types of CF-related failures may 
occur: 

The failure of a CF itself 
The failure of an attachment of a CPC to a CF 

When a CF-related failure occurs that affects one  or 
more DB2-managed CF structures (SCA, lock struc- 
ture,  or GBPs), then DB2 will take recovery actions 
to ensure that data integrity  is maintained in the data 
sharing group. Of course the goal of maintaining data 
integrity is most important; however, the DB, 9 CF re- 
covery algorithms also attempt  to minimize the ef- 
fect of the failure on DB2 users and applications and 
to  return to full data sharing operations as soon as 
possible.  While the recovery actions are in progress, 
there may be degraded service or even  some DB2 data 
that  are unavailable. 

In order for DB2 CF recovery to work properly, a sys- 
plex failure management (SFM) policy must be  de- 
fined and activated. The SFM policy  must  have 
CONNFAIL(YES) specified,  and WEIGHT values  should 
be appropriately assigned to  the systems in the sys- 
plex. For simplicity, the discussion in this section as- 
sumes that this has been done. 

CF failures  in  the SCA and lock structures. When 
the SCA or lock CF structures are lost due  to  a CF 
failure, DB2 (for the SCA) or IRLM (for the lock struc- 
ture) will automatically rebuild the lost information 
in a new structure in the same or different CF. (The 
most likely scenario would be  that  entire CF failed, 
so that the information would  have to be rebuilt into 
a different CF.) The information is rebuilt from the 
aggregation of information that resides in the vir- 
tual storage areas of the DB2 and IRLM members 
across the group. (Also, for the SCA, the BSDSS may 
be used to rebuild some of the lost information.) 

The dynamic rebuilding of these CF structures nor- 
mally takes a few tens of seconds. All access requests 
to these structures  are suspended until the rebuild 
completes. Because access frequencies for  the SCA 
are low, the disruption caused by rebuilding it  is usu- 
ally minimal. However, the lock structure is  usually 
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accessed  relatively frequently, and transactions may 
experience a delay (and some lock time-outs may re- 
sult) while the dynamic rebuilding of the lock struc- 
ture is  in progress. 

If there  are failed or quiescent DB2 members at the 
time of the CF failure, the dynamic rebuilding of the 
SCA or lock structure can still proceed. 

If rebuilding the SCA or lock structure fails for any 
reason (the most  common  reason  would be that there 
is no alternate CF in  which to rebuild), then all DB2 

When a CF-related  failure 
occurs that affects its 

structures, DB2 takes  actions 
to ensure data integrity. 

and IRLM members in the group abnormally termi- 
nate,  and  the lost SCA or lock structure must be re- 
built from the recovery  logs by the group restart pro- 
cess. Note  that this implies that if only one CF is 
configured into  the sysplex,  this CF constitutes a sin- 
gle point of failure for  the DB2 data sharing group. 
If two or more CFS are properly configured, then it 
takes a double  failure (an initial CF failure followed 
by some hardware or system software failure during 
the rebuilding) to require a group restart. 

If the entire sysplex loses power, then group restart 
will be needed only if the CFS in  which the SCA and 
lock structure were allocated are not configured for 
nonvolatility. If the SCA and lock structures persist 
across the power outage, then each DB2 member can 
restart individually as the power  is restored to each 
system. 

CF failure  in  the GBPs. When a GBP structure is  lost 
due to a CF failure, all changed data  that belong to 
GBP-dependent page sets must be recovered from 
DASD and the merged D B ~  logs. A key point is that 
the recovery proceeds from the DASD version of the 
data; image  copies are not needed. Dynamic rebuild- 
ing,  as done for the SCA and lock structures, is not 
feasible for the GBPs, because DB2 uses the GBP as 
a store-in cache, and so there is no guarantee  that 
the changed pages that were lost in the GBP are still 
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in virtual memory somewhere-the changed GBP 
pages must  be recovered from the logs. 

When DB2 receives notification that  a GBP has been 
lost, one of the DB2 members (the GBP structure cast- 
out owner) automatically initiates a process called 
damage assessment (DA). The DA process,  which nor- 
mally completes within a few seconds, determines 
which  GBP-dependent page sets (or partitions) were 
using the failed GBP, and marks each of those ob- 
jects to be in CBP recovely pending (GRECP) status. 
DB2 can complete the DA process quickly because it 
does not need to read the merged log  in order to 
determine which page sets were GBP-dependent. In- 
stead, it can quickly consult the P-lock states of the 
page sets using the associated BP. (The P-lock state 
indicates whether or not the page set is  GBP-depen- 
dent, as described earlier.) This technique is espe- 
cially valuable if there  are failed DB2 members at the 
time that DA is being done; DB2 can  quickly query 
the retained page set P-locks of the failed members 
to determine if any further page sets were GBP-de- 
pendent and need to be recovered. 

