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Workload  management, a function of the 
OSf390" operating system  base control program, 
allows installations to define business  objectives 
for a clustered environment (Parallel  SysplexTM in 
OSl390). This business policy is expressed in 
terms that relate to business  goals  and 
importance, rather than the internal controls 
used by the operating system. OSf390 ensures 
that system  resources are assigned to achieve 
the specified business  objectives.  This  paper 
presents algorithms developed to simplify 
performance management,  dynamically adjust 
computing resources, and balance work across 
parallel systems. We examine the types of data 
the algorithms require and the measurements 
that were devised to assess  how well work is 
achieving customer-set goals. Two examples 
demonstrate how the algorithms adjust system 
resource allocations to enable a smooth 
adaptation to changing processing conditions. To 
the customer, these algorithms provide a single- 
system  image to manage competing workloads 
running across multiple systems. 

A lthough there has been an important role for 
a computing environment that has a single ma- 

chine and a single  copy or image of an operating sys- 
tem,  a number of factors have converged to moti- 
vate use of multiple machines, especially  when 
connected in a parallel fashion. These machines 
could be logical or physical configurations of what 
might otherwise be deemed a single machine, but 

each is controlled by a  separate copy of an  operat- 
ing  system. 

Among the reasons for this interest in parallelism 
are: 

To increase total computing power available  over 
a single image so as to reduce individual response 
time or to handle larger volumes of work, or both 
High availability due to the expectation that fail- 
ure of any  single component, at whatever  level, will 
not cause the loss of all computing capabilities 
Access to lower-cost technology to use as building 
blocks for  a larger system 
Ability to grow the  total computing power in  small 
increments to address needs as  they  arise  with  small 
incremental cost and no outage required 

There is an obvious increase in complexity  with the 
introduction of multiple images. It is natural  to want 
to view them as cooperating and sharing resources. 
Considerable simplification results by seeing these 
multiple images as a single computing environment 
and having one set of controls rather  than  separate 
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controls for each image. System parameters previ- 
ously requiring a human operator  to monitor and 
set them  are now controlled by the workload man- 
agement (WLM) algorithms described in this paper. 
Workloads are dynamically balanced across images. 
WLM tracks those factors needed  to best place in- 
coming  work and provides interfaces to make work- 
load-balancing recommendations. 

In a parallel environment, the WLM objective to sim- 
plify performance management while  effectively  us- 
ing  all computing resources poses a number of de- 
sign problems that must be addressed. Given that 
some external controls are needed  to reflect busi- 
ness goals and importance, but  that low-level con- 
trols are  not provided, the system  must decide which 
resources to allocate to which  work requests. It is 
up  to  the system to calculate how much of those re- 
sources to give and for how long a time. With due 
consideration for the danger of thrashing, it  is up  to 
the system to determine how often  to make those 
changes and whether all the changes should be made 
at the same time. 

With respect to the problem of balancingwork across 
a parallel environment, the system  must choose 
where to run each work request given the following 
constraints: 

Goals need to be achieved. 
Goals may not be  known  in advance. 
Resource requirements are unknown. 
Other work requests will be concurrently demand- 
ing resources in competition with  new  work re- 
quests that  are also  unknown. 

Another problem addressed by the workload man- 
agement algorithms is  maximizing the use of re- 
sources across the parallel environment, especially 
where there  are diverse machine sizes-the prob- 
lem of configurational heterogeneity discussed in 
Reference 1. Finally, the underlying configuration 
must be concealed from end users and changes made 
transparent  to  them while  allowing load balancing 
across equivalent servers. 

In this paper,  the next section describes related work 
in resource management and workload balancing. 
Then WLM concepts and the system model are  de- 
scribed. The section following that  one describes the 
WLM algorithms used for goal-oriented resource 
management. The two subsequent sections describe 
the WLM approach for balancing  work  across the par- 
allel environment and the products that  cooperate 
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to realize the benefits of the WLM philosophy. The 
paper concludes with a summary of the  current  state 
of the  art  and some outstanding problems that  are 
yet to be addressed. 

Related work 

A number of alternatives3 exist in deciding how  sys- 
tem resources, such  as  access to the processor or pro- 
cessor storage, or  both, should be allocated among 
eligible work. One possibility  is that no controls are 
offered at all-the system queues  and dispatches 
work  automatically. The absence of external controls 
offers maximal  simplicity and may  well be adequate 
if the system  is dedicated to  a small number of work 
requests and is  of sufficient capacity to handle all 
work  quickly enough to satisfy the  appropriate  par- 
ties. This approach may also be sufficient if the sys- 
tem implements techniques to modify  access to sys- 
tem resources as  individual  work requests “age,” i.e., 
are observed to consume higher levels of resources. 
However, satisfaction with  this approach will depend 
on how  closely the system anticipates and imple- 
ments the wishes or expectations of the  end user(s) 
or installation in the absence of any external con- 
trol. As the mixture of work  in the system becomes 
increasingly diverse, with more complex human ex- 
pectations on what should happen,  the absence of 
any human control becomes less tenable. 

A second approach is to keep the system available for 
an “owner, ”thus protecting access of this  special user 
to the system. This approach is more suitable to small 
systems but has a  number of implementations. Con- 
dor’ is a system that allows workstations to  be used 
by others when idle but it checkpoints and preempts 
“foreign” work when the “owner” wants access to 
the machine. The  Butler’ system has a similar phi- 
losophy and will actually terminate “foreign” work 
when the “owner” wants access to  the machine. Uto- 
pia, from the University of Toronto, also provides 
an option that allows the system to reject remote 
work  when the “owner” needs the system  back. As 
a category, these implementations provide a limited 
partitioning of work as either “owner” or “nonown- 
er,” with no finer granularity for ranking workwithin 
or across these groupings. 

A third approach is to optimize system resources so 
as to  “keep  the machine busy.” Utopia’ allows spec- 
ification of a threshold beyond  which “foreign” work 
is not accepted but otherwise is happy to offer ser- 
vice to all. This approach is an extension of the prior 
technique where a threshold of zero would be used 
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for the  amount of “nonowner” work that coexists 
with “owner” work. 

A fourth  approach is to minimize response time. This 
method is the implicit control in Reference 4. Al- 
though minimizing response time may seem desir- 
able, it does not address conditions where not all 
work is equally important  and misses the  opportu- 
nity to make trade-offs to optimize some work at  the 
expense of other work. 

Once  a wide variety of work requests can be in con- 
current execution, it  may not  be sufficient to merely 
keep the machine  busy. This probability  suggests that 
the system administrator may  want or need to con- 

The second major approach 
in organizing multiple  images 

is one of shared  data 
and  shared work. 

trol the priority of access to resources. One approach 
is to allow specification of low-level  “how  to”pe$or- 
mance  controls, exemplified by releases of M v s  prior 
to Multiple Virtual StorageEnterprise Systems Ar- 
chitecture System Product 5.1 (MVSIESA* SP5.1) and 
by compatibility mode in MVSESA Version 5. Vir- 
tual MachineBnterprise Systems Architecture* 
(VMIESA*)’ is a second operating system  using  this 
approach. Utopia also allows specification of prior- 
ity controls. 

The preceding paragraphs discussed how resources 
would be managed on behalf of work requests in the 
system. We now  discuss alternatives for organizing 
multiple  images on behalf of aworkload. There seem 
to be  two primary choices in this regard. 

The first major scheme is to partition individual  im- 
ages into clusters, based on some attribute. One ap- 
proach is to cluster images so that each cluster runs 
similar work or even the same “job.” In the Scalable 
POwERparallel  System 2 ( s P ~ ” ) , ~  some images func- 
tion as server nodes, whereas others  run individual 
work requests. Each  node is separately configurable 
in terms of 110, memory, and CPU capability. S P ~  al- 
lows a system administrator to define separate pools 

244 AMAN ET AL. 

of machines that  are available to parallelize a  par- 
ticular job, run interactive users, or run  nonparal- 
lelized jobs. Currently there is no support for time 
sharing or preemptive scheduling. 

A second clustering approach is based on data af- 
finity wherein each image  is  given  ownership of a dis- 
tinct set of persistent data (files, databases, etc.). The 
Tandem system and NCR 3600* * system and  Refer- 
ence 4 all  embody  such an approach. The limitations 
of this approach  are discussed in other papers.’ 

The second major approach in organizing multiple 
images  is one of shared  data and shared work. For 
example, while Utopia assumes global file access,’ 
it  uses  geographic  proximity (sometimes virtual  prox- 
imity) to cluster images in the network. Specific re- 
source requirements are kept in a system-provided 
file,  which  must  be managed by system administra- 
tors, presumably with input from application own- 
ers who are aware of their own requirements. Ref- 
erence 7 also assumes a data-sharing environment. 

Other platforms need to assume that system capac- 
ity is configured for peak load, due  to  data affinity 
and  the  natural imbalance that will occur for real- 
world computing environments. This implies that 
those platforms require considerable excess capac- 
ity at off-peak times, which  yields substantial advan- 
tage  to WLM where trade-offs can be made that  re- 
flect the  intended use of computing resources 
according to business needs. 

Once a parallel environment where multiple images 
are capable of handling a given  work request exists, 
the question arises as to which image should be cho- 
sen. The decision as to where each work request 
should be placed and how to best choose the target 
image  involves a number of trade-offs between what 
information is available and what resource manage- 
ment philosophy and controls are provided. 

In the S P ~  world, interactive users may be spread 
across nodes that  are lightly loaded. Batch jobs may 
be submitted via IBM LoadLeveler” or NQS/MVS* 
(Network Queuing System/Multiple Virtual Stor- 
age), although parallel jobs may  only be submitted 
by the former. LoadLeveler’ attempts  to balance 
work across a set of S P ~  nodes by using: 

Job classes-Defined by the system administrator, 
jobs can be classified as short running, long run- 
ning, etc. 
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Job priority-How important  a job is as defined 
by the owner’s group, userid, and class. The pri- 
ority of a  job will determine whether LoadLeveler 
will schedule this job ahead of or behind existing 
queued jobs. 

The LoadLeveler component-Interactive Session 
Support (1ss)”balances log-ins and application ses- 
sions across multiple servers based on factors such 
as  link speed, number of connections, overall sys- 
tem load, and, optionally, machine speed. Although 
this is periodically reevaluated, there is no feedback 
to  ensure  that  the recommendation reflects actual 
responsiveness. 

Utopia performs load  balancing under  a dynamic  al- 
gorithm that uses  load  indices for CPU queue lengths, 
free memory,  disk 1/0 transfer rates, disk space, and 
number of concurrent users.’ Other metrics may be 
used at  the discretion of the installation, and appli- 
cations are free  to use their own metrics, although 
it seems that using different metrics would cause 
problems since different programs may be  at cross- 
purposes in their routing approaches. A further chal- 
lenge to Utopia’s support is  how to combine metrics 
into  a single usable measure vs the  more complex 
load vector proposed. 

Utopia utilizes a  “master” image to coordinate load 
data and  in some schemes to make load decisions. 
After placing each new  work request,  Utopia incor- 
porates  a load adjustment factor to account for la- 
tent demand. General resource demands are  de- 
scribed in a system-provided file, though usually on 
an exception basis. It is unlike WLM, where resource 
demands are not assumed to be  known  in advance. 
Utopia is intended to balance  across  potentially thou- 
sands of hosts, at which point the projected over- 
head is estimated to be 1 percent. With up  to doz- 
ens of hosts, the overhead for balancing under 
Utopia is  less than 0.5 percent. 

Reference 4 assesses several alternatives to  route 
work based on some knowledge of data access pat- 
terns  and evaluates the sensitivity of the algorithms 
to incorrect information. The base algorithm against 
which  all others  are compared involves tracking 
where each transaction is routed, by class, and pro- 
jecting what its expected response time will be on 
the basis of  system parameters and static transac- 
tion attributes and then choosing the image that min- 
imizes the expected response time. The paper shows 
that this algorithm is quite sensitive to these values, 
which  is disconcerting in view of the practical dif- 
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ficulty  of ascertaining these values  and their tendency 
to change  over time. The algorithm has a further ten- 
dency to overlook the cost of routing to an image 
that does not own the  data used by the transaction. 

The first alternative investigated in Reference 4 ap- 
plies a threshold so that data affinity is enforced in 
routing unless the target image  is overloaded, i.e., 
its projected response time is above the estimated 
optimal choice by a certain threshold percentage. 
The threshold approach is  always superior to using 
data affinity as the sole determinant in routing. Un- 
der some conditions, using data affinity alone can 
cause the queues to become unbounded in length. 
However, choosing the best threshold is somewhat 
problematical since  it  must  be  sensitive to system  uti- 
lization. WLM, by contrast, tracks the actual response 
time delivered with no assumptions on transaction 
attributes. 

Reference 4 includes the interesting observations 
that optimization for a single  work request can neg- 
atively  affect overall results and  that load balancing 
becomes more important as the overall load in- 
creases. 

The second alternative investigated in Reference 4 
assumes that transactions fall into  either  a  short  or 
long duration, and routes  the  former using the base 
algorithm, but  routes  the  latter based on data affin- 
ity. This approach makes the  further assumption that 
which category a given  work request lies in can be 
readily determined at  run time. The idea is to  take 
advantage of idle capacity when the risk of making 
a mistake is  low, but to force data affinity  when the 
cost is high. This algorithm does better  than the base 
algorithm and the first alternative, but the improve- 
ment is sensitive to utilization and communication 
costs. This alternative would require some sort of 
external specification by the system administrator, 
unlike WLM, which makes no assumption that  the 
duration of a work request can be determined upon 
its arrival. 

The adaptive approach discussed  in Reference 4 uses 
feedback to adjust for incorrect information. This 
approach enhances the base algorithm by tracking 
actual response time values and uses  this  value to 
adjust the estimated response time formula. 

