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Parallel  and  clustered architectures are 
increasinalv beina used  as a foundation for 
high-capgiity sehers.  At the same time, the 
availability  expectations are also  rising  rapidly, 
since the effects of down time become  more 
apparent and  have  higher  economic 
consequences  for  larger  systems. The use of 
parallel structures  generally  implies  more 
hardware and software components. The 
presence of more  and larger components 
increases the chances that an individual 
component  will  fail,  and that failure has the 
potential to hurt the overall  availability of the 
system.  This paper discusses the use  of “restart 
techniques”  as an important strategy  in  providing 
increased  availability in a parallel  structure. The 
paper covers a set  of  functions that have  been 
developed  for the S/3W@ Parallel  SysplexTM. 

N early  all users of computer systems are making 
availability a de facto requirement. Also, a 

strong demand for higher performance is increas- 
ingly  being met with clustered architectures.’ The 
redundancy inherent in clustered systems  offers the 
opportunity to provide increased levels of availabil- 
ity. However, the presence of more and larger com- 
ponents increases the chances that something will 
go  wrong and tends to decrease availability. The abil- 
ity to rapidly detect and recover from component 
failures is a critical function for providing high  avail- 
ability in clustered systems. 

An application sewer is defined as a collection of 
hardware and software that can run a specific ap- 
plication (e.g., a transaction, database query, an ed- 
itor).  Furthermore, application availability is defined 
as  the probability that  the application server is  avail- 
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able at  a given point in time. Clearly, clustered sys- 
tems have an advantage in  providing increased avail- 
ability  because of the inherent redundancy in the sys- 
tem. However, the design of the application server 
with respect to the various failure modes of the sys- 
tem dictate the overall availability. For example, if 
the application server can continue to provide ser- 
vices  even  when  an  individual  system  fails,  it  can  have 
greater availability than a corresponding server on 
a single system. 

Pfister describes many clustered architectures that 
have the basic  objective of using the underlying ar- 
chitecture to provide increased availability. Al- 
though many of these systems  have implemented 
heartbeat mechanisms for detecting system failures, 
he observes that  quite  a few  systems use “fail over” 
techniques that  depend on application or system re- 
start techniques because the application server it- 
self  must be restarted  to provide continued service, 
Such  use  is due to  the underlying “shared-nothing” 
architecture of these systems where data  are  often 
partitioned among the various processing nodes. 
That architecture can be contrasted with the 
System/390* (S/390*) Parallel Sysplex” that is based 
on a “shared-disk” architecture where the applica- 
tion servers have  access to all data and are capable 
of running any application. Here  the  requirements 
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differ; restart is necessary for restoring the initial  con- 
figuration and performing recovery actions (e.g., da- 
tabase log  recovery). We claim that  a set of basic op- 
erating system restart services are required for both 
of these scenarios. From this  claim we assert that 
three principal steps are required in obtaining high 
availability in a clustered system;  namely, fault de- 
tection and containment, the ability to  operate in de- 
graded mode, and finally, the ability to restore the 
original configuration. 

This paper examines a set of services intended to fa- 
cilitate this task. First, we define the system model 
and present the requirements for high  availability, 
thenwe describe the restart services and some of the 
robust features of these services. A preliminary ver- 
sion of this paper can be found in Reference 2. 

Availability  strategy  and  system  model 

This section provides a high-level  overview of the 
si390 Parallel Sysplex and outlines the overall strat- 
egy for providing  highly  available application serv- 
ers. First, the impact of the general architecture for 
parallel systems  is discussed. 

The architecture of the application server is critical 
to understanding the  requirement for restart  pro- 
cessing. Figure 1 shows three classic approaches used 
in clustered systems. A shared-nothing  architecture 
is the basis for cases A and B in  which the disks are 
attached to  a single  system. Case A shows a fully par- 
titjoned approach in which particular application 
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servers can  only  access a subset of the  data and, thus, 
can  only run  a subset of the applications. Case B 
shows a basic enhancement to  the shared-nothing 
approach that allows an application server to access 
remote nodes using techniques such as “function 
shipping” or “xi0  hipp ping."',^,^ In case C, all  systems 
have  access to all data. One could also  imagine ad- 
ditional variations (e.g., an application server with 
the  properties of A running on a parallel architec- 
ture as defined in C). From these various scenarios 
one can discern various reasons for using restart  ser- 
vices. These include: 

1. Restart of the application server 
2. Restart  to recover resources (variation of peer re- 

3. Restart  to  restore configuration 

Before discussing the specific restart scenarios, ba- 
sic transitions that  the system must go through are 
discussed. Furthermore, it is argued that  the follow- 
ing steps must occur for all scenarios: 

1. Failure detection and isolation 
2. Continuous operation in “degraded” mode 
3. Restoration of the initial configuration 

The  duration of each step and the definition of de- 
graded differs for the various scenarios. These steps 
are now described in more detail. 

There  are several components of failure detection 
and isolation: first, the use of heartbeat mechanisms 

covery) 
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Figure 2 Parallel Sysplex  system  model 
-_____ 

\ 

to detect an unhealthy system and, second, the abil- 
ity to physicallypartition the failed system out of the 
cluster. That is, the system  itself  is disconnected from 
its own 110 processor, and all required components 
are notified of the failure of the system and all pro- 
cesses on that system.  Finally, the workload sched- 
uler components are made aware of the failure and 
continue to  route work into  the cluster while avoid- 
ing the failed region. 

