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Adaptive algorithms for
managing a distributed
data processing
workload

Workload management, a function of the
0S/390™ aperating system base control program,
allows installations to define business objectives
for a clustered environment (Parallel Sysplex™ in
0S/390). This business policy is expressed in
terms that relate to business goals and
importance, rather than the internal controls
used by the operating system. 0S/390 ensures
that system resources are assigned to achieve
the specified business objectives. This paper
presents algorithms developed to simplify
performance management, dynamically adjust
computing resources, and balance work across
parallel systems. We examine the types of data
the algorithms require and the measurements
that were devised to assess how well work is
achieving customer-set goals. Two examples
demonstrate how the algorithms adjust system
resource allocations to enable a smooth
adaptation to changing processing conditions. To
the customer, these algorithms provide a single-
system image to manage competing workloads
running across multiple systems.

Ithough there has been an important role for

a computing environment that has a single ma-
chine and a single copy or image of an operating sys-
tem, a number of factors have converged to moti-
vate use of multiple machines, especially when
connected in a parallel fashion. These machines
could be logical or physical configurations of what
might otherwise be deemed a single machine, but
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cach is controlled by a separate copy of an operat-
ing system.

Among the reasons for this interest in parallelism
are:

* Toincrease total computing power available over
a single image so as to reduce individual response
time or to handle larger volumes of work, or both

» High availability due to the expectation that fail-
ure of any single component, at whatever level, will
not cause the loss of all computing capabilities

* Access to lower-cost technology to use as building
blocks for a larger system

* Ability to grow the total computing power in small
increments to address needs as they arise with small
incremental cost and no outage required

There is an obvious increase in complexity with the
introduction of multiple images. It is natural to want
to view them as cooperating and sharing resources.
Considerable simplification results by seeing these
multiple images as a single computing environment
and having one set of controls rather than separate
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controls for each image. System parameters previ-
ously requiring a human operator to monitor and
set them are now controlled by the workload man-
agement (WLM) algorithms described in this paper.
Workloads are dynamically balanced across images.
WLM tracks those factors needed to best place in-
coming work and provides interfaces to make work-
load-balancing recommendations.

In a parallel environment, the WLM objective to sim-
plify performance management while effectively us-
ing all computing resources poses a number of de-
sign problems that must be addressed. Given that
some external controls are needed to reflect busi-
ness goals and importance, but that low-level con-
trols are not provided, the system must decide which
resources to allocate to which work requests. It is
up to the system to calculate how much of those re-
sources to give and for how long a time. With due
consideration for the danger of thrashing, it is up to
the system to determine how often to make those
changes and whether all the changes should be made
at the same time.

With respect to the problem of balancing work across
a parallel environment, the system must choose
where to run each work request given the following
constraints:

s Goals need to be achieved.

s Goals may not be known in advance.

s Resource requirements are unknown.

s Other work requests will be concurrently demand-
ing resources in competition with new work re-
quests that are also unknown.

Another problem addressed by the workload man-
agement algorithms is maximizing the use of re-
sources across the parallel environment, especially
where there are diverse machine sizes—the prob-
lem of configurational heterogeneity discussed in
Reference 1. Finally, the underlying configuration
must be concealed from end users and changes made
transparent to them while allowing load balancing
across equivalent servers.?

In this paper, the next section describes related work
in resource management and workload balancing.
Then WLM concepts and the system model are de-
scribed. The section following that one describes the
WLM algorithms used for goal-oriented resource
management. The two subsequent sections describe
the WLM approach for balancing work across the par-
allel environment and the products that cooperate
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to realize the benefits of the WLM philosophy. The
paper concludes with a summary of the current state
of the art and some outstanding problems that are
yet to be addressed.

Related work

A number of alternatives® exist in deciding how sys-
tem resources, such as access to the processor or pro-
cessor storage, or both, should be allocated among
eligible work. One possibility is that no controls are
offered at all—the system queues and dispatches
work automatically. The absence of external controls
offers maximal simplicity and may well be adequate
if the system is dedicated to a small number of work
requests and is of sufficient capacity to handle all
work quickly enough to satisfy the appropriate par-
ties. This approach may also be sufficient if the sys-
tem implements techniques to modify access to sys-
tem resources as individual work requests “age,” i.e.,
are observed to consume higher levels of resources.
However, satisfaction with this approach will depend
on how closely the system anticipates and imple-
ments the wishes or expectations of the end user(s)
or installation in the absence of any external con-
trol. As the mixture of work in the system becomes
increasingly diverse, with more complex human ex-
pectations on what should happen, the absence of
any human control becomes less tenable.

