284 BOWEN ET AL.

Availability in parallel
systems: Automatic
process restart

Parallel and clustered architectures are
increasingly being used as a foundation for
high-capacity servers. At the same time, the
availability expectations are also rising rapidly,
since the effects of down time become more
apparent and have higher economic
consequences for larger systems. The use of
parallel structures generally implies more
hardware and software components. The
presence of more and larger components
increases the chances that an individual
component will fail, and that failure has the
potential to hurt the overall availability of the
system. This paper discusses the use of “restart
techniques” as an important strategy in providing
increased availability in a parallel structure. The
paper covers a set of functions that have been
developed for the S/390° Parallel Sysplex™.

Nearly all users of computer systems are making
availability a de facto requirement. Also, a
strong demand for higher performance is increas-
ingly being met with clustered architectures.! The
redundancy inherent in clustered systems offers the
opportunity to provide increased levels of availabil-
ity. However, the presence of more and larger com-
ponents increases the chances that something will
go wrong and tends to decrease availability. The abil-
ity to rapidly detect and recover from component
failures is a critical function for providing high avail-
ability in clustered systems.

An application server is defined as a collection of
hardware and software that can run a specific ap-
plication (e.g., a transaction, database query, an ed-
itor). Furthermore, application availability is defined
as the probability that the application server is avail-

Q018-8670/87/$5.00 © 1997 IBM

by N. S. Bowen
J. Antognini
R. D. Regan
N. C. Matsakis

able at a given point in time. Clearly, clustered sys-
tems have an advantage in providing increased avail-
ability because of the inherent redundancy in the sys-
tem. However, the design of the application server
with respect to the various failure modes of the sys-
tem dictate the overall availability. For example, if
the application server can continue to provide ser-
vices even when an individual system fails, it can have
greater availability than a corresponding server on
a single system.

Pfister describes many clustered architectures that
have the basic objective of using the underlying ar-
chitecture to provide increased availability.! Al-
though many of these systems have implemented
heartbeat mechanisms for detecting system failures,
he observes that quite a few systems use “fail over”
techniques that depend on application or system re-
start techniques because the application server it-
self must be restarted to provide continued service.
Such use is due to the underlying “shared-nothing”
architecture of these systems where data are often
partitioned among the various processing nodes.
That architecture can be contrasted with the
System/390* (s/390*) Parallel Sysplex™ that is based
on a “shared-disk” architecture where the applica-
tion servers have access to all data and are capable
of running any application. Here the requirements

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 1 Application server architectures

differ; restart is necessary for restoring the initial con-
figuration and performing recovery actions (e.g., da-
tabase log recovery). We claim that a set of basic op-
erating system restart services are required for both
of these scenarios. From this claim we assert that
three principal steps are required in obtaining high
availability in a clustered system; namely, fault de-
tection and containment, the ability to operate in de-
graded mode, and finally, the ability to restore the
original configuration.

This paper examines a set of services intended to fa-
cilitate this task. First, we define the system model
and present the requirements for high availability,
then we describe the restart services and some of the
robust features of these services. A preliminary ver-
sion of this paper can be found in Reference 2.

Availability strategy and system model

This section provides a high-level overview of the
S/390 Parallel Sysplex and outlines the overall strat-
egy for providing highly available application serv-
ers. First, the impact of the general architecture for
paraliel systems is discussed.

The architecture of the application server is critical
to understanding the requirement for restart pro-
cessing. Figure 1 shows three classic approaches used
in clustered systems. A shared-nothing architecture
is the basis for cases A and B in which the disks are
attached to a single system. Case A shows a fully par-
titioned approach in which particular application

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

servers can only access a subset of the data and, thus,
can only run a subset of the applications. Case B
shows a basic enhancement to the shared-nothing
approach that allows an application server to access
remote nodes using techniques such as “function
shipping” or “yO shipping.” ** In case C, all systems
have access to all data. One could also imagine ad-
ditional variations (e.g., an application server with
the properties of A running on a parallel architec-
ture as defined in C). From these various scenarios
one can discern various reasons for using restart ser-
vices. These include:

1. Restart of the application server

2. Restart to recover resources (variation of peer re-
covery)

3. Restart to restore configuration

Before discussing the specific restart scenarios, ba-
sic transitions that the system must go through are
discussed. Furthermore, it is argued that the follow-
ing steps must occur for all scenarios:

1. Failure detection and isolation
2. Continuous operation in “degraded” mode
3. Restoration of the initial configuration

The duration of each step and the definition of de-
graded differs for the various scenarios. These steps
are now described in more detail.

There are several components of failure detection
and isolation: first, the use of heartbeat mechanisms

BOWEN ET AL. 285

286 BOWEN ET AL.

Figure 2 Parallel Sysplex system model

to detect an unhealthy system and, second, the abil-
ity to physically partition the failed system out of the
cluster. That is, the system itself is disconnected from
its own I/O processor, and all required components
are notified of the failure of the system and all pro-
cesses on that system. Finally, the workload sched-
uler components are made aware of the failure and
continue to route work into the cluster while avoid-
ing the failed region.