For these first two cases (from Figure l), the key ob- 
jective is restart of the application server, which  may 
also require a  restart of the system. The application 
server is unavailable for  a subset of the applications 
(thus, one definition of “degraded”) during the  re- 
start process. In case C, the new requests can  be 
routed to other application servers  immediately, thus 
maintaining availability. The key restart objective is 
the initiation of the application server recovery  logic 
(e.g., database log  recovery). Here  the term “degrad- 

ed” means lower  capacity, but the applications can 
continue to run. 

Figure 2 shows the overall structure of the Si390 Par- 
allel Sy~p lex .~ ,~  It consists of up to 32 processing 
nodes (each node can be a symmetric multiproces- 
sor with 1 to 10 processors), each running the OSi390” 
operating system and connected to  a collection of 
shared disks. The basic  system  design has a long  his- 
tory of fault-tolerant f e a t ~ r e s . ~  The I/O architecture 
has  many  advanced  availability  and performance fea- 
tures (e.g., multiple paths with automatic reconfigu- 
ration for availability). The basic I/O architecture is 
described in Reference 6, and one aspect of the dy- 
namic ID configuration is described in Reference 7. 
The Sysplex Timer* (ETR) serves as a synchronizing 
time source for systems  in the sysplex, so that local 
system time stamps can be relied upon  for consis- 
tency  with respect to time stamps obtained on other 
systems. There is also a facility called XRF (extend- 
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Figure 3 Overall system structure 

ed recovery  facility) that allows for “hot standbys.” 
The coupling  facility (CF) provides  multisystem data- 
sharing functions and  is described in References 3 
and 4. 

Automatic restart manager 

Since  all  systems in the Parallel Sysplex  can  have con- 
current access to all critical applications and data, 
the loss of a system because of either hardware or 
software failure does not necessitate loss of appli- 
cation availability. Failing applications, caused by 
system or process failures, can be automatically 
restarted on still-healthy systems by the OSi390 au- 
tomatic restart manager (ARM) component to per- 
form recovery for work in progress at the time of 
the failure. While the failing application server in- 
stance is unavailable, new  work requests can  be re- 
directed to  other data-sharing instances of the server 
to provide continuous application availability across 
the failure and subsequent recovery. ARM is fully in- 
tegrated with the existing parallel structure and pro- 
vides  significantly more functions than does a  tra- 
ditional “restart” service. First, utilizing a  shared 
state  support facility’,4 at any  given point in time, 
ARM is aware of the  state of all processes on  all  sys- 

tems (including  processes  on  any  failed  systems).  Sec- 
ond, ARM is tied into  the system heartbeat functions 
so that it  is immediately aware of system failures. 
(In a subsequent section, this notion of “immediate” 
is  clearly defined by carefully describing the actual 
time sequencing of restarts.) Third, ARM uses the 
workload manager to determine a target restart sys- 
tem based on the  current resource utilization across 
the available  systems.  Finally, ARM has many fea- 
tures  to provide improved restart such as  affinity  of 
related processes, restart sequencing, and recovery 
when subsequent failures occur. Figure 3 shows the 
overall software structure. 

A set of base parallel services provides many  of the 
clustered services (e.g., membership services) that 
are not described here, but a summary can be found 
in References 3,4, and 8. The functions for ARM are 
described in several sections. First, the operating sys- 
tem services and the general usage of ARM are  de- 
scribed. Second, restart manager functions and algo- 
rithms are described, including a discussion of the 
fault-tolerant features of the algorithms. Next, the 
operational aspects of ARM are covered. Finally, the 
usage of system exits and  the event  notification  fucil- 
ity to communicate special asynchronous events are 
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Table 1 Input  parameters  for  register  service 

Parameter  Used to Identify 

The specific  process 
A generic class of processes 

Event exit A program to run prior to restart 
Event  exit data Parameters for the event  exit 
Restart command An alternate restart method 

Table 2 Output  parameters  for  register  service 

Restart type If process was restarted 
Restarts enabled If restarts are currently enabled 

Table 3 Summary of commands 

Service  Used to Indicate 

Register Restart services are requested 
Deregister Restart services are not required 
Ready Restarted process has  completed restart logic 
WaitPred Process will wait for dependent processes 
Associate  A  hot-standby alternate is active 

described. The formal programming interfaces are 
defined in Reference 9, and a description of the us- 
age can be found in Reference 10. Although the fo- 
cus of this paper is on restarts in parallel systems, 
it should be noted  that  the ARM services  also  apply 
to  the situation where a process fails and is restarted 
on  the same system. 

Basic restart services and terminology. A Register 
service  is  provided to allow a process to indicate when 
restart services are required and a Deregister service 
to indicate when they are no longer required.  The 
parameters used on the register service are shown 
in Table 1. 

