The importance of
systems management
for a Parallel Sysplex

IBM S/390% Parallel Sysplex™, a multisystem
parallel processing environment, provides
benefits in terms of reliability, availability, and
the total cost of computing. These benefits,
however, bring about a systems management
challenge because of the increased number of
address spaces that need to be managed. This
paper describes how CICSPlex® System Manager
(SM) for MVS/ESA™ provides simplified systems
management of multiple cics® regions within a
sysplex environment. CICSPlex SM provides
workload-sensitive balancing of CICS
transactions, a single-system image for CICS
operations and monitoring, and general-purpose
thresholds for resource conditions within CICS. It
also describes how CICSPlex SM is integrated
with the MVS workload manager, the MVS
automatic restart manager, and automation
products such as NetView™ and the NetView
resource object data model (RODM).

his paper traces the evolution of CICS* (Custom-

er Information Control System) from its begin-
ning to its present-day configuration within the IBM
System/390* (5/390*) Parallel Sysplex*. After a brief
introduction to the systems management tools pro-
vided by CICS and the limitations of their use in the
Parallel Sysplex environment, the functions of the
CICSPlex* System Manager (SM) for MVS/ESA*
(Multiple Virtual Storage/Enterprise Systems Archi-
tecture) are described, with examples of how they
are integrated with other components of the Paral-
lel Sysplex solution.

Systems management is defined by the 1BM Open
Blueprint* as a high-level set of applications required
by an enterprise running a computer complex. These
applications are: business management, change man-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

0018-8670/97/$5.00 © 1997 IBM

by P. Johnson

agement, configuration management, operations
management, performance management, and prob-
lem management.

These applications cover all aspects of running an
enterprise-wide computer complex with multiple
platforms from multiple vendors: the integration of
new versions of system, vendor, and application code,
the redistribution of resources, the day-to-day op-
eration of the systems, the measurement of system
performance, the projection of trends and bottle-
necks, the detection and resolution of problems, and
the execution of many other tasks that allow com-
puting systems to process the applications that re-
ally matter—the business applications themselves.
All of this must be achieved, whether manually, with
some automation, or with complete automation.

Evolution of CICS

When cIcs was originally introduced, transaction
processing needs were significantly different from
those of today. Then the transaction processing needs
of a business were provided by a single CPU running
a single CICS region. Networks of terminal devices
were in their infancy, consisting of hundreds rather
than tens of thousands of resources. The CICS sys-
tem was normally started “cold” in the morning and

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

JoHnsoN 301

then shut down in the evening for batch processing
or software maintenance.

As the evolution of CICS progressed, and the de-
mands of businesses increased, the limitations of the
single CICS address space began to be reached. In-
creasing numbers of attached terminals and increas-
ing numbers and sophistication of applications all
contributed to the consumption of storage within the
CICS region, giving rise to virtual storage constraints.

At the same time, CICS could not fully utilize the
power provided by the introduction of multiproces-
sor machines. It ran all its tasks under a single task
control block (TCB); thus CICS, although it provided
a much faster dispatching mechanism than Mvs and
was more appropriate for transaction processing, was
not able to dispatch its work on multiple TCBs.

The requirements for availability of transaction sys-
tems were also evolving. No longer just the tool of
the “back office,” transaction processing was now be-
ing placed in the hands of the customer (for exam-
ple, a bank ATM). The availability of CICS could there-
fore be critical to the survival of the business.
Transaction processing systems were also in exten-
sive use in businesses where a large amount of the
company’s assets were at risk every day. A typical
example is a stockbroker system. Loss of the trans-
action processing system could mean the loss of mil-
lions of dollars. The failure of a CICS region, causing
complete loss of transaction processing ability for
even a few minutes, was no longer acceptable.

Birth of the CICSplex. In response to these growing
needs, CICS introduced the concepts of distributed
transaction processing, function shipping, ' and trans-
action routing. These were built upon the facilities
of multiregion operation (MRO) and intersystem
communication (ISC), and the ability to use individ-
ual CICS systems for a specific functional need. Ter-
minal-owning regions (TORs), application-owning re-
gions (AORs), and file-owning regions (FORs) were
introduced and the CICSplex was born (see Figure

N

Although the introduction of the CICSplex has
solved the problems of virtual storage and the uti-
lization of multiprocessor power, the availability is-
sue still remains. The failure of a TOR causes the loss
of system availability, because its connected termi-
nals are lost. Static routing to application-specific
AORs prevents one application from affecting the
availability of all applications. However, failure of

302 JoHNson

the AOR causes the loss of availability of its appli-
cation to all users. If the FOR fails, then access to its
data is lost to all applications.

In response, users partition their data among sev-
eral FORs and partition their network among several
TORs in an attempt to minimize these effects. How-
ever, new applications that require access to other
applications or data lead to the “spaghetti-like” net-
work that has become familiar today.

To compensate for the problems caused by single
failures, and to cope with peak demands on a given
processor, companies over-configured their systems.
The cost of computing on $/390-based hardware was
also becoming a critical issue, and many companies
considered cheaper technology.

CICSplex in a Parallel Sysplex. It was in this envi-
ronment that the Parallel Sysplex was conceived. The
problem of failure at a single point preventing the
access of data is eliminated by sharing data using the
coupling facility. The vTAM* (Virtual Telecommu-
nications Access Method) generic resource elimi-
nates the single point of failure problem for network
access to TORs and provides a single logical point of
“log on” for the end user. Application availability is
guaranteed by the ability to dynamically route trans-
actions to multiple AORs. The dynamic allocation of
TORs and AORs, along with data sharing, also solves
the over-configuration problem, as work can be
dynamically balanced across the sysplex in real time.
The introduction of CMOS {(complementary metal-
oxide semiconductor) technology has totally changed
the cost of computing.

The commonly proposed configuration within a Par-
allel Sysplex s displayed in Figure 2. Looking across
the figure, we see why this configuration is called
“horizontal striping.” We have three applications
available (A, B, and C). Identical copies of TORs and
AORs, with the same resources and access to data,
run in each MVS image. Any TOR can be accessed
through VTAM generic resources, providing session
balancing. Any AOR can run any of the applications
available in the CICSplex. Dynamic routing from
TORs to AORs is on an any-to-any basis. Each Mvs
image is a copy of the other (that is, the address
spaces and MVS images are clones of each other).

The cloning model and associated hardware and soft-
ware allows catering for peaks in demand (such as
at Christmastime) by adding processors, rapidly clon-
ing address spaces, and dynamically reconfiguring

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 1 Evolution of the CICSplex. In the figure A, B, and C represent user applications.

the workload without interruption to existing service.
The additional processors could be leased for the
peak period, rather than purchased, eliminating the
long-term investment of capital in hardware previ-
ously required. The recent introduction of software
packages such as CICS Transaction Server for 08/390*
(which integrates CICS and CICSPlex SM) has fur-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

ther reduced the software costs of managing such
an environment.