For these first two cases (from Figure 1), the key ob-
jective is restart of the application server, which may
also require a restart of the system. The application
server is unavailable for a subset of the applications
(thus, one definition of “degraded”) during the re-
start process. In case C, the new requests can be
routed to other application servers immediately, thus
maintaining availability. The key restart objective is
the initiation of the application server recovery logic
(e.g., database log recovery). Here the term “degrad-

4 COUPLING
T FACIITY

7
o

ESCON DIRECTOR (SWITCH)

ed” means lower capacity, but the applications can
continue to run,

Figure 2 shows the overall structure of the $/390 Par-
allel Sysplex.>* It consists of up to 32 processing
nodes (each node can be a symmetric multiproces-
sor with 1 to 10 processors), each running the 0s/390*
operating system and connected to a collection of
shared disks. The basic system design has a long his-
tory of fault-tolerant features.” The /0 architecture
has many advanced availability and performance fea-
tures (e.g., multiple paths with automatic reconfigu-
ration for availability). The basic 1O architecture is
described in Reference 6, and one aspect of the dy-
namic 1/O configuration is described in Reference 7.
The Sysplex Timer* (ETR) serves as a synchronizing
time source for systems in the sysplex, so that local
system time stamps can be relied upon for consis-
tency with respect to time stamps obtained on other
systems. There is also a facility called XRF (extend-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 18987

Figure 3 Overall system structure

SYSTEM 1 SYSTEM 2

PROCESSES

PROCESSES

SYSTEMN

PROCESSES

ed recovery facility) that allows for “hot standbys.”
The coupling facility (CF) provides multisystem data-
sharing functions and is described in References 3
and 4.

Automatic restart manager

Since all systems in the Parallel Sysplex can have con-
current access to all critical applications and data,
the loss of a system because of either hardware or
software failure does not necessitate loss of appli-
cation availability. Failing applications, caused by
system or process failures, can be automatically
restarted on still-healthy systems by the 0S8/390 au-
tomatic restart manager (ARM) component to per-
form recovery for work in progress at the time of
the failure. While the failing application server in-
stance is unavailable, new work requests can be re-
directed to other data-sharing instances of the server
to provide continuous application availability across
the failure and subsequent recovery. ARM is fully in-
tegrated with the existing parallel structure and pro-
vides significantly more functions than does a tra-
ditional “restart” service. First, utilizing a shared
state support facility** at any given point in time,
ARM is aware of the state of all processes on all sys-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

REGISTRATION RESTART SYSTEM EXITS POLICY AND
SERVICES MANAGER AND NOTIFICATION OPERATIONS
MANAGEMENT
SERVICES WORKLOAD MANAGER SYSPLEX SERVICES SHARED STATE FAGILITY

tems (including processes on any failed systems). Sec-
ond, ARM is tied into the system heartbeat functions
so that it is immediately aware of system failures.
(In a subsequent section, this notion of “immediate”
is clearly defined by carefully describing the actual
time sequencing of restarts.) Third, ARM uses the
workload manager to determine a target restart sys-
tem based on the current resource utilization across
the available systems. Finally, ARM has many fea-
tures to provide improved restart such as affinity of
related processes, restart sequencing, and recovery
when subsequent failures occur. Figure 3 shows the
overall software structure.

A set of base parallel services provides many of the
clustered services (e.g., membership services) that
are not described here, but a summary can be found
in References 3, 4, and 8. The functions for ARM are
described in several sections. First, the operating sys-
tem services and the general usage of ARM are de-
scribed. Second, restart manager functions and algo-
rithms are described, including a discussion of the
fault-tolerant features of the algorithms. Next, the
operational aspects of ARM are covered. Finally, the
usage of system exits and the event notification facil-
ity to communicate special asynchronous events are

BOWEN ET AL. 287

Table 1 Input parameters for register service

Parameter Used to Identify
Name The specific process
Type A generic class of processes
Event exit A program to run prior fo restart

Parameters for the event exit
An alternate restart method
Actions for various failure types

Event exit data
Restart command
Failure type

Table 2 Output parameters for register service

Output Used to Indicate

Restart type
Restarts enabled
Prior system ID

If process was restarted
If restarts are currently enabled
Previous system the process was on

Table 3 Summary of commands

Service Used to Indicate

Register ~ Restart services are requested

Deregister Restart services are not required

Ready Restarted process has completed restart logic
WaitPred Process will wait for dependent processes
Associate A hot-standby alternate is active

described. The formal programming interfaces are
defined in Reference 9, and a description of the us-
age can be found in Reference 10. Although the fo-
cus of this paper is on restarts in parallel systems,
it should be noted that the ARM services also apply
to the situation where a process fails and is restarted
on the same system.

Basic restart services and terminology. A Register
service is provided to allow a process to indicate when
restart services are required and a Deregister service
to indicate when they are no longer required. The
parameters used on the register service are shown
in Table 1.

The outputs of the register service are highlighted
in Table 2. Restart type provides an indication as to
whether the process was restarted by the operating
system or is initially starting. Restarts enabled indi-
cates whether the operating system is currently en-
abled and capable of performing restarts. Prior sys-
tem ID provides an identification of the prior system
on which the process was executing.

288 BOWEN ET AL

The full set of services are summarized in Table 3.
The Ready and WaitPred services are used to syn-
chronize processes that have sequencing dependen-
cies.

A process that is using ARM services is referred to
as an “element.” In addition, we define a restart group
as a set of elements that have affinities and must re-
main together in the event of a system failure and
resulting restart. Furthermore, the restart group has
an effect on the sequencing of elements (described
shortly). Elements are not aware of being in a re-
start group; the elements are placed in a group based
on the element name and a system administrator’s
policy.

ARM also provides commands to allow sequencing
of restart activities. These activities include the ser-
vices WaitPred (Wait for Predecessors) and Ready.
These services are dependent on a concept called
“restart levels” wherein elements can be arbitrarily
placed in numbered levels. The requestor of the ARM
service is unaware of its level; it is set by the instal-
lation. The WaitPred function is provided because
elements may depend on other elements being ini-
tialized and available.