The  outputs of the register service are highlighted 
in Table 2. Restart Qpe provides an indication as to 
whether the process was restarted by the  operating 
system or is  initially starting. Restarts enabled indi- 
cates whether the operating system is currently en- 
abled and capable of performing restarts. Prior sys- 
tem ID provides an identification of the prior system 
on which the process was  executing. 
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The full set of services are summarized in Table 3. 
The Ready and WaitPred services are used to syn- 
chronize processes that have sequencing dependen- 
cies. 

A process that is  using ARM services  is referred to 
as  an “element.” In addition, we define a restartgroup 
as a set of elements that have  affinities and must re- 
main together in the event of a system failure and 
resulting restart.  Furthermore,  the  restart group has 
an effect on the sequencing of elements (described 
shortly). Elements  are not aware of being  in a  re- 
start group; the elements are placed  in a group based 
on the element name and a system administrator’s 
policy. 

ARM also provides commands to allow sequencing 
of restart activities. These activities include the  ser- 
vices WaitPred (Wait for Predecessors) and Ready. 
These services are  dependent  on  a concept called 
“restart levels” wherein elements can be arbitrarily 
placed  in numbered levels. The requestor of the ARM 
service is unaware of its level;  it  is set by the instal- 
lation. The WaitPred function is provided because 
elements may depend on other elements being ini- 
tialized and available. 

The Wait for Predecessors service does not cause a 
wait if this element is not  part of a cross-system re- 
start. So, for example, nothing really happens for an 
element starting initially (without ARM intervention, 
that is) or being restarted within the same system by 
ARM. 

In cases where an element is to be a predecessor for 
other elements in a cross-system restart, that element 
has an obligation to make known its readiness for 
work. This is done by the Ready service. As with the 
Wait for Predecessors service, there  are  no  param- 
eters.  It is up to ARM to  keep track of what elements 
may be  waiting for this element to say ready. Incross- 
system restart, a Ready request will not complete un- 
til  all elements with  lower  levels  in the containing 
group indicate that they are ready. In other words, 
Ready behaves  in  such a restart as though it  had been 
preceded by a Wait for Predecessors request. 

ARM provides special restart support for hot-standby 
environments. In a hot-standby environment, you 
have a primary server (P,) and a backup server (P,) .  
The recovery concept in this environment is that in 
the event of a failure of P,, then Pa immediately 
takes over the processing. These two systems are very 
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Figure 4 ARM activity  and  states  (normal case to left,  failure  case to right) 
~~ 

tightly integrated so that they typically do  not have 
to do recovery functions such as  log  recovery (be- 
cause the backup will  have been monitoring the logs). 
With regard to restart, process Pp does not need to 
be restarted  to provide availability;  in fact, it  was 
deemed that  a  restart of P, would be undesirable 
because it  would unnecessarily consume resources. 
Thus, ARM provides anAssociate service that allows 
an element to indicate that  a certain other element 
is not to be restarted by  ARM. ARM does not, how- 
ever, inform this element when the  other element 
terminates. The responsibility for knowing that lies 
with the element imposing association. In contrast, 
if the associating element itself terminates, ARM does 
undertake to reinstate the  other element's eligibil- 
ity for restart (i.e., the Associate is removed). 

A set of services on OSi390 allows for traditional mul- 
tisystem membership services  (e.g., join a group, sig- 
nal members of the group).' ARM has provided the 
ability for members of multisystem groups to  be in- 
formed of system failures and for them  to effect a 
delay of the  restart processing. This function is pro- 
vided to allow these multisystem groups to perform 
special  processing  (e.g., resource cleanup) before the 
restarts occur. There is an optional parameter on the 
group Join service to request this function. Once no- 
tified of this situation, the member is expected to  ap- 

prise ARM that it has finished cleanup and prepa- 
ratory actions relating to the failure of the system. 
ARM will not proceed with restarts until that mem- 
ber and all other group members that have requested 
cleanup responsibility have declared that they are 
finished with cleanup (or until a certain amount of 
time has passed after they were notified of the fail- 
ure).  Failure of a group member is taken  to mean 
that  the member has discharged its cleanup respon- 
sibility. 

At this point we describe the various states  that  an 
element can be in with respect to ARM. The set of 
ARM states is shown  graphically  in Figure 4. Depend- 
ing on what ARM services an element has used 
and on the execution history of the element, an 
element can  have one of several states: 

Starting: The element is executing and has regis- 
tered. 
Available: The element is  executing,  has registered, 
and has indicated that it is ready for work. 
Available-to: The element is executing after being 
restarted, has registered, and is considered ready 
(available due  to time-out) since it did not signal 
readiness in a certain span of time. This state is 
equivalent toAvailabZe (and thus not shown  in  Fig- 
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Figure 5 Major epochs  in restart processing 

ure 4) with respect to the  restart sequencing ex- 
cept that  the Ready call  was not made. 
Failed: The element is registered, terminated (ab- 
normally or normally) without first deregistering, 
and is  waiting for the ARM restart process to com- 
mence. 
Restarting: The element failed, and  the ARM re- 
start process began and is  still  underway or is  com- 
plete. If the  restart process is complete, job sched- 
uling factors could delay or even preclude 
execution. Otherwise, the element is  executing but 
is  yet to register again with ARM. 
Recovering: The element is executing because of 
a  restart, has registered, but is  yet to indicate that 
it is ready for work. 

