DB2’s use of the
coupling facility
for data sharing

We examine the problems encountered in
extending DATABASE 2™ (DB2®) for Multiple
Virtual Storage/Enterprise Systems Architecture
(MVS/ESA™), also called DB2 for 0S/390™, an
industrial-strength relational database
management system originally designed for a
single-system environment, to support the
multisystem shared-data architecture. The
multisystem data sharing function was delivered
in DB2 Version 4. DB2 data sharing requires a
System/390” Parallel Sysplex™ environment
because DB2’s use of the coupling facility
technology plays a central role in delivering
highly efficient and scalable data sharing
functions. We call this the shared-data
architecture because the coupling facility is a
unique feature that it employs.

One approach to improving the capacity and
availability characteristics of a single-system da-

tabase management system (DBMS) is to use mul-
tiple systems. Before the introduction of the
System/390* (s/390*) Parallel Sysplex*, there were
two major architectures in use in the multisystem
environment: the shared-disk (SDi) architecture, also
called data sharing,' and the shared-nothing (SN) or
partitioned architecture.” The $/390 Parallel Sysplex
introduces a third multisystem architecture called the
shared-data (SDa) architecture.

With sDj, all the disks containing the databases are

accessible from all the sharing systems and each sys-
tem has its own buffer pool (BP) to cache data in pro-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

0018-8670/97/$5.00 © 1997 1BM

by J. W. Josten
C. Mohan
I. Narang
J. Z. Teng

cessor storage for fast reference. Every system that
has an instance of the DBMS executing on it may ac-
cess and modify any portion of the database on the
shared disks. Because each instance has its own
buffer pool and because conflicting accesses to the
same data may be made from different systems, the
interactions among the systems must be controlled,
using various synchronization protocols. This neces-
sitates global locking and protocols for the mainte-
nance of buffer coherency. Sbi is the approach used
in 1BM’s Information Management System/Virtual
Storage (1Ms*/vS) data sharing product,>> and
Amoeba project,® and DEC’s VAX** DBMS and VAX
Rdb/vms**. 7

With SN, each system owns a portion of the data-
base and only that portion may be directly read or
modified by that system. That is, the database is par-
titioned among the multiple systems. The kind of syn-
chronization protocols needed for SDi are not needed
for sN. But a transaction that accesses data in mul-
tiple systems would need a form of two-phase com-
mit protocol’*!! to coordinate its activities. This is
the approach taken in Tandem’s NonStop** soL™?
(System Query Language), Teradata’s DBC/1012,"
and the University of Wisconsin’s Gamma. !

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

JOSTEN ET AL. 327

SDi has many advantages over SN.'¢ Some of them
are: workload balancing, horizontal growth for ca-
pacity, single-system image, and availability. Data do
not have to be split across different systems for rea-
sons of capacity or availability. SDi gives the possi-
bility of improved availability for data and service.
However, the performance penalty of intersystem
message passing and increased disk access to imple-
ment the global locking and buffer coherency func-
tions is a heavy price to pay to gain the advantages
of spi. By using the coupling facility for high-speed
global locking and buffer coherency functions, the
SDa architecture can deliver all the benefits of SDi
without the heavy performance penalties that are
otherwise suffered.

This paper describes the problems associated with
and the design approaches needed for migrating an
industrial-strength relational DBMS from a single-sys-
tem environment to the SDa environment. We describe
the design approaches taken by the DATABASE 2*
(pB2*) for Multiple Virtual Storage/Enterprise Sys-
tems Architecture (MVS/ESA*) Version 4 (hereafter
referred to as DB2 V4) data sharing function ** for ef-
ficient intersystem concurrency control and mainte-
nance of coherency among the different systems’
local buffers in the Spa architecture. Use of the cou-
pling facility (CF) is a key element of DB2’s data shar-
ing design.

The rest of the paper is organized as follows: First
we give a brief overview of the DB2 SDha architecture.
Next we describe the global locking problem, how
DB2 data sharing uses the CF to implement fast global
locking, and how “retained locks” are used to main-
tain data integrity across a failure of a DB2 DBMS in-
stance. We describe the intersystem buffer coherency
problem and how DB2 uses the CF to solve this prob-
lem. We also describe how DB2 logging and data re-
covery work with data sharing. Then we describe the
DB2 design for recovering from various CF-related
failures and, finally, we summarize.

A brief description of DB2 data sharing

The N-way multisystem data sharing function that
was introduced in DB2 v4 provides DB2 applications
with full read and write concurrent access to data-
bases, on shared direct access storage devices
(DASDs), between multiple DB2 subsystems. The DB2
subsystems may reside on the same or on different
MvVS images. The set of DB2 subsystems sharing the
data belong to a DB2 data sharing group. Each DB2

328 JOSTEN ET AL.

subsystem is a member of the group. Data sharing
is an optional feature of DB2 V4.

DB2 data sharing requires the services of the $/390
Parallel Sysplex. This means that an MVS sysplex must
be established with MVS/ESA Version 5 or higher and
at least one CF must be configured into the sysplex
{(two or more CFs are recommended for performance
and availability reasons) and also at least one sys-
plex timer must be configured. (Two sysplex timers
are recommended to remove the “single point of fail-
ure.” %)

As shown in Figure 1, all the members of a DB2 data
sharing group must reside within a single MVS sys-
plex, which can contain multiple DB2 groups. Also,
a nonsharing DB2 subsystem may reside within the
same MVS sysplex as another DB2 data sharing group.

A transaction accesses data belonging to a DB2 group
from within a single member of the group. Appli-
cations and transactions are unaware that data shar-
ing is taking place across the DB2 group, and do not
know if their particular data are being actively shared
or not. DB2 automatically manages all of the mul-
tisystem concurrency and buffer coherency issues,
which are transparent to the applications.

DB2 assumes that 4/l data are capable of being shared
across the group. Actual sharing is controlled by
workload scheduling, DASD connectivity, and autho-
rization. DB2 activates its multisystem concurrency
and coherency controls only when data are actually
shared between systems. DB2 data sharing supports
data access concurrency at every level normally sup-
ported by DB2 (table space, table, page, or row).

Each member of a DB2 data sharing group must have
access to shared DASD containing:

s The MVS user catalog, pointed to by the MVS mas-
ter integrated catalog facility (ICF) catalog on each
MVS

s A single shared DB2 catalog and directory

& Shared DB2 databases

» The ICF user catalogs for the shared databases

& The recovery log data sets and bootstrap data sets
(BSDSs) belonging to each DB2 member

Figure 2 gives more information about the DB2 data
sharing group topology. A single DB2 catalog and di-
rectory provides for a single definition of all shared
DB2 objects. Changes to the definitional data can be
made from any DB2 member and need to be made

IBM SYSTEMS JOURNAL, VOL 368, NO 2, 1997

Figure 1 DB2 data sharing group configuration

- SYSPLEX

TWMVS_

DB2 GROUP 1
7 DR2 GROUP 2

D NONSHARING DB2

only once to be put into effect across the entire DB2
data sharing group.

DB2 uses the following CF structures for data shar-
ing:

* The CF lock structure for global locking

. Group buffer pools (GBPs), which are CF cache
structures used for inter-DB2 buffer coherency. Up
to 60 GBPs may be defined, corresponding to the
60 buffer pools that may be defined in a single DB2
member.

* The shared communications area (SCA), which is
% CF list structure used for recording the excep-
tion status of databases and for supporting other

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

internal optimizations that depend on group-wide
information

The MVS central processing complexes (CPCs) are
connected to the CFs with CF channels and high-speed
fiber optic links that allow MVS to interact synchro-
nously with the CFs, without task switching.

As shown in Figure 2, each DB2 member writes to
its own recovery log and BSDS. However, the logs and
BSDSs must reside on shared DASD so that all DB2
members have access for recovery purposes. DB2 data
sharing requires a sysplex timer to give a common
time source across the sysplex, so that log records

JOSTEN ET AL. 329

330 JOSTEN ET AL

Figure 2 DB2 data sharing use of the coupling facility

1o pez
CATALOG/
DIRECTORY

DB2B R/W“
OTHERS RO

DB2A B
OTHERS RO

DB2n R/W
OTHERS RO

R/W = READ/WRITE
RO = READ ONLY

can be retrieved from multiple systems, in time se-
quence, for recovery from media failure.

Inherent in the DB2 data sharing architecture is the
ability to deliver much higher levels of capacity and
availability to DB2 users, because access to the DB2
databases is no longer constrained through a single
DB2 DBMS instance. Also, with the data sharing ca-
pacity, DB2 installations can now add to their DB2
systems in a horizontal, more granular fashion by
nondisruptively adding new DB2 members (along
with new CPCs) into the data sharing group as the
need arises. And because there are multiple paths
to the DB2 data, installations can choose how to best
balance their DB2 workload across the data sharing
group to satisfy their business needs.

To achieve maximum value from its SDa architecture,
DB2 V4 is designed to provide highly efficient global
locking and caching capabilities through use of the
CF. To demonstrate the performance and scalability
of these data sharing capabilities, the IBM Santa
Teresa Laboratory has measured resuits for the IBM
Relational Warehouse Workioad (IRWW).!” This
workload consists of seven transactions of varying
profiles; some are update-intensive while others are
read-intensive. There are seven tables that vary in
size and update intensity. All the tables are actively
shared for both reading and writing when running
this workload on multiple DB2 members. The mea-
sured results show 13.29 percent data sharing over-
head for the workload in two-way DB2 sharing (two
DB2 members, each running on its own CPC), and

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

13.55 percent data sharing overhead in three-way DB2
sharing (three DB2 members, each running on its own
cpC). ™

The term “overhead” here means the additional cPU
(central processing unit) capacity that is needed for
each DB2 member in the data sharing group to pro-
vide equivalent throughput as the same number of
DB2s would provide in a nonshared environment.
(E.g., if two nonsharing DB2 DBMS instances could
in aggregate deliver 200 transactions per second us-
ing n units of CPU capacity each, then assuming a 15
percent “data sharing overhead,” if these two DB2s
were coupled together for data sharing, the two DB2s
in aggregate would deliver 170 transactions per sec-
ond using the same n units of CPU capacity each.)
Note that as the number of sharing DB2 members
increases from two to three, the data sharing over-
head increases almost linearly; that is, an initial “en-
abling” cost is incurred in moving from a nonshared
configuration to a two-way shared configuration
(13.29 percent in the case of IRWW), but little or no
additional overhead is incurred (0.26 percent in the
case of IRWW) when increasing from two-way to
three-way sharing.

In the rest of this paper we explore some of the chal-
lenges encountered in extending the single-system
architecture of DB2 to handle concurrent multisys-
tem read and write access to the DB2 databases, and
how these challenges were met through use of the
$/390 Parallel Sysplex coupling technology.