A more often-used configuration has clusters of CICS
regions (Figure 3). Clustering could be done to par-
tition systems for development, quality assurance,
and production. Figure 3 shows the same three ap-

JoHnsoN 303

Figure 2 Horizontal striping of applications

plications as Figure 2; however, a new version of A
(A’) has been introduced in some regions. Separa-
tion of certain applications may also be desirable,
for example, some applications may be capable of
bringing down a CICS region due to poor applica-
tion design, or different versions of the same appli-
cation may be in use by different sets of users.

Of course, many changes to the CICS product have
been made in order to execute within, and maximize
the potential of, the Parallel Sysplex.? In addition to
the subsystem enhancements, there are migration is-
sues that must be considered by the systems and ap-
plication programmers when moving to a Parallel

304 JonnsoN

Sysplex environment. Whether simple or complex,
the move needs to be planned. Some of these issues
are discussed in this paper.

Systems management tools. Although many of the
issues affecting CICSplexes have been resolved, the
increase in the number of CICS regions has brought
a new set of problems. Each region must be man-
aged and transactions must be dynamically balanced
within the CICSplex. Automating the running of the
CICS regions, tracking the various components of a
given transaction instance throughout the CICSplex,
and the dynamic nature of the number and physical
location of resources all contribute to increased com-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 3 Clustering of applications

" VTAM GENERIC RESOURGE ©

DATA ViA SHARING

plexity for the systems programmer, operator, and
help desk personnel. Of course, these same prob-
lems exist in traditional CICSplexes. The problem
is compounded by the increase in the number of CICS
regions being managed and the dynamic nature of
the configuration.

The key problem is that we now have many address
spaces to manage and the physical location of these
CICS resources may change. However, the only tools
to manage them are the single-address-space tools
provided by cics.” Similarly, third-party vendor ap-
plications act on a single address space, or at best

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

provide a single point of control but not a single-
system image.

In order to effect a change to the running CICSplex
we need to know where the resources reside (that
is, we need a topology map). This information is typ-
ically contained in an operations workbook that is
subject to change when new applications are moved,
changed, or added. Once we know the locations, we
must then sign on to each affected CICS region and
issue the appropriate command. Should the location
or number of the resources change, the operations
workbook must be updated. If the configuration is

JoHNsON 305

306 JonnsoN

as in Figure 2 the location of resources is simpler;
they exist in all clones. However, there is still the
problem of multiple copies of the applications. In
the more typical clustering environment of Figure
3, full knowledge of the resource topology is required
in order to navigate to the appropriate regions.

The problems of multiplicity and dynamically chang-
ing locations cannot be overemphasized. A simple
change in application code, followed by loading the
new code into CICS storage, is straightforward if there
is only one region. It is quite another thing if there
are 30, or even hundreds, of regions. Prior to the in-
vention of CICSPlex sM, it could take close to an
hour to achieve this apparently simple task. Using
CICSPIex sM, it can be achieved with a single com-
mand in seconds.

It is even more difficult to track a transaction thread
through a CICSplex. Each thread, although execut-
ing the same transactions, may be distributed differ-
ently each time it is run due to dynamic routing. To
track it we could write down the relevant informa-
tion, capture screen images, or have multiple win-
dows open at the same time displaying fragments of
information. With CICSPlex SM this correlation of
information is simply achieved.

What is required is a tool that provides access to the
data without regard to the physical location or the
number of instances of the resources, and is sensi-
tive to the dynamic nature of the CICSplex. User
interactions with the tool are then independent of
those properties. The tool must provide a single-sys-
tem image for systems management. CICSPlex sM
for MVS/ESA meets these requirements.

CICSPlex System Manager for MVS/ESA
V1R2

CICSPlex sM provides enterprise-wide single-system-
image systems management for CICS/ESA* V3.3 and
above, CICS/MVS* Vv2.1.2, CICS/VSE* v2.3, and CICS
0s/2* vz and v3. It is available as either a stand-alone
product or as a component of the CICS Transaction
Server for 05/390. In this paper we concentrate on
the capabilities it provides for the Parallel Sysplex
environment.*

In Figure 4 we see a typical Parallel Sysplex im-
plementation similar to Figure 2, but with the
CICSPlex sM address spaces added.

The principal components of CICSPlex SM are:

* The coordinating address space (CAS), which pro-
vides the connection point for the TSO (Time Shar-
ing Option) end-user interface (EUI)

* The CICS managing address space (CMAS), which
provides most of the CICSPlex sM function, includ-
ing the single-system image

¢ CICSPlex sM agent code, which resides in user CICS
systems that are to be managed by CICSPlex SM.
These CICS systems are referred to as managed ap-
plication systems (MASs).

Coordinating address space component. This com-
ponent provides a single point of control for the
CICSplex. A TSO session on the MVS image local to
the CAS connects to it and obtains access to all
CICSplexes that this CAS, or another CAS directly
connected to this one, knows about. Communica-
tion from TSO to local CAS is cross-memory commu-
nication;> CAS-to-CAS communication is via LU 6.2.°
For complete management from any CAS, all links
between all CASs (i.e., n[n — 1] links) must be de-
fined. A CAs provides a single point of control but
not a single-system image, which is provided by the
services within the CMAS.’

CICS managing address space component. Inter-
nally CICSPlex sM is similar to CICS, i.e., its func-
tions are provided via domains with associated ac-
tions.® The CMAS component provides basic
infrastructure services such as message, trace, and
program call. Locking services and event notifica-
tion are also provided to enable event-driven man-
agement of the CICSplex. This greatly reduces the
hardware cycles executed by the management code,
thereby maximizing the amount available for user
application code.

Data space acquisition, extension, and management
services are provided for various data types. These
data types range from simple storage blocks to more
complex data structures such as queues and lists. The
management services include addition, deletion,
merge, sort, and search facilities. Data spaces pro-
vide the ability to efficiently contain and communi-
cate the large amounts of data that could be involved
when a query is executed. (Consider the amount of
data that a query of active transactions could gen-
erate, if issued for 300 CICS systems.) Data spaces
also help minimize the execution time overhead
within the managed application systems.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 4 CICSplex with CAS and CMAS address spaces added

Data spaces are also used to shield user applications
from management code failure. Consider, for exam-
ple, dynamic transaction routing. It is essential that
failure of the management code should not seriously
affect the dynamic routing of application code. For
this reason, the data required to perform workload
management are kept in a data space that is acces-
sible by the routing code in the event of CMAS fail-
ure. (The data spaces are actually owned by a limited-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

| DATAVIA SHARING.

function address space started by the CMAS during
initialization).

Requests are distributed by a communications com-
ponent, built upon CICS MRO/SC (multiregion
operation/intersystems communication) or cross-
memory communication, as appropriate. It provides
logical connection services without regard to the
physical location of the originator or target system(s).