Restart manager. This subsection describes the spe- 
cific algorithms used to perform the restart process- 
ing. The major epochs in the  restart processing are 
described, using Figure 5 as a reference. 

At epoch E t ,  a system-level heartbeat mechanism 
is used. This first event indicates the first instance 
in which a system fails to update its heartbeat. 

Starting at epoch E 3  actions must take place to  en- 
sure that  the system  is  in fact terminated. This as- 
surance is required because the imperfect nature of 
some heartbeat mechanisms  can present the  appear- 
ance of a failure. For example, a system could stop 
updating its heartbeat because of a  loop in the  op- 
erating system. The missing heartbeat might then be 
externally recognized, and  restart processing would 
occur; then an event occurs that  terminates  the loop 
(e.g., an 1/0 error condition cleared, time-out logic 
in the  operating system). The system then comes 
back to life, and  there could be two copies of a pro- 
cess, one executing on  the apparently failed system 
and one elsewhere. Two copies could cause database 
problems in a shared-disk environment or network 
problems in a distributed system. 

ARM relies on the use of a technique that we refer 
to as “1/0 fencing” in which there is a special com- 
munications link to the 1/0 mechanism of the failed 
system that allows I/O activity from the failed system 
to be disabled. 

At E ,  a single  system  must become the owner of the 

delay from E ,  to E ,  is a function of the sensitivity nation could use any algorithmtl for either tightly 
of  the  heartbeat technique to tolerate irregularities coupled or clustered systems. Our approach is to use 

in the steady-state workload could cause a system to a  shared disk that uses a disk-based locking scheme. 

miss a  heartbeat.  The  term  “predatory takeovers” is The system that becomes the logical owner records 
used to describe the situation where the  heartbeat its system identifier on the shared disk. 
mechanisms indicate a failure has occurred when, 
in fact, no failure actually occurred. Therefore, it  is At E 5 ,  once a system becomes responsible for the 
important  to understand the sensitivity of the  heart-  restart process, it  begins a set of steps that lead to 
beat mechanism to transient conditions and adjust assigning the processes to execute on other systems 
the “missing heartbeat”  parameters accordingly. and initiating their restarts: 

At the missing heartbeat is now detected. The restart process for  the failed system. This determi- 

I in the mechanisms. For example, a  sharp transient 
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Figure 6 Parallelism  in restart processing 

1. Assign  each  process to  a restart group of processes 

2. Assign each restart group to an available  system: 
that must always remain together. 

Honor any static affinities. 
Assign the  restart group to  a system based on 
recent historical resource consumption (e.g., 
CPU, memory) on  the active  system. 

At E 6  the system provides a period of time for all 
members of multisystem groups to perform multi- 
system cleanup before the restarts are initiated. 

At E7 the system controlling the  restart process 
(event E 5 )  signals  all other systems to initiate the 
restarts. The processes that need to be restarted  are 
indicated on the  shared disk containing the global 
state. The signal is used  as a trigger  to read the shared 
disk. Once  the local  system determines which pro- 
cesses  must be restarted,  the following steps occur: 

1. If the process specified an event-exit, execute the 
program. 

2. For all processes in a given restart group, create 
a list  specifying the  order in  which processes must 
be restarted. If multiple processes have the same 
level, they are logically started simultaneously. 

3.  Initiate the  restart of all processes in the  restart 
group using a simple pacing algorithm that spec- 
ifies  delays between process restarts. 

4. Enable sequencing of processes within a  restart 
group. The processes have Ready and WaitPred 
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calls that allow them to wait for processes that 
were started earlier @e., that have a lower  level). 

The key aspects are illustrated in Figure 6. In ad- 
dition, all processes within a  restart group can be re- 
started with a pacing value that staggers the restart 
processing to avoid a system overload. Furthermore, 
the synchronization is  only done for process threads 
that issue the ARM services. That is, other  threads 
under  the  restarted process are  not affected. 

Whether  and how a registered element that termi- 
nates is to be restarted  depends on a number of 
things: 

If an operator cancelled the element (using a CAN- 
CEL or FORCE command), the element will not be 
restarted. However, the use of the optional param- 
eter ARMRESTART will cause the normal termina- 
tion followed by a  restart. 
The element has not been restarted more than  a 
fixed number of times within a fixed time window. 
No other element has made an Associate request 
against this element. 
An element-restart exit (defined later) allows re- 
start.  The exit  may also change the manner of re- 
start. 
Any event exit named in the registration of the  ap- 
plication allows restart. This exit cannot, however, 
change the  manner of restart. 

Fault  tolerance  in  algorithms. One of the key  val- 
ues of ARM is the notion of logical atomic failure 
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points created during the complicated underlying 
physical state transitions that actually occur during 
system failures and subsequent restart processing. 
Whereas the previous subsection described the ba- 
sic  processing that the restart manager applies to sys- 
tem failures and restarts, this subsection focuses on 
the underlying design principles and uses a few  ex- 
amples of very complicated failure scenarios to il- 
lustrate  the points. 