The Wait for Predecessors service does not cause a
wait if this element is not part of a cross-system re-
start. So, for example, nothing really happens for an
element starting initially (without ARM intervention,
that is) or being restarted within the same system by
ARM.

In cases where an element is to be a predecessor for
other elements in a cross-system restart, that element
has an obligation to make known its readiness for
work. This is done by the Ready service. As with the
Wait for Predecessors service, there are no param-
eters. It is up to ARM to keep track of what elements
may be waiting for this element to say ready. In cross-
system restart, a Ready request will not complete un-
til all elements with lower levels in the containing
group indicate that they are ready. In other words,
Ready behaves in such a restart as though it had been
preceded by a Wait for Predecessors request.

ARM provides special restart support for hot-standby
environments. In a hot-standby environment, you
have a primary server (P,) and a backup server (P,).
The recovery concept in this environment is that in
the event of a failure of P,, then P, immediately
takes over the processing. These two systems are very

IBM SYSTEMS JOURNAL, VOL 38, NO 2, 1997

Figure 4 ARM activity and states {(normal case to left, failure case to right)

tightly integrated so that they typically do not have
to do recovery functions such as log recovery (be-
cause the backup will have been monitoring the logs).
With regard to restart, process P, does not need to
be restarted to provide availability; in fact, it was
deemed that a restart of P, would be undesirable
because it would unnecessarily consume resources.
Thus, ARM provides an Associate service that allows
an element to indicate that a certain other element
is not to be restarted by ARM. ARM does not, how-
ever, inform this element when the other element
terminates. The responsibility for knowing that lies
with the element imposing association. In contrast,
if the associating element itself terminates, ARM does
undertake to reinstate the other element’s eligibil-
ity for restart (i.e., the Associate is removed).

A set of services on 08/390 allows for traditional mul-
tisystem membership services (e.g., join a group, sig-
nal members of the group).® ARM has provided the
ability for members of multisystem groups to be in-
formed of system failures and for them to effect a
delay of the restart processing. This function is pro-
vided to allow these multisystem groups to perform
special processing (e.g., resource cleanup) before the
restarts occur. There is an optional parameter on the
group Join service to request this function. Once no-
tified of this situation, the member is expected to ap-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

prise ARM that it has finished cleanup and prepa-
ratory actions relating to the failure of the system.
ARM will not proceed with restarts until that mem-
ber and all other group members that have requested
cleanup responsibility have declared that they are
finished with cleanup (or until a certain amount of
time has passed after they were notified of the fail-
ure). Failure of a group member is taken to mean
that the member has discharged its cleanup respon-
sibility.

At this point we describe the various states that an
element can be in with respect to ARM. The set of
ARM states is shown graphically in Figure 4. Depend-
ing on what ARM services an clement has used
and on the execution history of the element, an
element can have one of several states:

s Starting: The element is executing and has regis-
tered.

s Available: The element is executing, has registered,
and has indicated that it is ready for work.

& Available-to: The element is executing after being
restarted, has registered, and is considered ready
(available due to time-out) since it did not signal
readiness in a certain span of time. This state is
equivalent to Available (and thus not shown in Fig-

BOWEN ET AL. 289

Figure 5 Major epochs in restart processing

ure 4) with respect to the restart sequencing ex-
cept that the Ready call was not made.

 Failed: The element is registered, terminated (ab-
normally or normally) without first deregistering,
and is waiting for the ARM restart process to com-
mence.

» Restarting: The element failed, and the ARM re-
start process began and is still underway or is com-
plete. If the restart process is complete, job sched-
uling factors could delay or even preclude
execution. Otherwise, the element is executing but
is yet to register again with ARM.

s Recovering: The clement is executing because of
a restart, has registered, but is yet to indicate that
it is ready for work.

Restart manager. This subsection describes the spe-
cific algorithms used to perform the restart process-
ing. The major epochs in the restart processing are
described, using Figure 5 as a reference.

At epoch E, a system-level heartbeat mechanism
is used. This first event indicates the first instance
in which a system fails to update its heartbeat.

At E, the missing heartbeat is now detected. The
delay from E; to E, is a function of the sensitivity
of the heartbeat technique to tolerate irregularities
in the mechanisms. For example, a sharp transient
in the steady-state workload could cause a system to
miss a heartbeat. The term “predatory takeovers” is
used to describe the situation where the heartbeat
mechanisms indicate a failure has occurred when,
in fact, no failure actually occurred. Therefore, it is
important to understand the sensitivity of the heart-
beat mechanism to transient conditions and adjust
the “missing heartbeat” parameters accordingly.

290 BOWEN ET AL.

Starting at epoch E; actions must take place to en-
sure that the system is in fact terminated. This as-
surance is required because the imperfect nature of
some heartbeat mechanisms can present the appear-
ance of a failure. For example, a system could stop
updating its heartbeat because of a loop in the op-
erating system. The missing heartbeat might then be
externally recognized, and restart processing would
occur; then an event occurs that terminates the loop
(e.g., an /O error condition cleared, time-out logic
in the operating system). The system then comes
back to life, and there could be two copies of a pro-
cess, one executing on the apparently failed system
and one elsewhere. Two copies could cause database
problems in a shared-disk environment or network
problems in a distributed system.

ARM relies on the use of a technique that we refer
to as “1/0 fencing” in which there is a special com-
munications link to the /O mechanism of the failed
system that allows /O activity from the failed system
to be disabled.