JoHnsoN 307

Routing of requests is based on an active CMAS-to-
CMAS topology map, and routing will occur through
the set of CMASs that have the least number of “hops”
between source and target. There is therefore no
need to connect every CMAS to every other CMAS.
The communications component also identifies to
the CAS the CICSplexes that this CMAS is able to man-
age. A request can be routed from the CAS to the
nearest CMAS that manages this CICSplex and its
communications component can then distribute the
request across the CMAS-to-CMAS network.

A real-time distributed topology component tracks
the location of every CICS system and its resources
within the CICSplex. Communications and topology
allow other components to direct and distribute re-
quests to both local and remote systems without re-
gard to their physical location or the number of in-
stances to be managed. The components that provide
operations, monitoring, real-time analysis, dynamic
workload management, and all the other functions
of CICSPlex sM are built on these basic functions.

CICSPlex SM agent code. The CICSPlex SM CMAS
code directs requests, extracts data, and processes
information. Eventually the request for information
or action will be passed via the communications com-
ponent to the MAS agent code for execution. This
code is responsible for accepting CICSPlex SM re-
quests, transforming them into various EXEC CICS re-
quests, and managing the responses from their ex-
ecution. It is also responsible for detecting topology
changes in the system and for interfacing to the dy-
namic routing code provided by CICSPlex SM.

A typical request flow. Consider a request from an
end user on TSO for information about where some
set of programs are currently defined within the
CICSplex. The user may do this simply to identify
where this program is currently defined, or in prep-
aration for loading an updated copy of the program
into CICS storage for execution. Suppose the program
exists on all AORs, as shown in Figure 4.

The request goes from TSO to the local CMAS via
cross-memory services. The local CMAS uses its to-
pology component to find all CMASs that have CICS
systems containing instances of the program. A sin-
gle request is then made to the communications com-
ponent, passing the set of remote CMASs (via
CICS MRO/ISC or MRO/XCF [cross-MVS communica-
tions] in this case). At each target CMAS, through its
topology component, the CICS systems managed by
this CMAS are found and the target MASs identified.

308 soHNsoN

The request is then forwarded to each target MAS
agent (via cross-memory communication), which is-
sues an EXEC CICS INQUIRE PROGRAM request and
obtains the response data. Each target MAS agent
puts the response data into a data space queue and
passes it back to the CMAS code. When responses
have been received from all local MAS agents, the
resultant queues are appended together, trans-
formed, and transmitted back to the originating
CMAS via the communications component. The orig-
inating CMAS appends together the result queues
from the various CMASs, then passes them back to
the TSO EUI code for presentation to the user.

Single-system image. Single-system image is sup-
ported across all the systems management functions
provided by CICSPlex SM. In fact, CICSPlex SM pro-
vides the ability to define a CICSplex in terms of its
constituent CICS systems. This is the default single-
system image. One can, however, define subsets of
cIcs regions within the CICSplex to reduce the scope
of the single-system image. These subsets can be
overlapping in content. Subsets could include all the
TORs in the sysplex, all the AORs in the sysplex, all
the CICS regions on a particular MVS image, or what-
ever logical groups are required.

By restricting the scope of the actions at the inter-
face, the end user can choose to affect any set of CICS
regions within the CICSplex at the logical level.
Should the location of the CICS systems change, (e.g.,
as aresult of MVS automatic restart manager [ARM]),
or the number of resources change (e.g., by adding
further cloned regions) no change in the interaction
at the end-user interface is required.

Single point of control. CICSPlex SM provides a sin-
gle point of control to manage the CICSplex via a
TSO end-user interface. It can be accessed on any
MVS image that has an associated CAS available for
connection. Information solicited from all the CICS
systems in the enterprise can therefore be presented
and acted upon from a single screen with a single
command.

Single points of control can, of course, be used to
support multiple concurrent users in multiple MVS
address spaces. In this way, centralized or decentral-
ized systems management can be provided accord-
ing to the specific needs of the enterprise. Access to
resources is controlled via RACF* (Resource Access
Control Facility) or any security-access-facility-
(sAF-) compliant security product at the appropri-
ate levels of granularity.

IBM SYSTEMS JOURNAL, VOL. 36, NO 2, 1997

Figure 5 Single-system image and single point of control

ﬁ&\mﬁﬁw ﬁ@%ﬁ%ﬂi&ﬁ@, 2

Figure 5 shows a CICSPlex sM user with a single point
of control and a single-system image. The “cloud”
represents a CICSplex, and the circles within it rep-
resent CICS regions. Contained within the regions are
CICS resources. In Figure 6 the user has multiple,
overlapping views of logical groups of systems. Here
each cloud represents a single-system image, but with
a smaller scope than the entire CICSplex.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Control
CICSplex-wide commands
Logical group selection

=i
i |
=
o |
Views

Resource map
Resource details
Resource interactions
Notification of updates

Navigation between views of data. CICSPlex SM pro-
vides three levels of views for a given resource type:
tabular, detail, and summary. Tabular views provide
key data for each instance of a resource within the
current scope of the request command. Detail views
provide details of all attributes of a given instance
of a resource. Summary views are generated from
tabular views by performing spreadsheet-like oper-

Jornson 309

Figure 6 Logical groups of systems

L CREDIT
lcHECK:

ations on the rows of data. Summarization rules for
individual attributes can be specified and summa-
ries on specific columns can be generated.

Navigation between views occurs via hyperlink fields.
Navigation can be within a resource type, as from
tabular to detail, or across resource types, for exam-

310 JoHnsoN

ple from transaction, to program, to program library.
This might be used if a transaction successfully ex-
ecutes in some regions, but not in others. Identify-
ing the target program libraries may uncover differ-
ent libraries being used for loading the same
program. Multiple views of several object types can
also be displayed simultaneously on a single screen.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 7 Operations TASK tabular view

17:27:05

170CT1996
ALT WIN ===>

—===> 1

CURR WIN

>Wl =TASK

CMD Task CICS Tran Run User
~-- Id--- System-- ID-- Sta ID------
10 PORDERSL ORDS RUN ECCLES
20 POR ORD8 RUN ECCLES
QRD7 SUS BCCLES

32 PINVENT INV3 RUN NOBLET

INFORMATION DISPLAY

Term LU Name Unit of Work Id Pri
ID-- —-—==-—= ——m-—mm— - ——=
S076 ICCS054 OA4A9137CLFGOO0L 285

o) CR4B/1IATCITOC001 2858
S076 ICCS054 OA4K9LI3TCLIFO0001T Z55

OA46204232R60001 100

5193

Figures 7 and 8 illustrate a typical help desk scenario.
An end user calls the help desk because his or her
application is “hung up.” All that the user provides
is the user identification. A request for all tasks as-
sociated with this user results in the display in Fig-
ure 7. It is apparent that part of the application is
suspended in PORDERS3. The hyperlink from the task
identification leads to the detail view for that spe-
cific region (Figure 8), where the cause is discovered.
(Sos means “short on storage.”)