A second approach is to keep the system available for
an “owner,” thus protecting access of this special user
to the system. This approach is more suitable to small
systems but has a number of implementations. Con-
dor! is a system that allows workstations to be used
by others when idle but it checkpoints and preempts
“foreign” work when the “owner” wants access to
the machine. The Butler! system has a similar phi-
losophy and will actually terminate “foreign” work
when the “owner” wants access to the machine. Uto-
pia, from the University of Toronto, also provides
an option that allows the system to reject remote
work when the “owner” needs the system back.! As
a category, these implementations provide a limited
partitioning of work as either “owner” or “nonown-
er,” with no finer granularity for ranking work within
or across these groupings.

A third approach is to optimize system resources so
as to “keep the machine busy.” Utopia'® allows spec-
ification of a threshold beyond which “foreign” work
is not accepted but otherwise is happy to offer ser-
vice to all. This approach is an extension of the prior
technique where a threshold of zero would be used
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for the amount of “nonowner” work that coexists
with “owner” work.

A fourth approach is to minimize response time. This
method is the implicit control in Reference 4. Al-
though minimizing response time may seem desir-
able, it does not address conditions where not all
work is equally important and misses the opportu-
nity to make trade-offs to optimize some work at the
expense of other work.

Once a wide variety of work requests can be in con-
current execution, it may not be sufficient to merely
keep the machine busy. This probability suggests that
the system administrator may want or need to con-

The second major approach
in organizing multiple images
is one of shared data
and shared work.

trol the priority of access to resources. One approach
is to allow specification of low-level “how to” perfor-
mance controls, exemplified by releases of MVS prior
to Multiple Virtual Storage/Enterprise Systems Ar-
chitecture System Product 5.1 (MVS/ESA* $P5.1) and
by compatibility mode in MVS/ESA Version 5. Vir-
tual Machine/Enterprise Systems Architecture*
(VM/ESA*)? is a second operating system using this
approach. Utopia also allows specification of prior-
ity controls.!

The preceding paragraphs discussed how resources
would be managed on behalf of work requests in the
system. We now discuss alternatives for organizing
multiple images on behalf of a workload. There seem
to be two primary choices in this regard.

The first major scheme is to partition individual im-
ages into clusters, based on some attribute. One ap-
proach is to cluster images so that each cluster runs
similar work or even the same “job.” In the Scalable
POWERparallel System 2 (Sp2*),% some images func-
tion as server nodes, whereas others run individual
work requests. Each node is separately configurable
in terms of I/O, memory, and CPU capability. SP2 al-
lows a system administrator to define separate pools
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of machines that are available to parallelize a par-
ticular job, run interactive users, or run nonparal-
lelized jobs. Currently there is no support for time
sharing or preemptive scheduling.

A second clustering approach is based on data af-
finity wherein each image is given ownership of a dis-
tinct set of persistent data (files, databases, etc.). The
Tandem system and NCR 3600** system and Refer-
ence 4 all embody such an approach. The limitations
of this approach are discussed in other papers.’

The second major approach in organizing multiple
images is one of shared data and shared work. For
example, while Utopia assumes global file access, !
it uses geographic proximity (sometimes virtual prox-
imity) to cluster images in the network. Specific re-
source requirements are kept in a system-provided
file, which must be managed by system administra-
tors, presumably with input from application own-
ers who are aware of their own requirements. Ref-
erence 7 also assumes a data-sharing environment.

Other platforms need to assume that system capac-
ity is configured for peak load, due to data affinity
and the natural imbalance that will occur for real-
world computing environments. This implies that
those platforms require considerable excess capac-
ity at off-peak times, which yields substantial advan-
tage to WLM where trade-offs can be made that re-
flect the intended use of computing resources
according to business needs.

Once a parallel environment where multiple images
are capable of handling a given work request exists,
the question arises as to which image should be cho-
sen. The decision as to where each work request
should be placed and how to best choose the target
image involves a number of trade-offs between what
information is available and what resource manage-
ment philosophy and controis are provided.