Global locking

To support SDi or SDa, a global lock manager is re-
quired. Examples of global lock managers are the
Amoeba lock manager developed at the IBM Alma-
den Research Center® and the VAXcluster** lock
manager developed by DEC.*’

Figure 3 shows a logical representation of the DB2
data sharing global locking structure. In this figure,
one sysplex is shown that contains 7 MVS systems
{MVS1, MVS2, ..., MVSr) and one CF lock structure.
Also, there is a DB2 data sharing member configured
on each of the n MVS systems (DB2A runs on MVvSt,
DB2B runs on MVS2, and so on). Each DB2 member
is assoctated with its own internal resource lock man-
ager (IRLM). Each IRLM can be viewed as a locat lock
manager (LLM) that can autonomously provide intra-
DB2 locking (“local locking”) functions. Each IRLM,
in turn, may communicate via the MVS cross-system
extended services (XES) component to the CF lock

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

structure when inter-DB2 locking (“global locking™)
functions are required. XES and the CF lock struc-
ture can be viewed as the global lock manager (GLM)
that tracks resources locked at each LLM. At the GLM,
locks are owned by LLMs, whereas at the LLMs, locks
are owned by transactions. If the GLM detects lock
conflict between LLMs, then the MVS cross-system
coupling facility (XCF) component is used to com-
municate between systems to resolve the conflict. XCF
can be configured to use channel-to-channel (CTC)
connections for signaling or to use CF list structures
(or a combination of the two).

The CF lock structure is subdivided into two parts:

1. Lock table: used to quickly detect possible inter-
DB2 lock conflict

2. Record list: used to keep track of modify lacks
and retained locks

When DB2 must interact with the CF lock structure
for global locking, this interaction occurs synchro-
nously, without having to suspend and resume the
task. The use of the CF for global locking is one of
the key distinctions between SDa and SDi. With SDi,
the DBMS instances must use intersystem message
passing to do global locking. With message passing,
whenever a transaction requests a global lock, the
transaction is suspended so that the “lock” message
and the “acknowledgment” message can be sent and
received. The time it takes to send these messages
is measured in milliseconds (e.g., 20 msec). With SDa,
in contrast, a global lock can be granted through a
synchronous interaction with the CF. This CF inter-
action is measured in microseconds (e.g., 100 usec).”
It is only when intetr-DB2 lock conflict is detected in
the CF lock table that intersystem messaging must
be used.

The premise is that all DB2 data are shareable. Thus
any lock that is taken by a transaction on a database
resource (table space, table, page, row, etc.) is aglobal
lock because the database resource on which that
lock is held has the potential of being accessed from
multiple DB2 members. A global lock is one that pro-
vides intra-DB2 and inter-DB2 concurrency control.
In contrast, a local lock provides only intra-DB2 con-
currency control. In data sharing, almost all locks
are global jocks.

When a global lock is requested (e.g., on a database
page), DB2 interfaces with its associated LLM (IRLM),
as it would normally do in a single-system environ-
ment, IRLM then checks its local structures to de-

JOSTEN ET AL 331

Figure 3 DB2 data sharing globai locking configuration

CTC OR CF ‘ CTC OR CE

termine whether or not the lock is locally grantable; key performance Optimization in DB2’s Spy design and
thatis, whether or not the lock request can be granted is explained in the next section.

based on the Linps local knowledge of the locking

information. If the lock is locally grantable, then Global locking optimizations, If every global lock
IRLM again checks its [oca] structures to determine request were to be propagated beyond the L1, there
if the lock needs to be Propagated to the GLM for ip- would usually be a significant performance degra-
ter-DB2 lock compatibility checking. Not all global dation to the system. Therefore, one of the major
locks need to be Propagated to the GLM. This js a design goals of the ppy locking scheme is to min-

332 JosTEN ET AL IBM SYSTEMS JOURNAL, voL 36, NO 2, 1997

imize the number of times that the GLM must be no-
tified about a global lock request. This has been ac-
complished through two main design thrusts:

1. Suppressing the propagation of global locks to the
GLM, unless it is necessary for:
* Explicit hierarchical locking (EHL)
* Propagating only the most restrictive state per
resource per LLM
2. Lock avoidance for:
* Type 2 indexes
¢ Support for the uncommitted read isolation
level

These optimizations are explained in the next four
sections.

Explicit hierarchical locking. The explicit hierarchi-
cal locking (EHL) optimization implies the follow-
ing: based on the current inter-DB2 locking interest
for a resource, the GLM may tell an LLM that the LLM
can grant locks locally on resources lower in the hi-
erarchy (than to the requested resource). When the
GLM first detects that multiple LLMs hold a lock on
a resource that is higher in the hierarchy, the GLM
notifies the affected LLMs that they should (1) prop-
agate to the GLM locks that are currently held on
resources lower in the hierarchy that now have the
potential for intersystem lock conflict, and (2) start
propagating to the GLM new lock requests on the re-
sources.?

DB2 data sharing implements the EHL optimization
by converting the current DB2 implicit lock hierar-
chy (the lock manager is not aware of the hierarchy)
to an explicit lock hierarchy (the lock manager now
becomes aware of the hierarchy). DB2 has always
locked database objects in an implicitly hierarchical
fashion. That is, gross-level, or “parent” locks are
obtained first (table space, partition, table), usually
in intent-share (IS) or intent-exclusive (IX) states, and
then the locks on the lower level, finer granularity
database resources (page, row), are subsequently ob-
tained as they are read or updated. The implicit hi-
erarchical locking scheme has allowed DB2 to (1) sup-
port lock escalation, and (2) allow users to have an
option to specify the locking granularity, i.e., the ta-
ble space, table, page, or row level.

With EHL, using page locking in a simple table space
as an example (the same concepts apply for row lock-
ing and for partitioned or segmented table spaces),
the locking protocol is to first lock the parent re-
source (table space) and remember the IRLM lock

IBM SYSTEMS JOURNAL, VOL 38, NO 2, 1997

“token” that is associated with that parent resource.
Then, as the “children” (pages) are locked, DB2
passes the parent lock token associated with the ta-
ble space to which the page belongs so that the as-
sociation of the child to the parent is made known
to IRLM. By explicitly knowing the hierarchical re-
lationship between parent and child, IRLM, working
with the GLM, can dynamically determine whether
there is inter-DB2 interest on the parent and then
propagate or not propagate the lock requests on the
children to the GLM accordingly.

Figure 4 shows an example. Here are two DB2 data
sharing members, DB2A and DB2B, and transactions
executing in each DB2 member that are accessing
pages in the same table space (T51). Each DB2 mem-
ber communicates with its own LLM (IRLMA and
IRLMB). For simplicity, XES is left out of this picture,
and the GLM is represented by the CF. The following
events happen in time-sequence order:

1.

On DB24, Transaction 1 gets an IS lock on TSI.
Because this is the first lock on TS1 from DB2A
and because the table space is the highest level
in the DB2 lock hierarchy, this IS lock on TSt is
propagated by IRLMA to the GLM.

On DB2A, Transaction 2 gets an IS lock on TS1.
Because IRLMA has already propagated an equally
or more restrictive lock state to the GLM for TS1
(an 18 lock has already been propagated on be-
half of Transaction 1), the 1S lock for Transac-
tion 2 does not need to be propagated.

On DB2B, Transaction 3 gets an IS lock on TSi.
Because this is the first lock on TS1 from DB2B and
because the table space is the highest level in the
DB2 lock hierarchy, this IS lock on TS1 is propa-
gated by IRLMB to the GLM.

On DB2A, Transaction 1 gets a share (S) lock on
Page 1. (Because Page 1 is contained in TS1, TS1
is the parent of Page 1.) Because the highest level
inter-DB2 interest on the parent lock (TS1) is read-
only (RO), the s lock on the child (Page 1) is
granted locally by IRLMA without propagating it
to the GLM. There is no chance of inter-DB2 lock
contention on the children. (Only S locks can be
requested on the children so far because no trans-
action has yet indicated an intent to update TS1;
that happens in the next step.)

On DB2B, Transaction 4 gets an IX lock on TSI,
indicating an intent to update one or more pages
in TS1. Because the IX state is more restrictive than
any lock state that has previously been propagated
from IRLMB for TS1 (only IS has previously been
propagated), this IX lock is propagated by IRLMB

JOSTEN ET AL. 333

Figure 4 Scenario showing lock propagation

to the GLM. Also, at this point the S lock that was
acquired by DB2A on the Page 1 child in step 4
must be propagated to the GLM, because now that
DB2B has established a lock on TS1 that indicates
an intent to update pages belonging to Ts1, there
is the potential that s locks on the TS1 children
(pages) from DB2A could hit contention with ex-
clusive (X) locks on the TS1 children (pages) from
DB2B.

334 JosTEN ET AL

6. On DB2B, Transaction 3 gets an S lock on Page

1. This lock does not have to be propagated to
the GLM because DB2A still has RO interest in the
parent (TS1), and thus any S locks on the children
from DB2B still cannot possibly hit contention with
S locks on those children from DB2A.

. On DB2B, Transaction 4 gets an X lock on Page

2. This lock must be propagated by IRLMB to the
GLM because DB2A has RO interest in the parent

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

(Ts1), and so X locks on the children from DB2B
have the potential of conflicting with S locks on
those same children from DB2A.

When data are not actually inter-DB2 read/write (R/W)
shared, EHL allows DB2 locking in a data sharing envi-
ronment to have nearly equivalent performance as
in a DB2 with no data sharing. The only added cost
is that of propagating to the GLM some of the parent
locks.

Propagating only the most restrictive state. At the GLM
level, locks are owned by LLMs and not by transac-
tions. Therefore, once an LLM has made a lock state
on a given resource known to the GLM, subsequent
locks granted by the LLM on that resource in an equal
or less restrictive state do not need to be commu-
nicated to the GLM.

In the example just described, the 1S lock on TS1 ac-
quired by Transaction 2 does not need to be prop-
agated to the GLM because an equally or more re-
strictive lock state has already been propagated from
IRLMA for Ts1.

Type 2 indexes. Type 2 indexes are a new type of in-
dex structure introduced in DB2 v4 in which there is
no locking within the index; locks are acquired only
on the data. This is in contrast with Type 1 indexes
from previous releases of DB2 (and which are still
supported in v4) in which locks are obtained not only
on the data but also on the pages (or subpages) within
the index. With Type 2 indexes, many of the locks
that were obtained in previous releases of DB2 can
now be avoided and this can significantly reduce the
locking intensity of a given workload, which will in
turn significantly reduce the overhead for data shar-
ing global locking for the workload.