Since  we  wish to provide operating system  services 
for building highly  available  systems, we must en- 
sure  that  the services themselves have additional 
fault-tolerant features. A methodology for tolerat- 
ing faults by precisely  defining the way in  which fail- 
ures are exposed to users of the services is  now for- 
mulated. Our design objective is a system that can 
recognize failures, remain operational while failures 
persist, and  restore itself to normal operation when 
failed components are repaired. A set of physical 
states  and logical states that occur because of a fail- 
ure  are described. The physical states are: 

1. Normal operation 
2. A period of time from when the system has rec- 

ognized the failure of one of its components to 
when it restores itself to a limited, yet safe, con- 
figuration 

3. A period of time from when the system  establishes 
a  safe configuration to when it reestablishes its 
original configuration 

4. (Back to) normal operation 
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Failure masking  is a key objective in this design. 
Therefore, we  mask the physical state transitions just 
described and  present  a logical  view to  the user of 
the  restart services.  Masking  is illustrated by the 
lower time line in Figure 7. That is, the users of re- 
start services see a continuously  available  system  with 
the caveat that some  (logically) instantaneous change 
may occur as a result of an underlying failure. The 
system  is designed such that processes that register 
before the logical failure point can be distinguished 
from those that register after the failure. We  describe 
these processes by setA (before  failure)  and setA ’ 
(after failure). This formalism is especially critical 
in a distributed or parallel system  in  which informa- 
tion (e.g., failure notification, repairs) is subject to 
propagation delays and thus may be recognized in 
different places at different times. 

Achieving this logical  view mandates additional de- 
sign to handle events that occur when the underly- 
ing  system  is repairing a physical failure. Solutions 
include techniques such  as queuing the ARM requests 
(or rejecting them)  and notifying users upon repair 
(essentially queuing in the operating system or queu- 
ing in the user). Following are two specific exam- 
ples of the basic fault tolerance model. 

System termination. When a system  fails, two funda- 
mental actions must occur. First, the processes from 
the failed  system  must be restarted on active  systems. 
Second, the system  itself  must  be restarted. It is de- 
sirable to perform these two activities  in parallel. 
However, this desire creates the possibility that  the 
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Figure 8 Realization of system  failure 

system can be  restarted before the elements have 
been restarted.  It means that new elements could 
register on  the newly restarted system and then ap- 
pear as if they were executing on the failed system. 
The notion of logical failure points is used to make 
this scenario impossible. This notion not only  makes 
the implementation easier and more efficient, but 
also less  complex so that it becomes more reliable. 
If these two activities can be performed in isolation 
from each other,  the implementation is  greatly  sim- 
plified. However, if these activities are independent, 
one must  be careful regarding processes that reg- 
ister after the system  is restarted (i.e., they should 
not appear as candidates for process restart). 

Figure 8 is used to illustrate the application of this 
methodology to  a system failure scenario. As de- 
scribed  previously, a system failure results in the pro- 
cesses being assigned to  another system. With our 
design methodology, the overall design  is  simplified 
by examining  all registered processes (recorded on 
the  shared disk) and distinguishing those processes 
that must be restarted (i.e., those active before the 
failure) from those that should not be restarted (i.e., 
those that registered after the system restarted  and 
thus should not be considered failed). It is impor- 
tant  to  note  that this  discussion applies to  the  inter- 
nal design of the  restart manager and does not have 
implications with respect to multiple “instances” of 
processes across these logic points (i.e., if a process 
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is erroneously restarted while a prior incarnation is 
awaiting to be restarted,  there will be an unwanted 
duplicate). 

Loss of access to the  shared-disk  global state. As we 
stated earlier, the information required to determine 
the necessary reconfiguration must be accessible in 
case of failure. This information is kept on a shared 
disk,  with independent access from every  system to 
the disk. To guard against failures, the disk can be 
mirrored, and the hardware path  to  the disk  can  be 
duplexed. 

As processes  register  and deregister, recovery  actions 
change and must be reflected on the disk. If a sys- 
tem ever loses  access to  the  shared disk containing 
the global state, the state as reflected on the disk  may 
diverge from the actual state of the system. Consider 
the following scenario: 

1. A process deregisters itself, but the system can- 
not access the shared disk to record the dereg- 
istration. 

2. The system  on  which the process is running ter- 
minates, and the process  is (incorrectly) restarted 
on another system. 

The net result is an undesired instance of the  pro- 
cess,  which could cause data races and data  corrup- 
tion (especially if another instance of it has started 
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Figure 9 Realization of global state failure 

somewhere else). Starting one process too many  is 
generally more dangerous than starting one  too few. 
A missing  process will not provide  service, but at least 
it will not compromise data integrity. One could han- 
dle the loss of physical access to  the shared-disk 
global state by substituting logical access for it. The 
process registration and deregistration actions could 
be sent to other systems and recorded on disk by 
them.  For resiliency, the actions would  have to be 
sent to many (all) other systems, and it  would be nec- 
essary to  arbitrate among those systems to  ensure 
exactly-once semantics for the actions. Furthermore, 
appropriate algorithms  would be necessary to ensure 
that  the logical order of the actions on the system 
of origin (the  one  that lost  access to  the disk) is pre- 
served. For example, the relative order of two reg- 
istration or deregistration events should not be re- 
versed by messages  received out of order by other 
systems. 