This illustrates some of the power that CICSPlex sM
provides. This time the application ran in PORDERS3.
Next time, due to dynamic work balancing, it could
run in any of the other regions allocated to the
ORDERS application. A static map, such as an op-
erations book, is no longer appropriate in this rap-
idly changing environment.

Operations. CICSPlex SM provides a single-system
image; users can inquire and take actions on CICS
resources throughout the CICSplex. All CICS re-
sources and their attributes are supported by
CICSPlex sM. Disabling a transaction within the en-
tire CICSplex can be performed by a single com-
mand. Tracking down elements of a given transac-

1BM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

tion thread in the CICSplex is a simple matter with
CICSPlex sM, as shown in Figure 7.

Monitoring. The monitoring component of
CICSPlex sM provides equivalent views of all mon-
itoring and statistics data from the CICS systems in
real time. Information such as response time for
transactions and usage for the dynamic storage area
(DSA) across the CICSplex can be displayed.

Real time analysis. CICSPlex sM is not limited to
manual interaction, it also supports automation of
the operation of the CICSplex. This is provided via the
real-time analysis (RTA) component of CICSPlex SM.

RTA consists of the following components:

* System availability monitoring (SAM)
* MAS resource monitoring (MRM)
¢ Analysis point monitoring (APM)

All of these functions can cause manual notification
via the CICSPlex SM end-user interface, a message
to the MVS console, or an SNA (Systems Network Ar-
chitecture) generic alert for detection (and resolu-
tion) via an automation product. As we shall see in

JoHNsON 311

Figure 8 Operations TASK detail view

170CT1996

Network...... GBIBMIYA

Name...... IYKULAUL
LU Name......

LU62 Z2ndary. .

Current Suspend

RMT gsuspend Tn.
Elapsed Time. ..

RMI EBlapsed Tm.

17:30:45 ——=m--mmomm INFORMATION DISPLAY =----=---=—-—==——wm——oee o
CURR WIN ====> 1 ALT WIN ===>
Wl =TASK======TASKD====zPROD=====PROD=====170CT1996==17:27:05=CPSM====s=====]===
Task ID...... 53 CICS System.... PORDERS3 Dyn Tran Bck. . BACKOUT
TaskProf.. ... DFHCICST First Program.. CREDCHEK Deadlk TmOut. . 9]
Tran ID...... ORD7 Pricrity....... 1 Read Tmout.... ¢}
Tran Priorty. 1 Tran Class.... ORDERS Runaway Time. . 20000
Facility ID Running Status. SUSPEND| Trans Dumps... NOTRANDUMP
Facility..... TASK |suspend Type. .. S05| CmdLvl Secur. . CMDSECNC
User 1ID ECCLES Suspend value.. Reslvi Secur..

NOCLEAR

> Clear Stor....

00:00:00 Tsk Data Key.. CICSDATAKEY

TC Msgs In. 4 Dynamic Routing STATIC Tgk Data Loca.. ANY
TC Msgs Qut 1 Routing Profile Trace Type.... STANTRAC
TC Char In 16392 Rem. Tran Name. CallType Stats

TC Char Out 3196 Rem. System Id. File Control. 0

Isclate Statu ISCLATE Tran Data.... 3

Uunit of ..., OR469137 Purge Status NOTPURG Teuwp Storage. 2
floxk ID..... CLFOGO0L Terminl Cntrl 0 I

Pgm Control.. 19

Other..... 10

COMMAND ===> PURGE SCROLL ===>PAGE |

a following section, automation within CICSPlex SM
itself is possible without resorting to external auto-
mation products.

System availability monitoring. SAM provides basic sys-
tem “health” data for the CICSplex. By simply iden-
tifying to CICSPlex SM the standard times that the
CICS systems are in operation, it monitors

* System unavailable

* Short on storage

* Maximum tasks reached

* Transaction or system dumping

* Potential stall situation within the region

for all cICs systems in the CICSplex. Rapid notifi-
cation of any situations that might affect the avail-

312 JoHNSON

ability of the CICSplex is therefore possible, with very
little definitional effort.

MAS resource monitoring. MRM provides the ability
to specify criteria based on any of the objects and
their attributes within the CICSplex. These criteria
can be combined to identify conditions within the
CICSplex that might require action. This provides
completely generalized state management of the
CICSplex.

Analysis point monitoring. APM provides similar fa-
cilities to (and uses the same definitions as) MRM.
The difference is in the way that events are created.
MRM provides one event per instance, and APM pro-
duces one event per set of CICS systems.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Status probes. The final component of RTA supports
user-written status probes that can contribute to the
evaluation of the state of the running CICS systems.
Status probes are programs that CICSPlex SM in-
vokes at a user-specified interval. When invoked, a
status probe returns the value “true” or “false” to
RTA (via a CICS COMMAREA control block). If the
value is true, an associated severity is also returned.
This component allows RTA function to be extended
to any information the user can access. Monitoring
transaction “scratch-pad” data, database manager
status, or distributed CICS systems on other platforms
is therefore possible.

Automation within CICSPlex SM. The CICSPlex SM
user can specify an action to be taken upon detect-
ing a condition within the CICSplex. An application
of this facility is testing the status of all the connec-
tions in the CICSplex. CICSPlex SM can be instructed
to attempt to reacquire any connection on the
CICSplex that goes out of service. This can be de-
fined once and remain unchanged as new connec-
tions are added. Prior to CICSPlex SM, this type of
checking was performed by problem-specific user-
written software, rather than general-purpose soft-
ware.

Another use of this facility might be to cause
MVS ARM (automatic restart manager) to restart the
CICS region according to ARM policy currently in ef-
fect. A region can be cancelled by RTA if the CICS
system is currently registered to ARM. In this way,
a diverse set of problems within CICS regions can be
quickly detected and the affected regions shut down
and scheduled for restart without delay.

Automation via NetView. For situations where the
problem cannot be resolved internally by CICSPlex SM,
NetView™ or another automation product can be no-
tified, via either SNA generic alert or console mes-
sage. For message-based automation, the message
is identified in the NetView message automation ta-
ble and the standard interfaces can be used to re-
solve the event (MVS “modify” commands, etc.). This
would require knowledge of the location of the re-
source. Automation can also be done using the
CICSPlex sM APL

CICSPlex SM APL CICSPlex sM provides an API (ap-
plication program interface) for programs written
in C, assembler, PL/1, COBOL, and REXX (Restruc-
tured Extended Executor). The API is available in
CICS, MVS batch processing, TSO, and NetView. In
addition, a language binding is provided, by

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

EXEC CPSM (CICSPlex System Manager), which is
similar to the EXEC CICS language processed by the
cIcs translator. The API provides access to all the
data available to an end user and also allows access
to the events that occur within the CICSPlex sM
product (e.g., events could be resource changes
within the managed CICS regions, or generated by
RTA).