Uncommitted read isolation level. DB2 V4 also intro-
duces the uncommitted read (UR) isolation level to
allow applications to avoid locking and thus to read
uncommitted data. Of course many applications can-
not tolerate reading uncommitted data, but for those
that can, the UR isolation level provides an effective
way to improve concurrency and performance. And,
as mentioned earlier, any avoidance of locks in a data
sharing environment reduces overhead.

Modify locks and retained locks. With SDa and SDi,
if one of the DBMS instances fails, then the data can
still be accessed through any of the surviving DBMS
instances because all of the data can be accessed by
all of the DBMSs. (This is not true with SN). How-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

ever, if there were transactions that were in progress
and had not yet reached a point of consistency at
the time of the failure, then the portions of the da-
tabase that these transactions had locked for update
must be protected in some way, so that the surviving
DBMS instances are prevented from accessing the in-
consistent data.

DB2 data sharing uses modify locks and retained locks
to provide this protection. A modify lock is a lock
held on a resource that is in the process of being up-
dated, or modified. If a DB2 member fails, then all
the modity locks held by the DB2 member at the time
of the failure are converted into retained locks. Re-
tained locks persist across the failure, and thus can
continue to protect database resources that were in
an inconsistent state at the time of the failure from
being accessed by other DB2 members. Retained
locks are held at the GLM level and thus are owned
by the LLMs, not by transactions. Retained locks are
not needed for resources that were accessed as RO
at the time of the failure; these locks can be released.

Retained locks continue to be held until the failed
DB2 member completes its restart recovery and brings
the database resources back to a consistent state. If
another DB2 member attempts to obtain a lock on
a resource while there is still an incompatible re-
tained lock on that resource, IRLM immediately re-
jects the request, and the user receives the message
“resource unavailable.” (There is an installation op-
tion available in DB2 that, if activated, causes IRLM
to wait for a period of time for a retained lock to
become available instead of immediately rejecting
the request; this option would probably be used only
when there is automation in place to automatically
restart failed DB2 members, for example through use
of the MVS automatic restart manager facility.)

As an example, suppose transaction TX1 on DB2A
wants to update page P1 in table space TS1 and also
wants to read page P2 in table space TS2. In this ex-
ample, TX1 first gets the “intent-exclusive” (IX) lock
on TSt as a modify lock and the “intent-share” (IS)
lock on TS2 as a nonmodify lock. Next TX1 attempts
to read P2 and gets a share (S) lock on P2 as a non-
modify lock. Finally, TX1 decides to update P1 and
gets the exclusive (X) lock on P1 as a modify lock.
Now, before TX1 commits, suppose that DB2A fails.
Then, the modify locks that were held at the time
of the failure are converted to retained locks to per-
sist beyond the life of DB2A. So the IX modify lock
on TS1 and the X modify lock on page P1 are con-
verted to retained locks. (The 1S lock on TS2 and the

JOSTEN ET AL. 335

S lock on page P2 are not converted to retained be-
cause these locks were held for RO purposes; these
locks are released when DB2A fails.)

To continue with the example, suppose transaction
TX2 on DB2B wants to do the same thing that TX1

Once the retained locks are
purged, other DB2 members
can again read and update
these database resources.

did. TX2 first requests the IX lock on TS1 as a modify
lock, and IRLM grants the lock even though there is
a retained lock on TS1 because the requested state
(1x) is compatible with the retained state (IX). Next
TX2 requests the 1S lock on TS2 as a nonmodify lock
and IRLM grants the lock. (There is no retained lock
on TS2.) Next TX2 attempts to read P2 and gets a share
(s) lock on p2 as a nonmodify lock, and again this
is granted. (There is no retained lock on P2.) Finally
TX2 is ready to update P1 and requests the exclusive
(X) lock on P1 as a modify lock. But this lock is re-
jected because it is incompatible with the retained
X lock that is held on P1 by the failed DB2A. (Note
that even if TX2 had wanted only an S lock on P1, this
too would have been rejected by IRLM because an
S lock is also incompatible with the retained X lock.)

To complete the example, now DB2A restarts, and
as part of the restart recovery process, the incom-
plete work that had been done by TX1 prior to the
failure is backed out. After the restart recovery pro-
cess has brought the database resources that DB2A
was working on back to a consistent state, DB2A
“purges” the retained locks that are still held on its
behalf. Once the retained locks are purged, other
DB2 members can once again freely read and update
these database resources according to the normal
rules on intertransaction locking.

Modify locks and retained locks are kept in the record
list portion of the CF lock structure. Each IRLM also
keeps a local copy of all the retained locks for fast
reference. The redundancy in tracking the retained
locks is an important availability consideration. Be-

336 JOSTEN ET AL

cause of this redundancy, the retained locks can sur-
vive a failure of the CF or of all the IRLMs in the group.

When DB2 requests a modify lock, IRLM, through
MVS XES services, must interact with the CF lock
structure for two distinct operations:

1. The lock table must be consulted for inter-DB2
lock compatibility checking.

2. The record list must be updated to track the mod-
ify lock on a resource.

These two operations are bundled in one call to the
CF and occur synchronously to the requesting task.
An interaction with the CF for a modify lock is slightly
more expensive than an interaction for a nonmodify
lock; a nonmodify lock does not need an entry in the
record list.

Intersystem buffer coherency

We begin this section with an overview of DB2 data
buffering without data sharing. DB2 uses in-memory
database buffering to minimize physical 1/0 activity
between the CPC and DASD. A cached database page
is concurrently referenced or serially updated by mul-
tiple transactions within a DB2 subsystem (i.c., DB2
caches database pages beyond transaction usage).
Currently, DB2 supports 50 buffer pools of 4K (thou-
sand) page size buffers and ten buffer pools of 32K
page size buffers. A 4K page size buffer pool sup-
ports data access for 4K page size page sets. A page
set is a synonym for a table space or an index space,
if no distinction is required between them.

Each buffer pool is subdivided into two levels. The
first level is the virtual buffer pool, which is allocated
from DB2’s address space (i.e., the buffer space in vir-
tual storage is backed by central, expanded, or aux-
iliary storage). All database references and updates
are performed against buffers in the virtual buffer
pools. The second level is the Aiperpool, which is
backed only by expanded memory. The hiperpool is
optional and, if defined, is internally mapped to one
or more DB2-owned expanded-storage-only hip-
erspaces. Hiperpools are only used to cache mod-
erately referenced clean pages. To prevent double
buffering of database pages, a cached database page
can reside either in the virtual buffer pool or in its
corresponding hiperpool, not both.

DB2 applies deferred-write logic to updated pages

and does not write updated pages to disk at commit
time. (Only logs are forced to the log data sets at

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

commit time.) This “no force at commit” policy pro-
vides significant performance advantages for trans-
action response time and concurrency. It also im-
proves DASD and CPU efficiency by batching together
multiple updates and multiple pages on each disk
write operation.

An overview of DB2 data buffering with data shar-
ing. With SDi or SDa, because there are multiple DBMS
instances all with equal access to the shared data-
bases, a single page may be cached in multiple DBMS
buffer pools. Assume that page locking is used. (For
DB2, the page size is equal to the block size, where
a block is a unit read from or written to disk.) The
locking protocol to read or write a page is: acquire
a share (S) lock to read the page, and acquire an ex-
clusive (X) lock to update the page. This protocol
implies that there can be multiple readers or a sin-
gle updater of the page within a DB2 data sharing

group.

To provide transactional semantics, the X locks that
are obtained on the updated pages are held until the
transaction reaches a point of consistency (until the
transaction either commits or rolls back). With page-
level locking in SDi or SDa, because of the global lock-
ing mechanism that has already been discussed, we
do not have to be concerned with the intersystem
buffer coherency problem as long as the transaction
locks remain held; the X locks that are held by the
transaction on the updated pages prevent the other
sharing DBMS instances from updating or referenc-
ing those same pages under locks. But as soon as the
transaction reaches a point of consistency and re-
leases its X locks on the pages that it has updated,
a different transaction that is executing on a second
DBMS instance can obtain the locks on those same
pages and can manipulate them in the local buffer
pool of its corresponding DBMS instance. And, if
proper controls are not in place, the cache coher-
ency problem can be readily visualized—a down-level
version of the page (a version of the page that does
not reflect the latest committed updates to the data)
might be read into the local buffer pool from exter-
nal storage (e.g., disk) or previously cached in the
local buffer pool of the second DBMS instance and
used as-is.

To prevent these problems, SDi or SDa systems must
implement some form of intersystem cache coher-
ency protocols. DB2 data sharing does this by using
a force-at-commit policy for updated database pages.
Force-at-commit implies the following:

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

1. The updated page has to be written to external
storage (DB2 uses the CF) so that other DB2 mem-
bers can read the latest version.

2. The now down-level versions of the page that are
cached in other DB2 buffer pools have to be cross-
invalidated (Xled).

In the other DB2 members, any subsequent access to
the Xled buffer pool page needs to detect the invalid
condition of the page and to refresh the current ver-
sion of the page from external storage.

In sDj, the buffer coherency task is accomplished by
using disk storage to externalize the updated pages,
and by using intersystem message passing to send
the x1 signals. When the transaction reaches a point
of consistency, the DBMS must use I/O protocols to
write each updated page to disk, and it must also send
messages to (and receive acknowledgments from)
each peer DBMS to ensure that the updated pages
are cross-invalidated. When another DBMS detects
that a buffered page has been cross-invalidated, it
must use I/0 protocols to refresh the page from disk.
Because of the long latencies involved with the disk
/0 and message-passing operations (on the order of
several milliseconds for each disk or message-pass-
ing interaction), the performance penalties for main-
taining buffer coherency in SDi can be severe. '

In sDa, CF cache structures are used, instead of disk
storage and message passing, to maintain intersys-
tem buffer coherency when the force-at-commit pro-
tocol must be used.? In the DB2 implementation, we
call a CF cache structure a group buffer pool, or GBP.
A CF cache structure is an intelligent external store
that handles both caching the pages and sending the
X1 signals. In SDa, a DBMS can use the high-speed CF
channels and fiber optic links to write each updated
page to the CF. The CF can actually store the page
in its central storage and then send the X1 signals.
The time it takes to write (or read) a 4K page to (or
from) the CF cache structure is measured in micro-
seconds (e.g., 175 usec).” The X1 signals are pro-
cessed by the CF channel hardware on the receiving
systems without causing any processor interrupts.
When a DBMS instance detects that a locally buff-
ered page has been cross-invalidated, it can usually
refresh the page from a CF cache structure very
quickly and avoid invoking /O protocols to retrieve
the page from disk.

The use of the CF cache structures for intersystem
buffer coherency is another distinguishing factor of
SDa from SDi. Because CF interactions are much faster

JOSTEN ET AL. 337

than disk and message-passing interactions, the read
and write operations to the CF can be done synchro-
nously to the program logic, without the task-switch-
ing overhead that is necessary to deal with the long
latencies of disk /O and message passing.