At E , asingle system must become the owner of the
restart process for the failed system. This determi-
nation could use any algorithm' for either tightly
coupled or clustered systems. Our approach is to use
ashared disk that uses a disk-based locking scheme.
The system that becomes the logical owner records
its system identifier on the shared disk.

At E, once a system becomes responsible for the
restart process, it begins a set of steps that lead to
assigning the processes to execute on other systems
and initiating their restarts:

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 6 Parallelism in restart processing

1. Assign each process to a restart group of processes
that must always remain together.
2. Assign each restart group to an available system:

» Honor any static affinities.

* Assign the restart group to a system based on
recent historical resource consumption (e.g.,
CPU, memory) on the active system.

At E ¢ the system provides a period of time for all
members of multisystem groups to perform multi-
system cleanup before the restarts are initiated.

At E; the system controlling the restart process
(event E;) signals all other systems to initiate the
restarts. The processes that need to be restarted are
indicated on the shared disk containing the global
state. The signal is used as a trigger to read the shared
disk. Once the local system determines which pro-
cesses must be restarted, the following steps occur:

1. Ifthe process specified an event-exit, execute the
program.

2. For all processes in a given restart group, create
a list specifying the order in which processes must
be restarted. If multiple processes have the same
level, they are logically started simultaneously.

3. Initiate the restart of all processes in the restart
group using a simple pacing algorithm that spec-
ifies delays between process restarts.

4. Enable sequencing of processes within a restart
group. The processes have Ready and WaitPred

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

calls that allow them to wait for processes that
were started earlier (i.e., that have a lower level).

The key aspects are illustrated in Figure 6. In ad-
dition, all processes within a restart group can be re-
started with a pacing value that staggers the restart
processing to avoid a system overload. Furthermore,
the synchronization is only done for process threads
that issue the ARM services. That is, other threads
under the restarted process are not affected.

Whether and how a registered element that termi-
nates is to be restarted depends on a number of
things:

« If an operator cancelled the element (using a CAN-
CEL or FORCE command), the element will not be
restarted. However, the use of the optional param-
eter ARMRESTART will cause the normal termina-
tion followed by a restart.

* The element has not been restarted more than a
fixed number of times within a fixed time window.

» No other element has made an Associate request
against this element.

e An element-restart exit (defined later) allows re-
start. The exit may also change the manner of re-
start.

* Any event exit named in the registration of the ap-
plication allows restart. This exit cannot, however,
change the manner of restart.

Fault tolerance in algorithms. One of the key val-
ues of ARM is the notion of logical atomic failure

BOWEN ET AL. 291

Figure 7 View of failures

points created during the complicated underlying
physical state transitions that actually occur during
system failures and subsequent restart processing.
Whereas the previous subsection described the ba-
sic processing that the restart manager applies to sys-
tem failures and restarts, this subsection focuses on
the underlying design principles and uses a few ex-
amples of very complicated failure scenarios to il-
lustrate the points.

Since we wish to provide operating system services
for building highly available systems, we must en-
sure that the services themselves have additional
fault-tolerant features. A methodology for tolerat-
ing faults by precisely defining the way in which fail-
ures are exposed to users of the services is now for-
mulated. Qur design objective is a system that can
recognize failures, remain operational while failures
persist, and restore itself to normal operation when
failed components are repaired. A set of physical
states and logical states that occur because of a fail-
ure are described. The physical states are:

1. Normal operation

2. A period of time from when the system has rec-
oguaized the failure of one of its components to
when it restores itself to a limited, yet safe, con-
figuration

3. Aperiod of time from when the system establishes
a safe configuration to when it reestablishes its
original configuration

4. (Back to) normal operation

292 BOWEN ET AL.

Failure masking is a key objective in this design.
Therefore, we mask the physical state transitions just
described and present a logical view to the user of
the restart services. Masking is illustrated by the
lower time line in Figure 7. That is, the users of re-
start services see a continuously available system with
the caveat that some (logically) instantaneous change
may occur as a result of an underlying failure. The
system is designed such that processes that register
before the logical failure point can be distinguished
from those that register after the failure. We describe
these processes by set A (before failure) and set 4’
(after failure). This formalism is especially critical
in a distributed or parallel system in which informa-
tion (e.g., failure notification, repairs) is subject to
propagation delays and thus may be recognized in
different places at different times.

Achieving this logical view mandates additional de-
sign to handle events that occur when the underly-
ing system is repairing a physical failure. Solutions
include techniques such as queuing the ARM requests
(or rejecting them) and notifying users upon repair
(essentially queuing in the operating system or queu-
ing in the user). Following are two specific exam-
ples of the basic fault tolerance model.

System termination. When a system fails, two funda-
mental actions must occur. First, the processes from
the failed system must be restarted on active systems.
Second, the system itself must be restarted. It is de-
sirable to perform these two activities in parallel.
However, this desire creates the possibility that the

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 8 Realization of system failure

system can be restarted before the elements have
been restarted. It means that new elements could
register on the newly restarted system and then ap-
pear as if they were executing on the failed system.
The notion of logical failure points is used to make
this scenario impossible. This notion not only makes
the implementation easier and more efficient, but
also less complex so that it becomes more reliable.
If these two activities can be performed in isolation
from each other, the implementation is greatly sim-
plified. However, if these activities are independent,
one must be careful regarding processes that reg-
ister after the system is restarted (i.e., they should
not appear as candidates for process restart).