The API programs can access data anywhere through-
out the CICSplex and can be run in any Mvs address
space that has access to the CMAS, without change.
One possible use would be to close application files
prior to running in batch work. Invocation of these
programs can be controlled via scheduling products
such as 1BM's OPC*/A (Operations Planning and
Control/Advanced). These programs can also be
used to detect and log changes to the CICSplex, start
and stop systems when conditions change, vary ac-
tive RTA policy, and any other task that the user wants
to automate within the CICSplex.

CICSPlex SM and NetView RODM. CICSPlex sM
supports the population of CICS objects and their key
status indicators (such as enabled or disabled) within
the resource object data model (RODM) component
of NetView. RODM is the strategic integration point
in SystemView* and can be used to correlate CICS
resources with resources from other subsystems
within the sysplex. The user can identify to
CICSPiex sM which objects are required. CICSPlex
SM, via an agent within NetView, will dynamically
update RODM as resources are installed or discarded
within the CICSplex, or their status changes.
CICSPlex sM uses the NetView MultiSystem Man-
ager (MSM) to represent instances of the CICS objects.

These data can be viewed via the NetView graph-
ical monitoring facility (NGMF) on an 08/2* (Oper-
ating System/2*) workstation. A sample view (Fig-
ure 9) displays the CICS systems being monitored and
the status of the connections between those systems.

The default view provided by CICSPlex SM is a con-
tainment hierarchy. Within the top level aggregate
is the CMAS and managed CICSplexes. Each
CICSplex contains CICS systems. Each CICS system
contains the types of resources managed, and within
those the individual resource instances (Figures 10
and 11).

Once RODM has been populated with the resources,
the user can build aggregates from them using the
FLCBLDYV tool provided with MSM. This allows the

JoHNsON 313

Figure 9 NGMF connectivity map of CICSplex members showing the regions and status of the links between them

Monitoring EYUPLX01-MDL

EnManagedSystemﬁ -

-~

LETUMAS2A

-
kS

CICS0S23

i ?&EX,UMA-S‘H\E'H'

.

Cicsose2 .

-CIC30524 "~ _EYUMASAA

_EYUMASIB

_CICS0825
) ™.

.
: :’EYUMAS3A

;

A
’;: %l*CSOSZ'l

|Objects have been selected.

user to represent key business applications as aggre-
gates on the NGMF screen (Figure 12).

NGMF provides facilities to set thresholds on the
states of the monitored objects. When the thresh-
old is reached, NGMF changes the color of the dis-
played object, thus providing color cues to the state
of the underlying objects contained within the ag-
gregate. Users can specify a single screen with a sin-
gle icon that represents the state of all their key bus-
iness applications. Should the icon turn red, then
some problem has occurred and the cause must be
determined.

The object causing the change could be many levels
down the containment hierarchy. To aid quick nav-
igation, NGMF provides a “fast path to failing re-
source” that goes directly to the object that caused
the state change. By selecting that object, then choos-
ing “show parents,” the containment hierarchy can
be displayed. This provides additional information
as 1o the location of the resource that caused the fail-
ure.

314 JoHNnson

NGMF also provides a facility to execute commands
in NetView. With this facility enabled, CICSPlex sSM
APIREXX applications in NetView could be invoked,
from NGMF, to resolve problems in the underlying
CICSplex.

The utilization of graphical displays allows the op-
erations personnel to rapidly detect, track down, and
resolve problems, sometimes even before the end
user is aware that a problem exists,

CICS dynamic workload management. CICSPlex SM
provides dynamic transaction workload management
for cIcs. This function is central to the deployment
of CICS on Parallel Sysplex technology.

The CICS transaction model that has evolved over
time is the “pseudoconversational” model. It is some-
what different than the model used in other applica-
tion environments. Conventional “conversational”
programs remain in storage from initial invocation
until termination, holding resources for much longer
than necessary. When resources are held during the

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 10 Resource types being monitored for a CICS region

@DSMAME

,EH ITGLUE

E'EI'*{lTTFtUE

EjE>':TFu5|TDI‘.)

szUmm

_ JOURNAL

aREMTRAN

_LOCFILE

QlNTRATDQ

QLOCTRAN

{You may select objects or a region

time that data entry and operator decisions are being
made, other tasks may be blocked. The pseudoconver-
sational model was developed to give the illusion of
conversational interaction.

In this model, between interactions with the end user,
the state data are kept separate from the program.
Thus the program can be removed from main stor-
age and its resources freed until the next interaction
is initiated. The program is then brought back into
storage, passed its state data, and executed. A single
execution of a transaction could therefore result in
multiple executions of the program, each program
execution being a segment of the pseudoconversa-
tion. When the program finishes processing, the
pseudoconversation is terminated.

CICS provided this function via EXEC CICS RETURN

NEXTTRANID (tranid) COMMAREA (state_data) to ex-
ecute the next segment, and EXEC CICS RETURN to end

{BM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

the pseudoconversation. Other methods of passing data
between transaction segments evolved over time
through EXEC CICS API extensions and other facilities.

As CICS evolved into CICSplex, this pseudoconver-
sational technique allowed CICS transactions initi-
ated in the TOR (where the state information was
maintained) to execute application code in the AOR,
with each segment of the transaction thread poten-
tially executing in a different AOR. Several of the ear-
lier programming techniques employed inhibited this
potential, or at least reduced it, by saving state data
in the AOR. This led to affinities,’ as outlined below.
Consequently, dynamic transaction routing has to
tolerate any intertransaction and transaction-to-sys-
tem affinities that may exist within the workload (un-
less the application provider removes such affinities).

Aswell as affinities, workload management must as-
sess the health of the target AORs and their links,

JOHNSON

315

Figure 11 Transaction instances being monitored for

this CICS system

Monitoring REMTRAN- MDL

[You may select objects or a region.

the probability of the transaction abending within a
given region, workload separation criteria, and work-
load balancing.

Transaction affinities. Transaction affinities come
about through various application programming
techniques that were employed by developers before
dynamic routing was available. These techniques
cause data to exist in an AOR for longer than the task
that created the data. An example would be using
CICS main temporary storage to contain data, rather
than passing the data via a COMMAREA control block
for subsequent use by the transaction. Another ex-
ample would be leaving data in the CICS work area
(cwaA) control block (Figure 13). Since the data re-
main in the AOR, disaster can occur if the next step
in the application is routed to another AOR. The af-
finity can be associated with various attributes of the

environment, for example a user identifier or a ter-
minal. These affinity types and their lifetimes are re-
flected in Table 1.