For good performance, DB2 uses the CF cache struc-
tures (GBPs) as “store-in” caches, such that the ver-
sion of the page in a GBP can be more recent than
the one on disk. For example, when force-at-com-
mit is applied, the updated page is written to the GBP
'so that the latest version of the page resides there,
and the version of the page that resides on disk is
now down-level.

In data sharing, DB2 data continues to be cached in
cach DB2 member’s local buffer pools. All references
and updates to DB2 pages continue to be done
through the virtual bufter pools. The GBPs are used
only to maintain inter-DB2 buffer coherency, and can-
not be directly referenced by DB2 application pro-
grams. The buffer manager (BM) component of DB2
automatically manages the caching of the data in the
buffer pools; application programs are not aware that
a GBP may be in use.

The sections that follow give more detail about the
way GBPs are used to maintain inter-DB2 buffer co-
herency.

Coherency protocol to read a page. Figure 5 shows
a comparison of a simple transaction flow for read-
ing a page between a single-system and a data shar-
ing environment. The first difference we see is that
the page lock must be global for data sharing, as ex-
plained earlier. The second difference is that when
the BM finds the page cached in the iocal buffer pool,
before the page can be used it must first be checked
to see if it is still valid. (It might have been cross-
invalidated.) If the page is valid, the only extra over-
head that was incurred for data sharing was the ex-
tra expense of the global lock (if it was propagated
to the GLM) and of checking the validity of the page.

1f the page was found to be invalid in the local buffer
pool, then the extra data sharing overhead of refresh-
ing the page from external storage might have been
incurred. But usually the page can be refreshed from
the GBP, which is a relatively quick operation (e.g.,
175 usec for a 4K page), without having to go to disk.

To check page validity, the BM consults a bit array
in the hardware storage area (HSA) of the CPC. This
bit array is also referred to as a “local cache vector.”

338 JOSTEN ET AL.

In the bit array, one bit is associated with each buffer
pool (virtual pool plus hiperpool) page frame indi-
cating whether or not the associated cached page is
valid or invalid.

Looking again at the flowchart in Figure 5, if the re-
quested page is not found in the local buffer pool,
then in the single system the BM would read the page
from disk. In data sharing, before going to disk to
get the page, the BM first issues a “read-and-regis-
ter” (RAR) request to the CF to attempt to read the
page from the GBP, and to register the page for XI
(the read and the register are bundled in one CF re-
quest):

* If the page is found in the GBP, it is returned, and
the page is registered for XI. If this happens, the
data sharing case actually performs better than the
single-system case because the page is refreshed
from the CF much faster than it would be from disk.
This raises the interesting possibility of using the
CF as a fast intersystem cache. DB2 provides an op-
tion that can be activated at the page set or par-
tition level to cache clean data in the GBP so that
data have a greater chance of being able to be read
in from the CF instead of from disk. This option
is explained further in a later section.

* If the page is not found in the GBP, it is still reg-
istered for X1, but the BM must read the page from
disk. If this happens (which is the more likely case),
then the extra data sharing overhead is the extra
call to the CF to register the page for X1, which is
not necessary in the single system.

Coherency protocol to update a page. A typical trans-
action flow for updating a page with data sharing,
assuming page-level locking, follows:

* The transaction globally locks the page in X mode.

* The transaction updates the page in the buffer pool.

* Prior to releasing the X lock at commit time, the
BM issues a CF request to write the updated page
to the GBP. The CF in turn sends the XI signals to
the other systems where the page is cached. A CF
channel on each receiving system processes the X1
signal, without causing a processor interrupt, by
flipping the corresponding bit in the bit array in
the HSA to “invalid.” The page is written to the
GBP as “changed,” and now the version of the page
on disk is down-level with respect to the one stored
in the GBP.

The data sharing coherency overhead associated with
the update transaction is the writing of the updated

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 5 DB2 data sharing read protocol

SINGLE SYSTEM

 DATA SHARING

pages with the force-at-commit policy, which in-
creases the transaction path length, thus marginally
increasing transaction response time and lock hold
time. The CF write request for a 4K page should nor-
mally occur synchronously to the transaction (no task
switching).

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Castout. A GBP can be viewed as an extension of the
DB2 members’ associated local buffer pool. A GBP
is used for intersystem buffer coherency; it is not used
as permanent storage. When a changed page is writ-
ten to a GBP, it must eventually be written to per-
manent storage on DASD. The process of writing the

JOSTEN ET AL. 339

changed pages from a GBP to DASD is called “cast-
out.”

Because there is no direct link from a CF to DASD,
the DB2 castout process must read the changed page
into processor storage, and then write the page from
processor storage out to DASD. The castout of a page
consists of the following logical steps:

1. A DB2 reads the page for castout. A castout (CO)
indicator is set on in the CF hardware for this page.
Its purpose is to prevent more than one DB2 from
attempting to castout the same page. The CO in-
dicator does not block transactions from access-
ing the page in the GBP for read or write purposes.
When a DB2 member reads a page for castout,
the page is read into a DB2 private storage buffer
(not into the buffer pool).

2. The DB2 writes the page to disk. The write com-
mands are batched to include several pages.

3. The DB2 resets the CO indicator. Normally, at this
time the page is marked as “clean” in the GBP.
(If a new updated version of the page has been
written to the GBP while the CO indicator was set
on, then when the CO indicator is reset, the page
remains marked as changed in the GBP.)

It is important to note that once a page is marked
as clean it remains cached in the GBP. This gives
the performance advantage of refreshing pages
into the local buffer pools from the CF instead of
from disk.

A page marked as clean in the GBP becomes a
candidate to be “stolen” (reclaimed), using a
“least-recently used” methodology, so that the CF
storage can be reassigned as new pages are writ-
ten to the GBP.

Just as the castout write commands are batched
to minimize disk interactions, so too are the re-
sets of the castout indicators to minimize CF in-
teractions.

DB2 uses a robust algorithm for castout that has the
following important characteristics:

e Nonblocking: Transactions are not prevented from
read and write access to the data while they are
being processed for castout.

340 JOSTEN ET AL

* Fault tolerant: Failure of the DB2 that is casting out
does not disable the castout activity. Instead, it is
automatically taken over by some other DB2in the
data sharing group.

« Distributed load: No single DB2 in the data sharing
group is burdened with the entire castout load. In-
stead, the work is shared by the DB2s.

The castout work is performed by “castout engines,”
which run as MVS system request blocks (system dis-
patchable units of work) in the DBM1 address space.
Castout “ownership” is automatically assigned to DB2
members on a page set or partition basis. (The term
“page set” will be used throughout the remainder of
this paper to generically refer to a page set or a par-
tition of a partitioned page set, unless a distinction
needs to be made.) The first DB2 to update the page
set becomes the castout owner for that page set. Sub-
sequent DB2s that update the page set become the
“backup” owners. A backup owner may assume
castout responsibility for the page set if the original
owner releases its R/W interest, or if the original
owner should fail. (If a DB2 member fails, MVS au-
tomatically cleans up any castout indicators that have
been set for that member.)

Castout is scheduled based on changed-page thresh-
olds. This is similar to the way DB2 schedules writes
of changed database pages from the buffer pool to
disk today. There are two castout thresholds that DB2
monitors:

¢ Castout class threshold
¢ GBP threshold

Castout class threshold. In each GBP, the CF manages
a fixed number of castout class queues. (The current
CF models support a maximum of 1024 castout class
queues and DB2 requests the maximum.) Whenever
DB2 writes an updated page to the GBP, it must spec-
ify the castout class queue to which the page belongs.
DB2 internally maps the updated pages that belong
to the same page set to the same castout class queue,
using a hashing algorithm to assign a castout queue
number to a page set. Due to the limited number of
castout class queues, it is possible that more than
one page set gets mapped into the same castout class
queue.

When the CF write operation for a page completes,
as part of the feedback, the CF indicates how many
changed pages are in the associated castout class
queue. If this number exceeds the “castout class
threshold” value, then the DB2 member that is the

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

castout owner of the page set is notified to initiate
castout operations for the page set.

The castout class threshold default is 10 percent.
(Once the number of pages in the castout class queue
reaches 10 percent of the total number of pages in
the GBP, then the threshold is reached.) The instal-
lation can dynamically alter this value via an oper-
ator command.

GBP threshold. DB2s castout algorithm uses a two-
level logical hierarchy of DB2 members that commu-
nicate via messages. At the lower level of the hier-
archy are DB2 members in charge of castout for page
sets, and at the upper level is the DB2 member in
charge of castout for the whole GBP structure. The
DB2 at the higher level accomplishes its work by call-
ing upon services of DB2s at the lower level. This two-
level hierarchy ensures that castout will be done even
if thresholds are not being reached on the castout
class queues. (E.g., maybe the updates are evenly dis-
tributed among several castout class queues and no
single castout class has reached the threshold.) The
two-level hierarchy also ensures that castout process-
ing occurs for page sets that might not have a cast-
out owner (e.g., due to one or more DB2 member
failures).

The DB2 at the higher level of this castout hierarchy
is called the GBP structure castout owner. One DB2
member establishes itself as the structure castout
owner for a given GBP, and the other DB2 members
interacting with that GBP establish themselves as
backup owners for the structure. One of the backup
owners will assume the ownership if the original
owner terminates normally (e.g., the DB2 member is
stopped via an operator command) or abnormally
(e.g., the DB2 member fails).

On the completion of a timer interval, the structure
castout owner wakes up and queries the number of
changed pages in the GBP (with one CF interaction).
If the number of changed pages exceeds the GBP
threshold value, then the structure owner notifies a
subset of the page set castout owners on a round-
robin basis to castout enough pages to get back down
to areverse threshold. (Normally, the reverse thresh-
old is 10 percent below the GBP threshold. E.g., if
the GBP threshold is 50 percent, then the reverse
threshold is 40 percent.)

The GBP threshold default is 50 percent. (Once the

number of changed pages in the GBP reaches 50 per-
cent of the total number of pages in the GBP, then

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

the threshold is reached.) The installation can
dynamically alter this value via an operator com-
mand.