Reference 7 uses lock contention in a  shared-data 
environment as a technique to  determine how to 
route work requests. In particular, groups of trans- 
actions that access the same data  are routed to  a 
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given  image to reduce the lock contention time. The 
basic objective is to  ensure  that each machine is kept 
at a “safe” utilization rate  and  to decide how to 
change the routing when  any  image is above  its “safe” 
threshold. The algorithm depends  on knowledge of 
factors such as: 

Threshold utilization 
CPU cost to process lock  conflict  when parties are 
on the same or different images 
Arrival rate of each transaction type and its CPU 
cost 
Affinity matrix representing the average number 
of times each transaction type  waits for a lock  held 
by each other type 

WLM system  model 

The complexity of specifying  low-level controls to 
tune system resources leads to a natural desire to 
offer the system administrator the capability to spec- 
ify goals for work in the system  in  business terms, 
rather  than using  low-level controls. The operative 
principle is that  the system should be responsible for 
implementing resource allocation algorithms that al- 
low these goals to  be met. WLM is unique in offering 
externals that capture business importance and goals 
and implements them  on behalf of the system ad- 
ministrator. 

Two primary concepts and facilities that WLM pro- 
vides need to  be introduced at this point. The first 
is the ability to partition the universe of  work requests 
into mutually disjoint groups, called service  classes. 
This partitioning is called classiJication and is based 
on the attributes of an individual  work request, which 
might include the userid that submitted the request, 
related accounting information, the transaction pro- 
gram to  be invoked or  the  job  to be submitted, the 
work environment or subsystem to which the request 
was directed, and so forth. Installations are able to 
specify  which  service  class  is associated with each 
work request by specifying the value for one  or more 
attributes and the corresponding service  class. De- 
faults and  other techniques may  be  used to group 
work requests into each service  class. 

Each service  class represents work requests with 
identical business performance objectives. To ad- 
dress the fundamental problem that  the resource de- 
mands of most  work requests are unknown at  the 
outset  and can  vary depending on  parameters  that 
may be known  only at execution time, there is a need 
to allow the business objectives to change based on 
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the resource demands of the work request. This is 
quite different from the  requirement in other imple- 
mentations  that  the resource demands be known  in 
advance. 

A service  class  is comprised of a sequence ofpen” 
ods, with a value defined by the installation to ex- 
press how long a work request is considered to  be- 
long to each period. This “duration” is a measured 
amount of service consumed that incorporates time 
spent actually running instructions on a processor 
along with other components of service defined by 
the installation. Each work request starts in period 
1 and is managed according to  the first period goal 
(to be described in the next  few paragraphs) until 
enough service is consumed to exceed the first pe- 
riod “duration.” The work request is then moved to 
the second period and managed according to the sec- 
ond period goal, and so forth. 

Each period has an associated goal and  an associ- 
ated importance, as alluded to above. Note  that  the 
durations may be assigned different values for dis- 
tinct service  classes, even when comparing the same 
period. In  the same way, the goals for a given period 
in different service classes may be distinct. An in- 
stallation may  specify  explicitly three major  goal  types 
for work requests. Certain activities associated with 
system work may be managed implicitly and  are ac- 
corded special treatment and do  not  require instal- 
lation specification. The goal  types provided by WLM 
are response  time,  discretionauy, and velocity. These 
types of goals are now described in turn. 

Response time goals indicate a desire for internal 
elapsed time to be, at most, a certain value. “Inter- 
nal” refers to the fact that  the time  is measured from 
the point where the work request is recognized by 
the system to  the point where the work request is 
considered complete. Note  that elapsed time refers 
to wall-clock time and, hence, includes delays  when 
programs are not running on behalf of the work re- 
quest. Use of wall-clock time is desirable since it re- 
flects the impact on a user awaiting completion of 
the work request. The precise definition of when the 
clock starts or stops ticking to capture  the elapsed 
time is documented for each particular environment 
and so is not elaborated in this paper. 

The second goal type, discretionary, indicates that 
there is no business requirement for the work to com- 
plete within a certain predetermined elapsed time, 
and the system should use its discretion in  giving re- 
sources to such  work when it  is ready to run. In an 
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unconstrained environment, discretionary work  will 
use available resources. In a constrained environ- 
ment, discretionary work may be denied resources 
in  favor of work requests with other goal  types. Op- 
tional controls not described in this paper allow the 
installation to  ensure  that discretionary work makes 
progress in a constrained environment. 

The third goal type is velocity. Work requests that 
are not considered discretionary and  do  not have a 
set response time objective nevertheless may need 

WLM is  designed for a 
data-sharing environment. 

further control to reflect the degree of delay that is 
tolerable once the work request becomes ready to 
run. Such  work requests may be long-running (pos- 
sibly “never-ending”) and want to run periodically 
or intermittently, during which time the work request 
needs access to resources. Velocity  goals address this 
category of work requests. 

A final concept associated with periods, which  was 
mentioned above, is that of importance. Importance 
is  merely a relative ranking of  work and is  only a fac- 
tor in constrained environments where the algo- 
rithms must make choices as to whose goals will be 
attended  to first  when  system resources are reallo- 
cated. The algorithms attend  to  the goals of work at 
the highest importance before attending to those at 
lower importance levels. 

The concept of period was introduced to demon- 
strate  a  fundamental behavior of WLM of work that 
addresses the variability of resource demands. WLM 
does not require  the system administrator to know 
these demands in advance. Goals are allowed to 
change based on their cost. The term “period” is not 
used subsequently in order  to avoid certain techni- 
cal  discussions and difficulties that  are  not  central 
to the theme of this paper.  The more general con- 
cept of “service class”  will be used in the remainder 
of the  paper. For a  more complete description of 
WLM externals, please refer to Reference 8. 
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The WLM philosophy for resource adjustment is de- 
scribed in some detail in subsequent sections, but it 
is essentially a receiver-donor loop with respect to 
adjusting resources. The fundamental principle on 
which its success  is based is that  the system need not 
determine  the optimal change at any  given point. It 
is  sufficient that  the system makes an improvement 
when adjustments are made. This principle allows 
WLM to avoid the  trap of over-analysis where sys- 
tem overhead may balloon in search of optimal so- 
lutions. By working only on a single problem at a 
time, the algorithms  leave intact resource allocations 
that  are working well. 

With the description of  how WLM addresses resource 
controls completed, the second major consideration 
is to describe what requirements and assumptions 
WLM makes in  how the images of the parallel envi- 
ronment are organized. The section on related work 
described the two major approaches as clustering vs 
sharing. 

WLM assumes that each image is potentially capable 
of running any application. Any configuration re- 
quirements are  the responsibility of the installation. 
WLM requires no intervention to reconfigure the im- 
ages based on workload so as to fully utilize capac- 
ity. 

WLM is designed for a data-sharing environment. 
Specific resource requirements  are  not currently in- 
corporated  into WLM, e.g., configurations that  are 
asymmetric with respect to devices, vector, or cryp- 
tographic facilities, etc. This asymmetry  is currently 
assumed to be handled by subsystems or dynamically 
managed by operating system or subsystem cooper- 
ation. For example, certain routing techniques de- 
scribed in the section on balancing  work  across a  par- 
allel environment can be used to group servers that 
have identical data  and facility  access capabilities. 
These routing techniques include generic resource 
and sysplex routing and allow the installation to 
group like servers without WLM awareness of what 
their common capabilities might be. 

The third consideration for WLM to address is the 
question of  how to  route work requests among the 
images of the parallel environment. 

Reference 9 describes a number of approaches for 
work balancing, among which WLM can be described 
as an adaptive model. Static models are  not suffi- 
ciently robust for commercial environments, given 
the expected variability in arrival rate, resource re- 
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quirements, and so forth. The WLM structure pos- 
sesses several desirable attributes described in the 
paper. First, it  is important  to  ensure  that  the over- 
head associated with keeping the necessary data and 
the related calculations is low so as to avoid  losing 
all advantage to extra system overhead. Second, the 
algorithms are not overly sensitive to inaccuracies 
in the  data used to drive it. Third, simple approaches 
to load balancing prevail over complex algorithms. 
Finally, WLM will not move a work request that has 
already begun execution, since this is too expensive. 

As will be  discussed  in subsequent sections, WLM also 
uses feedback to correct its  view of  how  well each 
server is performing against actual business goals 
when deciding whether each server is a  proper 
choice. However, WLM does not require  nor use 
knowledge of data affinity  in  making its decisions. 
This is important for situations where this  knowledge 
is unavailable or where the same cost  is associated 
with  accessing data from any candidate image as in 
a data-sharing environment. As noted in Reference 
4, staying current on data affinity  in the face of chang- 
ing applications and usage patterns can make accu- 
racy of data affinity assumptions problematical (and 
costly). 

The WLM philosophy is to use actual measured re- 
sults, which incorporate delays  in  all categories, and 
other indicators, without attempting to determine 
specific  delays that cannot be  directly controlled. Un- 
like Reference 7, which focuses on lock contention, 
WLM does not assume that  data affinity  can  be de- 
termined on the basis of the  attributes of an arriving 
work request. Of course, lock contention is not  the 
only delay that must be considered in routing work 
requests. 

The general philosophy adopted by WLM for balanc- 
ing  work across parallel systems is to place work 
where it has the  “best” chance of meeting its  goals, 
whatever they may be. This approach is superior to 
trying to fill up  one machine prior to going to the 
next. It also addresses the problem of  how to max- 
imize  use of resources across a parallel environment, 
especially where there  are diverse machine sizes- 
the problem of configurational heterogeneity dis- 
cussed  in Reference 1. 

The WLM design philosophy for routing consists of 
independent cooperating images  with shared state 
data and uses a  “push” model. A push model is one 
in which  work requests are directed (pushed) to a 
given image for processing and is  in contrast to a 
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“pull” model wherein each image requests work  ex- 
plicitly. Unlike the approach described in Reference 
9, WLM does not need to probe potential target im- 
ages to see whether they are capable of absorbing 
new  work  as the  shared  state  data  are sufficient to 
make this determination. Note that in an OS/390* (for- 
merly  known  as MVS) operating system environment, 
WLM can easily manage systems that  are running at 
90+ percent of capacity, whereas Reference 9 de- 
scribes a model that works  well  in a range no higher 
than 70 to 80 percent of capacity. The approach of 
WLM is intended  for dozens to hundreds of hosts, 
with overhead measured to be containable within 0.5 
percent for several systems. 

A number of benefits surface from the WLM philos- 
ophy of goal-oriented performance management. 
The most  obvious of these  benefits is the simplzjication 
in  dejiningpe$ormance  objectives and initialization 
states to the system. The system administrator is able 
to specify business objectives  directly to  the system 
in  business terms. These objectives reflect both goals 
and business importance and apply to  the  entire  par- 
allel environment controlled by the business  policy. 
It is  still the responsibility of the system administra- 
tor to ensure  that each service  class contains work 
with  similar  goals,  business importance, and resource 
requirements  to acquire the maximum benefit from 
WLM. Placing  work  with  similar  goals but diverse re- 
source requirements into  the same service  class will 
limit the ability of WLM to make effective resource 
trade-offs, to correctly project resource needs, and 
to project the  effects of resource adjustments. 

First, the system administrator does not have to un- 
derstand low-level technical controls. There is no fid- 
dling  with dispatch controls. The system administra- 
tor does not have to understand trade-offs for setting 
dispatch priorities when a machine has a single  very 
fast processing engine vs a single  slower engine vs 
multiple  slower enginesvs multiple very fast engines. 
The system administrator does not have to individ- 
ually set storage isolation targets (amount of pro- 
cessor storage that should be protected  or restricted 
for a given address space), tune for the worst case, 
and then worry that  the working set changes accord- 
ing to goal. The WLM algorithms will monitor and 
set the  appropriate values automatically on behalf 
of the system administrator. Effective  use ofcapacily 
is assured by the management algorithms. 

The history of performance tuning has given rise to 
a number of heuristics to address different perfor- 
mance problem areas. Unfortunately, these “rules 
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of thumb” are often wrong. For example,  paging may 
be tolerated so long as goals are being met.  In  the 
past, the system administrator might set some con- 
trol value, hear  that users are unsatisfied, and  then 
have to  retune, all the time having to balance the 
needs of conflicting workloads. Performance tuning 
with WLM does not  require  that  the system admin- 
istrator readjust resources, a process that is itera- 
tive and expensive.  Effective  use of capacity  is  as- 
sured by the management algorithms. 

Next, the system administrator does not have to 
worry about the placement of work to  the best im- 
age and best server within the parallel environment. 
There is no requirement  to define the resource re- 
quirements of work requests to  the system.  Effec- 
tive  use of capacity  is assured by the management 
algorithms. 

Finally, the business  policy defined to WLM handles 
mixed  workloads,  e.g., interactive, batch, transaction 
processing, data mining environments, and so forth. 
The system  is responsible for resource management 
of  work  in execution and for the management of de- 
lays  and their impact on attaining goals. There is no 
need to partition the images or nodes of the parallel 
environment for each separate workload. The sys- 
tem administrator does not have to specify the  re- 
source demands of work  in advance. Effective  use 
of capacity is assured by the management algorithms. 

The second major benefit of the WLM philosophy  is 
to allow granulargrowth to be transparent  to  the in- 
stallation. Transparency simplifies the problem of 
scaling the environment as the workload  grows. WLM 
supports dynamic  changes  in adding or removing  im- 
ages, subsystems, and applications, as well  as vari- 
ability in workload characteristics and resource de- 
mands.  Reconfiguration need not affect performance 
objectives. If there is  insufficient capacity to meet 
all  goals, the business  policy determines  the relative 
business importance in meeting each goal. The ad- 
dition of  new applications need not cause revision 
of old  objectives,  with the  attendant rebalancing of 
low-level controls. WLM dynamically adjusts to all 
these changes. WLM will also dynamically adjust to 
short-term changes, including spikes in demand. 

The third major benefit is to support high  availabil- 
ity objectives. This support includes  rebalancing  work 
when an image  is removed and advising  in the place- 
ment of restarting subsystem environments when 
their host system  is removed. Change management 
is  also  simplified since a strategy of rippling hard- 
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ware or software changes, or both, across images  in 
the parallel environment while managing existing 
workload on remaining images  allows for continu- 
ous operation 24 hours per day,  seven  days per week. 