In the sp2 world, interactive users may be spread
across nodes that are lightly loaded. Batch jobs may
be submitted via IBM LoadLeveler* or NQS/MVS*
(Network Queuing System/Multiple Virtual Stor-
age), although parallel jobs may only be submitted
by the former. LoadLeveler® attempts to balance
work across a set of SP2 nodes by using:

» Job classes-——Defined by the system administrator,
jobs can be classified as short running, long run-
ning, etc.
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¢ Job priority—How important a job is as defined
by the owner’s group, userid, and class. The pri-
ority of a job will determine whether LoadLeveler
will schedule this job ahead of or behind existing
queued jobs.

The LoadLeveler component—Interactive Session
Support (18S)—balances log-ins and application ses-
sions across multiple servers based on factors such
as link speed, number of connections, overall sys-
tem load, and, optionally, machine speed. Although
this is periodically reevaluated, there is no feedback
to ensure that the recommendation reflects actual
responsiveness.

Utopia performs load balancing under a dynamic al-
gorithm that uses load indices for CPU queue lengths,
free memory, disk /O transfer rates, disk space, and
number of concurrent users.’ Other metrics may be
used at the discretion of the installation, and appli-
cations are free to use their own metrics, although
it seems that using different metrics would cause
problems since different programs may be at cross-
purposes in their routing approaches. A further chal-
lenge to Utopia’s support is how to combine metrics
into a single usable measure vs the more complex
load vector proposed.

Utopia utilizes a “master” image to coordinate load
data and in some schemes to make load decisions.’
After placing each new work request, Utopia incor-
porates a load adjustment factor to account for la-
tent demand. General resource demands are de-
scribed in a system-provided file, though usually on
an exception basis. It is unlike WLM, where resource
demands are not assumed to be known in advance.
Utopia is intended to balance across potentially thou-
sands of hosts, at which point the projected over-
head is estimated to be 1 percent. With up to doz-
ens of hosts, the overhead for balancing under
Utopia 1s less than 0.5 percent.

Reference 4 assesses several alternatives to route
work based on some knowledge of data access pat-
terns and evaluates the sensitivity of the algorithms
to incorrect information. The base algorithm against
which all others are compared involves tracking
where each transaction is routed, by class, and pro-
jecting what its expected response time will be on
the basis of system parameters and static transac-
tion attributes and then choosing the image that min-
imizes the expected response time. The paper shows
that this algorithm is quite sensitive to these values,
which is disconcerting in view of the practical dif-
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ficulty of ascertaining these values and their tendency
to change over time. The algorithm has a further ten-
dency to overlook the cost of routing to an image
that does not own the data used by the transaction.

The first alternative investigated in Reference 4 ap-
plies a threshold so that data affinity is enforced in
routing unless the target image is overloaded, i.e.,
its projected response time is above the estimated
optimal choice by a certain threshold percentage.
The threshold approach is always superior to using
data affinity as the sole determinant in routing. Un-
der some conditions, using data affinity alone can
cause the queues to become unbounded in length.
However, choosing the best threshold is somewhat
problematical since it must be sensitive to system uti-
lization. WLM, by contrast, tracks the actual response
time delivered with no assumptions on transaction
attributes.

Reference 4 includes the interesting observations
that optimization for a singie work request can neg-
atively affect overall results and that load balancing
becomes more important as the overall load in-
creases.

The second alternative investigated in Reference 4
assumes that transactions fall into either a short or
long duration, and routes the former using the base
algorithm, but routes the latter based on data affin-
ity. This approach makes the further assumption that
which category a given work request lies in can be
readily determined at run time. The idea is to take
advantage of idle capacity when the risk of making
a mistake is low, but to force data affinity when the
cost is high. This algorithm does better than the base
algorithm and the first alternative, but the improve-
ment is sensitive to utilization and communication
costs. This alternative would require some sort of
external specification by the system administrator,
unlike WLM, which makes no assumption that the
duration of a work request can be determined upon
its arrival.

The adaptive approach discussed in Reference 4 uses
feedback to adjust for incorrect information. This
approach enhances the base algorithm by tracking
actual response time values and uses this value to
adjust the estimated response time formula.