Reducing the overheads associated with buffer co-
herency. A key design goal of DB2 data sharing is that
overheads should be incurred only when there is ac-
tual inter-DB2 R/W sharing of the data. If there is no
such sharing, then transactions should require little
or no added path length for data sharing protocols.
The explicit hierarchical locking optimization allows
us to achieve this objective with respect to global
locking. But for inter-DB2 buffer coherency proto-
cols, we need a different mechanism, because the
caching of data in the buffer pool is not directly re-
lated to transaction locking. Said another way, the
“physical” (device-oriented) interactions that take
place at the buffer manager level are not directly re-
lated to the “logical” (transaction-oriented) inter-
actions that take place at the data manager level. For
example:

+ A transaction may hold an I1X lock on a table
space without ever actually updating any page
belonging to that table space. (This may be
especially common when the plan® is bound
with ACQUIRE(ALLOCATE) or in thread reuse
situations where the plan is bound with
RELEASE(DEALLOCATE).)

s Transaction locks are not obtained on index page
sets, so the cache coherency controls for index
pages could not be directly tied to transaction locks
held on the indexes (index coherency controls
would need to be tied to the locks held on the as-
sociated table spaces, which may overstate the ac-
tual intersystem read or write activity on the in-
dex).

s Pages belonging to a page set may remain cached
in the buffer pool long after transaction locks have
been released.

In this section we describe ways that buffer coher-
ency overhead can be avoided or reduced by the BM
being aware of the inter-DB2 physical read or write
activity on a page set. The key observation is that
overhead for page set coherency should exist only
if there is at least one updating DB2 and other DB2s
are using that page set. This may seem obvious; how-
ever, the challenge is for a DBMS to react appropri-
ately to the dynamics of intersystem interest changes.
We explain why dynamic adjustment of interest is
worth the trouble, rather than always incurring the
overhead required for the most conservative case.

JOSTEN ET AL. 341

Table 1 Page set physical interest level dynamics

The mechanism by which the BM dynamically tracks
the inter-DB2 interest is called “physical locking” (P-
locking). Physical locks (P-locks) are acquired by the
BM on the page set to declare the physical read or
write interest of a DB2 member in the page set. The
physical read or write interest reflects the actual phys-
ical access characteristics of the transactions that are
running on that DB2 member; this is in contrast to
the logical interest of the transactions, which is man-
ifested in the transaction locks (“logical locks,” or
L-locks) that reflect the logical data access intent of
the transactions. When dealing with buffer coher-
ency issues, it is the actual physical read or update
operations against the data that we are concerned
with, not the logical intent to read or update the data.
Thus the DB2 data sharing buffer coherency proto-
cols are controlled by P-locks, not by L-locks.

Table 1 shows how the BM component for each DB2
member declares its physical interest level in a given
page set. As the table indicates, a DB2 member can
have any one of three levels of physical interest in
a given page set:

* No interest. The DB2 member does not have the
page set physically open, and thus is not accessing
the page set for read or update operations. No P-
lock is held on the page set.

* ROinterest. The DB2 member has the page set open
for RO access, and thus transactions running on
this member are reading data belonging to the page
set, but not updating any of the data. The P-lock
on the page set is held in RO mode.

e R/W interest. The DB2 member has the page set
open for R/W access, and thus transactions running
on this member may be reading or updating data
belonging to this page set. The P-lock on the page
set is held in R/Ww mode.

The term pseudo open refers to the point in time
when the page set is first physically updated by any
transaction running on a DB2 member after the page
set was previously in an RO state. (Le., at pseudo
open, the BM converts the DB2 member’s physical

342 JOSTEN ET AL

interest on the page set from RO to R/W status.) Con-
versely, the term pseudo close refers to the point in
time when the BM determines that the page set has
not been updated recently and converts the DB2
member’s physical interest on the page set from R/W
state back to RO state. (In DB2, pseudo close is con-
trolled by the PCLOSET and PCLOSEN installation pa-
rameters.) By converting the member’s interest back
to an RO state, the BM can narrow the ranges of log
records that must be scanned for media recovery or
restart recovery for the page set.

It is important to note that P-locks are fundamen-
tally different from the transaction locks (L-locks)
discussed earlier. The purpose of P-locks is to en-
sure that the proper cache coherency protocols are
used in a multisystem environment; P-locks have no
meaning in a single-system environment. In contrast,
the purpose of L-locks is to control intertransaction
logical consistency for concurrent data access;
L-locks have meaning both in a single-system and
a multisystem environment. P-locks are owned by
the DB2 member, while L-locks are owned by the
transaction.

Another key difference between P-locks and L-locks
is that P-locks are negotiable. That is, if one of the
DB2 members changes the state of its P-lock on a re-
source (page set or partition) due to a change in the
physical access characteristics on the resource (e.g.,
the DB2 member is going from RO to R/W physical
interest on a page set) the other DB2 members that
hold a P-lock on that resource will be notified by their
respective LLMs of this change in the inter-DB2 in-
terest on the P-lock, and each DB2 member can then
dynamically make any necessary adjustments in the
cache coherency processing for the resource and then
downgrade or upgrade its P-lock state (negotiate the
P-lock) accordingly. The P-lock negotiation process
allows DB2 to react dynamicalily to the changes of in-
ter-DB2 interest and to enact intersystem buffer co-
herency protocols only when there is actual physical
inter-DB2 R/W sharing of a page set.

Table 2 summarizes the DB2 data sharing buffer co-
herency protocols that are enacted by a DB2 mem-
ber for each of the five different physical “access lev-
els” that the member may have for a particular page
set. A DB2 member’s access level for a page set de-
pends on two factors: (1) the member’s physical in-
terest level in the page set (RO or R/W), and (2) the
aggregate of the interest levels of the other DB2 mem-
bers (RO, R/W, or none). Using the P-locking mech-
anism just described, a DB2 member can dynamically

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Table 2 Cache coherency protocols for the page set access levels

adjust between access levels as the physical data ac-
cess characteristics of the workload vary over time.

If its access level on a page set is 2, 4, or 5, then the
member must use the GBP to maintain buffer coher-
ency for that page set. In these cases we say that for
this member the page set is group-buffer-pool-depen-
dent (GBP-dependent). If its access level on a page
set is 1 or 3, then the DB2 member does not need to
use the GBP to maintain buffer coherency for the page
set. In these cases we say that the page set is non-
GBP-dependent. Non-GBP-dependent page sets in-
cur only the insignificant overhead needed to ma-
nipulate the page set P-lock during page set open
and close events.

Note also that a DB2 member with a page set access
level of 4 can avoid the page validity check when it
finds a page belonging to that page set in its local
BP. In this case the member can take advantage of
its knowledge that all other DB2 members in the
group have at most RO physical interest in this page
set, and therefore any page belonging to it that this
member finds in its local BP cannot possibly have been
cross-invalidated by an update from another DB2.

Handling subpage concurrency. For DB2, the page
size is the same as the block size, where a block is
a unit of disk (or CF) that is read or written. There-
fore, when page-level transaction locking is in effect
with DB2 data sharing, DB2 can ensure that physical
consistency? of the pages is maintained, because the
global page lock ensures that only one transaction
process can update the page at a given time. How-
ever, when subpage concurrency is allowed (e.g., row-
level locking on data pages) the global transaction
lock is not held at the block level. Unless prevented,
transactions running on different DB2 members could
be allowed to update the same block (page) at the
same time, with one DB2 member possibly backing
out the updates of another as the block gets written
to external storage.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

In a single-system environment, DB2 obtains page
latches to ensure that physical consistency of the
pages is maintained; that is, only one transaction can
move the bits around on the page at a time, and read-
ers are not permitted to look at the page until the
updater has finished. DB2 supports exclusive (X) and
share (S) modes for its page latches.

A latch is a memory-based serialization technique;
that is, the control of which transaction holds the X
latch, or which transactions hold the S latch (and
which transactions are waiting for the latch) on a
given resource is accomplished by using compare-
and-swap logic on a specific area in virtual memory
associated with that resource (usually a control
block). However, in a multisystem data sharing envi-
ronment, because we now have distributed memo-
ries (each DB2 member has its own virtual memory
spaces), the memory-based latching technique no
longer guarantees serialization across all the trans-
actions. We need to extend the scope of the page
latch across all DB2 members to maintain the phys-
ical consistency of the page when subpage concur-
rency is allowed.

To do this, DB2 uses a P-lock on the page as a “glob-
al page latch.” The page P-lock has similar proper-
ties to the page set P-lock described eatlier. The page
P-lock is owned by the DB2 member (not the trans-
action), and the page P-lock is negotiable. Because
the P-lock is not owned by any transaction, the P-
lock on a page can be released before (or after) the
transactions that are updating the page reach a point
of consistency. Therefore, using the page P-lock, two
different transactions running on two different DB2
members can obtain X locks on different rows in the
same page and each transaction can update® its X-
locked row without requiring that the other trans-
action reaches a point of consistency. The scenario
could be as follows:

JOSTEN ET AL. 343

. Transaction 1 on DB2A acquires an X L-lock on
Row 1 of Page 1.

. Transaction 2 on DB2B acquires an X L-lock on
Row 2 of Page 1.

. Transaction 1 updates Page 1 in DB2A’s local BP
to reflect the new contents of Row 1. Updates to
pages are always done under the X page latch.
Before the update is allowed, DB2A acquires the
X mode P-lock on Page 1. Once the P-lock is ob-
tained, Transaction 1 moves the bits around on
Page 1 to update Row 1. The P-lock must be ob-
tained after the page latch is already held. This
order is important because it prevents the P-lock
from being “stolen” from the updating transac-
tion by another DB2 member (see step 5).

. Transaction 2 attempts to update Page 1 in DB2B’s
local BP to manipulate the contents of Row 2 on
the page. Before the update is allowed, DB2B re-
quests the X mode P-lock on Page 1. However,
the P-lock cannot immediately be granted because
DB2A still holds it.

. DB2A is notified by its LLM that DB2B is request-
ing the X mode P-lock on Page 1. DB2A responds
by writing its updated copy of Page 1 to the GBpP
(thus cross-invalidating any locally cached copy
of Page 1 that DB2B might have) and then releas-
ing its P-lock. The writing of the page to the GBP
must be done under the local page latch. Note
that the P-lock can be released even though
Transaction 1 still has not reached a point of con-
sistency.

. DB2B is granted the X mode P-lock on Page 1.
Under the P-lock on the page and the local page
latch, DB2B reads Page 1 into its local BP from the
GBP. This version of Page 1 reflects Transaction
1’s updates to Row 1.

. Transaction 2 moves the bits around on Page 1
to update Row 2.

. Transaction 1 commits its update to Row 1. The
force-at-commit protocol is invoked, but Page 1
is found to be “clean” in DB2A’s local BP (because
it had already been written in step 5), thus Page
1 is not written.

. Transaction 2 commits its update to Row 2. The
force-at-commit protocol is invoked, and Page 1
is found to be “dirty” in DB2B’s local BP, thus Page
1 (containing both Transaction 1’s latest update
to Row 1 and Transaction 2’s latest update to Row
2) is written to the GBP (and DB2A’s locally cached
version of Page 1, which does not reflect Trans-
action 2’s latest update to Row 2, is cross-inval-
idated).