Figure 8 is used to illustrate the application of this
methodology to a system failure scenario. As de-
scribed previously, a system failure results in the pro-
cesses being assigned to another system. With our
design methodology, the overall design is simplified
by examining all registered processes (recorded on
the shared disk) and distinguishing those processes
that must be restarted (i.e., those active before the
failure) from those that should not be restarted (i.e.,
those that registered after the system restarted and
thus should not be considered failed). It is impor-
tant to note that this discussion applies to the inter-
nal design of the restart manager-and does not have
implications with respect to multiple “instances” of
processes across these logic points (i.e., if a process

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

is erroneously restarted while a prior incarnation is
awaiting to be restarted, there will be an unwanted
duplicate).

Loss of access to the shared-disk global state. As we
stated earlier, the information required to determine
the necessary reconfiguration must be accessible in
case of failure. This information is kept on a shared
disk, with independent access from every system to
the disk. To guard against failures, the disk can be
mirrored, and the hardware path to the disk can be
duplexed.

As processes register and deregister, recovery actions
change and must be reflected on the disk. If a sys-
tem ever loses access to the shared disk containing
the global state, the state as reflected on the disk may
diverge from the actual state of the system. Consider
the following scenario:

1. A process deregisters itself, but the system can-
not access the shared disk to record the dereg-
istration.

2. The system on which the process is running ter-
minates, and the process is (incorrectly) restarted
on another system.

The net result is an undesired instance of the pro-
cess, which could cause data races and data corrup-
tion (especially if another instance of it has started

BOWEN ET AL. 203

Figure @ Realization of global state failure

somewhere else). Starting one process too many is
generally more dangerous than starting one too few.
A missing process will not provide service, but at least
it will not compromise data integrity. One could han-
dle the loss of physical access to the shared-disk
global state by substituting logical access for it. The
process registration and deregistration actions could
be sent to other systems and recorded on disk by
them. For resiliency, the actions would have to be
sent to many (all) other systems, and it would be nec-
essary to arbitrate among those systems to ensure
exactly-once semantics for the actions. Furthermore,
appropriate algorithms would be necessary to ensure
that the logical order of the actions on the system
of origin (the one that lost access to the disk) is pre-
served. For example, the relative order of two reg-
istration or deregistration events should not be re-
versed by messages received out of order by other
systems.

Implementing a message-based protocol to tolerate
the loss of access to the shared disk by one system
would be a difficult effort. The gain in service avail-
ability would be minimal, because the loss of access
to the shared disk is a very rare event, given that it
requires at least a double failure (single failures are
masked by the redundant hardware used).

We have opted for a solution that brings the system
to a safe state when a system loses access to the

294 BOWEN ET AL

shared-disk global state, rather than provide max-
imal service. A safe state is chosen such that restart
services are made logically unavailable on the af-
fected system (e.g., new registration requests are not
honored). More precisely, this safe state is one in
which it appears that restart services were never avail-
able on the affected system,; that is, processes are log-
ically deregistered, which prevents undesirable re-
start scenarios like the one outlined above.

Figure 9 shows the state transitions for lost access
to the global state. Again, we are able to distinguish
processes that present themselves before (set 4) and
after (set A') the logical failure. The algorithm for
deregistering processes in set A is an asynchronous
message-based algorithm, so we must be able to guar-
antee that systems that perform the deregistration
remove only those processes in set 4 and do not
touch processes in set 4. Below are described the
specific algorithms used to recover from a loss of ac-
cess to the shared state. The key to the robustness
of these algorithms is the use of sequence numbers
to logically bind registered processes with a specific
configuration instance. Two sets of sequence num-
bers are defined:

1. An array of sequence numbers SysSeqNum(),
which contains one sequence number per System.
Each sequence number SysSeqNum(S) repre-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 10 Major epochs in recovery of global state

sents the nth connection to the shared state by
system S.

2. An array of sequence numbers ProcSeqNum(),
which contains one sequence number per regis-
tered process. Each sequence number ProcSeq-
Num(P) is a copy of SysSeqNum(S) as it existed
at the time process P registered on system S. This
represents the bind between a process and the
particular configuration under which it registered.

Each system tracks every other system and maintains
a logical (persistent) copy of the SysSeqNum array.
In addition, each system tracks which systems cur-
rently have access to the shared-disk state and which
do not.

An example, depicted in Figure 10, showing the steps
involved in recovering from a loss of access to the
global shared state is now described.

At T, system S1 makes its initial connection to the
shared disk. SysSeqNum(S1) is initialized to one (i.e.,
initial access). When process P1 registers on system S1,
its state data representation is tagged with the access
sequence number of S1. That is, ProcSeqNum(P1) is
set to SysSeqNum(S1).

At T,, an attempt to access the shared state fails. A
“lost state” signal containing the logical system iden-
tifier and SysSeqNum(S1) of S1 is broadcast to all
other systems to request that processes registered
on system S1 be deregistered. Any system with ac-
cess to the shared state is eligible to perform the de-
registration process on behalf of system SI.

At T, system S2, which still has access to the shared
state, receives the signal from system S1 and logi-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

cally deregisters all S1 processes that are tagged with
a sequence number that is less than or equal to the
sequence number in the signal. Included in the de-
registered processes are processes that originally reg-
istered on S1 and processes that have been assigned
to S1 but have not yet been restarted. (When pro-
cesses are assigned to a target system, they are tagged
with the current access sequence number of that sys-
tem.)

System S2 also updates the state information to in-
dicate that system S1 no longer has access to the
shared state. In addition, each affected process on
system S1 is notified that it has been logically de-
registered (assuming that it is “listening” for this
event through the Event Notification Facility).