The  fourth major benefit of the WLM philosophy is 
to require no changes at the application level. Sup- 
port is provided by the operating system and major 
subsystem environments. It contrasts to an imple- 
mentation such as Utopia, ’ where there  are no 
kernel changes, but some major applications are 
assumed to change to be sensitive to routing con- 
siderations. 

WLM algorithms  for  resource  management 

The Multisystem Goal-Driven Performance Control- 
ler (MGDPC) contains the resource management al- 
gorithms of WLM. The MGDPC is responsible for al- 
locating computer system resources so that  the 
customer’s performance goals are  met  to  the extent 
that  the goals are achievable. The MGDPC must man- 
age  work across multiple systems. It must manage 
multiple types of work, from short transactions to 
processor-intensive batch transactions. It must man- 
age clienthewer workloads, where resources must 
be allocated to servers to address the performance 
of the clients. It must manage workloads that vary, 
detecting performance problems and reallocating re- 
sources. It must manage multiple resources. And it 
must do all of this  efficiently. The MGDPC must act 
like a very  good  systems programmer. The follow- 
ing subsections describe how it  is done. 

The  code in the MGDPC combines the performance 
management approaches of an experienced systems 
programmer with analytic algorithms. The systems 
programmer in the MGDPC has the advantages of a 
wealth of data, analytic algorithms that run at ma- 
chine speeds, the opportunity to make resource 
changes every ten seconds, and  updated  data  and 
feedback on previous decisions every ten seconds. 
The MGDPC can be thought of as a  data collection 
and analysis  system, resource adjustment, and feed- 
back loop extending across a set of interconnected, 
cooperating, independent  computer systems. 

The MGDPC collects performance data, measures the 
achievement of goals, selects the service classes that 
need their performance improved,  selects bottleneck 
resources, selects donors of the resources, assesses 
the impact of making resource reallocations, and 
makes the reallocations if there is a  net benefit to 
the changes. The MGDPC is invoked once every ten 
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seconds, referred to as a policy interval, performing 
detection and correction of actual or anticipated per- 
formance problems so as to make the  operating sys- 
tem adaptive and self-tuning. 

Independent  and  cooperating. The MGDPC is respon- 
sible for managing the performance of a workload 
that is distributed across a set of interconnected, co- 
operating, independent computer systems. These 
computer systems are said to  be cooperating in the 
sense that each is  exchanging operational measure- 
ment  data with the other computer systems  in the 
set. They are said to be independent in the sense that 
each is an entirely separate, wholly functional com- 
puter system  whose resources are controlled by its 
own  copy of the  operating system. Each system op- 
erates independently and considers itself the local 
system. To each system, the  remote systems are all 
the  other systems  being managed. Each system con- 
siders itself  local and all other systems remote. The 
MGDPC is implemented as distributed intelligence. 
No system considers itself the master. 

The primary objective of the MGDPC is to meet per- 
formance goals  across  all the systems  being managed. 
This objective is met without any centralized con- 
trol. Instead, each system  receives performance data 
from all the  other systems  being managed and, based 
on its view  of  how the  entire distributed workload 
is doing, makes resource allocation decisions to best 
meet sysplex  (System/390* Parallel Sysplex"  '')-wide 
goals. A secondary objective of the MGDPC is to meet 
performance goals on its local system,  in  which case 
resource allocation decisions are  made using local 
and remote data. 

Each local MGDPC collects data on its local system, 
periodically broadcasts its view to the other systems 
in the sysplex, and implements mechanisms that can 
run independently on each system so that each sys- 
tem  knows  which  class of work to help, by  how much, 
and in  what order, and knows the effects that  re- 
source reallocations on the local system  will  have on 
the sysplex performance of each class of work. 

Each system's understanding of the sysplex  effects 
of resource reallocations is the key to each system 
being able to independently make local resource 
trade-offs  to  achieve  sysplex performance goals. Each 
system  must also understand which portion of the 
problem it  must  solve so multiple systems do not all 
try to solve  all parts of the problem at the same time. 
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Another  feature of the MGDPC allows the systems to 
reallocate resources to help work that is doing  poorly 
on the local system  even though the work  is doing 
well from a sysplex perspective. This local optirni- 
zation is  allowed as long as  it does not adversely af- 
fect the relative sysplex performance of other classes 
of work. If an individual  system determines that there 
is nothing it must do to assist  work to achieve  sys- 
plex performance goals, it  is free to work on local 
performance problems to  the extent that sysplex 
goals are  not adversely  affected. It has enough data 
to project the effect of local resource reallocations 
on sysplex  goals. 

Fundamental  concepts. In this subsection, the  fun- 
damental concepts of MGDPC operation  are dis- 
cussed. 

Datu histories. The MGDPC algorithms require effi- 
cient access to large quantities  and varieties of per- 
formance data. Individual MGDPC algorithms need 
data summarized  over  different periods of time. Since 
individual  algorithms  also need different  levels of sta- 
tistical confidence in the  data, they need  to  be able 
to look at different  minimum numbers of data points. 
The use of the  data  determines how far back  in time 
it  is  necessary to look or  the minimum number of 
data points required to get a valid representation of 
a  phenomena,  or both. It is therefore  important to 
maintain the number of data points represented  in 
the  performance  data,  and it  is not always  sufficient 
to merely keep a single summary value. Keeping all 
the individual observations of  all the types of per- 
formance data in virtual storage, and searching and 
summarizing on demand, would consume far too 
much storage. Accessing the  data from disk  would 
require far  too much time. 

The MGDPC solved the problem with data histories. 
A  data history is a mechanism to collect and analyze 
data over time. By using data histories the MGDPC 
can  use data  that have enough samples to be rep- 
resentative without using data so old that  the  data 
might be out of date.  A  data history contains n rows 
of data  and  a roll counter that determines when data 
should  roll out of each  row. Each row represents data 
from a range of time in  history.  Row 1 contains data 
from the most recent period only. Subsequent rows 
contain varying ranges of older data. Values for the 
number of rows  have been found that have been 
proven to  be effective for the Ow390 environment. 
The roll counter controls when to roll a row of data 
from one time range to  another  further back in time. 
The roll counter is incremented each policy inter- 
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Val. Each row has associated with  it a number that 
corresponds to the roll counter value  specifying  when 
the  data in the row should be rolled into  the next 
row. If the  counter value of  row m is 1, it means row 
m is rolled into row m + 1 every interval. If the 
counter of  row m is 4, it means row m is rolled every 
fourth interval. 

Data  are  added  to  the history  as  follows. New data 
are  added  to row 1. At  the end of each policy  in- 
terval the oldest row  whose  roll counter value evenly 
divides into  the  current roll counter value is found. 
The content of that row  is added to the next numer- 
ically higher row. The  content of all the numerically 
lower  rows are moved up one row,  leaving  row 1 
empty. When it  is  time to roll data out of the last 
row  in the history, the  data  are discarded. To obtain 
data from a  data history, the  data from rows 1 
throughp  are added together. The value ofp is cho- 
sen such that the data used were gathered over a long 
enough interval with enough samples to be repre- 
sentative. 

Given the ability to summarize data for varying 
ranges of time by simply including data from differ- 
ent rows  of the history, data can be summarized for 
a minimum time or a minimum number of obser- 
vations, or a combination of these criteria. The 
MGDPC uses the data history  facility  extensively. His- 
tories are used for state samples, response time 
distributions, processor consumption, performance 
index calculations, service consumption per trans- 
action, server  topology determination, and other pur- 
poses. 

Pefomance index. A fundamental problem with  try- 
ing to meet performance goals and make trade-offs 
among different work  with different goals  is  know- 
ing how work  is  doing relative to its goals  and rel- 
ative to other work. The solution used by the MGDPC 
is the performance index. The calculation of the  per- 
formance index for a class  with a response time goal 
is: 

actual-response-time 
goal-response-time performance-index = 

It is a calculated measure of  how  well work  is meet- 
ing  its defined performance goals. The performance 
index  allows comparisons between work  with  differ- 
ent goals. A performance index of 1.0 indicates the 
class is exactly meeting its goal. A performance in- 
dex greater  than 1.0 indicates the class  is perform- 
ing  worse than its goal, and a performance index  less 
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than 1.0 indicates the class  is performing better than 
its goal. 

New performance indexes are calculated for every 
policy interval. Performance indexes are calculated 
from enough recent completions to be representative 
of the results for the class. Both sysplex and local 
performance indexes are calculated for each class 
on each system. To  operate independently, each sys- 
tem  must  have enough information to be able to cal- 
culate a performance index for each class. To  pro- 
vide this information, each system sends updated 
information to all the  other systems  every  policy  in- 
terval. The information is stored in  two histories. Lo- 
cal information is stored in a local history, and data 
from the  remote systems are  stored in a history for 
data from remote systems. 

A projected response time is calculated for each in- 
flight  work unit. The projected response times for 
in-flight  work are combined with data from the ac- 
tual response completions to calculate the perfor- 
mance index. The local performance index repre- 
sents the performance of work  units associated with 
the class on the local system. The local performance 
index  is calculated from data from the local response 
time history. The sysplex performance index repre- 
sents the performance of work units associated with 
the class,  across  all the systems  being managed. Each 
system independently combines the local  and remote 
data histories to compute a sysplex performance in- 
dex. 

State sampling. The first action to be taken when try- 
ing to solve the performance problem of a service 
class is finding out what the problem is. The MGDPC 
must determine why the work  is  being  delayed.  Many 
delays  can be measured quite precisely, but the cost 
is prohibitive. The MGDPC solved this problem with 
state sampling. Four times a second, the MGDPC Sam- 
ples  every  work unit in  every  system being managed. 
Four times was chosen as a value because it  is fre- 
quent enough but not prohibitive in cost. From these 
samples, the MGDPc builds a picture of the work  in 
each class. It learns where each class  is spending its 
time. It learns how  much each class  is  using each re- 
source and how  much each class  is delayed waiting 
for each resource. The samples are aggregated for 
each policy  interval,  and  from  this picture of the work 
in each class, the MGDPC can determine what to do. 
The  state sampling implemented by the MGDPC is 
very  efficient, requiring not more than  one percent 
of the processor time to accomplish its task. The cost 
of state sampling is  by far  the largest contributor to 
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Figure 1 State sample types 

system overhead among the various functions per- by one  or more server address spaces. The client ser- 
formed. Figure 1 shows the types of state samples. vice  classes do not consume commter svstem re- 

sources. The resources are consumed by fhe server ~~ 

Sewer topology. Clientherver workloads introduce a address spaces serving the client service classes. So 
further level of complexity into managing resources computer system resources must be allocated to  the 
to  meet performance goals. The client service server address spaces to  meet  the goals of the client 
classes" have the performance goals but are served service  classes. The MGDPC must understand the 
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Figure 2 ClienVserver diagram 

1 
clientherver relationships and must be able to  pro- 
ject the effects on the client service  classes of mak- 
ing resource adjustments to  the server address 
spaces. The MGDPC must be able to project second- 
level  effects. 

The client service classes  in the diagram of Figure 
2 are labeled CICSA and CICSB (from Customer In- 

) 
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formation Control System, CICS*). Work requests 
classified to CICSA and CICSB receive  service from 
several server address spaces. CICSA is  served by 
server spaces TOR1,  AOR1, and AOR2. CICSB is served 
by server spaces TOR1, AOR2, and AOR3. Achieving 
the goals of CICSA and CICSB requires that  adequate 
computer system resources be allocated to the server 
address spaces-TORI, AOR1, AOR2, and AOR3- 
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since resources cannot be directly attributed  to  or 
allocated to CICSA and CICSB. 

The problem of learning the client/server relation- 
ships was  solved by sampling. The problem of allo- 
cating computer system resources to server address 
spaces to  meet  the goals of the client service  classes 
was  solved by dynamically creating internally defined 
server  service  classes and assigning the server address 
spaces to them based on the client service  classes 
they were observed serving. The problem of project- 
ing second-level effects  was  solved using a propor- 
tional aggregate speed algorithm. 

Four times a second, the MGDPC samples control 
blocks set by the server address spaces to detect 
which client service  classes are being served. From 
these samples, the MGDPC learns which server ad- 
dress spaces serve which client service  classes and 
in  what proportion.  The MGDPC reevaluates these 
clientherver relationships once a minute so the  to- 
pology built will reflect changing client/server rela- 
tionships. Server address spaces are also moved 
among internal service  classes once a minute to  re- 
flect  any changes in the client/server topology. 

For each distinct combination of client  service  classes 
observed being served by one  or more servers, an 
internally defined server service  class  is  dynamically 
created. In the example  in  Figure 2, these  combina- 
tions are (CICSA),  (CICSA,  CICSB), and (CICSB). AORZ 
serves  only CICSA. TORI and AOR2 serve both CICSA 
and CICSB. AOR3 serves  only CICSB. On the basis of 
these combinations, the MGDPC creates  the  corre- 
sponding internal server service  classes 1, 2, and 3 
and moves TORI, AORI, AOR2, and AOR3 to  them  for 
management. Internal classes are a mechanism for 
collecting data on and managing servers to meet the 
goals of clients. To meet the client service  class  goals 
of CICSA and CICSB, the server address spaces will 
be managed by managing server service  classes 1,2, 
and 3. 

Computer system resources are allocated to these 
internal server service  classes  in order  to meet the 
performance goals of the client service  classes. The 
topology represents  the client/server relationships 
and the proportion of time  each  server is serving  each 
client. This learned information will adapt over time, 
because the relationship between clients and server 
address spaces is  dynamic. The server topology sam- 
ples are  kept in a history. The history mechanisms 
slowly  age the samples out so there  are less  likely to 
be abrupt changes based on short-term effects. 
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Proportionalaggregatespeed. In the client/server  case, 
the MGDPC must  improve the performance of the cli- 
ent service  classes indirectly. The MGDPC must be 
able to assess the effect on a client service  class,  e.g., 
CICsA, from improving the performance of an inter- 
nal service  class,  e.g., Internal Class 2. This improve- 
ment is proportional to  the extent to which the cli- 
ent service  class, e.g., CICSA, is served by the server 
spaces in the internal service  class. To be able to  pro- 
ject the effects on clients of the resources allocated 
to  the servers, the concept of the proportional ag- 
gregate speed of a client class  was introduced. 