344 JOSTEN ET AL.

Page P-locks are not required in all cases—they are
only required when accessing a GBP-dependent page
set and subpage concurrency is allowed on the page
and the page access is one of the following:

1. The transaction is updating the page. The page
P-lock is obtained in X mode to guarantee inter-
DB2 write-write serialization on the page.

2. The transaction is reading the page and must have
the guarantee that it is operating against the most
recent version of the page. The page P-lock is ob-
tained in S mode. In general, this means that only
those transactions with an isolation level of re-
peatable read” need to get the S mode page P-
lock.

It is important to note that page P-locks are only re-
quired when the page set is GBP-dependent. If the
page set is non-GBP-dependent, the page P-lock is
not required. So by dynamically tracking the inter-
DB2 physical interest on the page set, the added cost
of page P-locking can be avoided if the page set is
not physically inter-DB2 R/W shared.

Itis also important to note that the P-lock is system-
owned, not transaction-owned. So if a transaction
needs to access a page in a manner that requires a
P-lock on the page, the P-lock may already be held
by that bB2 member due to a read or update to the
page from a previous transaction on that DB2.

Using GBP as a global cache. Because the access
speed of the CF is significantly faster than that of
DASD, there may be a price-performance gain
achieved by caching clean pages of data in the GBP
when heavy inter-DB2 sharing is expected on a page
set. Caching clean pages in the GBP can reduce the
number of disk accesses by allowing pages to be read
from DASD once, and thereafter be retrieved from
the GBP.

The GBPCACHE clause on a CREATE/ALTER
TABLESPACE/INDEX statement allows the user to
specify how the GBP should be used for the page set
(or partition) to support inter-DB2 sharing activity
in the DB2 data sharing environment. A GBP can be
used by page sets that have different sharing require-
ments. To facilitate this support, the GBPCACHE
clause allows the specification of CHANGED or ALL.

For a GBP-dependent page set with the GBPCACHE
CHANGED (this is the default) attribute, the GBP is
used only for coherency, and therefore DB2 only
writes updated pages to the GBp. Clean pages are

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

required to be registered to the GBP for cross-inval-
idation purposes only. Note that when registering a
locally cached clean page to the GBP, the CF only has
to allocate a directory entry (without the backing
storage for the data) if the page is not currently reg-
istered or cached in the GBP. If a local hiperpool ex-
ists, it is used as another level cache for clean pages
that belong to GBPCACHE CHANGED type page sets.

If a page set is defined with the GBPCACHE ALL at-
tribute, in addition to writing the updated pages to
the GBP, DB2 will also write the clean pages to the
GBP as they are read in from DASD. In this case, the
GBP is used to improve read performance as well as
to maintain coherency. To prevent double caching,
clean pages are not cached locally in a hiperpool, if
one exists, for GBPCACHE ALL type page sets.

Logging and data recovery

When a DBMS is extended for SDi or SDa, one of the
key decisions is whether or not to support a real-time
merged log. For the purposes of this discussion, the
merged log implies:

e The log sequence number (LSN) assigned is a
monotonically increasing number across the data
sharing group.

* Itis possible to read the log records merged across
all systems by providing their LSNs.

The choice of supporting a merged log or not affects
restart recovery, media recovery, and buffer coher-
ency schemes. When an existing DBMS is being mod-
ified for SDi or SDa, it may not be practical to sup-
port a merged log because of development and
migration costs. The migration could be of both logs
and data. However, if a merged log is not used, then
each system will have its own log and assign its LSNs
independently. If the DBMS keeps the LSN of the last
update to the page in the page header? then the re-
covery algorithm assumes that the LSN is a mono-
tonically increasing number. When LSNs are assigned
independently by each DBMS instance and the page
can be updated by different systems, the LSN in the
page header is no longer a monotonically increas-
ing number, and the recovery algorithm will not work
correctly.

The solution to this problem is to redefine the se-
mantics of the LSN field as the version identifier (id)
of the page, which is a monotonically increasing num-
ber. The version id is increased each time the page
is updated. For restart recovery, the version id is

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

tracked in the log record. Therefore, the recovery
algorithm would apply the following rule: if the ver-
sion id in the log record is greater than the version
id in the page-LSN field, then apply the log record.?”

The advantages of this approach are that the log
code, the log data sets, and the databases need not
be migrated to move from the single-system to the
multisystem data sharing architecture. However, the
log records need to be extended.

To support the log merge capability, DB2 relies on
the sysplex timer to provide a synchronized time
source across systems, In the data sharing environ-
ment, the log record sequence number (LRSN) is a
6-byte value equal to or greater than the 8-byte time
stamp value truncated to six bytes. DB2 uses the LRSN
for data page versioning. A key feature of this mech-
anism is that the LRSNs assigned are group-wide
unique without having a global counter. In the non-
data-sharing environment, DB2 continues to use the
log relative byte address for data page versioning.*

Because the 1RSN is derived from the first six bytes
of the time stamp, we must be careful that two con-
secutive updates to the same page are not made us-
ing the same LRSN value; the first six bytes of the
time stamp will increment once every 16 microsec-
onds, so if two updates are made to the same page
within the same 16 microsecond interval, the second
update could use the same LRSN as the first, thus not
increasing the page version id from one update of
the page to the next. To prevent this from happen-
ing, when generating the LRSN value for an update
to a page, DB2 always passes the existing LRSN page
version id to the DB2 log manager, and the log man-
ager always ensures that the new LRSN value is higher
than the previous one.

When enabling an existing DB2 subsystem for data
sharing, no database migration is necessary to con-
vert from using relative-byte-address page version-
ing to using LRSN page versioning. The system clock
moves faster than the RBA value, so a higher page
version id is always assigned.

The log component is structured with a local log man-
ager that resides in every DB2 member and writes to
its own BSDS and log data sets. These BSDSs and logs
must reside on shared DASD, because whenever data
recovery requires that a merged log stream be ap-
plied to the data, the log-merge function will, on be-
half of the recovery process, read the DB2 member
log records that are needed for the recovery and

JOSTEN ET AL. 345

merge them in time sequence order. The log-merge
process may run on any DB2 member in the group.

To restart a DB2 subsystem, only the subsystem’s log
is needed; no merging is necessary.

CF-related failures

The following two types of CF-related failures may
occur:

e The failure of a CF itself
¢ The failure of an attachment of a CPC to a CF

When a CF-related failure occurs that affects one or
more DB2-managed CF structures (SCA, lock struc-
ture, or GBPs), then DB2 will take recovery actions
to ensure that data integrity is maintained in the data
sharing group. Of course the goal of maintaining data
integrity is most important; however, the DB2 CF re-
covery algorithms also attempt to minimize the ef-
fect of the failure on DB2 users and applications and
to return to full data sharing operations as soon as
possible. While the recovery actions are in progress,
there may be degraded service or even some DB2 data
that are unavailable.

In order for DB2 CF recovery to work properly, a sys-
plex failure management (SFM) policy must be de-
fined and activated. The SFM policy must have
CONNFAIL(YES) specified, and WEIGHT values should
be appropriately assigned to the systems in the sys-
plex. For simplicity, the discussion in this section as-
sumes that this has been done.

CF failures in the SCA and lock structures. When
the SCA or lock CF structures are lost due to a CF
failure, DB2 (for the SCA) or IRLM (for the lock struc-
ture) will automatically rebuild the lost information
in a new structure in the same or different CF. (The
most likely scenario would be that entire CF failed,
so that the information would have to be rebuilt into
a different CF.) The information is rebuilt from the
aggregation of information that resides in the vir-
tual storage areas of the DB2 and IRLM members
across the group. (Also, for the SCA, the BSDSs may
be used to rebuild some of the lost information.)

The dynamic rebuilding of these CF structures nor-
mally takes a few tens of seconds. All access requests
to these structures are suspended until the rebuild
completes. Because access frequencies for the SCA
are low, the disruption caused by rebuilding it is usu-
ally minimal. However, the lock structure is usually

346 JOSTEN ET AL

accessed relatively frequently, and transactions may
experience a delay (and some lock time-outs may re-
sult) while the dynamic rebuilding of the lock struc-
ture is in progress.

If there are failed or quiescent DB2 members at the
time of the CF failure, the dynamic rebuilding of the
SCA or lock structure can still proceed.

If rebuilding the SCA or lock structure fails for any

reason (the most common reason would be that there
is no alternate CF in which to rebuild), then all DB2

When a CF-related failure
occurs that affects its
structures, DB2 takes actions
to ensure data integrity.

and IRLM members in the group abnormally termi-
nate, and the lost SCA or lock structure must be re-
built from the recovery logs by the group restart pro-
cess. Note that this implies that if only one CF is
configured into the sysplex, this CF constitutes a sin-
gle point of failure for the DB2 data sharing group.
If two or more CFs are properly configured, then it
takes a double failure (an initial CF failure followed
by some hardware or system software failure during
the rebuilding) to require a group restart.

If the entire sysplex loses power, then group restart
will be needed only if the CFs in which the SCA and
lock structure were allocated are not configured for
nonvolatility. If the SCA and lock structures persist
across the power outage, then each DB2 member can
restart individually as the power is restored to each
system.

CF failure in the GBPs. When a GBP structure is lost
due to a CF failure, all changed data that belong to
GBP-dependent page sets must be recovered from
DASD and the merged DB2 logs. A key point is that
the recovery proceeds from the DASD version of the
data; image copies are not needed. Dynamic rebuild-
ing, as done for the SCA and lock structures, is not
feasible for the GBPs, because DB2 uses the GBP as
a store-in cache, and so there is no guarantee that
the changed pages that were lost in the GBP are still

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

in virtual memory somewhere—the changed GBP
pages must be recovered from the logs.

When DB2 receives notification that a GBP has been
lost, one of the DB2 members (the GBP structure cast-
out owner) automatically initiates a process called
damage assessment (DA). The DA process, which nor-
mally completes within a few seconds, determines
which GBP-dependent page sets {or partitions) were
using the failed GBP, and marks each of those ob-
jects to be in GBP recovery pending (GRECP) status.
DB2 can complete the DA process quickly because it
does not need to read the merged log in order to
determine which page sets were GBP-dependent. In-
stead, it can quickly consult the P-lock states of the
page sets using the associated BP. (The P-lock state
indicates whether or not the page set is GBP-depen-
dent, as described earlier.) This technique is espe-
cially valuable if there are failed DB2 members at the
time that DA is being done; DB2 can quickly query
the retained page set P-locks of the failed members
to determine if any further page sets were GBP-de-
pendent and need to be recovered.

Once DA completes, each DB2 member disconnects
the GBP, which can be reallocated in the same or a
different CF. DB2 does not allow a new GBP instance
to be allocated while DA is in progress.