Affinity lifetimes may be:

* Pseudoconversational, where the data exist only
for the length of the CicS pseudoconversation (nor-
mally a short period of time)

* Sign-on (between sign-on and sign-off of a user to
the CICS TOR)

* Log-on (from vIaM log on to log off)

* System (while the CICS AOR is active)

¢ Permanent, where once created, the data exist for
all time (thankfully few exist)

Various programming techniques that utilized
pseudoconversational behavior before CICS provided
the ability gave rise to:

* Delimited affinities, where a given transaction “de-
limits” the affinity

* Specific identification of transactions that start and
end an affinity

Any dynamic workload management solution must
handle affinities and route to CICS AORs appropri-
ately.

IBM provides the CICS affinities utilities to help in de-
tecting affinities. ' This has both on-line and off-line
components. Another component of this utility is the
affinity builder that creates batch definitions in or-
der to simplify input into CICSPlex SM.

The affinities described so far are statically defined,
i.e., only a relationship between the transaction
names and their affinity is defined. CICSPlex sM also
supports the ability to dynamically create and destroy
affinities based on information accessible to the dy-
namic routing program. This requires customization
of the CICSPlex SM routing program to utilize the
create and destroy CICSPlex sM verbs. The common
area might contain sufficient data for the routing pro-
gram to deduce whether an affinity needed to be cre-

Table 1 Affinities and their corresponding valid lifetimes

' Delimited’

316 JOHNSON

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 12 Example of a user-built view that represents key applications and resources

CPSM_Invent_Appl

=)

Monitoring CPSM_Key_App-MDL

CPS5M_CICS052_Hetwork

CPSM_Payroll_Appl

CPSM_Orders_Appl

ou may select objects or a region.

ated or destroyed. The various techniques that could
be employed are beyond the scope of this paper.

Health data and RTA. When routing transactions to
CICS AORs, it obviously makes sense to send the work
to the regions most capable of executing it. In the
section on real-time analysis, we saw various con-
ditions identified through systems availability mon-
itoring that could cause a CICS region to be less el-
igible to process work. These conditions relate to the
“health” of a region. The user can also specify an
RTA event that can affect routing into an AOR. The
full power of RTA can therefore be employed in the
routing decision.

Link data. The types of links between the TOR and
AOR are considered when choosing a target AOR in
order to determine the relative cost of shipping a
request. Weights are applied as follows, in increas-
ing order: same region (AOR is TOR), cross region
(AOR via MRO), cross MVS (AOR via MRO/XCF), and
cross system (AOR via ISC).

Abend avoidance. An optional feature provided by
CICSPlex SM dynamic workload management is to

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

avoid abnormal termination (abend). We can route
atransaction away from a candidate AOR if the trans-
action has abended within the AOR in the recent past.
After a given time, CICSPlex SM will reactivate the
AOR and send it a “sacrificial lamb” transaction to
test whether the problem still exists. If no abend oc-
curs, then-the AOR is brought back “into the fold”
and it will be reactivated for transaction routing.

This is achieved as follows. If a transaction abends
within an AOR its probability for abending is set.
From the abend probability an abend factor is cal-
culated, based on the abend health and abend load
values provided via CICSPlex SM workload manage-
ment administration. Successful completions are
then simulated for this transaction, which bring down
the abend probability and associated abend factor.
Ultimately the weight reduces to such a point that
the AOR is chosen to route a real instance of the
transaction, the sacrificial lamb. "

Workload separation. As we have seen, the user may
want to partition the incoming work to various sub-
sets of the potential AORs. This could be due to dif-
ferent versions of an application, separation based

JoHNSON 317

Figure 13 Example of affinities

1. Transaction 1 {TX1) and Transaction 2 {TX2) pass data
by using the CWA.

2. They are dynamically routed to different AORs.

3. The application fails!

on geographical location, or departmental activities.
CICSPlex sM allows the user to partition workloads
to different sets of AORs based on user identifica-
tion, logical unit name, and groups of transactions.
This is illustrated by the triple (userid, luname, tran-
grp) elements shown in Figure 14. The correspond-
ing target scope, across which balancing is to occur
for that triplet (AORSET) is denoted graphically by
the ellipse surrounding the target AORs.

The transactions to be partitioned are contained
within the transaction group (trangrp) also illustrated
in Figure 14. Finally, Figure 14 illustrates that this
routing knowledge can be limited to a given set of
TORs within the CICSplex.

Workload balancing. All three criteria, health, link,
and abend, are taken into account when identifying
potential target AORs, as summarized in Figure 14.

318 Jonnson

However, even though we have identified the poten-
tial targets, we have still to choose one for this trans-
action instance. CICSPlex SM provides two balanc-
ing algorithms, queue and goal. We next describe
the implementation of these algorithms.

The queue algorithm works by calculating the ratio
of the current task count to maximum task count.
This corresponds to “load” in Figure 15. The health,
link, and abend factors described earlier are also
taken into consideration and a weight is calculated
for each target AOR. The AOR with the lowest weight
is chosen to be the target (assuming no affinity ex-
ists). Figure 15 shows an example of routing using
this algorithm. AOR3 is rejected because of its “stall”
state; AORs 1 and 2 because of nonzero abend prob-
abilities. The values shown are for illustrative pur-
poses only. The actual values used for the link fac-
tor are defined by the customer, and the values for
the abend factor are calculated from abend prob-
ability, abend load, and abend health.

MVS workload management (WLM) in V5 provides
the ability to schedule work within the sysplex based
on goals, rather than system resources manager
(SRM) policy. When running workload management
in goal mode, CICSPlex SM provides dynamic trans-
action routing in collaboration with MvS WLM. For
this to occur the MVvs images must be in goal mode
and the CICS TORs must be CICS 4.1. CICS performs
the functions necessary to identify work to MVS WLM
via performance blocks (PBs) as described by Banks.*
It is the responsibility of CICSPlex SM to route trans-
actions to AORs in such a way that MvVS WLM can al-
ter the dispatch priority of, and storage allocation
to, the AORs in order to achieve the response time
objectives specified.

Response time criteria for CICS transactions (and
other address space types) are specified via MVS WLM
policy. The brief description that follows is in terms
of the components related to the CICSPlex sM goal
algorithm.

For MVS WLM, a service definition per sysplex is cre-
ated, within which service policies and classification
rules are defined. Only one service policy can be ac-
tive at one time; it defines the workload definitions
and service class definitions that control the alloca-
tion of resources within MvS and the associated re-
port classes and goals. Goals can be of various types:
velocity, discretionary, or response time. Response
time goals can be given either by average or by per-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 14 CICSPlex SM dynamic routing model

ABEND DAT

centile. CICSPlex SM supports only average response
time goals.

As a transaction enters the TOR, CICS classifies it and
passes a service class token to the dynamic routing
exit. This allows CICSPlex SM to obtain the response
time goal and to calculate a performance index (PI)
for the transaction. The Pi is defined as:

PI = average successful response time/
average response time goal

Transactions with a PI of less than 1 are therefore
achieving their goal, and those with a Pi greater than
1 are missing their goal. CICSPlex SM calculates this

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

p1 for all active service classes in the workload. This
calculation is performed periodically, and when no
new arrivals of a given service class occur, that entry
is discarded (that is, we maintain only active service
classes).