For a nonserved class, speed is defined as the classes’ 
processor  “using  sample^"'^ divided by  all  of the non- 
idle samples of the class, multiplied by 100, and  re- 
sults in this calculation: 

speed = 
processor-using-samples 

nonidle-samples x 100 

If the work units in the class were never delayed, the 
speed of  the class  would be 100. 

The proportional aggregate speed of a client service 
class  is the  apportioned speed of all the internally 
defined server service  classes  serving it. The  propor- 
tional aggregate speed for each client service  class 
is determined by allocating all  of the client’s serv- 
er’s state samples to  the client service  class  in pro- 
portion to  the portion of time that each server ser- 
vice  class  was observed serving each client service 
class. The portion of time is determined from the 
clientherver topology. The  proportional aggregate 
speed of a client service  class  is calculated by divid- 
ing the  total processor using samples apportioned 
to  the client service  class from all server service 
classes,  divided by the  total processor using samples 
plus  all  delay samples apportioned  to  the client ser- 
vice  class from all server service  classes. The calcu- 
lation follows: 

processor using samples  apportioned to class A 
sPT”Prs 

2 using and delay samples  apportioned to class A 
servers 

For each client  service  class, the client’s performance 
index  is plotted versus the  proportional aggregate 
speed of the client class. This plot, shown  in Figure 
3, is then used to  determine  the effect, Le., the  per- 
formance index delta, on the client of changing the 
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Figure 3 Class A proportional  aggregate  speed  plot 
~~ 

PROPORTIONAL  AGGREGATE SPEED 

allocation of system resources to server address 
spaces. 

Performance indexdelta. Just as the performance in- 
dex is the measure of  how  well a class  is doing with 
respect to its goals, the performance index delta is 
the common unit of measure for the relative value 
of making resource reallocations. The performance 
index delta is  always calculated from delay sample 
deltas. Each individual resource fix algorithm uses 
algorithms unique to  the resource to  determine  the 
delay sample delta that will result from a resource 
reallocation. Then  the delay sample deltas are used 
to calculate the performance index deltas that  are 
used to assess the relative value of the resource re- 
allocation. 
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For nonserved classes, performance index deltas are 
calculated as shown  below. The calculation is a three- 
step process. First, the projected response time delta 
is calculated. It is the actual response time  multiplied 
by the  proportion of the  total nonidle samples rep- 
resented by the sample delta. If the  total samples 
were 100, and the delay  samples projected to be elim- 
inated were 20, the response time would  be projected 
to  be reduced by 20 percent.  Then  the delta to  the 
local performance index  is calculated from the pro- 
jected response time delta. Finally, the sysplex per- 
formance index delta is calculated from the fraction 
of total observations in which the class  was observed 
on the local system. Note  that these equations apply 
to both receivers and donors. For  a receiver, the  de- 
lay sample delta is negative, so the performance in- 
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dex  is projected to be lower, which  is an improve- 
ment. For  a donor, the delay sample delta is positive, 
reflecting additional delay and  an increased perfor- 
mance index. 

proj-response-time-delta 

delay-sample-delta 
nonidle-samples 

- - X actual-response-time 

local-proj-performance-index-delta 

- proj-response-time-delta 
- 

goal 

sysplex-proj-performance-index-delta 

- local-observations 
- 

sysplex-observations 

X local-proj-performance-index-delta ( 3 )  

For client/server  classes, the performance index delta 
is determined from the client’s proportional aggre- 
gate speed plot. To  read  the projected performance 
index from the plot, a projected proportional aggre- 
gate speed must be calculated. The calculation starts 
with  delay sample deltas calculated by the individ- 
ual fix algorithms. Projected delay sample deltas are 
calculated for each server that serves the client class. 
Then  the sample deltas are  apportioned to the cli- 
ent class based on  the server topology. The server 
topology represents  the client/server relationships 
and the proportion of time  each  server  is  serving each 
client class. After  the sample deltas of the server are 
apportioned to the client, the projected proportional 
aggregate speed is calculated for the client class. 
Then,  the projected performance index is read from 
the client’s proportional aggregate speed plot. The 
performance index delta of the client  class  is the dif- 
ference between the projected performance index 
of the client  class and the current actual performance 
index of the client class. Proportional aggregate 
speed plots contain sysplex data, so no local-to-sys- 
plex performance index delta conversion  is required. 

Policy adjustment framework. The policy adjustment 
algorithm is  invoked  periodically to assess reallocat- 
ing  system resources to  better meet performance 
goals. The policy adjustment algorithm is invoked 
every ten seconds. Ten seconds was chosen as a value 
sufficiently  small to  be responsive to changing sys- 
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tem conditions and external user perceptions, but 
sufficiently large to allow enough samples to be ac- 
quired on which to base new resource allocations. 
This period of ten seconds is referred to as a policy 
interval. The effects of the resource reallocations 
made during one policy interval are observed in sub- 
sequent policy intervals and function as a feedback 
loop for continuous adaptive policy adjustment. 

The resource readjustment actions taken  are incre- 
mental, having the advantage of leaving resource al- 
locations alone except when changes are  needed  to 
meet performance goals.  Since the MGDPC is invoked 
every ten seconds, there  are ample opportunities for 
it to make sufficient changes to address any prob- 
lems and to obtain feedback before making further 
changes. Some of the most “human” behavior ob- 
served  in the MGDPC is  its inclination to  jump in  im- 
mediately to help whenever it can but also to rec- 
ognize  when its help is not needed. 

The MGDPC helps by searching for  the  one set of ac- 
tions most  beneficial to  the service  class  most in need 
of help. The select  receiver algorithm is  used to se- 
lect the receiver service class  most in need of help 
and to select alternative receivers if needed. Thefind 
bottleneck algorithm is used to find the resources 
causing the receiver  delay. The select donor algorithm 
selects potential donor service classes to donate  bot- 
tleneck resources to  the receiver. The net  value  al- 
gorithm determines whether there is net value to  the 
donation. The receiver  value algorithm determines 
whether there is  sufficient  value to  the receiver to 
make the donation worth doing. The@ delay algo- 
rithms are unique for each resource and  are used to 
assess changes and calculate the value of changes in 
common value units (performance index deltas) to 
be used by net value and receiver value algorithms. 
These algorithms are invoked in a loop, referred to 
as thepolicy adjustment loop, illustrated in Figure 4, 
until one receiver service class  is helped or all ser- 
vice  classes  have been assessed, and  there is no way 
or no need to help. All of these algorithms are dis- 
cussed further in the following subsections. 

The policy adjustment loop selects a class to help 
(select  receiver), determines the resource causing the 
class the largest delay (find bottleneck), assesses re- 
allocating resources from one or more donor classes 
to the receiver (fix delay,  select donor, net value, and 
receiver value), and makes the changes if there is 
value to  the aggregate attainment of goals. If there 
is  insufficient net value or receiver value  with one 
set of donors, other sets of donors will be assessed. 
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Figure 4 Policy adjustment algorithm loop 

If there is  insufficient net value or receiver  value  with most deserving receiver will be selected, and all re- 
any combination of donors for a given resource and sources and  donors assessed for that receiver until 
receiver, the resource causing the receiver the next all possible receivers have been assessed or until a 
largest delay will be determined and donors of that receiver  is helped. When a receiver has been helped, 
resource assessed. If there is no combination of do- the MGDPC exits to await feedback on the changes 
nors of any resource for a given receiver, the next during the next  policy interval. 
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The policy adjustment loop  and  the select receiver, 
find bottleneck, select donor, net value, and receiver 
value  algorithms are all  common for all the resources. 
The fix delay algorithm is unique for each resource. 
This loop is a very  powerful framework for perfor- 
mance management. A fur algorithm for any resource 
can fit into this framework. The only requirements 
are  that  a delay that indicated a lack of the resource 
can be sampled, a control variable controlling access 
to  the resource can be defined, and  a relationship 
can be found between the control variable and the 
resulting delay samples. These concepts, as they ap- 
ply to dispatch priority, J/O priority, storage alloca- 
tion, and MPL13 slots, are described in later subsec- 
tions. 

Assemblepe8ormance  data. At the beginning of each 
policy interval, performance data that have been col- 
lected asynchronously by state sampling and  other 
processes are assembled into efficiently  accessible 
data structures to prepare for running the adjustment 
algorithms. Performance indexes are calculated, data 
received from other systems are assembled into his- 
tories, points are added to plots,  sample sets are built, 
and  the server topology  is updated. It is  similar to 
what a system programmer would do in preparation 
for tuning a system, The difference is that  the 
MGDPC does  data assembly at machine speed. 

Select receiver. The first decision the policy adjust- 
ment algorithm must make is to decide which  class 
to help. The MGDPC makes incremental improve- 
ments every ten seconds. It attempts  to find one  re- 
ceiver to help each policy interval and looks for the 
most  deserving receiver each time. Making incre- 
mental changes ensures that  there is a solid base of 
feedback data  to use in the algorithms during each 
policy  interval. Potential receivers are selected based 
on importance, sysplex and local performance index, 
and the likelihood of the MGDPC being able to help 
the receiver. Classes that  are missing  sysplex  goals 
are selected before classes that  are meeting sysplex 
goals but missing  goals on the local system.  Classes 
missing goals are selected in order of importance. 
Classes meeting goals are selected in  sysplex perfor- 
mance index order  and  then in local performance 
index order. Because the worst-off  classes are se- 
lected first, it is more likely that  a resource reallo- 
cation with  significant value will be found. 

The policy adjustment algorithm also remembers 
whether it has tried unsuccessfully to help a receiver 
in a  recent interval. If it did, the select receiver al- 
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gorithm skips  over  assessing the receiver. This is an 
optimization which  saves the cycles that would be 
used to again come to  the conclusion that  the  re- 
ceiver  could not be helped. Select  receiver  also  knows 
when to leave resource allocations alone. It only se- 
lects classes that have a  current performance index 
above 0.9. Classes that  are meeting goals but have 
a performance index above 0.9 are close enough to 
going over 1.0 to merit some attention if their per- 
formance can be improved without harming other 
work.  However, classes with a  current performance 
index of 0.9 or lower are easily meeting their goals 
and do not need help. The select receiver algorithm 
has the intelligence to know when to  quit. 

Find bottleneck. Once the receiver class has been se- 
lected, the next step is to select which resource de- 
lays to address. For nonserved classes, the selection 
of the next bottleneck to address is made by select- 
ing the delay type with the largest number of delay 
samples that has not already been selected for this 
receiver during the  current policy interval. If fixing 
that delay does  not provide sufficient receiver or  net 
value, the next largest delay is  assessed and so on 
until all  delays  have been considered. 

In  the clientherver case, both a bottleneck resource 
and the associated bottleneck server must  be se- 
lected. The selection of which bottleneck to address 
is made by selecting the server-delay combination 
with the largest number of apportioned delay sam- 
ples that has not already been selected during the 
policy interval. The server samples are  apportioned 
to each client class on  the basis of the server topol- 
ogy described previously. The delay type having the 
largest number of samples apportioned to the  re- 
ceiver  class  is selected as the resource bottleneck de- 
lay  type to be addressed on behalf of the receiver 
class. The server that experienced the bottleneck de- 
lay is selected as the bottleneck server. 

In either the nonserver case or  the client/server case, 
on each invocation, the delay with the next largest 
number of delay samples is selected to  be assessed. 
No minimum number of samples is required for a 
delay to be assessed for fixing.  Any defined  minimum 
would by its nature  be arbitrary and might eliminate 
a valuable change from consideration. The MGDPC 
handles the problem of making  insignificant changes 
by requiring sufficient receiver value for a change. 
If too few samples would be eliminated to make a 
significant improvement, the change for that delay 
would fail the receiver value algorithms. But at  that 
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point the decision  would  have been well thought out, 
not arbitrary. 

Generic delay@. There is a specific fix algorithm for 
each delay addressed by the MGDPC. The function 
of each fix algorithm is to improve the performance 
of the receiver  class or  determine  that  there is not 
sufficient value to make a change. Improving per- 
formance is done by changing a control variable spe- 
cific to the delay being addressed. To determine 
value, the fix algorithm must be able to project the 
performance index delta  that results from changing 
the control variable. A fix algorithm specific to  the 
delay to  be addressed is  invoked when that delay is 
selected by the find bottleneck algorithm. 

Each fur algorithm is responsible for selecting po- 
tential donors of the resource, projecting the effect 
on attainment of performance goals if the  donor  or 
donors  donated  to  the receiver, accepting or reject- 
ing changes, selecting alternate donors, and reallo- 
cating the resources if any reallocation is found that 
has net value. In all cases, the individual resource 
fix algorithm projects delay sample deltas and uses 
them to project performance index deltas for the  re- 
ceiver and  donor or donors. The projected perfor- 
mance index deltas are  then used  to determine 
whether the resource reallocation has net value. The 
details of these calculations are specific to individ- 
ual resources and are described later. 

Select donor. The purpose of the select donor algo- 
rithm is to choose the most  eligible  class that will 
donate  the required resource to  the receiver from 
the set of classes  owning that resource. Donors  are 
selected in an order  that is generally the reverse of 
the  order used to select receivers. However, the do- 
nor order is  dynamic even within a policy interval. 
Multiple donors may be needed to provide enough 
of a resource donation to reach sufficient receiver 
value. As each tentative donation is evaluated and 
accumulated, the resulting performance index 
changes are calculated and factored back into the 
donor  order. The dynamically changing list feature 
is important, especially  when  finding storage donors, 
where donation can take many forms. 