The page sets that are marked as GRECP remain un-
available for access until they are recovered. Once
a page set is marked as GRECP, it is no longer GBP-
dependent and can be recovered without the GBP
being available. Normally the DB2 START DATABASE
command is used to do the recovery. DB2 automat-
ically determines which log ranges must be scanned
from each DB2 member, and then merges those log
records in time-sequence order. The number of log
records that need to be scanned and merged is de-
termined by the GBP checkpoint.

The purpose of the GBP checkpoint is to figure out
and record the oldest log time stamp required to be-
gin the log merge to recover lost changed pages in
the GBP. The GBP checkpoint is controlled by a time
interval (elapsed time) that can be set by the user
via an operator command. (The default is every eight
minutes.) The GBP checkpoint is performed by the
GBP structure castout owner, which:

1. Initiates the castout processes, asking every page
set castout owner to flush all changed pages from
the castout class queues to DASD

2. Gets the restart REDO LRSN log point for each

IBM SYSTEMS JOURNAL, VOL 38, NO 2, 1997

sharing DB2. This is really the oldest “write pend-
ing” for the DB2 member and may be earlier than
the oldest changed page in the GBP—perhaps the
change never got to the GBP, or got to the GBP
after the checkpoint process completed (and be-
fore the failure occurred). The member REDO
LRSN values are kept in the sCA. Each DB2 pe-
riodically updates its own REDO LRSN value. (It
is normally done when the DB2 member takes its
system checkpoint.)

3. Scans the GBP directory entries to obtain the ear-
liest LRSN across all changed pages in the GBP.
This is necessary because the checkpoint does not
wait for the castout flush (see step 1) of the GBP
to finish. The flush will normally complete by the
start of the next GBP checkpoint cycle. Note that,
for changed pages that are being castout, their
restart REDO LRSNs (kept in the GBP) will not be
moved forward until the castout DASD writes are
completed. Therefore, there is no data integrity
problem if DB2 initiates another GBP checkpoint
before the DASD writes are completed for all cast-
out pages that were scheduled by carlier GBP
checkpoints.

4. Records the LRSNs obtained in steps 2 and 3 in
the GBP checkpoint record residing in the SCA
(and backed up in the BSDS). They will be used
as the “GBP recover LRSNs” by the DA process
when marking page sets as GRECP. These recover
LRSNs are associated with the GRECP page sets and
are used to determine the scan starting points in
each member’s log for the GBP-dependent page
sets. The starting point for each member is the
lower of the member’s REDO LRSN value and the
value of the GBP LRSN obtained in step 3.

If the entire sysplex loses power, then DA will be
needed only if the CFs in which the GBPs were allo-
cated are not configured for nonvolatility. If the GBPs
persist across the power outage, then each DB2 mem-
ber can restart individually as the power is restored
to each system and can connect back to the GBPs with-
out any loss of data.

DB2 Version 5 delivers significant enhancements in
the area of GBP failure recovery.

CF attachment failures. Attachment failures be-
tween DB2 and the coupling facility are detected by
the XES component of MVs, which notifies the af-
fected DB2 members. Normally only one DB2 mem-
ber is run per MVS system.

JOSTEN ET AL 347

DB2 connectivity loss to the SCA or lock structure.
When a DB2 member loses connectivity to the SCA
or Jock structure, there are two choices: (1) fail the
affected member, or (2) dynamically rebuild the
structure into another CF, which may have better con-
nectivity. The choice depends on the importance of
the work running on the Mvs systems that have lost
connectivity relative to the importance of the work
on the MVS systems that have not lost connectivity.
MVS determines the relative “importance” of the MVS
systems by consulting the system WEIGHT values, as
specified by the user in the active SFM policy, and
the REBUILDPERCENT value for the CF structure, as
specified by the user in the active coupling facility
resource management policy. If the magnitude of the
impact (as determined by the SFM WEIGHT values)
is greater than the REBUILDPERCENT value, then DB2
or IRLM will rebuild the structure. Otherwise the af-
fected members will terminate so that work being
done on the other data sharing members can con-
tinue without being disrupted by rebuilding a CF
structure.

DB?2 connectivity loss to GBPs. The affected DB2 mem-
ber responds to the loss of GBP connectivity by qui-
escing all its access to page sets dependent on that
GBP, and then disconnecting the GBP. The affected
DB2 remains up since it can still provide service (al-
beit a degraded mode of service) to access data that
were not dependent on the disconnected GBP. Users
running on the affected DB2 receive a “resource un-
available” condition if they try to access the affected
GBP-dependent page sets until (1) the CF attachment
problem is fixed, or (2) the member is stopped and
restarted on another system with connectivity to the
GBP, or (3) the GBP is reallocated on another CF to
which this member has connectivity.

Transactions in progress at the time the GBP con-
nectivity was lost that try to write their changed pages
to the GBP receive a “no connectivity” return code.
The buffer manager responds to this condition by
adding the pages to the logical page list (LPL) for the
page set. The LPL is a list of pages that are tempo-
rarily inaccessible because DB2 incurred problems
when attempting to write them to external storage.
The pages can be recovered using the current DASD
or GBP version of the page as the base for the re-
covery (the image copy is not needed). If the LPL
recovery fails (e.g., because the disk medium has
been damaged), then the page is added to the write
error page range and must be recovered using the
image copy as the recovery base.

348 J0STEN ET AL

Group restart. Group restart is the process of re-
building lost SCA or lock structure information from
the DB2 recovery logs when these CF structures are
lost due to CF failures and DB2 or IRLM was not able
to dynamically rebuild the lost structure. Group re-
start should be very rarely needed if two or more
CFs are configured into the sysplex. Group restart
requires information from the logs of all nonquies-
cent DB2s in the group to rebuild the SCA or the lock
structure, as follows:

* To rebuild the SCA, the current status rebuild (CSR)
phase of restart must be performed by reading each
member’s log forward from the last complete
checkpoint. No DB2 member can proceed beyond
the CSR phase of restart until CSR has been per-
formed on behalf of every member.

* To rebuild the lock structure, first the CSR phase
of restart must be performed for each member, as
above. Once CSR is complete for every member,
then the historic status rebuild (HSR) phase of re-
start must be performed for every member. This
phase also requires reading each member’s log for-
ward from the last complete checkpoint. No DB2
member can proceed beyond the HSR phase of re-
start until HSR has been performed on behalf of
every member.

If both the SCA and the lock structure were lost, then
CSR needs to be done only once for each member.

Group restart is initiated by restarting one or more
DB2 members (with the START DB2 command). DB2
restart processing automatically determines whether
or not group restart is necessary. If group restart is
initiated, then DB2 automatically handles the syn-
chronization of the various phases of restart across
the members.

During group restart, all restarting DB2s rebuild the
SCA or lock structure from information contained
in their logs. If not all members of the group are re-
started, then the started DB2s carry out group restart
on behalf of the nonstarting DB2s by reading their
logs. (If a DB2 member was quiesced normally at the
time of the CF failure, then its logs do not need to
be scanned for group restart.) Although one DB2 can
perform group restart on behalf of the group, it is
usually significantly faster if all of the nonquiescent
members are restarted so that the group restart log
scans can be performed in parallel.

IBM SYSTEMS JOURNAL, VOL. 36, NO 2, 1997

Summary

The sDa architecture delivers the availability, work-
load balancing, and flexible growth benefits of SDi,
but through use of the coupling facility SDa can avoid
the high overheads of frequent disk /0 and inter-
system message passing associated with SDi. Al-
though not discussed in this paper, the architecture
is also used for both interquery and intraquery par-
allelism.

We have shown in this paper how DB2, an industrial-
strength relational DBMS for the $/390 environment,
has been extended from its single-system roots to im-
plement SDa using the CF for global locking and in-
tersystem buffer coherency. Use of the CF is the key
factor, allowing multisystem data sharing with good
performance characteristics. In addition, we have de-
scribed several optimizations that DB2 employs to
eliminate unnecessary interaction with the CF, thus
further reducing the overhead for data sharing,
global locking, and buffer coherency.

We have described some of the recovery consider-
ations for multisystem data sharing, and, specifically,
DB2’s implementation of retained locks, recovery log-
ging, and CF failure recovery to ensure that data in-
tegrity is maintained across the failure of any hard-
ware or software element in the sysplex. DB2’s robust
design for data sharing builds on the strengths of the
/390 Parallel Sysplex to provide DB2 users with un-
precedented levels of capacity, availability, and par-
allelism.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Digital Equipment Cor-
poration or Tandem Computers Inc.

Cited references and notes

1. K. Shoens, “Data Sharing vs Partitioning for Capacity and
Availability,” IEEE Database Engineering 9, No. 1, 10-16
(March 1986).

2. M. Stonebraker, “The Case for Shared Nothing, IEEE Da-
tabase Engineering 9, No. 1, 4-9 (March 1986).

3. R. J. Peterson and J. P. Strickland, “Log Write-Ahead Pro-
tocols and IMS/VS Logging,” Proceedings 2nd ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, At-
lanta, GA (March 1983), pp. 216-243.

4. J. Strickland, P. Uhrowczik, and V. Watts, “IMS/VS: An
Evolving System,” IBM Systems Journal 21, No. 4, 490-513
(1982).

5. A. Yamashita, “Data Base Integrity at Emergency Restart
in Data Sharing,” IBM Invention Disclosure SA882-0110,
IBM Technical Disclosure Bulletin 26, No. 2, 863 (July 1983).

6. K. Shoens, I. Narang, R. Obermarck, J. Palmer, S. Silen,

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

21.

22.

I. Traiger, and K. Treiber, “Amoeba Project,” Proceedings
IEEE Compcon Spring ’85, San Francisco, CA (February
1985).

. A. Joshi, “Adaptive Locking Strategies in a Multi-Node

Shared Data Model Environment,” Proceedings 17th Inter-
national Conference on Very Large Data Bases, Barcelona,
Spain (September 1991), pp. 181-191.

. N. Kronenberg, H. Levy, and W. Strecker, “VAXclusters: A

Closely-Coupled Distributed System,” ACM Transactions on
Computer Systems 4, No. 2, 130-146 (May 1986).

. T. K. Rengarajan, P. Spiro, and W. Wright, “High Availabil-

ity Mechanisms of VAX DBMS Software,” Digital Technical
Journal, No. 8 (February 1989).

C. Mohan, K. Britton, A. Citron, and G. Samaras, “Gener-
alized Presumed Abort: Marrying Presumed Abort and SNA’s
LU 6.2 Commit Protocols,” Proceedings International Work-
shop on Advanced Transaction Models and Architectures, Goa,
India (August-September 1996); also available as IBM Re-
search Report RI8684 from the IBM Almaden Research Cen-
ter.