When CICSPlex sM allocates the service classes to
the target set of AORs, it takes into account the rel-
ative frequencies of transactions within the active ser-
vice classes. A service class may have more AORs al-
located if the incidence of transactions in its service
class greatly outweighs those in the other service
classes. By ordering the service classes by Pl and scal-
ing the number of AORs to service classes by inci-

JoHNsoN 319

Figure 15 Routing using the queue algorithm

For all regions: maxtask = 100, Abend load = 2.0, Abend health = 6.0, weight = (link: load« Abend «100) + Health

AOR1 AOR2

Lk

Link: o

Load: . Logd: @ e
PAbNA(ABCDY. 2. PAbnd(ABCDY);: 6:0"
BO8:. . Ne 808
Dump: . No . :

Stall: .

RTA Sevetlly: - No

(1.0«0.55+2.0+100) + 0 = 110

dence rate, we effectively partition the range of Pls.
Each AOR thus receives only a portion of the spec-
trum of PIs within the Mvs image. This allows
MVS WLM to successfully allocate dispatch priority
and storage in order to attain the response time ob-
jectives set for the transactions.

Figure 16 is a simplified view of the responsibilities
of CICSPlex sM and MVS WLM when routing is done
using average response time goals. It is the respon-
sibility of CICSPlex SM to assign transactions to the
AORs. MVS WLM sees transactions as performance
blocks within address spaces.

MVS WLM determines the dispatch priority and the
storage to allocate for each address space (AOR)
based on the active performance blocks, Each per-

320 JoHNSON

(1,0+0.6+2000.0+100) + 0 = 140000 (1.0+0.7+1.0+100) + 1‘060 = 1070

i PAbhG(ABCDY:
sos.

g

(13+0.8-1.0+100) + 0= 104 |

ROUTE

formance block has a state: initial (the transaction
is starting), running (the transaction is executing and
suspended, i.e., waiting for input or output), notify
in the AOR (the transaction is involved in a
pseudoconversation), or report in the TOR (the trans-
action has finished). MvS WLM samples the perfor-
mance blocks for delay information. During the re-
port state MVS WLM can obtain information needed
to calculate its own PI for the address space.

Other uses of CICSPlex sm dynamic workload man-
agement. CICSPlex SM 1.2 introduced the ability to
invoke the dynamic routing function from outside
the CICS dynamic transaction routing exit routine.
The tunction may therefore be used to obtain target
information for distributing work within the

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 16 Routing using the goal algorithm

CICSPlex SM VIEW

MVS WLM VIEW

ACTIVE SERVICE CLASS LIST L7

ARRIVALE:100 ' Pl =2.0

s

MVS1 ADDRESS SPACES
CLOADM40 g g X
e, DB L 8

sy PR R L
¥ &
e - PB 8
sy PB %
B

LOAD:100 &
Ul

MVS2

CICSplex for a variety of reasons, for example, dy-
namic program link requests.

Putting it all together. We have seen how the var-
ious components of CICSPlex SM can be utilized to
provide systems management with a single-system
image for CICS within the CICSplex. We now look

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

LOAD:40

at how we can integrate these functions to enhance
the management of the CICSplex in a Parallel Sys-
plex.

First let us consider the migration to a Parallel Sysplex
from an existing bipolar machine running a CICS work-
load. The customer might install CICSPlex SM to gain

JoHNsON 321

Figure 17 Dynamic addition of a new CICS region

Peak period (11:00~15:00)
RTA checking response times

24-hour clock

i

experience in order to simplify migration to cMOSs.
Since CICSPlex SM provides a single-system image, the
migration of CICS regions to CMOS does not affect users
of CICSPlex sM. When CICS TORs and AORs are cloned
it is a simple matter to add these CICS regions to the
CICSplex definition and to the system groups already
defined. The large increase in the number of CICS re-
gions is therefore easily controlled.

322 JOHNSON

i Getscopaligt
. Cuwnregons
w Startriew tagion 1 e

Consider error recovery after migrating from CICS
to CICSPlex sM. If the facilities of MVS ARM are used
to restart failed CICS systems, again there will be no
change in the interactions at the end user interface.
Even if some regions fail or are moved to another
processor, the interactions will remain the same. In-
deed, it may be as a result of RTA processing that
the region is shut down for restart by MVS ARM.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 18 Dynamic removal of a CICS region

Stack period (15:01-10:59)
RTA checking response times

24-hour clock

+ Message Autormation Table
b
 Getscope list

- Query regions
Quiesce old region. .

Now consider the day-to-day operations. Balancing
of the workload, workload separation, etc., can be
performed by CICSPlex sM in either queue or goal
mode. With goal mode, transactions are managed
to the goals specified for them through Mvs wWLM.
CICS address space dispatching priorities and storage
will be adjusted by MvS WLM in concert with other ad-
dress spaces within the sysplex to give optimum per-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

S

formance with respect to the defined goals. RTA can
be used to check response times and to start or stop
CICS AORs by using the CICSPlex SM API with the col-
laboration of automation products such as NetView.

As we see in Figure 17, during the peak period be-

tween 11:00 and 15:00, RTA finds that the transac-
tion response time has gone above a threshold. Net-

JOHNSON

323

Figure 19 Structured RTA and API batch via OPC/A

5. All day (00:00-23:59)
SAM checking Health

24-hour clock

,,,,

On-ling 24-hour day starts (08:00-07:59)

1. Pre-on-line checks (07:55-08:00)
RTA checks availability of resources and files

4., Batch period ends {07:00)
AP returns fifes to CICS «——-’”

View is monitoring this condition, and requests that
another MVS region be started for the CICSplex.

In Figure 18, we see that during the slack period be-
tween 15:01 and 10:59, RTA detects that transaction
response time has moved back below the threshold,
and NetView requests that the CICS region started
carlier be quiesced.

324 JOHNSON

2. Peak period (11:00-15:00)
RTA checking response times

—

3, Batch period begins (05:00)
Batch APt hands over on-fine files

RTA can be used to monitor the overall health of the
CICS systems in the CICSplex. Interaction with batch
processing can be controlled through products such
as OPC/A, and any other calendar-driven event can
be controlled via programs utilizing the CICSPlex
SM API. Figure 19 gives an example of scheduling CICS
files for backup in batch processing before return-
ing them to CICS, prechecking file availability and

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

response times during peak load. Again, all of this
will continue to execute unchanged if resources are
moved within the sysplex due to an outage or for
maintenance, because of the single-system image of
the CICSPlex sM product.

Tracking a transaction throughout the CICSplex has
already been shown to be simple (Figure 7). Graph-
ical representation of the status of the CICSplex can
be achieved via RODM and NGMF (Figures 9-12).