Once DA completes, each DB2 member disconnects 
the GBP, which  can be reallocated in the same or  a 
different CF. D B ~  does not allow a new GBP instance 
to be allocated while DA is  in progress. 

The page sets that  are marked as GRECP remain un- 
available for access until they are recovered. Once 
a page set is marked as GRECP, it  is no longer GBP- 
dependent  and can be recovered without the GBP 
being available. Normally the DB2 START DATABASE 
command is  used to do the recovery. DB2 automat- 
ically determines which  log ranges must  be scanned 
from each DB2 member, and then merges those log 
records in time-sequence order.  The number of log 
records that need to be scanned and merged is de- 
termined by the GBP checkpoint. 

The purpose of the GBP checkpoint is to figure out 
and record the oldest log time stamp required to be- 
gin the log merge to recover lost changed pages in 
the GBP. The GBP checkpoint is controlled by a time 
interval (elapsed time) that can be set by the user 
via an operator command. (The default is  every eight 
minutes.) The GBP checkpoint is performed by the 
GBP structure castout owner, which: 

1. Initiates the castout processes, asking  every page 
set castout owner to flush  all changed pages from 
the castout class queues to DASD 

2. Gets  the  restart REDO LRSN log point for each 
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sharing DB2. This is  really the oldest “write pend- 
ing” for  the DB2 member and may be earlier than 
the oldest changed page in the GBP-perhaps the 
change never got to the GBP, or got to  the GBP 
after the checkpoint process completed (and be- 
fore the failure occurred). The member REDO 
LRSN values are kept in the SCA. Each DB2 pe- 
riodically updates its own REDO LRSN value. (It 
is  normally done when the DB2 member takes its 
system checkpoint.) 

3. Scans the GBP directory entries to obtain the  ear- 
liest LRSN across all changed pages in the GBP. 
This is  necessary because the checkpoint does not 
wait for the castout flush (see step 1) of the GBP 
to finish. The flush  will  normally complete by the 
start of the next GBP checkpoint cycle. Note that, 
for changed pages that  are being castout, their 
restart REDO LRSNS (kept in the GBP) will not be 
moved forward until the castout DASD writes are 
completed. Therefore,  there is no data integrity 
problem if DB2 initiates another GBP checkpoint 
before the DASD writes are completed for all cast- 
out pages that were scheduled by earlier GBP 
checkpoints. 

4. Records the LRSNS obtained in steps 2 and 3 in 
the GBP checkpoint record residing  in the SCA 
(and backed up in the BSDS). They will be used 
as the “GBP recover LRSNs” by the DA process 
when marking page sets as GRECP. These recover 
LRSNs are associated  with the GRECP page sets and 
are used to determine  the scan starting points in 
each member’s log for the GBP-dependent page 
sets. The starting point for each member is the 
lower of the member’s REDO LRSN value and  the 
value of the GBP LRSN obtained in step 3. 

If the  entire sysplex  loses  power, then DA will be 
needed only if the CFs in  which the GBPs were allo- 
cated are not configured for nonvolatility. If the GBPs 
persist across the power outage, then each DB2 mem- 
ber can restart individually  as the power is restored 
to each  system  and  can  connect  back to the GBPs with- 
out any loss of data. 

DB2 Version 5 delivers  significant enhancements in 
the  area of GBP failure recovery. 

CF attachment failures. Attachment failures be- 
tween DB2 and the coupling facility are detected by 
the XES component of MVS, which notifies the af- 
fected DB2 members. Normally  only one DB2 mem- 
ber is run per MVS system. 
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DB2 connectivity loss to the SCA or lock  structure. 
When a DB2 member loses  connectivity to  the SCA 
or lock structure,  there  are two choices: (1) fail the 
affected member, or (2) dynamically rebuild the 
structure into another CF, which  may  have better con- 
nectivity. The choice depends on the importance of 
the work running on the MVS systems that have lost 
connectivity relative to the importance of the work 
on the MvS systems that have not lost connectivity. 
MVS determines the relative “importance” of the MVS 
systems by consulting the system WEIGHT values, as 
specified by the user in the active SFM policy, and 
the REBUILDPERCENT value for the CF structure, as 
specified by the user in the active coupling facility 
resource management policy.  If the magnitude of the 
impact (as determined by the SFM WEIGHT values) 
is greater than the REBUILDPERCENTValue, then DB2 
or IRLM will rebuild the  structure. Otherwise the af- 
fected members will terminate so that work  being 
done on the  other  data sharing members can con- 
tinue without being disrupted by rebuilding a CF 
structure. 