Additional constraints on the select donor algorithm 
require  that  the donor own the resource needed by 
the receiver. For example, a dispatch priority donor 
must  be running at a dispatch priority that is at least 
equal  to the dispatch priority of the receiver. In  the 
case of storage, the  donor can  hold the resource in 
any form. For example, if the receiver needs MPL 
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slots, the  donor does not have to donate MPL slots. 
What the receiver actually needs is storage for MPL 
slots. The donor’s storage can be in the form of a 
protective processor storage target or in the form of 
MPL slots. If the resource required to help the  re- 
ceiver  is increased I/O priority, the r/o donor must 
be  in the same I/O cluster l 4  as the I/O receiver. This 
requirement must  be met for  the donation to have 
any  effect on the receiver. 

In addition, the select donor algorithm will not se- 
lect a class  as a  donor of a resource if it  was selected 
as a receiver for the same resource in the same pol- 
icy interval. This is an example of including the expe- 
rience of a system performance analyst  in the code. 

Net  value. The net value algorithm keeps the 
MGDPC from making  bad resource reallocations. The 
performance index  value for a class is the measure 
of  how  well that class  is meeting its specified goal. 
The measure of the value of a contemplated resource 
reallocation to  the receiver is the projected change 
in the performance index of the receiver that occurs 
as a result of the contemplated resource realloca- 
tion. Similarly, the measure of the net value of a con- 
templated resource reallocation is the improvement 
in the  performance index of the receiver relative to 
the degradation of the performance index of the do- 
nor. 

The  net value algorithm uses the projected perfor- 
mance index deltas for  the receiver and donor to cal- 
culate whether there is net value to the contemplated 
donation from the  donor  to  the receiver. Net value 
takes the sysplex  and  local performance indexes into 
consideration as  well  as the importance of the re- 
ceiver and  donor  or donors. All donors are checked. 
A receiver will only be improved by reallocating re- 
source from a specific donor if a  net positive value 
to  the resource reallocation is projected. If using a 
donor  to improve a receiver is projected to result in 
more harm to  the  donor  than improvement to the 
receiver relative to  the goals and importance, the  re- 
source reallocation is not done. If the result will  yield 
more improvement for the receiver than harm to the 
donor relative to  the goals, the resource realloca- 
tion is done. 

Receiver value. The receiver value algorithm is a key 
feature  that keeps the MGDPC from making resource 
reallocations that  are  either  too small or  too drastic. 
A receiver will  only be helped  when  sufficient  receiver 
value  is projected. The receiver value criteria are  a 
minimum performance index improvement or the 
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elimination of a minimum number of delay samples. 
These criteria are designed to reject very small im- 
provements. The reason for rejecting actions hav- 
ing too little receiver  value is to avoid  making  changes 
that yield  only marginal improvements. Marginal 
changes are not made, and  the MGDPC goes on to 
select and assess another bottleneck for the  current 
receiver or  to select a new receiver. 

The receiver value criteria also perform the func- 
tion of indicating to  the “individual resource delay 
fix algorithm” at what point it has given the receiver 
enough help. These criteria keep one system in a sys- 
plex from trying to solve  all of the performance prob- 
lems of a class when the class  is running on  more 
than one system. The criteria also keep multiple sys- 
tems in the sysplex from trying to solve  all parts of 
the problem simultaneously and running the risk  of 
making too much of a correction. None of the systems 
require eqlicit communication or coordination to 
know  how  much of the problem is theirs to fix. 

Send datu. At  the  end of each policy interval on each 
system, the MGDPC sends data  to all the  other sys- 
tems in the set of independent cooperating systems 
being managed. Performance data  and control data 
are sent. This action is of  key importance to  the dis- 
tributed intelligence of the MGDPC. 

The MGDPC on each system maintains a history for 
each type of performance data received. The histo- 
ries cover enough intervals of time such that  late or 
out-of-order  data do not require special handling or 
error processing. The  late  data just roll into  the his- 
tory whenever the data arrive. If a system  fails, and 
its data  stop arriving, it  simply stops being included 
in the history, and  stops being considered in deci- 
sions. The  data from the failing system  will grace- 
fully age out of the history without the  other systems 
having to be specifically notified that a system went 
down. It eliminates the need for special-case and  er- 
ror-handling mechanisms and  abrupt changes in re- 
source allocation policies on individual  systems. The 
use of histories to manage the  remote performance 
data allows the systems being managed to operate 
independently. 

Control  data  are also sent  to  remote systems at  the 
end of each policy interval. An example is sending 
the fact that an 110 priority change was made. I/O pri- 
ority changes require a relatively longer time to pro- 
vide feedback than  other changes such as dispatch 
priority. Since these changes take longer to provide 
feedback, they are made less frequently. To accom- 
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plish this longer interval between changes, each sys- 
tem must  know  whenever another system made such 
a change. 

Processor delay fix. 
This subsection de- 
scribes how perfor- 
mance is improved 
by reducing fhe de- 
lay the receiver ex- 
periences waiting to 
run  on  the proces- 
sor. The controlled 
variable in this case 
is the dispatch prior- 
ity. 

Theoy. The processor delay experienced by the  re- 
ceiver  is a function of the processor time available 
to  the receiver. Processor time available to  the  re- 
ceiver  is a function of the processor demand from 
work running at higher dispatch priorities than  the 
receiver and the processor demand from work run- 
ning at the same dispatch priority as the receiver. 
Processor  delay is also a function of both the receiv- 
er’s  mean-time-to-wait  and the receiver’s  mean-time- 
to-wait  compared  with the mean-time-to-wait of the 
other work  at the same  dispatch  priority  as the receiver. 

For  the processor delay fix algorithm to fit  with the 
resource adjustment framework  discussed  previously, 
the processor delay fix algorithm has to  be able to 
project the processor delay sample deltas that would 
result from dispatch priority changes. Multiple steps 
and relationships are required to  do these projec- 
tions. In working  backward from sample deltas, pro- 
jected processor sample deltas are a function of the 
actual processor delay samples of an individual  class 
and the actual wait-to-using ratio and projected wait- 
to-using  ratio. The projected  wait-to-using ratio of an 
individual  class is a function of both the actual  mean- 
time-to-wait of the class  and the actual  mean-time-to- 
wait  of the class compared to the actual  mean-time- 
to-wait of the other work at the same  dispatch  priority. 
The projected  wait-to-using ratio at a priority is a func- 
tion  of the processor  demand  ofwork  running at higher 
dispatch  priorities  and the processor demand of work 
running  at the same  dispatch  priority. 

Actual delay  samples, actual wait-to-using ratios, and 
actual mean-time-to-wait values are measurable. 
That leaves the problem of defining algorithms to 
project processor demand, wait-to-using ratios, and 
delay samples. 
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Maximumprocessor  demand. The first problem with 
projecting the effects of dispatch priority changes is 
that  the inherent processor demand of the work units 
in a class cannot be measured directly. If a class con- 
sumes x amount of processor service when it runs 
at dispatch priority a, it cannot be assumed that it 
will still consume the same amount of service when 
it runs  at  a higher or lower priority or with a more 
or less competing demand. The MGDPC required an 
algorithm to project the processor consumption of 
a class at any dispatch priority. The solution was to 
define the concept of maximum processor demand. 

Maximum demand is defined as the theoretical max- 
imum percentage of total processor time that work 
units in a class can consume if the demand has no 
processor delay. Its calculation follows: 

maximum-demand-percentage 

number-of-work-units 
X processor-using-samples X 100 

total-samples - processor-delay-samples 

Maximum demand is calculated for each class and 
accumulated for all the classes at each priority. 

Wait-to-using  ratio. The next step in projecting pro- 
cessor sample deltas is to project the wait-to-using 
ratio  that will be experienced by the classes at each 
priority given that  one or more classes  have tenta- 
tively changed  priority. The aggregate projected wait- 
to-using ratio  at  a priority is a function of the pro- 
cessor demand of work running at higher dispatch 
priorities and  the processor demand of work run- 
ning at the same dispatch priority. The  data used in 
the algorithm are the maximum demand of all the 
work running at each priority and  the processor-us- 
ing and delay samples accumulated by the classes at 
each priority. The  current values of aggregate wait- 
to-using and aggregate maximum demand at each 
priority are used to  determine  the  current functions 
relating wait-to-using to maximum demand. For each 
policy  interval,  these  functions are derived  dynamically 
to fit the current environment. Then  the dynamically 
derived functions are used to project the aggregate 
wait-to-using ratios expected to  be experienced by 
the work at each priority after one  or  more classes 
and their demands are moved from one priority to 
another. 

Individual wait-to-using  ratio. Next the individual 
wait-to-using ratio for each class  is calculated as 
shown  below. The aggregate projected wait-to-us- 

- - 
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ing ratio  at  a priority was calculated above. The in- 
dividual mean-time-to-wait was measured. Individ- 
ual mean-time-to-wait is a function of the work units 
in the class and does not vary  with priority. Service- 
weighted mean-time-to-wait is the sum of the  prod- 
ucts of individual mean-time-to-wait and individual 
processor service consumption with the sum  divided 
by the total processor  service consumption at the pri- 
ority. 

proj-ind-wait-to-using-ratio 
- service-weighted-average-mean-time-to-wait 
- 

individual-mean-time-to-wait 
X proj-wait-to-using 

Processor delay sample delta. Finally, projected pro- 
cessor delay sample deltas are calculated as  shown 
below. The projected individual wait-to-using ratio 
was calculated above. The actual wait-to-using ratio 
was measured, and the actual processor delay sam- 
ple value was measured. 

proj-delay-samples 

- proj-ind-wait-to-using-ratio 
- 
actual-ind-wait-to-using-ratio 

X actual-processor-delay-samples 

The projected processor delay samples are  equal to 
the actual observed processor delay samples, mul- 
tiplied by the projected wait-to-using ratio, divided 
by the actual wait-to-using ratio. The delay sample 
delta is equal to  the projected delay samples, minus 
the actual samples. 

Operation. A state machine was developed to select 
and examine combinations of receivers and donors 
in order  to identify and assess combinations of dis- 
patching priority changes. The  state machine is the 
mechanism used to  determine whether the next pri- 
ority move should be  to move the receiver up, to 
move the  donor down, to checkpoint interim 
changes, to commit final changes, or  to select an- 
other donor. Figure 5 shows an example of a  state 
machine. 

The initial donor is selected by the general select do- 
nor algorithm. Using that  donor as a starting point, 
the processor fur algorithm alternately assesses the 
effect of increasing the dispatching priority of the 
receiver  (moving the receiver up) and decreasing the 
dispatching priority of the  donor (moving the  donor 
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Figure 5 State machine example 



ceiver or  donor. If the net value check  fails after any 
tentative move, secondary donors and receivers are 
selected to be moved up with the receiver or down 
with the  donor  to  determine whether that combina- 
tion of moves  will  pass the net value check. 

If at any point a priority change has a projected det- 
rimental affect on another class, the affected  class 
may become a secondary receiver and be moved up 
with the primary receiver. Multiple combinations of 
secondary receivers moved up with the primary re- 
ceiver, and secondary donors moved  down  with the 
primary donor, will be considered to  the extent nec- 
essary to find a combination of priority changes that 
will improve the receiver without causing relative 
harm to other workloads. The  state machine han- 
dles all combinations of primary and secondary re- 
ceivers and donors. 

If moving secondary donors and receivers is  still not 
sufficient  to  pass net value, the secondary donors and 
receivers are moved  back to the most recently ac- 
ceptable set of checkpointed priorities that had 
shown acceptable net value. Then if  it was the pri- 
mary  receiver  moving up  that failed net value, the 
moves continue with the  donor moving  down. Con- 
versely, if it  was the primary donor moving  down that 
failed net value, the moves continue with the receiver 
moving up. In both cases, secondary donors and re- 
ceivers are selected after every  move if required to 
pass net value and  to allow the assessment to con- 
tinue. If even with  moving secondary receivers and 
donors, neither  the priority of the receiver nor the 
priority of the donor can change with acceptable net 
value, the whole set of tentative and checkpointed 
moves  is abandoned and another  donor is selected 
by the select donor algorithm. Then  the whole pro- 
cess starts over with the new donor.  The purpose of 
the  state machine is to produce a comprehensive set 
of move combinations to evaluate, i.e., to leave no 
stone unturned in a search for changes to allow  work 
to meet goals.  However, in reality, the state machine 
tends to find valuable moves  quickly because of the 
intelligence  used by the select receiver and select do- 
nor algorithms when selecting initial candidates. 

If a combination of priority changes with  sufficient 
receiver value and  net value  is found, all the  tenta- 
tive priority changes are committed. The processor 
delay fix algorithm then exits and  the MGDPC awaits 
feedback on the effect  of  its actions. 
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Multiprogramming 
level delay fix. This 
subsection  describes 
how performance is 
improved by reduc- 
ing the delay experi- 
enced by the  re- 
ceiver  while  it  is 
waiting to be admit- 
ted to  the multipro- 
gramming set. An 
address space must 

be admitted to the multiprogramming set before it 
can be swapped  in and execute. The controlled vari- 
able in this case is the number of MPL slots allocated 
to  the class. One MPL slot represents  one address 
space. 

Theoly. The MPL delay experienced by the receiver 
is a function of the fraction of ready users in the class 
that have MPL slots available to them. A ready user 
is an address space that is  ready to execute. If there 
are fewer MPL slots allocated to the class than the 
class has ready users, some users will experience MPL 
delays. The class  will not experience MPL delay if the 
number of MPL slots always equals or exceeds the 
number of ready users. The MPL delay fix algorithm 
uses an MPL delay plot to predict the effects on MPL 
delay of increasing or decreasing the MPL slots al- 
located to  a class. At every  policy interval, for each 
class, the MGDPC plots the most recent value of MPL 
delay per completion as a function of the fraction 
of ready users that have MPL slots available to them. 
Figure 6 depicts an MPL delay plot. 