Client server systems management with CICSPlex
SM. Of course the Parallel Sysplex does not stand
alone. Today CICS 0s/2 client server applications are
developed that access the CICS mainframe server.
Since CICSPlex sM also provides a single-system im-
age for management of CICS on CICS/VSE (Virtual
Storage Extended) and CICS 0572, it allows the cor-
relation of data from the CICS 08/2 workstation to
the CcICS mainframe server. RTA threshold monitor-
ing is also available against CICS 0S/2 objects and at-
tributes. Status probes can be used to monitor
CICs/400*, CICS for AIX* (Advanced Interactive Ex-
ecutive), and any of the other CICS platforms, and
even the databases in IMS* (Information Manage-
ment System) and DB2* (DATABASE 2%).

The future. CICSPlex SM today provides a TSO end-
user interface. A statement of direction exists for a
fully customizable graphical user interface. CICS
Transaction Server for 08/390 Version 1.1 also con-
tains the ability to dynamically install CICS resource
definitions. Until recently that facility has only been
available via C1CS administration transaction. A nat-
ural extension to the function of CICSPlex SMwould
be to provide the ability to define, share, and install
cICs resource definitions across the CICSplex. This
would open up possibilities of raising the interaction
level from that of the base CICS resources to that of
business applications, and for increased integration
of the various tasks supported via CICSPlex sM. In-
tegration across the various other disciplines and sub-
systems within Mvs and the other distributed plat-
forms must also be addressed. Only when this
challenge has been met will we truly have systems
management with a single-system image.

Summary

As this paper has described, CICSPlex SM provides
advances in many areas of systems management.
There is a significant reduction in the complexity of
the end-user interface through the single-system im-
age, which makes resource locations transparent and

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

provides data correlation. Because CICSPlex SM is
independent of CIcs platforms and releases, it allows
management of distributed CICS client/server appli-
cations.

The dynamic transaction routing provided by
CICSPlex SM improves the availability of CICS re-
sources over previous solutions. Through the elim-
ination of various performance measurement tasks
it also reduces cost. In addition, it increases reliabil-
ity by providing dynamic resource topology maps,
eliminating the dependence on outdated workbooks.

Problems are detected early, allowing them to be re-
solved either manually or automatically within the
product. External automation products can be used as
well, and the CICSPlex sM API allows the integration
of arbitrary user data (via status probes) into the au-
tomation solution. Problem data can be correlated with
data from other subsystems using NetView and RODM.

Perhaps most important, CICSPlex SM can be used
to define a high-level view of the resources of the
business enterprise, and the viewer can shift his or
her focus away from the details to see the business
applications and their integration with other sup-
ported tasks.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references and notes

1. “Function shipping” is the ability to route a request to an-
other CICS region for access to a resource (e.g., reading a
file in a remote CICS region).

2. T. Banks, K. E. Davies, and C. Moxey, “The Evolution of
CICS/ESA in the Sysplex Environment,” IBM Systems Jour-
nal 36, No. 2, 352-360 (1996, this issue).

3. An example of such a tool is the CICS master terminal trans-
action (CEMT).

4. CICSPlex SM for MVSJESA Concepts and Planning, GC33-
0786-01, IBM Corporation (1995); available through IBM
branch offices. Also see P. Johnson, “CICSPlex SM Techni-
cal Overview,” Proceedings, CICS Technical Conference, San
Francisco, CA (May 1996).

5. MVS provides address spaces within which programs execute
and data spaces within which data can be placed; both reside
in virtual storage. “Cross-memory” communication refers to
the ability for programs executing in different address spaces
to communicate with each other via MVS system services
rather than via a communications product such as VTAM.
Cross-memory communication can cope with large volumes
of data with high performance.

6. LU (logical unit) 6.2 is an IBM protocol for peer-to-peer com-
munications.

7. In contrast, the CICSPlex SM API (application program in-
terface), the batched repository update (batchrep) facility,
and the graphical user interface (alluded to in a statement

JOHNSON 325

of direction) connect directly to the CMAS without using CAS
services, thereby using the dynamic communication capabil-
ities of the CMAS network.

8. The CICS product was restructured in V3.1 into a domain-
based architecture. Data encapsulation, architected interfaces,
etc., were provided in an object-based way. A domain is sim-
ilar to an object.

9. P.Johnson, “Dynamic Routing in a CICSPlex,” Proceedings,
CICS Technical Conference, New Ortleans, LA (May 1995);
see also P. Johnson, “CICSPlex SM Trends and Directions,”
Proceedings, CICS Technical Conference, San Francisco, CA
(May 1996).

10. IBM CICS Affinities Utility MVS/ESA User’s Guide, SC33-1159-
00, IBM Corporation (1994); available through IBM branch
offices.

11. R. A. Cieslak, D. F. Ferguson, and J. Sairamesh, A Method-
ology for Routing Transactions in the Presence of Failing Serv-
ers, U.S. Patent 5,475,813, IBM (December 1995); see also:

A. Ephremides, P. Varaiya, and J. Walrand, “A Simple Dy-
namic Routing Problem,” IEEE Transactions on Automatic
Control 25, No. 4, 690-693 (August 1980).

D. Ferguson, C. Nikolaou, L. Goergiadis, and K. Davies, Sat-
isfying Response Time Goals in Transaction Processing Systems,
available as IBM Research Report RC18139 from IBM Tho-
mas J. Watson Research Center (July 1992).

P. Johnson, “Dynamic Workload Management,” Proceedings,
CICS Technical Conference, New Orleans, LA (May 1995).

L. Kleinrock, Queuing Systems, Volume 1, Wiley & Sons, NY
(1974).

R. Weber, “On the Optimal Assignment of Customers to Par-
allel Servers,” Journal of Applied Probability 15, No. 2, 406~
413 (June 1978).

W. Winston, “Optimality of the Shortest Line Discipline,”
Journal of Applied Probability 14, No. 1, 181-189 (1977).

Accepted for publication January 27, 1997.

Paul Johnson IBM UK Laboratories Ltd., Hursley Park, Win-
chester, Hampshire S021 2JN, United Kingdom (electronic mail:
paul_johnson@vnet.ibm.com). Dr. Johnson was awarded a B.Sc.
with honors and a Ph.D. in high energy physics from Liverpool
University. After several years in postdoctoral research he joined
IBM in Hursley to work in CICS/ESA development. Since join-
ing IBM he has worked in RDO (resource definition on line),
CEMT, and national language support and has been involved in
the application and development of formal programming tech-
niques. In 1990 he joined the CICS systems management group,
which was formed to create the CICSPlex Systern Manager for
MVS/ESA. He has been involved with this product from its ini-
tial requirements and external specification phases through de-
velopment and release of versions 1.0, 1.1, and 1.2. He is cur-
rently architect and lead developer of the CICSPlex SM product
and involved in future release development. To visit the
CICSPlex SM Web site, sec http//www.hursley.ibm.com/.

Reprint Order No. G321-5645.

326 Jonnson IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