Implementing a message-based protocol to tolerate 
the loss of access to  the shared disk by one system 
would  be a difficult effort. The gain in  service  avail- 
ability  would be minimal, because the loss of access 
to  the shared disk  is a very rare event, given that it 
requires at least a double failure (single failures are 
masked by the  redundant hardware used). 

We have opted for a solution that brings the system 
to  a safe state when a system  loses  access to the 
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shared-disk global state,  rather  than provide max- 
imal service. A safe state is chosen such that  restart 
services are made logically unavailable on  the af- 
fected system  (e.g.,  new registration requests are not 
honored).  More precisely,  this safe state is one in 
which  it appears that restart services were never  avail- 
able on the affected  system; that is, processes are log- 
ically deregistered, which prevents undesirable re- 
start scenarios like the  one outlined above. 

Figure 9 shows the  state transitions for lost access 
to  the global state. Again, we are able to distinguish 
processes that present themselves before (set A )  and 
after (set A ’) the logical failure. The algorithm for 
deregistering processes in setA is an asynchronous 
message-based  algorithm, so we  must be able to guar- 
antee  that systems that perform the deregistration 
remove only those processes in set A and do not 
touch processes in set A ’. Below are described the 
specific algorithms used to recover from a loss of ac- 
cess to the  shared  state. The key to the robustness 
of these algorithms is the use of sequence numbers 
to logically  bind registered processes with a specific 
configuration instance. Two sets of sequence num- 
bers are defined: 

1. An array of sequence numbers SysSeqNum(), 
which contains one sequence number per system. 
Each sequence number SysSeqNum(S) repre- 
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Figure 10 Major epochs in recovery of global state 

sents the nth connection to  the  shared  state by 
system S. 

2. An array of sequence numbers ProcSeqNum(), 
which contains one sequence number per regis- 
tered process. Each sequence number ProcSeq- 
Num(P) is a copy  of SysSeqNum(S) as it  existed 
at  the time process P registered on system S. This 
represents  the bind between a process and the 
particular configuration under which  it registered. 

Each system tracks every other system and maintains 
a logical (persistent) copy of the SysSeqNum array. 
In addition, each system tracks which  systems cur- 
rently  have  access to the shared-disk state  and which 
do not. 

An example, depicted in Figure 10, showing the steps 
involved  in recovering from a loss of access to the 
global shared  state is  now described. 

At T I ,  system S1 makes  its initial connection to  the 
shared disk.  SysSeqNum(S1)  is  initialized to one (i.e., 
initial  access).  When  process P1 registers on system S1, 
its state data representation is  tagged  with the access 
sequence number of S1. That is,  ProcSeqNum(P1) is 
set to SysSeqNum(S1). 

At TZ, an  attempt to access the shared state fails. A 
“lost state” signal containing the logical  system iden- 
tifier and SysSeqNum(S1) of S1 is broadcast to all 
other systems to request that processes registered 
on system S1 be deregistered. Any  system  with  ac- 
cess to  the shared state is  eligible to perform the de- 
registration process on behalf of system S1. 

At T 3 ,  system S2, which still has access to  the  shared 
state, receives the signal from system S1 and logi- 
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cally deregisters all S1 processes that  are tagged  with 
a sequence number that is  less than  or  equal  to  the 
sequence number in the signal. Included in the de- 
registered processes are processes that originally  reg- 
istered on S1 and processes that have been assigned 
to S1 but have not yet been restarted. (When pro- 
cesses are assigned to  a target system,  they are tagged 
with the  current access sequence number of that sys- 
tem.) 

System S2 also updates the  state information to in- 
dicate that system S1 no longer has access to  the 
shared  state. In addition, each affected process on 
system S1 is notified that it has been logically de- 
registered (assuming that it  is “listening” for this 
event through the Event Notification Facility). 

At the T4 epoch, at some time in the  future,  the  path 
to  the shared state from system S1 is repaired, and 
system  S1 regains access. Before reaccess is officially 
recognized, system S1 attempts to deregister all pro- 
cesses that may still be registered with a previous 
SysSeqNum(S1) (the  same processing that is per- 
formed in step T 3 ) .  This step is taken as a precau- 
tionary measure in  case the “lost state” signals are 
lost or delayed. 

At T s ,  system S1 increments SysSeqNum(S1)  (Le., 
its  value  is  now two) and updates the  state  data  to 
indicate that it  now has access to  the  shared  state. 
Notification is broadcast (through the Event Noti- 
fication Facility) to all “listening” processes on S1 
so that they know  they can successfully reregister. 

The above algorithms ensure  that any process that 
registers prior to a loss of access will be deregistered, 
and that any process that registers after reaccess  will 
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be treated as any other normally registered process 
(i.e., it will be restarted if its  system fails). These al- 
gorithms tolerate  the following  timing anomalies: 