DB2 connectivity loss to  GBPs. The affected DB2 mem- 
ber responds to  the loss of GBP connectivity by qui- 
escing  all its access to page sets dependent on that 
GBP, and then disconnecting the GBP. The affected 
DB2 remains up since it can still provide service (al- 
beit a degraded mode of service) to access data  that 
were not dependent on the disconnected GBP. Users 
running on the affected DB2 receive a “resource un- 
available” condition if they  try to access the affected 
GBP-dependent  page sets until (1) the CF attachment 
problem is  fixed, or (2) the member is stopped and 
restarted on another system  with  connectivity to  the 
GBP, or (3) the GBP is reallocated on another CF to 
which  this member has connectivity. 

Transactions in progress at  the time the GBP con- 
nectivity  was  lost that try to write their changed  pages 
to  the GBP receive a “no connectivity” return code. 
The buffer manager responds to this condition by 
adding the pages to  the logicalpage list (LPL) for the 
page set. The LPL is a list of pages that  are  tempo- 
rarily  inaccessible because DB2 incurred problems 
when attempting to write them to external storage. 
The pages can be recovered using the  current DASD 
or GBP version of the page as the base for the re- 
covery (the image  copy  is not needed). If the LPL 
recovery  fails  (e.g., because the disk medium has 
been damaged), then  the page is added to the write 
error page range and must be recovered using the 
image  copy  as the recovery base. 
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Group restart. Group  restart is the process of re- 
building lost SCA or lock structure information from 
the DB2 recovery  logs when these CF structures are 
lost due  to CF failures and DB2 or IRLM was not able 
to dynamically rebuild the lost structure.  Group re- 
start should be very rarely needed if two or more 
CFS are configured into  the sysplex. Group  restart 
requires information from the logs of  all nonquies- 
cent DB2s in the group to rebuild the SCA or  the lock 
structure, as  follows: 

To rebuild the sCA, the current status rebuild (CSR) 
phase of restart must be performed by reading  each 
member’s log forward from the last complete 
checkpoint. No DB2 member can proceed beyond 
the CSR phase of restart until CSR has been per- 
formed on behalf of every member. 
To rebuild the lock structure, first the CSR phase 
of restart must  be performed for each member, as 
above. Once CSR is complete for every member, 
then  the historic status rebuild (HSR) phase of re- 
start must be performed for every member. This 
phase also requires reading each member’s log for- 
ward from the last complete checkpoint. No DB2 
member can proceed beyond the HSR phase of re- 
start until HSR has been performed on behalf of 
every member. 

If both the SCA and the lock structure were lost, then 
CSR needs to be done only once for each member. 

Group  restart is initiated by restarting one  or more 
DB2 members (with the START DB2 command). DB2 
restart processing  automatically determines whether 
or not group restart is  necessary. If group restart is 
initiated, then DB2 automatically handles the syn- 
chronization of the various phases of restart across 
the members. 

During group restart, all restarting DB2s rebuild the 
SCA or lock structure from information contained 
in their logs. If not all members of the group are re- 
started,  then  the  started DB2s carry out group restart 
on behalf of the nonstarting DB2s by reading their 
logs.  (If a DB2 member was quiesced normally at  the 
time of the CF failure, then its logs do not need to 
be scanned for group restart.) Although one DB2 can 
perform group restart on behalf of the group, it  is 
usually  significantly faster if all of the nonquiescent 
members are  restarted so that  the group restart log 
scans can be performed in parallel. 
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Summary 

The SDa architecture delivers the availability, work- 
load balancing, and flexible growth benefits of SDi, 
but  through use of  the coupling facility SDa can avoid 
the high overheads of frequent disk IiO and  inter- 
system message passing associated with SDi. Al- 
though  not discussed in this paper,  the  architecture 
is also used for  both  interquery  and  intraquery  par- 
allelism. 

We have shown in this paper how D B ~ ,  an  industrial- 
strength  relational DBMS for  the Si390 environment, 
has been  extended from its single-system roots  to im- 
plement SDa using the CF for global locking and in- 
tersystem buffer coherency. Use of the CF is the key 
factor, allowing multisystem data sharing with good 
performance characteristics. In addition, we have de- 
scribed several  optimizations  that DB2 employs to 
eliminate unnecessary interaction with the CF, thus 
further reducing the overhead  for data sharing, 
global locking, and buffer coherency. 

We have described  some of the recovery consider- 
ations  for multisystem data sharing, and, specifically, 
DBTs implementation of retained locks, recovery log- 
ging, and CF failure recovery to  ensure  that  data in- 
tegrity is maintained across the failure of any hard- 
ware  or  software  element in the sysplex. DB2’s robust 
design for  data sharing builds on the strengths of the 
si390 Parallel Sysplex to  provide DB2 users with un- 
precedented levels of capacity, availability, and  par- 
allelism. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of Digital Equipment  Cor- 
poration or Tandem  Computers Inc. 
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