Atthe T, epoch, at some time in the future, the path
to the shared state from system S1 is repaired, and
system S1 regains access. Before reaccess is officially
recognized, system S1 attempts to deregister all pro-
cesses that may still be registered with a previous
SysSeqNum(S1) (the same processing that is per-
formed in step T';). This step is taken as a precau-
tionary measure in case the “lost state” signals are
lost or delayed.

At T, system S1 increments SysSeqNum(S1) (i.e.,
its value is now two) and updates the state data to
indicate that it now has access to the shared state.
Notification is broadcast (through the Event Noti-
fication Facility) to all “listening” processes on S1
so that they know they can successfully reregister.

The above algorithms ensure that any process that
registers prior to a loss of access will be deregistered,
and that any process that registers after reaccess will

BOWEN ET AL. 205

be treated as any other normally registered process
(i.e., it will be restarted if its system fails). These al-
gorithms tolerate the following timing anomalies:

» All “lost state” signals are lost. When a system re-
gains access to the shared state, it unconditionally
deregisters all processes that have registered on it
with an old sequence number. This processing is
the same as would have otherwise been done had
all the signals not been lost.

» At least one lost state signal is late. If a system re-
gains access to the shared state before one of the
broadcast lost state signals is processed, processes
that reregister on that system will not erroneously
be cleaned up when the signal is eventually pro-
cessed. It is a direct consequence of the sequence
numbering scheme outlined above.

« Lost state signals are processed out of sequence.
In the unlikely event that a system should lose, re-
gain, and lose access again, it is possible that the
lost state signals will be processed out of order.
This case is covered by the sequence numbering
scheme. The second signal, being processed first,
results in the deregistration of all processes from
both access instances because deregistration is
done for all processes with sequence numbers less
than or equal to the most recent access sequence
number.

» Access to state is lost before assigned processes
are restarted. Processes that have been assigned
to another system as a result of a system failure
but have not been restarted are deregistered if the
assigned system loses access to the shared state.
Since processes are tagged with the current access
sequence number of the assigned system, lost state
processing as described above will deregister these
processes.

» The system that owns failure analysis loses access
to state. A signal is broadcast to relinquish own-
ership of failure analysis, which logically requeues
the failure analysis event. Processes registered on
this system will be deregistered by lost state pro-
cessing as described above.

» Multiple systems lose access to the state. The case
of several systems losing access to the shared state
“simultaneously” is handled by the general lost
state method as described above. If all systems lose
access, all processes in the entire system are con-
sidered logically deregistered. They will be re-
moved from the shared state as each system re-
accesses it.

Policies and operational management. Policies are
one way for an installation to exercise control over

296 BOWEN ET AL.

how and even whether an element is restarted. For
in-place restarts of an element, control takes the form
of setting a limit (possibly zero) to the number of
restarts that will be allowed or of specifying an over-
riding method of restart.

For cross-system restarts, a variety of additional
things can be done. The installation must not only
control restarts and thereby the availability of ser-
vice, but also must aim for adequate load balancing.
A surviving system must not be so overburdened with
restarted elements that inadequacy of service results.

A second thing to consider in cross-system restarts
is a suitable sequence and pacing of restarts, so that
a restarted element will find those services it needs
available. In the normal case the availability of ser-
vices is ensured by the operational procedures of the
installation, but in cross-system restart ARM must
substitute for those procedures.

The ARM couple data set is the repository of the ARM
policies of an installation and also of the specifics of
elements with ARM status. This data set is separate
from other couple data sets (e.g., those of workload
manager), may have an alternate data set, and must
be connected to all systems where registration and
restart might occur. The ARM policy is a set of in-
structions from an installation about how and where
{and whether) restarts are to be done. The main pur-
pose of a policy is to define the elements comprised
by a group, with particulars about dependencies in
the group, overriding sources of restart techniques
and parameters, selection criteria in cross-system re-
starts, and pacing of restarts.

Following are some of the parameters that a policy
can comprise:

* RESTART_GROUP (name)—Specifies the elements
that are to be restarted together in cases of failure
of the system on which they are running. Sub-
parameters are:

— ELEMENT ({ist of elements)—A list of one or more
names of elements constituting the group.

— TARGET_SYSTEM (list of systems)—A list of one
or more systems on which a group will be re-
started. If this is not specified, all systems will be
eligible. ARM will employ workload manager to
determine the most suitable system in the target
set.

— FREE_CSA (size of memory available)—This sub-
parameter allows one to mandate that for a sys-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

tem to be considered a target of the restart pro-
cessing it must have a minimum amount of
common service area memory available.

~ RESTART_PACING (number of seconds)—The
number of seconds for ARM to wait between re-
starting one element in the group and restarting
the next. The default is zero, which causes all the
clements in a group to be started in parallel.
Thus, the primary effect of this parameter is to
specify how many elements in a group are re-
started in parallel. But whether the elements are
restarted in parallel or serially, the order of re-
start will be unpredictable.

The next two subparameters apply to in-place as
well as cross-system restarts.

— RESTART_ATTEMPTS (maximum restarts, number
of seconds)—The maximum number of restarts
of an element to be done within a given time pe-
riod. Specifying zero prevents any restarts. Once
an element exceeds its limit, it is deregistered.

— RESTART_METHOD (event type, overriding com-
mand for restart)—Overriding technique for per-
forming the restart.

s RESTART_ORDER—Controls the order in which el-
ements in a given group are to be made to wait
(when they request Wait for Predecessors) for
other elements in the group to indicate that they
are ready. An element has a level (if only by de-
fault), and elements at a given level will wait for
elements at lower levels.

& LEVEL (n)—This is the level associated with one

or more specified element names.