All “lost state” signals are lost. When a system re- 
gains  access to  the  shared  state, it unconditionally 
deregisters all processes that have registered on it 
with an old sequence number. This processing  is 
the same as  would  have otherwise been done had 
all the signals not been lost. 
At least one lost state signal  is late. If a system re- 
gains access to the  shared  state before one of the 
broadcast lost state signals  is processed, processes 
that reregister on that system will not erroneously 
be cleaned up when the signal  is eventually pro- 
cessed. It is a direct consequence of the sequence 
numbering scheme outlined above. 
Lost state signals are processed out of sequence. 
In  the unlikely event that  a system should lose, re- 
gain, and lose access again, it  is  possible that  the 
lost state signals will be processed out of order. 
This case is covered by the sequence numbering 
scheme. The second signal, being processed first, 
results in the deregistration of  all processes from 
both access instances because deregistration is 
done for all processes with sequence numbers less 
than or equal to the most recent access sequence 
number. 
Access to state is lost before assigned processes 
are  restarted. Processes that have been assigned 
to another system as a result of a system failure 
but have not been restarted  are deregistered if the 
assigned  system  loses  access to  the  shared  state. 
Since processes are tagged  with the  current access 
sequence number of the assigned  system,  lost state 
processing  as described above will deregister these 
processes. 
The system that owns failure analysis loses access 
to  state.  A signal  is broadcast to relinquish own- 
ership of failure analysis,  which  logically requeues 
the failure analysis event. Processes registered on 
this  system  will be deregistered by lost state  pro- 
cessing as described above. 
Multiple systems lose access to the state. The case 

“simultaneously” is handled by the general lost 
state method as  described  above. If  all  systems lose 
access,  all processes in the  entire system are con- 
sidered logically deregistered. They will be  re- 
moved from the shared state as each system re- 
accesses it. 

I of several systems  losing  access to the shared state 

Policies and  operational  management. Policies are 
one way for an installation to exercise control over 

how and even whether an element is restarted.  For 
in-place restarts of an element, control takes the form 
of setting a limit  (possibly zero) to  the number of 
restarts  that will be allowed or of specifying an over- 
riding method of restart. 

For cross-system restarts, a variety of additional 
things can be done.  The installation must not only 
control restarts and thereby the availability of ser- 
vice, but also  must  aim for adequate load balancing. 
A surviving  system  must not be so overburdened with 
restarted elements that inadequacy of service  results. 

A second thing to consider in  cross-system restarts 
is a suitable sequence and pacing of restarts, so that 
a  restarted element will  find those services  it needs 
available. In the normal case the availability of ser- 
vices  is ensured by the operational procedures of the 
installation, but in cross-system restart ARM must 
substitute for those procedures. 

The ARM couple data set is the repository of the ARM 
policies of an installation and also of the specifics of 
elements with ARM status. This data set is separate 
from other couple data sets (e.g., those of workload 
manager), may  have an  alternate  data set, and  must 
be connected to all  systems where registration and 
restart might occur. The ~ m p o l i c y  is a set of in- 
structions from an installation about how and where 
(and whether) restarts are  to be done.  The main pur- 
pose of a policy  is to define the  elements comprised 
by a  group, with particulars about dependencies in 
the group, overriding sources of restart techniques 
and parameters, selection criteria in  cross-system re- 
starts, and pacing of restarts. 

Following are some of the parameters  that  a policy 
can comprise: 

RESTART-GROUP (name)-Specifies the elements 
that  are  to be restarted  together in cases of failure 
of the system on which  they are running. Sub- 
parameters  are: 

- ELEMENT (list of elements)-A  list  of one or more 
names of elements constituting the group. 

or more systems on which a group will be re- 
started. If this is not specified, all  systems will be 
eligible. ARM will employ workload manager to 
determine the most suitable system in the  target 
set. 

- FREE-CSA (size of memory avai1able)”This sub- 
parameter allows one to mandate  that  for  a sys- 

- TARGET-SYSTEM ( h t  ofsysterns)-A  list of one 
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tem to be considered a target of the  restart  pro- 
cessing it must have a minimum amount of 
common  sewice  area  memory  available. 

- RESTART-PACING (number of seconds)-The 
number of seconds for ARM to wait between re- 
starting one element in the group and restarting 
the next. The default is zero, which causes all the 
elements in a group to be started in parallel. 
Thus, the primary effect of this parameter is to 
specify  how  many elements in a  group  are  re- 
started in parallel. But whether the elements are 
restarted in parallel or serially, the  order of re- 
start will be unpredictable. 

Thc next two subparameters apply to in-place as 
well as cross-system restarts. 

- RESTART-ATTEMPTS (mmimum restarts,  number 
of seconds)-The  maximum number of restarts 
of an element to be done within a given time pe- 
riod.  Specifying zero prevents any restarts. Once 
an element exceeds  its limit, it  is deregistered. 

mand for restart)-Overriding technique for per- 
forming the restart. 

- RESTART-METHOD (event  type,  overriding com- 

RESTART-ORDER-Controls the order in  which  el- 
ements in a given group  are  to be made  to wait 
(when they request Wait for Predecessors) for 
other elements in the group to indicate that they 
are ready. An element has a level  (if  only by de- 
fault), and elements at  a given  level  will  wait for 
elements at lower  levels. 
LEVEL (n)-This  is the level associated with one 
or more specified element names. 
ELEMENT-TYPE-This parameter allows generic 
mappings (e.g., assign a level) for  a class of ele- 
ments. It is based on the “Element-Type” param- 
eter on the Register service. 

ARM supports the notion of duplexed coupled data 
sets for  improved  availability. A set of operator com- 
mands allows  dynamic reconfiguration of these data 
sets, including the ability to dynamically add or de- 
lete a backup data  set, switch the primary and 
backup, as well  as activate or terminate policies. 