K. Shoens and K. Treiber, Method for Lock Management, Page
Coherency, and Asynchronous Writing of Changed Pages to
Shared External Store in a Distributed Computing System, U S.
Patent 4,965,719, IBM Corporation (October 1990).

The Tandem Database Group, “NonStop SQL: A Distrib-
uted, High-Performance, High-Availability Implementation
of SQL,” Proceedings 2nd International Workshop on High Per-
formance Transaction Systems, Asilomar, CA (September
1987), pp. 60-104; also in Lecture Notes in Computer Science
359, D. Gawlick, M. Haynie, and A. Reuter (Editors), Spring-
er-Verlag, NY (1989).

Teradata DBC/1012 Data Base Computer Concepts and Fa-
cilities—Release 3.1, Document Number C02-001-05, Tera-
data Corporation (May 1988).

D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker,
H.-I. Hsiao, and R. Rasmussen, “The Gamma Database Ma-
chine Project,” IEEE Transactions on Knowledge and Data
Engineering 2, No. 1, 44-62 (March 1990).

The use of the term “data sharing” in this paper is sometimes
used to refer to the DB2 V4 data sharing function, which uses
an SDa architecture. We do not use “data sharing” as a syn-
onym for SDij, as in Shoens (Reference 1).

A “single point of failure” is a system component that, if it
fails, has no backup; i.e., failure at that point causes the en-
tire system to fail.

ITSC DB2 for MVS/ESA Version 4 Data Sharing Performance
Topics, $G24-4611, IBM Corporation (1995); available from
IBM branch offices.

These figures do not include an estimated 3 percent fixed MVS
sysplex overhead.

The time that it takes to interact with the CF for a global lock
will depend on the processor type on which the CF is run-
ning and also on the speed (and length) of the CF links.

20. C.Mobhan, B. Lindsay, and R. Obermarck, “Transaction Man-

agement in the R* Distributed Data Base Management Sys-
tem,” ACM Transactions on Database Systems 11, No. 4,378 —
396 (December 1986); also available as IBM Research Report
RJ5037 from the IBM Almaden Research Center.

DB2 only uses the force-at-commit policy if there is actual
“physical” inter-DB2 R/W interest on a page set or partition.
The inter-DB2 interest level is dynamically tracked by DB2,
as explained elsewhere in this paper.

A “plan” is the control structure produced during the appli-
cation bind process and used to process SQL statements en-
countered during statement execution.

JOSTEN ET AL.

349

23. By “physical consistency” we mean that only one transaction
at a time can be moving bits around on a given page. If mul-
tiple transactions were allowed to concurrently modify a page
at the same instant in time, then the updates may interfere
with one another, thus rendering the page physically incon-
sistent.

24. We use the term “update” to generically refer to any SQL
INSERT, UPDATE, or DELETE command.

25. Repeatable read (RR) is the isolation level that provides max-
imum protection from other executing application programs.
‘When an application program executes with RR protection,
rows referenced by the program cannot be changed by other
programs until the program reaches a commit point.

26. This technique is used to recover the page during restart, ap-
plying the “redo” log records where the LSN is greater than
the LSN in the page header. It is the consequence of the
DBMS not writing the updated page to disk at commit time.
DB?2 uses this approach.

27. C. Mohan, L. Narang, and J. Palmer, A Case Study of Prob-
lems in Migrating to Distributed Computing: Page Recovery Us-
ing Multiple Logs in the Shared Disks Environment, IBM Re-
search Report RJ7343 (March 1990); available from the IBM
Almaden Research Center.

28. R. Crus, “Data Recovery in IBM Database 2,” IBM Systems
Journal 23, No. 2, 178-188 (1984).

General references

C. Carr, R. L. Huddleston, and J. Strickland, Method and Means
for the Retention of Locks Across System, Subsystem, and Com-
munication Failures in a Multiprocessing, Multiprogramming, Shared
Data Environment, U. S. Patent 4,480,304, IBM Corporation
(1985).

DB?2 for MVS/ESA Version 4 Data Sharing: Planning and Admin-
istration, SC26-3269-01, IBM Corporation (1995); available
through IBM branch offices.

D. Haderle and R. Jackson, “IBM Database 2 Overview,” IBM
Systems Journal 23, No. 2, 112-125 (1984).

IBM S§/390 Sysplex Overview: Introducing Data Sharing and Par-
allelism in a Sysplex, GC28-1208, IBM Corporation (1994); avail-
able through IBM branch offices.

1. Josten, T. Masatani, C. Mohan, I. Narang, and J. Teng, Efficient
Data Base Access Using a Shared Electronic Store in a Multi-Sys-
tem Environment with Shared Disks, U.S. Patent 5,408,653, IBM
Corporation (April 1995).

C. Mohan, “ARIES/KVL: A Key-Value Locking Method for Con-
currency Control of Multiaction Transactions Operating on B-
Tree Indexes,” Proceedings 16th International Conference on Very
Large Data Bases, Brisbane, Australia (August 1990), pp. 392-
405; also available as IBM Research Report RJ7008 from IBM
Almaden Research Center.

C. Mohan, “A Cost-Effective Method for Providing Improved
Data Availability During DBMS Restart Recovery after a Fail-
ure,” Proceedings 19th International Conference on Very Large Data
Bases, Dublin, Ireland (August 1993), pp. 368-379; also avail-
able as IBM Research Report RJ8114 from IBM Almaden Re-
search Center.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A Transaction Recovery Method Supporting Fine-Gran-
ularity Locking and Partial Rollbacks Using Write-Ahead Log-
ging,” ACM Transactions on Database Systems 17, No. 1, 94-162
(March 1992). A different version of this paper is available as IBM
Research Report RJ6649 from IBM Almaden Research Center.

C. Mohan and I. Narang, “Data Base Recovery in Shared Disks

350 JOSTEN ET AL

and Client-Server Architectures,” Proceedings 12th International
Conference on Distributed Computing Systems, Yokohama, Japan
(June 1992).

C. Mohan and I. Narang, “Recovery and Coherency-Control Pro-
tocols for Fast Intersystem Page Transfer and Fine-Granularity
Locking in a Shared Disks Transaction Environment,” Proceed-
ings 17th International Conference on Very Large Data Bases, Bar-
celona, Spain (September 1991), pp. 193-207. A longer version
is available as IBM Research Report RJ8017 from IBM Alma-
den Research Center.

C. Mohan and H. Pirahesh, “ARIES-RRH: Restricted Repeat-
ing of History in the ARIES Transaction Recovery Method,” Pro-
ceedings 7th International Conference on Data Engineering, Kobe,
Japan (April 1991), pp. 718 -727; also available as IBM Research
Report RJ7342 from the IBM Almaden Research Center.

MVS/ESA Setting up a Sysplex, GC28-1449-02, IBM Corporation
(1995); available through IBM branch offices.

“Qracle Version 6.2 for Loosely-Coupled Systems,” FT Systems
Newsletter, O. Serlin, Editor, No. 101/102 (January/February 1991).

K. Shoens, Integrated Hierarchical Locks for Data Sharing, IBM
Invention Disclosure SA8-88-0058 (1988).

Accepted for publication January 28, 1997.

Jeffrey W. Josten IBM Software Solutions Division, Santa Teresa
Laboratory, 555 Bailey Avenue, P.O. Box 49023, San Jose, Cali-
fornia 95161-9023 (electronic mail: josten@vnet.ibm.com). Mr. Jos-
ten is a senior programmer with the DB2 development group at
the Santa Teresa Laboratory. He was the team leader of the DB2
Version 4 data sharing development effort, and continues in that
role as enhancements to the data sharing function are delivered
in future DB2 releases. He joined IBM in 1985, and has been a
member of the DB2 development team since 1987. His design
and development activities cover a broad range of DB2 compo-
nents, with emphasis on the locking and buffer management func-
tions. He holds several software patents in the area of multisys-
tem database sharing and is a frequent conference speaker on
DB?2 topics. Mr. Josten holds a B.S. degree in mathematics and
computer science from the University of Wisconsin at Madison.

C. Mohan IBM Almaden Research Center, 650 Harry Road, San
Jose, California 95120 (electronic mail: mohan@almaden.ibm.com).
Dr. Mohan has been a research staff member at IBM’s Almaden
Research Center since 1981 and a member of the IBM Academy
of Technology since 1992. He is currently leading the Exotica proj-
ect on advanced transaction management and workflow systems.
His research ideas are incorporated in numerous products (DB2,
$/390 Parallel Sysplex coupling facility, SQL/DS, MQSeries, and
others). Dr. Mohan received the ACM SIGMOD Innovations
Award in 1996 for “innovations that have been truly outstanding
and that have made a major impact in the database field.” He
has also received many IBM awards, including the 9th Plateau
Invention Achievement Award for his patent activities. In 1997
he was honored as one of IBM’s Master Inventors. He was the
Americas Program Chair for the 1996 International Conference
on Very Large Data Bases. He is an editor of the VLDB Journal
and of Distributed and Parallel Databases—An International Jour-
nal. Dr. Mohan received a Ph.D. degree in computer science from
the University of Texas at Austin in 1981 and a B. Tech. in chem-
ical engineering from the Indian Institute of Technology, Ma-
dras in 1977.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Inderpal Narang IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (electronic mail: narang
@almaden.ibm.com). Mr. Narang is a Senior Technical Staff
Member in the Almaden Research Center. He joined IBM in 1981
and has been working with the database products and their mul-
tisystem coupling aspects. His key contributions have been in the
architecture and algorithms of the coupling facility and DB2 data
sharing in the coupled systems, and he received an IBM Corpo-
rate Award for this work. He has published papers and holds sev-
eral patents in these areas. Currently, he is working on the
DataLinks architecture, which extends the database management
of data to files in the file systems.

James Z. Teng IBM Software Solutions Division, Santa Teresa
Laboratory, 555 Bailey Avenue, P.O. Box 49023, San Jose, Cali-
fornia 95161-9023 (electronic mail: jteng@vnet.ibm.com). Dr. Teng
is a Senior Technical Staff Member who has worked on DB2 since
1980. He has extensive knowledge in areas of database locking,
data recovery, data management, buffer pool management, and
performance-related database technology. Dr. Teng is the lead
architect in DB2 for the System/390 Parallel Sysplex architecture.
He has obtained numerous software patents for IBM on relational
database technology and has published several papers in tech-
nical journals. He is also a frequent speaker at the SHARE,
GUIDE, IDUG (International DB2 User’s Group), and DB2 con-
ferences. Dr. Teng received a master’s degree in computer sci-
ence and a Ph.D. degree in statistics from the University of Wis-
consin at Madison.

Reprint Order No. G321-5646.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

JOSTEN ET AL. 351