ELEMENT_TYPE—This parameter allows generic

mappings (e.g., assign a level) for a class of ele-

ments. It is based on the “Element_Type” param-
eter on the Register service.

[4

ARM supports the notion of duplexed coupled data
sets for improved availability. A set of operator com-
mands allows dynamic reconfiguration of these data
sets, including the ability to dynamically add or de-
lete a backup data set, switch the primary and
backup, as well as activate or terminate policies.

Exits. In 08/390 an “exit” is a programming method
in which a component of the operating system can
be tailored by code added by the customer. The
reader is referred to Reference 12 for a description
that is beyond the scope of this paper. For the pur-
pose of this paper, exits are the place where an in-
stallation or an application can exercise program-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

matic control over the behavior of the automatic
restart manager to effect a general-purpose restart
structure. The relevant exits are:

1. Group exit—For each member of a multisystem
group (i.e., using the Join service} there can be
a group exit. A group exit gets control, among
other conditions, when a system that is part of the
sysplex fails. If the member requested this option,
ARM will wait (for a reasonable amount of time)
for the member to perform actions appropriate
to it and to invoke the IXCSYSCL service to signal
that it has completed those actions.

2. Workload-restart exit—In cases of a failed sys-
tem with ARM elements, any workload-restart exit
for a system where one or more groups will be
restarted has an opportunity to perform cleanup
and preparatory functions. This exit runs after all
group member cleanup-complete requests have
been issued. ARM will not restart elements on this
system until the workload-restart exit has run (or
until a reasonable amount of time has elapsed).
The exit will have information about the name of
the failed system and about the elements that wili
be restarted on this system. The member cannot,
however, veto restart and cannot directly affect
the manner of restart.

3. Element-restart exit—An element-restart exit is
a generic exit that gets control whenever any el-
ement is to be restarted both on the same system
and across systems. The exit has the options of
vetoing the element’s restart and of allowing the
element’s restart to proceed without change or
with changes. If the manner of restart is to be
changed, the exit can specify different parame-
ters for restarting the element than were used for
the prior start or specified at registration. It can
also restart the element and then notify ARM of
this action.

4. Event exit—An event exit is an element-specific
exit that gets control when a particular element
is to be restarted. This exit has the choice of al-
lowing restart to occur or of vetoing restart (but
the exit cannot change the manner of restart).

5. Event Notification Facility (ENF) exit—This fa-
cility, a part of 08/390, provides two complemen-
tary functions.® First, software components can
broadcast the occurrence of “events.” There is a
prearranged scheme for identifying specific
events. Second, software components can “listen”

BOWEN ET AL. 297

Figure 11 Extensibility of the restart manager

TEM 1

PROCESSE!

By

SYSTEM 2
JOB SCHEDULER

grement Lol muies
RESTART DATABASE
BXIT

U} @

REGISTRATION
SERVICES

POLICY AND
OPERATIONS
MANAGEMENT

SYSTEM EXITS

WORKLOAD MANAGER

for specific events, requesting that the operating
system notify them when a given event occurs.

When certain events occur, ARM will cause an ENF
signal to be generated. '*" The specified exit will
get control in these cases:

» Anelement did one of the following: registered,
reregistered, said it is ready, or deregistered.

» Deregistration occurred because of internal er-
Tor.

» Restart of an element failed.

» Access to the ARM couple data set has been lost
or regained.

With this information, an application will be able
to know, for example, whether an element actu-
ally succeeded in being restarted. Or if access to
the ARM couple data set is regained, the exit may
inform an application that it can now register with
ARM.

A significant amount of software has been written
to control the scheduling of work for large systems.
For simplicity, we use the term “job scheduler” as
a generic term to describe this software. Two key
goals were considered for this software:

298 BOwEN ET AL

SYSPLEX SERVICES

SHARED STATE FACILITY

1. Provide appropriate real-time signals, program-
mable interfaces, and operational controls so that
a job scheduler could coexist with ARM.

2. Provide an extensible structure so that a job sched-
uler could use ARM to easily become a multisys-
tem job scheduler.

There are a large number of extremely complex func-
tions in ARM that would be very difficult to repro-
duce at a level above the operating system. These
functions include system failure detection, target sys-
tem selection and the integration with the workload
manager, and many of the subtle timing and sequenc-
ing issues.

An example is now shown of how a job scheduler
could leverage the ARM services to become a mul-
tisystem job scheduler without having to write a large
amount of code. Figure 11 shows a scenario in which
a job scheduler is running on multiple systems, and
System 1 has just failed. ARM performs all the func-
tions described thus far and selects System 2 as the
target system for the restart. Since the job scheduler
has defined an element restart exit (flow 1), ARM no-
tifies the job scheduler that a restart is about to oc-
cur. In this example, the job scheduler looks up its
local rules database and determines that this pro-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

cess should be restarted. It then restarts the element
(flow 3) and returns to ARM in flow 5. In the return
parameter list to ARM, it indicates that the restart
was done by the job scheduler, and ARM uses that
information to update its state. It is important to note
the exits are running on the selected target system.

Many other interactions are possible with the job
scheduler, including variations on the above scenario
or uses of the other exits that have been defined.

Summary

This paper focused on high availability in parallel or
clustered systems and on the need for restart ser-
vices as a basic building block. Algorithms for fail-
ure detection and restart methods were described
that have been implemented on 08/390. ' One of the
key principles is that the restart service presents the
notion of logical atomic failure points in order to
shield the system from the very complicated events
that occur during a system failure and subsequent
restart processing. In addition, the restart service pro-
vides flexible controls to support a general-purpose
restart structure.