Exits. In OSi390 an “exit” is a programming method 
in  which a component of the operating system can 
be tailored by code added by the customer. The 
reader is referred to Reference 12 for  a description 
that is  beyond the scope of this paper.  For  the  pur- 
pose of this paper, exits are  the place where an in- 
stallation or  an application can exercise program- 
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matic control over the behavior of the automatic 
restart manager to effect a general-purpose restart 
structure.  The relevant exits are: 

1. Group exit-For each member of a multisystem 
group (i.e.,  using the Join service) there can be 
a group exit. A group exit gets control, among 
other conditions, when a system that is part of the 
sysplexfails. If the member requested this option, 
ARM will  wait (for a reasonable amount of time) 
for the member to perform actions appropriate 
to it and to invoke the IXCSYSCL service to signal 
that it has completed those actions. 

2. Workload-restart exit-In cases of a failed sys- 
tem with ARM elements, any workload-restart exit 
for a system where one or more groups will be 
restarted has an opportunity to perform cleanup 
and preparatory functions. This exit runs after all 
group member cleanup-complete requests have 
been issued. ARM Will not restart elements on this 
system until the workload-restart exit has run  (or 
until a reasonable amount of time has elapsed). 
The exit  will have information about the name of 
the failed system and about the elements that will 
be  restarted on this system. The member cannot, 
however, veto restart and cannot directly affect 
the manner of restart. 

3. Element-restart exit-An element-restart exit  is 
a generic exit that gets control whenever any el- 
ement is to be restarted both on the same system 
and across systems. The exit has the options of 
vetoing the element’s restart and of allowing the 
element’s restart  to proceed without change or 
with changes. If the manner of restart is to  be 
changed, the exit can specify different parame- 
ters  for restarting the element than were used for 
the prior start  or specified at registration. It can 
also restart  the element and  then notify ARM of 
this action. 

4. Event exit-An event exit  is an element-specific 
exit that gets control when a particular element 
is to be restarted. This exit has the choice of al- 
lowing restart  to occur or of vetoing restart  (but 
the exit cannot change the  manner of restart). 

5. Event Notification  Facility (ENF) exit-This fa- 
cility, a  part of OSi390, provides two complemen- 
tary functions. l3 First, software components can 
broadcast the occurrence of “events.” There is a 
prearranged scheme for identifying specific 
events. Second, software components can “listen” 
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Figure 11 Extensibility of the  restart  manager 

for specific events, requesting that  the operating 
system  notify them when a given event occurs. 

When certain events occur, ARM will cause an ENF 
signal to be generated. l4,I5 The specified  exit will 
get control in these cases: 

An element did one of the following: registered, 
reregistered, said  it  is ready, or deregistered. 
Deregistration occurred because of internal er- 
ror. 
Restart of an element failed. 
Access to  the ARM couple data set has been lost 
or regained. 

With this information, an application will be able 
to know, for example, whether an element actu- 
ally succeeded in being restarted. Or if access to 
the ARM couple data set is regained, the exit  may 
inform an application that it can now register with 
ARM. 

A significant amount of software has been written 
to control the scheduling of work for large systems. 
For simplicity,  we  use the  term “job scheduler” as 
a generic term to describe this software. Two  key 
goals were considered for this software: 
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1. Provide appropriate real-time signals, program- 
mable interfaces, and operational controls so that 
a  job scheduler could coexist  with ARM. 

2. Provide  an  extensible structure so that a job sched- 
uler could use ARM to easily become a multisys- 
tem job scheduler. 

There are  a large number of extremely  complex func- 
tions in ARM that would be very  difficult to  repro- 
duce at  a level  above the  operating system. These 
functions include system failure detection, target sys- 
tem selection and the integration with the workload 
manager, and many  of the subtle timing and sequenc- 
ing  issues. 

An example is  now  shown  of  how a  job scheduler 
could leverage the ARM services to become a mul- 
tisystem job scheduler without  having to write a large 
amount of code. Figure 11 shows a scenario in  which 
a job scheduler is running on multiple systems, and 
System 1 has just failed, ARM performs all the func- 
tions described thus far  and selects System 2 as the 
target system for the  restart. Since the  job scheduler 
has defined an element restart exit (flow 1), ARM no- 
tifies the  job scheduler that  a  restart is about to oc- 
cur. In this example, the  job scheduler looks up its 
local rules database  and  determines  that this pro- 
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was done by the ]ob scheduler, and ARM uses that 
information to update its state. It is important to note 
the exits are running on  the selected target system. 

Many other interactions are possible  with the job 
scheduler, including variations on the above scenario 
or uses of the other exits that have been defined. 

Summary 

This paper focused on high  availability  in parallel or 
clustered systems  and on the need for  restart ser- 
vices  as a basic  building  block. Algorithms for fail- 
ure detection and restart methods were described 
that have been implemented on 0S/390.’6 One of the 
key principles is that  the  restart service presents the 
notion of logical atomic failure points in order  to 
shield the system from the very complicated events 
that occur during a system failure and subsequent 
restart processing.  In addition, the restart service pro- 
vides  flexible controls to  support  a general-purpose 
restart structure. 
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