A complication arises when  using the MPL delay plot 
because the number of ready users, required to read 
off the plot, is a function of the number of MPL slots. 
If there  are  too few slots, users will back up at any 
workload level.  As slots are  added,  the number of 
ready users decreases. So the number of ready users 
is a function of MPL slots. The MPL delay fix algo- 
rithm uses another plot, the ready user average plot, 
to deal with  this complication. The ready user av- 
erage plot (Figure 7) records the relationship be- 
tween the number of ready users in a class and  the 
number of MPL slots available to them. The ready 
user average plot is  used to predict the number of 
ready users when assessing an MPL target change. 
The plot can show the point at which  work units will 
start backing up. The number of ready users read 
off the ready user average plot is used to  determine 
which point to read from the MPL delay plot. 
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Figure 6 Class B MPL delay plot 
~ ~ ~~~~~ 

LITTLE OR NO MPL DELAY 

0 112 1 312 

FRACTION OF READY USERS WITH MPL SLOTS 

Operation. In  the  operation of this algorithm, first 
the MPL slot increase necessary to satisfy receiver 
value for the receiver class  is found. This is done by 
adding one  to  the  current MPL slot allocation of the 
class,  using the new number of MPL slots to  read  the 
new number of ready users off the ready user aver- 
age plot, using the new number of ready users to read 
projected MPL delay off the MPL delay plot, convert- 
ing the new MPL delay to an MPL delay sample delta, 
using the new delay sample delta  to project a  per- 
formance index delta, and using the projected per- 
formance index delta to determine receiver value. 

If there is not sufficient receiver value, another MPL 
slot is tentatively added,  and all the calculations are 
repeated. 

When a number of MPL slots with  sufficient receiver 
value is found, it  is  necessary to find storage to ac- 
commodate the additional swapped-in address 
spaces. Otherwise, simply adding address spaces 
could cause storage contention and  other problems. 
Storage donors  are identified using the find donor 
algorithm. The projected delay sample deltas are 
projected by the algorithm specific to  the resource 
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Figure 8 Page  fault rate plot 
~~ ~~~~~ 

Theory. The disk  paging delay experienced by the re- 
ceiver is a function of both the number of page faults 
taken bywork units in the class and the time required 
to satisfy the page faults. The number of page faults 
taken is a function of the processor storage allocated. 
The time per page fault is not a function of the  pro- 
cessor storage allocated. It is a function of the  de- 
mand put on the paging  subsystem by all of the work 
units in  any  classes taking page faults. Both the num- 
ber of page faults taken by the class and  the time 
per page fault must  be  used  in combination to ac- 
curately predict paging delay changes. 

The disk  paging delay fix algorithm combines two 
techniques to predict disk  paging  delay  changes. The 
first technique is the page fault rate plot, shown  in 
Figure 8. This is a plot of page faults per completion 

as a function of processor storage allocated. A point 
is plotted on the class page fault rate plot after ev- 
ery  few transactions in the class complete. The plot 
always reflects the latest condition but also remem- 
bers the page fault rate  for  the class  when the class 
was allocated a larger or smaller number of frames. 
This plot is used to predict a new number of page 
faults per completion given a contemplated change 
to processor storage allocation. 

After a new page fault rate has been read off the plot, 
disk  paging  delay  samples are used to predict the new 
time that will be experienced because of disk  paging 
delay. This prediction is arrived at by taking the  ra- 
tio of the change in page fault rate and multiplying 
it by the disk  paging delay samples experienced by 
the class. The calculation follows: 
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projected-samples-delta 

(newgage-fault-rate - old-page-fault-rate) 
X disk-delay-samples 
old-page-fault-rate 

- - 

If a page fault is taking a long time because of other 
demands on the paging  subsystem, this situation is 
reflected  in the number of delay  samples  experienced 
by the class. Introducing disk samples into  the al- 
gorithm serves the function of introducing time per 
page fault into  the algorithm. The number of page 
faults and the time per page fault used  in combina- 
tion are accurate predictors of the disk  paging  delay 
that will be experienced by a class after a processor 
storage allocation change. The performance index 
deltas are calculated from the delay sample delta as 
described previously. 

Operation. In the operation of the algorithm, first the 
storage allocation increase necessary to satisfy re- 
ceiver  value for  the receiver class is found. This is 
done by reading the page fault rate corresponding 
to increasingly larger numbers of processor storage 
frames off the paging rate plot. Delay sample deltas 
and performance index deltas are calculated as de- 
scribed previously, and the receiver value algorithm 
is applied until a storage increase with  sufficient re- 
ceiver value is found. The required storage increase 
per address space multiplied by the number of 
swapped-in address spaces yields the  total number 
of frames required. The storage required is found 
by the find donor algorithm, and the value of the stor- 
age reallocation is evaluated using the net value al- 
gorithm as described previously. 

The paging rate plot captures the nonlinear relation- 
ship  between the amount of storage allocated to work 
and the value of the storage to  that work as mea- 
sured by the page fault rate of the work. For work 
on the right side of this plot, additional storage will 
be of little benefit, whereas the same amount of stor- 
age could provide a very large benefit to work on 
the left side of the plot. All other things being equal, 
work on the left side of its paging rate plot will tend 
to  be  a receiver of processor storage, and work on 
the right side of its  paging rate plot will tend to make 
a good donor of processor storage. 

Long-runningtransactions. The preceding discussion 
assumed that each address space in the class  would 
have  similar storage requirements and benefit  sim- 
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ilarly from the same amount of storage. This assump- 
tion is true  for classes where each transaction is rel- 
atively short. In these cases, each transaction in the 
class  is  given the same allocation of processor stor- 
age  as soon as it arrives in the system. This technique 
allows short transactions to receive the benefit of the 
storage before  the algorithms would  have had time 
to learn the particular paging characteristics of each 
transaction. In cases where the transactions are 
longer, the transactions in a class, and their storage 
requirements, are  more likely to be different from 
one  another. Also  in this case, the algorithms can 
afford the time to learn about each transaction in- 
dividually. To  learn,  the algorithms build a paging 
rate plot for each individual transaction that expe- 
riences  significant  paging  delay.  This  plot is used  sim- 
ilarly to  the class  paging rate plot. To project the ef- 
fect of  giving storage to  a receiver, a new  paging rate 
is read off the transaction paging rate plot. Then  a 
projected number of samples is calculated for the 
transaction in the same way  as a new number of pag- 
ing delay samples was calculated for a class. The fi- 
nal step is to project the delay sample delta for the 
class by multiplying the delay sample delta for the 
transaction by the  proportion of the paging delta of 
the class attributable  to  the transaction. 

Clientlsewer considerations, To improve the perfor- 
mance of a client class by reducing the paging delay 
seen by a server class, the delay sample delta is cal- 
culated as described above for the nonserved case. 
Then  the projected samples are  apportioned back 
to the client class, and a new proportional aggregate 
speed is calculated for the client class. The  propor- 
tional aggregate speed plot is read to obtain the  pro- 
jected client class performance index and calculate 
the projected performance index delta as described 
previously. 

Feedback. In all  cases, if a change with  sufficient re- 
ceiver value and net value is found,  the additional 
storage is allocated to  the receiver by increasing the 
protected processor storage target of the receiver, 
and all the storage donations are committed. The 
storage donations may be in the form of reducing 
MPL slots or reducing protective processor storage 
targets. The disk  paging  delay fix algorithm then ex- 
its, and the MGDPC awaits the next  policy interval to 
obtain feedback on the effect of its actions. 

Anticipatory  resource allocation. The previous top- 
ics on fixing storage-related delays  all  discussed  how 
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experiencing delay waiting for MPL slots or paging. 
However, a good system programmer would not just 
wait for a problem with these resources to occur. The 
MGDPC does not just wait for problems either.  The 
MGDPC anticipates what storage is needed by classes 
and allocates MPL slots  and protective processor stor- 
age targets in advance to prevent problems. The 
MGDPC does these anticipatory allocations to the ex- 
tent  that  the storage resource is not needed to solve 
problems that  another class  is experiencing. The 
MGDPC reconsiders these anticipatory allocations  ev- 
ery  policy interval, providing another mechanism for 
the MGDPC to respond to changing situations. The 
anticipatory allocations require no input from the 
customer. The MGDPC determines these allocations 
by observation. 

I/O delay fix. This 
subsection  describes 
how performance is 
improved by reduc- 
ing the I/O delay  ex- 
perienced by the re- 
ceiver. The controlled 
variable in this case 
is the I/O priority. 

Theory. Managing 
access to I/O devices 

has many parallels with managing access to  the  pro- 
cessor. Both have  using time and wait time, which 
suggested a wait-to-using algorithm. The concept of 
maximum demand, used  successfully  in processor 
management algorithms,  is  also applicable. This con- 
cept led to I/O priority assessment algorithms that in 
many ways paralleled the dispatching priority algo- 
rithms. I/O maximum demand and I/O wait-to-using 
measures are used, and the underlying concepts in 
the I/O projection algorithms are very  similar to  the 
concepts in the processor projection algorithms. A 
state machine is  used to make a comprehensive 
search for I/O priority increase and decrease moves 
and secondary donors and receivers. The operation 
of this state machine is  similar to the  operation of 
the processor state machine described previously. 

Resources subsets. There is a complication with I/O 
devices  in that they, unlike processor and storage, 
are  not  a common resource. All  work does not use 
all  devices. If the MGDPC was  going to affect perfor- 
mance by changing the I/O priorities of receivers  with 
respect to donors, it  had to know that  the  donor ac- 
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vices a,  b, and c, and the  donor uses  devices x, y, and 
z, changing the I/O priority of the receiver with re- 
spect to the  donor will have no effect. The MGDPC 
solved this problem by determining disjoint subsets 
(clusters) of I/O devices  such that it  knew, for exam- 
ple, that service  classes a and b use the devices  in 
cluster 1, and classes  c, d, and e use the devices  in 
cluster 2, and so on.  The MGDPC dynamically  builds 
these cluster and class relationships every ten min- 
utes to reflect changes in  how the work  in the classes 
is  using the devices. 

Multisystem shared  resources. Another problem in- 
volved  with management of I/O priorities is that I/O 
devices, again unlike processor and storage, can  be 
shared among systems. Managing I/O priorities on 
one system  would be an incomplete solution in a sys- 
plex. It led to  the  more general problem of being 
able to manage resources shared by multiple systems 
to meet performance goals. 

When processor priorities are changed, the changes 
need only  be done on one system because only  work 
on one system  is  affected. However, when shared re- 
sources are involved, the changes must be propa- 
gated across all  systems that share the resource. For 
example, if class a is running with an I/O priority of 
253 on one system,  it  must run with an I/O priority 
of 253 on all  systems to maintain its priority relative 
to other classes. If changes were not propagated 
across all the systems so work used consistent pri- 
orities, the changes on any one system  would  have 
an unpredictable effect. The MGDPC solved  this prob- 
lem  by coordinating the I/O priority changes. 

A fundamental and very valuable attribute of the 
MGDPC algorithms is that  the systems  in the sysplex 
are  independent as  well as cooperating. There is no 
master system. Each system sees the same data and 
can make changes to any resource that  the MGDPC 
manages. A complication arises with shared re- 
sources where any  system can make 1/0 priority 
changes that it  expects  all  systems to implement. The 
MGDPC solved this problem by continuing the phi- 
losophy that any  system can make changes, but the 
MGDPC added coordination such that only one set 
of changes is propagated to all the systems at any 
one time. To reduce the instances of frequent com- 
peting I/O priority changes and to encourage the in- 
stances of the MGDPC to work on  other problems 
such as storage or processor delays, the MGDPC 
added  the requirement that  the MGDPC on each sys- 
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tem had to wait “n” number of intervals since the 
last I/O priority change by  any system to make more 
I/O priority changes. The “n” used  is six, so each sys- 
tem knows it has to wait six intervals before consid- 
ering more changes. Maintaining the independence 
of the systems  is  very important because it  allows 
each system to work on its local performance prob- 
lems if  all the sysplex goals are being met and elim- 
inates many problems of a master-slave operation. 

Multisystem  goal-driven  performance  controller in 
action. This subsection describes an experiment that 
was  run to show how WLM can manage a large com- 
mercial workload. The experiment had two phases. 
In the first phase, an on-line transaction processing 
and interactive workload  was run. We  discuss how 
WLM sets dispatch priorities for this  work based on 
the goals and importance of the work. In  the second 
phase, a large batch job stream was added  to this 
mix.  We  next discuss how WLM adjusted to this 
change in the workload to continue to meet the goals 
of the WLM policy. It should be noted  that in order 
to show the robustness of the WLM adjustment al- 
gorithms, the second phase of this experiment over- 
loaded the processor capacity of the system  in a way 
that  a commercial environment with important on- 
line work  would  be  unlikely to do. 

The on-line transaction work consisted of two trans- 
action-processing  subsystems: Customer Information 
Control System Version 4.1 (CICS v4.1) and Infor- 
mation Management System Version 5.1 (IMS* V5.1). 
Both CICS and IMS are considered servers by WLM 
(see subsection on server topology). The interactive 
work was made up of 350 simulated users of the 
OSi390 Time Sharing Option (TsO). The batch work 
consisted of 10 large jobs designed to simulate com- 
mercial  batch operations. This  work  was  divided into 
two service  classes,  BatchHi  and  BatchLow. The work- 
load was run on an IBM ESl9000*/9021 with two CPUs. 

Table 1 summarizes the WLM policy  used for the ex- 
periment. 

A significant observation about this  policy  is that  the 
most important work  in the system  is made up of 
the IMS transactions. The least important work con- 
sists of the two batch service  classes. The CICS trans- 
action and TSO users are of medium importance. 

There were two interesting phases to this  experiment. 
First, the nonbatch workloads were started and sta- 
bilized. During this interval the system  was about 80 
percent utilized, and there were no storage con- 
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Table 1 Goals  for  mixed  workload  with IMS more 
important 

Service  Type of Goal 
Class 
Period 

CICSTRX Response time 
IMSTRX Response time 
TSO Period 1 Response time 
TSO Period 2 Response time 
TSO Period 3 Response time 
BatchHi Velocity 
BatchLow Velocity 

Goal 

0.090 sec 
1.000 sec 
0.100 sec 
1.000 sec 
3.000 sec 

7% 
1% 

Importance 

Medium 
High 
Medium 
Medium 
LOW 
Lowest 
Lowest 

Table 2 Average  performance  index  and  CPU 
percentage 

Service  Performance  CPU (“h) 
Class Index 
Period 

CICSTRX 0.70 24 
IMSTRX 0.12 23 
TSO Period 1 0.52 11 
TSO Period 2 0.34  4 
TSO Period 3 0.31 8 
All work NIA 70 

straints. The  order of dispatching priorities that WLM 
chose for the work  was: 

1. CICS address spaces 
2. TSO Period 1 
3. TSO Period 2 and TSO Period 3 
4, IMS address spaces 

This order might be considered a surprising result 
given that  the IMS transactions are  the most impor- 
tant work  in the system. The explanation is that al- 
though the IMS transactions are  the most important, 
they are also  very  easily meeting their goal as shown 
by an average performance index of 0.12 over this 
interval. Table 2 shows the average performance in- 
dexes of each service  class and the percentage of the 
CPU that each service  class  was  using during the first 
phase of the experiment. 