Acknowledgment

We would like to thank Dave Petersen and Jim Daly
for their contributions to the design of ARM.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references and note

1. G.F. Pfister, In Search of Clusters, Prentice Hall, Englewood
Cliffs, NJ (1995).

2. N. Bowen, C. Polyzois, and R. D. Regan, “Restart Services
for Highly Available Systems,” The 7th IEEE Symposium on
Parallel and Distributed Processing (October 1995), pp. 596~
601.

3. J. Nick, J.-Y. Chung, and N. Bowen, “Overview of IBM
System/390 Parallel Sysplex—A Commercial Parallel Process-
ing System,” 10th International Parallel Processing Symposium
(April 1996), pp. 488-495.

4. J.M. Nick, B. B. Moore, J.-Y. Chung, and N. S. Bowen, “S/390
Cluster Technology: Parallel Sysplex,” IBM Systems Journal
36, No. 2, 172-201 (1997, this issue).

5. L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding,
“Design for Fault-Tolerance in System ES/9000 Model 900,”
22nd Symposium on Fault-Tolerant Computing (July 1992),
pp. 38-47.

6. S. Calta, J. deVeer, E. Loizides, and R. Strangwayes, “En-
terprise Systems Connection (ESCON) Architecture—Sys-
tem Overview,” IBM Journal of Research and Development
36, No. 4, 535-552 (1992).

7. R.Cwiakala, J. Haggar, and H. Yudenfriend, “MVS Dynamic

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Reconfiguration Management,” IBM Journal of Research and
Development 36, No. 4, 633-646 (1992).

8. M. Swanson and C. Vignola, “MVS/ESA Coupled-Systems
Considerations,” IBM Journal of Research and Development
36, No. 4, 667-682 (1992).

9. 05/390 MVS Programming: Sysplex Services Reference, GC28-
1726,1BM Corporation (September 1996); available through
IBM branch offices.

10. J. Antognini, “The Automatic Restart Manager in MVS/SP
5.2.2,” Share 85 Proceedings (August 1995).

11. H. Garcia-Molina, “Election in a Distributed Computing Sys-
tem,” IEEE Transactions on Computers 31,No. 1,48-39 (Jan-
uary 1982).

12. O8/390 MVS Installation Exits, GC28-1753, IBM Corporation
(March 1996); available through IBM branch offices.

13. OS5/390 MVS Programming: Authorized Assembler Services
Guide, GC28-1763, IBM Corporation (September 1996);
available through TBM branch offices.

14. An application may listen by employing the OS/390 service
ENFREQ? for event type 38.

15. OS/390 MV'S Programming: Authorized Assembler Services Ref-
erence, Volume 2, GC28-1765, IBM Corporation (Septem-
ber 1996); available through IBM branch offices.

16. MVS/ESA Sysplex Overview, GC28-1208, IBM Corporation
(December 1994); available through IBM branch offices.

Accepted for publication January 30, 1997.

Nicholas S. Bowen IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: bowenn@watson.ibm.com). Dr. Bowen received
the B.S. degree in computer science from the University of Ver-
mont, the M.S. degree in computer engineering from Syracuse
University, and the Ph.D. in electrical and computer engineering
from the University of Massachusetts at Amherst. He joined IBM
at East Fishkill, New York, in 1983 and moved to the Research
Center in 1986, where he is currently the Department Group Man-
ager of Servers. He is a senior member of IEEE and a member
of ACM. His research interests are operating systems, computer
architecture, and fauit-tolerant computing.

James Antognini IBM Research Division, ThomasJ. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: antogni@watson.ibm.com). Dr. Antognini is cur-
rently a senior programmer at the Research Center, working on
projects related to OS/390 and to servers and clients (running on
MVS, AIX® and Windows NT®). He previously worked on PL/I
language performance, Enterprise Storage Manager (architec-
ture), integrated records management, asynchronous data mover,
automatic restart manager, and the intelligent data miner. He
has presented papers at SHARE on MVS, CICS™, and PL/I. Dr.
Antognini received the A.B. in psychology from Stanford Uni-
versity in 1970 and the Ph.D. in experimental psychology from
Yale University in 1975.

Richard D. Regan /BM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: regan@watson.ibm.com). Mr. Regan received a
B.S. in computer science/mathematics from Syracuse University
in 1985 and joined IBM that year. He subsequently received an
M.S. in computer science from Rensselaer Polytechnic Institute
in 1992 and is currently pursuing a Ph.D. in computer science at
Polytechnic University. He has been involved in the development
of several O8/390 products, including Advanced Peer-to-Peer

BOWEN ET AL. 200

Communications (APPC) and the automatic restart manager
(ARM). He is currently an advisory software engineer doing re-
search and development of distributed transaction processing sys-
tems. Mr. Regan received a Research Division Award in 1995.

Nicholas C. Matsakis /BM S/390 Division, 522 South Road,
Poughkeepsie, New York 12601 ({electronic mail: nmatsakis
@vnet.ibm.com). Mr. Matsakis is a staff programmer in OS/390
XCF/ARM Development. He graduated in 1984 from Rutgers
College with a computer science and economics degree. He has
been with IBM for 12 years during which eight of those years have
been in the development of the OS/390 cross-system coupling fa-
cility (XCF), cross-system extended services (XES), recovery and
termination manager (RTM), and automatic restart manager
(ARM). He is currently an IBM technical consultant and a mem-
ber of the OS/390 Parallel Sysplex Enablement Team.

Reprint Order No. G321-5644.

300 BOWEN ET AL. IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