Notice that all the  other service  class periods have 
significantly  higher performance indexes than the IMS 
transaction class (IMSTRX). If the IMS address spaces 
were given a higher dispatch priority, it  would  in- 
crease the difference between the performance in- 
dexes of the IMS transaction class and  the  other  ser- 
vice  class periods. 
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'able 3 Performance  index  and CPU percentage  after 
batch  started 

Service Class  Period  Performance Index CPU (%) 

CICSTRX 
IMSTRX 

0.65 24 
0.07  22 

TSO Period 1 0.51 12 
TSO Period 2 0.45  4 
TSO Period 3 0.66 8 
BatehHi  0.82 25 
BatchLow  0.60 4 
All work 0.60 99 

Now consider how a system programmer might  go 
about setting the dispatch priority for this workload. 
Given that  the IMS transactions are  the most impor- 
tant work for this installation, the system program- 
mer would probably not give the IMS address spaces 
the lowest dispatch priority. If IMS address spaces 
were given a higher dispatch priority, response time 
for at least TSO Periods 2 and 3 would be unneces- 
sarily elongated, whereas the IMS transactions would 
beat their goal by even a larger amount. 

If the system programmer did set the above dispatch 
priority order,  the response time of the IMS trans- 
actions would  have to be constantly monitored to 
look for a change in the workload that would cause 
the IMS transactions to miss their goals. If such a 
change did occur, the system programmer would 
have to detect it and decide how to change the pri- 
orities on the fly before  too much damage was done 
to  the IMS transactions. 

The second part of the experiment was to  start  the 
batch work. With the batch work running, the over- 
all processor demand of the total workload was  sig- 
nificantly more than  the system  could deliver. There 
still was no significant storage contention. Figure 9 
shows how processor service  was consumed by each 
of the different types of work during the overall run. 

The batch work  was started  at about 15:47. Notice 
that the batch processor service immediately jumps 
to  a peak of about 23 000 with a corresponding drop 
in the processor service for the IMS address spaces 
and TSO work. Figures 10 through 12  show plots of 
how the performance index for the work changed 
during the run. Figure 10 is for IMS and BatchHi and 
Figure 11 is for  the TSO periods. Figure 12 shows 
the same data on one plot. Note  that  the perfor- 
mance indexes for the IMS transaction class and  the 
TSO service  class periods shoot up as their corre- 
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sponding processor service goes down. Because the 
IMS transaction class  is the most important, WLM first 
addresses its problem by increasing the dispatch pri- 
ority of the IMS address spaces relative to batch. The 
result of this action shows  clearly in Figure 9 as the 
IMS processor service recovers as quickly as it 
dropped off. The processor service of TSO recovers 
after  that of IMS since WLM addresses its processor 
delay problem as the next  most important work  miss- 
ing  its goal. After WLM went through several steps 
of incrementally improving the performance of TSO 
by adjusting TSO Period 2 and Period 3 dispatch pri- 
ority versus the BatchHi class, the final dispatch pri- 
ority order  that WLM sets is: 

1. CICS 
2. TSO Period 1 

4. TSO Period 2, TSO Period 3, and BatchHi 
5.  BatchLow 

3. IMS 

Examining the graph of performance indexes shows 
this dispatch priority order allows  all the nonbatch 
work to meet its goals almost all  of the time. Table 
3 shows the average performance index and the  per- 
centage of the CPU each service  class  was  using after 
the batch started and WLM had a chance to readjust 
dispatch priorities. 

Notice that  the work that is  most  affected by the ad- 
dition of batch operations is TSO Period 2 and Pe- 
riod 3. Before the batch work started,  the average 
performance indexes for these periods were 0.34 and 
0.31. After  the workload has stabilized again follow- 
ing start of the batch, the average performance in- 
dexes for these periods increase to 0.45 and 0.66. 
Even the BatchHi service  class  is able to meet its 
goal on average, though it has the highest average 
performance index  which  is reasonable, since  it  is 
the least important work. 

Given that overall this workload requires more pro- 
cessor power than is available, some work  is not go- 
ing to run. Since  BatchLow  is the least important 
work  with the easiest goal, it  is the work that is sac- 
rificed. Figure 13 shows the service rate of BatchHi 
versus BatchLow. Other  than  a small burst of ser- 
vice before WLM readjusted the priorities for the new 
work, BatchLow does not run until the jobs in 
BatchHi begin to finish at about 16:Ol. 

In summary, this example shows  how the MGDPC 
function of WLM is able to allocate system resource 
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to  a diverse  workload to meet the performance goals 
of  the installation. Because the MGDPC is continu- 
ally monitoring how the work  in the system  is per- 
forming, WLM can be  more aggressive than  a system 
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programmer in reallocation of resources to  the work 
in the system  having the biggest problem meeting 
its goal even if it is not the most important.  The  or- 
der in  which the MGDPC chooses receivers and do- 
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nors  and its net value  check  ensures that such  a  re- Balancing  work  across  a  parallel  environment 
allocation  does  not hurt  more  important work. The 
first  phase  of  this  experiment shows the results of A number of problems  arise with the existence of 
such  actions. The second  phase of the  experiment multiple  images that  share work  and  resources.  This 
shows that WLM can  quicklyreact to major  workload section describes how WLM addresses  these  problems 
changes in reallocated  resources  as necessary to best while remaining  focused on the goals specified by 
meet  the  performance goals of the installation. the business policy. 
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Figure 11 TSO performance index 
~ ~ ~~ 
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In many interactive or clientherver environments, of the end user. Furthermore, the intended duration 
a single user, while under some application suite, will of this “connection” at the outset is unknown to  the 
remain “connected”  to  a particular instance of an operating system or even the application  itself  in gen- 
application server running in the parallel environ- eral. A further complication is that it  is not known 
ment for a protracted period of time. This  time frame at the  outset what will be the resource requirements 
may extend for minutes or hours or days, depending of the  end user, nor is  it  known  what business goals 
on the  nature of the application and the activities and importance will be associated with  this work. 
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Figure 12 Performance indexes 
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Since workload conditions in the parallel environ- nected to  another image or application server in- 
ment may change while the “connection” exists,  it stance by the  operating system  in order to rebalance 
is  impossible to  guarantee  that  a decision to “con- work when conditions change. 
nect” the  end user to a particular server instance on 
one image will remain optimal for the  entire  dura- Prior to WLM, the techniques to solve  this problem 
tion. For a variety of reasons, including network pro- in an OSi390 environment involved planning the  net- 
tocols, the existence of transient data,  and recovery  work connections so as to spread sessions across as 
schemes, an end user cannot be arbitrarily recon- many  images as necessary to balance the workload. 
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Figure 13 Batch service rate 

BatchHi . ‘ ’ ’ 

BatchLow 

End users needed  to be aware of which server or im- 
age they  would be connected to in order  to use their 
application.  Some  improvement was  offered  with  Vir- 
tual  Telecommunications  Access  Method (VTm*) 
support of generic resource, wherein sessions (con- 
nections in a Systems  Network Architecture, or SNA, 
world) were balanced across  eligible  logical units (an 
LU is an SNA session endpoint in  this context). How- 
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ever,  this support did not incorporate any  knowledge 
of utilization or machine size. Techniques such as 
“round-robin” have a similar  deficiency, and further- 
more do not incorporate knowledge  when “connec- 
tions” are no longer active. 

The approach taken by WLM in the face of the above 
limitations and uncertainties is to  “connect”  the  end 
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user to  a server instance on an image that is meeting 
its goals and that has a threshold amount of “dis- 
placeable capacity” at the lowest importance level 
among eligible servers. Displaceable capacity at the 
lowest importance level refers to processor capacity 
that is either unused or  that is consumed by recently 
observed work that is  as  low  in business importance 
(as given  by the business  policy)  as  possible to achieve 
the threshold amount.  The value for the threshold 
is dependent  on  the workload to which the user be- 
longs and may be calculated based on samples that 
are taken as the workload runs, or may be based on 
historical values for  the workload or  on default val- 
ues. 

The principle behind this approach is that work re- 
quests created by the user will either have  access to 
unused capacity or will compete with  work that is 
deemed least significant by the installation business 
policy. In  the  latter case, the WLM algorithms will 
adjust resources, as needed,  to  ensure  that  the most 
important work  achieves its business goals. This ad- 
justment is the meaning of the phrase “giving  work 
requests the ‘best chance’ to  meet their goals.” 

Initially,  this approach should give  work requests cre- 
ated by the  end user a maximal opportunity to 
achieve their goals. Over time, workload conditions 
may change and leave the  end user’s  work  less ca- 
pable of meeting its goals, at least as compared to 
other server instances or  other images. Of course, 
if these work requests are  deemed  to  be sufficiently 
important by the business  policy, the algorithms 
should ensure  that sufficient resources are available 
to meet their goals. However, this condition leaves 
open  the question of what to do for work requests 
that  are not sufficiently important when other im- 
ages may  now have unused capacity or less impor- 
tant work. 

This problem is addressed using techniques that  are 
workload-dependent. For example, some workload 
environments have a  further layer of “transaction 
routing,” wherein a work request arriving at  an  ap- 
plication server is then forwarded to  another appli- 
cation server instance that is a  better choice. 
CICS V4 and CICSPlex*  System Manager (CP SM) co- 
operate  to implement this approach as one exam- 
ple. Another approach is to dynamically change the 
“connection” based on the server’s awareness of 
when this change can  be done transparently. 
DB2* (DATABASE 2*) v 4  is  able to perform this  change 
for distributed SQL (structured query language) re- 
quests to  a  remote data-sharing group, as it spreads 
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such requests across those members in the  propor- 
tions recommended by WLM. Indeed, DB2 will  poll 
WLM on  a regular basis to  ensure  that  the distribu- 
tion pattern matches current conditions. A third pos- 
sibility  is that  the work request may be split up, or 
parallelized, to  run on multiple processors (i.e., in- 
struction streams) either within the same image or 
on different images. For example, DB2 V4 can par- 
allelize queries in this fashion. As  with “transaction 
routing” discussed  below, some assessment must be 
made that using these techniques will overcome their 
cost. 

Note that even when “transaction routing” can be 
implemented, it imposes an additional “hop”  and 
therefore additional cost, which could reduce 
throughput and increase response time. It is there- 
fore desirable to choose the target “connection end- 
point” carefully,  mindful that conditions will change, 
possibly unpredictably, and  that  elaborate analysis 
may be counterproductive. 

WLM supports  a number of environments that ex- 
hibit such “long-term” connections to a server 
through a variety of interfaces, including generic re- 
source, domain name server, and sysplex routing. 

The generic resource and domain name server al- 
low a group of equivalent servers to  be  treated as 
a single entity by end users when requesting a “con- 
nection.” Generic resource is  used  in the SNA world, 
where a “connection” equates  to  a session. During 
initialization, each server identifies itself as belong- 
ing to a particular group and gives the (LU) name(s) 
with  which  it  is associated. Domain name server is 
used in the TCP~IP (Transmission Control Protocol/ 
Internet Protocol) world. 

The OS/390 domain name system (DNS) implemen- 
tation allows  system administrators to set up a com- 
mon host name for a set of OS1390 systems. When DNS 
is queried for IP address resolution, WLM services are 
used to choose the best system or server to place the 
new  work. In this way the DNsiWLM resolutions cause 
incoming TCP/IP requests to be distributed intelli- 
gently across the sysplex. 

Sysplex routing allows a group of equivalent servers 
to be registered and monitored for purposes of rout- 
ing individual work requests among its members. 
WLM will provide recommendations on what propor- 
tions should be allocated to each server within the 
group for  a narrow window on the  order of a few 
minutes in length. Users of this  service are then able 
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Figure 14 Importance level service summary table 

to  spread individual  work requests across multiple 
servers in these proportions so as to  enhance their 
chance of meeting their goals. 

WLM also provides interfaces to allow a product that 
coordinates and provides services for  a collection of 
related server address spaces to query WLM for its 
recommendation on which server space is the best 
choice for a set of related work requests. Typically 
a daemon process within the product will interact 
with WLM to manage such work requests. This in- 
teraction moves the scheduling responsibility from 
the daemon to WLM, where work for the  entire  par- 
allel environment is monitored and managed. 

Each of these interfaces draws on common samples, 
measurements, and projections of system  activity that 
are described next. 

Balancing data. WLM implements its routing deci- 
sions and makes recommendations on the basis of 
five  types of information. The first indicator is the 
presence of resource constraints in the recent past. 
These constraints would include shortages of pro- 
cessor storage, paging space (secondary storage in 
a UNIX* * environment), etc., or dangerously  high  lev- 
els of paging or swapping.  Systems  with such prob- 
lems are automatically given the lowest  possible rec- 
ommendation value to receive  new work, since they 
will  likely be unable to  start new server instances and 
be otherwise unlikely to support an increased work- 
load. In fact, such a system  would  be operating in 
a mode to shed work  since  it  is seriously overloaded. 

Next, WLM maintains a dynamic  list of eligible serv- 
ers, along with the image on which it is located, and 
any other information needed to uniquely identify 
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each server instance. This list  is updated not only 
with the  startup and shutdown of servers themselves, 
but also  with the unexpected failure of images  within 
the parallel environment. This list  is  necessary  so that 
WLM can recognize which servers exist and make a 
choice (or choices) among this  list. 

In addition to tracking the presence of servers, WLM 
evaluates the ability of each server to meet the goals 
of work requests that have  flowed through the server 
using an aggregated performance index (PI). This PI 
takes into account the various importance levels for 
such work requests and their contribution to  the uni- 
verse of work requests that  the server accepted in 
the recent past, and projects what the PI will be as 
a result of the policy actions taken. The significance 
of the PI is that it incorporates the effect of all ac- 
tivity  in the system and reflects the  real delivered re- 
sponsiveness measured against the business goals. 
Delays include contention and constraints for all re- 
sources,  including storage, locks, queuing effects, etc. 

The third type of information used by WLM is the 
importance level  service  summary table, which  tracks 
the normalized processor consumption of work at 
each importance level on each image. To  be more 
precise, the cumulative processor service delivered 
to  all  work at the given  level and  for all  less impor- 
tant work is maintained. This table includes unused 
capacity, discretionary work, and system overhead 
not directly attributable to any particular work re- 
quest. The  purpose of this table (see Figure 14) is 
to allow the WLM algorithms to  understand where 
“displaceable capacity”  exists on an image-by-image 
basis, and where work may compete most  favorably 
for processor access. 
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The  fourth type of information is an assessment of 
the average cost of each work request that flows 
through the server. For some work environments, 
this assessment may be based on historical measure- 
ments or, alternatively, may represent  a default cost 
associated with a single end user. For other environ- 
ments, this assessment may reflect the measured av- 
erage cost of an end user over some recent interval. 
The purpose of this estimate is to set the threshold 
value for “displaceable capacity” needed,  and also 
to estimate the  latent demand that arises when a new 
“connection” has been established but before actual 
demand shows up in  new measurements kept in the 
importance level  service summary table and  the ag- 
gregate PIS. 

The fifth type of information used by WLM is the list 
of recent selections that allows some projection of 
latent demand of  new connections, as discussed in 
the previous paragraph. This information is  aged out 
fairly  quickly as new measurements pick up  the ac- 
tual demand that has been  introduced. 

The above information is maintained on an ongoing 
basis during normal system execution. When a WLM 
interface is  invoked to make a recommendation, as 
described above, WLM will  also calculate the  target 
service value for “displaceable capacity” that is 
needed. This value incorporates both the average 
cost and  an  estimate for latent demand that is re- 
flected by the list of recent connections. 

Balancing  algorithm. With the above data in hand, 
the general approach in deciding how to place a new 
“connection” is to go through the list of all servers 
one at a time and assess whether  the  current server 
is a  better choice than  a server previously chosen. 
A server on an image that is not resource-constrained 
will be given preference to a server on a resource- 
constrained image. Beyond that filter, preference is 
given to servers that  are meeting goals, then  to serv- 
ers  that  are narrowly  missing  goals, and finally to 
servers that  are badly  missing  goals. Within each of 
these three categories, servers are ranked accord- 
ing to  the  importance level at which the target “dis- 
placeable  capacity”  is  achieved,  with preference given 
to utilizing the lowest-possible business importance. 

If the interface allows multiple selections (as for sys- 
plex routing), the algorithm will keep all selections 
that survive  with the same attributes  for resource 
(un)constraint, degree of meeting goals, and target 
importance level. Weights are set according to  the 
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ratio: (target displaceable capacity)/(total capacity 
of  all images at target importance level). 

The  rationale  for  the above ordering reflects a num- 
ber of trade-offs. As has been discussed  previously, 
systems that  are recently resource-constrained are 
immediately shunned since  they are overloaded, and 
the system  is  actively reducing the workload that is 
allowed to run by disallowing  new spaces from be- 
ing created, reducing the number of spaces that  are 
swapped in, and  so forth. 

In the absence of a resource constraint (or when  all 
relevant images are similarly constrained), the ideal 
server choice is one  that is meeting goals for its  work 
and  that resides on an image with  sufficient displace- 
able processor capacity to accommodate new  work. 
Ideally this would be unused processor capacity, but 
in  any case, there is a  preference to compete with 
work at  the lowest possible importance level so that 
new  work  will be favored as  much  as possible. 

A server that is  narrowly  missing its goals but with 
sufficient unused processor  capacity to accommodate 
new  work  is almost as good as a server that is meet- 
ing  its goals, since the resource management algo- 
rithms will  likely address the problem-which  would 
generally be one of processor storagc allocation. 

In looking at the above categories used in ranking 
server choices, it is worthwhile to observe that  a 
strong reliance is placed on  the actual performance 
of servers against the goals of the work they serve, 
as measured and projected by their aggregate PI. This 
observation reflects a philosophical bias to use ac- 
tual observed behavior and  to value feedback so as 
to correct inaccurate assumptions that might be 
made from other measurements or design points. 
This  concern  has been discussed  in other papers. Ref- 
erence 9 discusses  sensitivity to inaccuracy  in the Val- 
ues of communication costs,  locality statistics, etc. 
Also observe that  the number of separate factors in 
making a decision is a  mere handful. This latter ob- 
servation reflects a second philosophical bias mir- 
rored in Reference  7 relative to overly  complex al- 
gorithms. 

Balancing  algorithms in action. We now describe 
an experiment designed to show  how WLM allocates 
work across clustered systems. The experiment was 
run on three IBM 9672 Parallel Enterprise Servers. 
Each 9672 had six CPUS. At  the  start of the exper- 
iment, cpu-intensive jobs were started on two of the 
systems.  Next, 1000 simulated users were logged on 
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Figure 15 Idle capacity plot 
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to  the parallel system. We discuss  how WLM distrib- tem C. The cpu-intensive jobs running on B and C 
Utes these new users to achieve workload balancing are absorbing the capacities of B and C. Figure 16 
across the  three systems. shows that as  new userids request to log on, WLM 

places them on System A until the idle capacity of 
In Figure 15, Systems A, B, and C are receiving  work  System A falls  below that of Systems B and C. WLM 
to establish osi390 userid log-on sessions.  System A then places  new  log-on  sessions on System B because 
has much more idle capacity than System B or Sys- at time 8:32, System B has more idle capacity than 



Figure 16 Total sessions placement plot 
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A  or C. At time 8:38, the new  users on System B have responsiveness of the algorithms. Within microsec- 
reduced the idle capacity of B, and  the graph in Fig- onds, new log-on  sessions are sent to the systems  with 
ure 15 shows an amount of idle capacity equal to Sys- better capacity. A human operator could not be as 
tem C. WLM now directs new  log-on  sessions to Sys- responsive or vigilant 24 hours a day,  every  day. 
tem C. 

Cooperating products on WLM environment. 
This experiment shows the effect of capacity consid- MVS~ESA sP5.1.0 provides the initial support to allow 
erations on the balancing algorithms of WLM and  the work managers and resource managers to cooper- 
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subsystem product, and  which address spaces are in- 
volved  in processing each work request. The follow- 
ing products utilize these new interfaces to make this 
possible: 

1. CICS V4.1 
2. CPiSM V1.0 
3. IMS V5.1 (transaction manager and  database) 
4. Resource Measurement Facility (RMF* V5.l) 

The following traditional work environments are also 
supported for goal definition and management in 
MVSiESA SP5.1.0: 

1. APPCiMVS scheduler (AscH)-Advanced Pro- 
gram-to-Program Communication initiators for 
client/server environments 

2. Job Entry Subsystem  (JEs)-batch  work 
3. OpenEdition* MVS (0MVS)"OpenEdition work 

utilizing UNIX and other programming semantics 
4. Started Task Control (STC)-started tasks 
5.  TSO-interactive environment 

MVSESA sP5.2.0 provides the ability to balance ses- 
sions via generic resources or balance work requests 
via  sysplex routing. It also supports splitting of work 
requests either on a single OW390 image or  on mul- 
tiple images. Other  support allows products to com- 
municate the presence of user requests to WLM for 
individual management within a single server as in 
the following: 

1. CICS ~4.1-generic resource 
2. DB2 V4.1-distributed DB2, single-CEC (central 

electronics complex) parallelism, sysplex routing, 
generic resource 

3. D B ~  V4.2-multi-CEC parallelism, TCPIIP routing 
4. VTAM v4.2, ~4.3-generic resource 
5. RMF V5.2 

Osi390 R3 provides the ability to dynamically control 
the number of server address spaces on an applica- 
tion environment level based on goal satisfaction of 
the work requests queuing work to these servers. Re- 
lated services  allow products to dynamically route 
work requests to the optimal server address space. 
Additional support was added to allow server address 
spaces to separately  identify  multiple  business  units of 
work  for  classification  and WLM goal  management. The 
following  products  utilize  these  and  related  services: 
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3. Internet Connection Secure Server (ICSS) 
4. DB2 ~4.2-W~~-managed stored procedures 

6. TSO generic resource 
5. RMF V5.3 

Conclusion 

The systems management burden upon installations 
supporting large-scale enterprise-wide computing is 
growing at an alarming rate.  The cost of configuring 
system  hardware and software,  application  programs, 
and network configurations escalates with the  intro- 
duction of  new servers, new networking technolo- 
gies, and new application program development 
technologies. The ability to absorb new technologies 
is vital to those wishing to exploit the possibilities 
offered-to  gain  business advantage. This paper  de- 
scribed a technology to assist such exploitation. In 
addition, three significant dimensions are worthy of 
discussion: a strong supporting philosophy, an ini- 
tial product implementation, and  a  dream of what 
the  future may hold. 

The foundation for workload management capabil- 
ities described in this paper is a crisp definition-to 
operating system  software-of the underlying bus- 
iness rationale for employing a computer system. 
Knowledge of goals for work and  the business im- 
portance of that work provides a well-informed ba- 
sis for  operating system software to  take direct ac- 
tions having  positive  business  value to  the purchaser 
of that system. The underlying  philosophy  is that  the 
system should manage itself, using  all available 
means, toward those business goals, with no addi- 
tional requirement for human intervention. This 
workload management philosophy  is  in sharp con- 
trast with other efforts  within the industry, efforts fo- 
cused on delivery of tools to aid information tech- 
nology  professionals  with the optimization of critical 
resources.  Low-level, detailed focus on individual ap- 
plication servers and  the resources consumed by the 
servers enables one  to quickly lose sight of what is 
really important: satisfaction of business needs. 

Much information can be found in the  literature  de- 
scribing theoretical problems and solutions, evalu- 
ations, and comparisons of alternative system struc- 
tures, including descriptions of areas for valuable 
future research. The content of this paper has been 
limited to subjects embodied in  software product im- 
plementations being used in commercial data  pro- 
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topics  reviewed  in  this paper; detailed descriptions 
of many capabilities were omitted to limit the length 
of this paper. Some of the additional functions are: 

The ability to dynamically instantiate application 
server  processes  based upon trade-offs  between de- 
mand, the ability to satisfy  goals for  the work re- 
quests that  the servers serve, and the availability 
of system resources. This function eliminates the 
need for preconfigured application servers while 
preventing potential problems caused by excessive 
or  inadequate application serving capabilities. 
The ability to manage a given  work request as a 
single unit of work, even though the work request 
requires the services of more than one application 
server. This function allows the system to manage 
more closely to the requesting client view  of a  re- 
sponse time and eliminates the  need to set indi- 
vidual performance goals for each application 
server. 
The ability to set an overall resource consumption 
limit for a  set of service classes. This function pro- 
vides a mechanism to  guarantee availability of an 
amount of capacity for one  or  more critical work- 
loads. 
The ability to temporarily promote  the “impor- 
tance” of an individual  work request when that  re- 
quest has acquired a serially reusable resource 
needed by more important work.  This  function  aids 
nondisruptive management of resource conten- 
tion. 
The ability to  generate detailed descriptive infor- 
mation showing resource consumption informa- 
tion and resource delay information in the con- 
text of the various service  class  goals in effect. This 
function explains why the actual results were 
achieved and provides a basis for capacity plan- 
ning and system performance modeling tools. 

Beyond the capabilities of the  current System/390 
workload management implementation lie future op- 
portunities for expanding the quality of heuristic de- 
cision-making and the scope of resources being con- 
trolled. These  opportunities  represent much more 
than mere enhancements to the OW390 operating sys- 
tem-they represent the implementation of a  dream 
where information technology resources adapt them- 
selves to satisfy business objectives without requir- 
ing human guidance beyond definition of those bus- 
iness objectives. As long as the need exists for de- 
tailed, low-level performance control parameters, the 
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ble? Maybe. It is easy to envision numerous&func- 
tional extensions that fit neatly into  the framework 
of the existing OW390 workload management imple- 
mentation. Some of these extensions are: 

To dynamically manage the size of memory-res- 
ident buffer pools, balancing the availability of 
memory against the value received from avoiding 
physical I/O activity and  the cost of managing the 
buffer pools 
To more closely coordinate  the scheduling of in- 
terrelated “networks” of jobs, managing an  entire 
set of jobs toward a specific time-of-day comple- 
tion requirement 
To retain longer-term histories of resource utili- 
zation patterns, so that  repeatable peaks and val- 
leys in workload demands can be anticipated 

Although these problems appear to be solvable, 
other  more complex problems remain. Complete 
goal-oriented management of an  enterprise would 
require end-to-end management of distributed, het- 
erogeneous  operating systems and the network in- 
terconnection mechanisms that join these systems. 
Although the infrastructure exists  within oSi390, vary- 
ing amounts of capabilities exist on other operating 
system platforms. An end-to-end perspective  implies 
the inclusion of 

End-user workstations having little or no program- 
ming capabilities 
Network gateways and  intermediate servers that 
currently have no understanding of the “work” that 
they process 
Operating system platforms having  primitive re- 
source management controls 

Focusing on the operating system platforms alone 
does not address the full set of requirements, since 
the interconnection mechanisms must also manage 
the available  bandwidth  toward the needs of the work 
requests associated with data being transported. 

These longer-term desires represent significant  tech- 
nical challenges. 

*Trademark or registered  trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of NCR  Corporation, 
WOpen Co. Ltd., or Digital Equipment  Corporation. 
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