Reference 7 uses lock contention in a shared-data
environment as a technique to determine how to
route work requests. In particular, groups of trans-
actions that access the same data are routed to a
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given image to reduce the lock contention time. The
basic objective is to ensure that each machine is kept
at a “safe” utilization rate and to decide how to
change the routing when any image is above its “safe”
threshold. The algorithm depends on knowledge of
factors such as:

* Threshold utilization

* CPU cost to process lock conflict when parties are
on the same or different images

* Arrival rate of each transaction type and its CPU
cost

* Affinity matrix representing the average number
of times each transaction type waits for a lock held
by each other type

WLM system model

The complexity of specifying low-level controls to
tune system resources leads to a natural desire to
offer the system administrator the capability to spec-
ify goals for work in the system in business terms,
rather than using low-level controls. The operative
principle is that the system should be responsible for
implementing resource allocation algorithms that al-
low these goals to be met. WLM is unique in offering
externals that capture business importance and goals
and implements them on behalf of the system ad-
ministrator.

Two primary concepts and facilities that WiLM pro-
vides need to be introduced at this point. The first
is the ability to partition the universe of work requests
into mutually disjoint groups, called service classes.
This partitioning is called classification and is based
on the attributes of an individual work request, which
might include the userid that submitted the request,
related accounting information, the transaction pro-
gram to be invoked or the job to be submitted, the
work environment or subsystem to which the request
was directed, and so forth. Installations are able to
specify which service class is associated with each
work request by specifying the value for one or more
attributes and the corresponding service class. De-
faults and other techniques may be used to group
work requests into each service class.

Each service class represents work requests with
identical business performance objectives. To ad-
dress the fundamental problem that the resource de-
mands of most work requests are unknown at the
outset and can vary depending on parameters that
may be known only at execution time, there is a need
to allow the business objectives to change based on
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the resource demands of the work request. This is
quite different from the requirement in other imple-
mentations that the resource demands be known in
advance.

A service class is comprised of a sequence of peri-
ods, with a value defined by the installation to ex-
press how long a work request is considered to be-
long to cach period. This “duration” is a measured
amount of service consumed that incorporates time
spent actually running instructions on a processor
along with other components of service defined by
the installation. Each work request starts in period
1 and is managed according to the first period goal
(to be described in the next few paragraphs) until
enough service is consumed to exceed the first pe-
riod “duration.” The work request is then moved to
the second period and managed according to the sec-
ond period goal, and so forth.

Each period has an associated goal and an associ-
ated importance, as alluded to above. Note that the
durations may be assigned different values for dis-
tinct service classes, even when comparing the same
period. In the same way, the goals for a given period
in different service classes may be distinct. An in-
stallation may specify explicitly three major goal types
for work requests. Certain activities associated with
system work may be managed implicitly and are ac-
corded special treatment and do not require instal-
lation specification. The goal types provided by WiMm
are response time, discretionary, and velocity. These
types of goals are now described in turn.

Response time goals indicate a desire for internal
elapsed time to be, at most, a certain value. “Inter-
nal” refers to the fact that the time is measured from
the point where the work request is recognized by
the system to the point where the work request is
considered complete. Note that elapsed time refers
to wall-clock time and, hence, includes delays when
programs are not running on behalf of the work re-
quest. Use of wall-clock time is desirable since it re-
flects the impact on a user awaiting completion of
the work request. The precise definition of when the
clock starts or stops ticking to capture the elapsed
time is documented for each particular environment
and so is not elaborated in this paper.

The second goal type, discretionary, indicates that
there is no business requirement for the work to com-
plete within a certain predetermined elapsed time,
and the system should use its discretion in giving re-
sources to such work when it is ready to run. In an
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unconstrained environment, discretionary work will
use available resources. In a constrained environ-
ment, discretionary work may be denied resources
in favor of work requests with other goal types. Op-
tional controls not described in this paper allow the
installation to ensure that discretionary work makes
progress in a constrained environment.

The third goal type is velocity. Work requests that

are not considered discretionary and do not have a
set response time objective nevertheless may need

WLM is designed for a
data-sharing environment.

further control to reflect the degree of delay that is
tolerable once the work request becomes ready to
run. Such work requests may be long-running (pos-
sibly “never-ending”) and want to run periodically
or intermittently, during which time the work request
needs access to resources. Velocity goals address this
category of work requests.

A final concept associated with periods, which was
mentioned above, is that of importance. Importance
is merely a relative ranking of work and is only a fac-
tor in constrained environments where the algo-
rithms must make choices as to whose goals will be
attended to first when system resources are reallo-
cated. The algorithms attend to the goals of work at
the highest importance before attending to those at
lower importance levels.

The concept of period was introduced to demon-
strate a fundamental behavior of wLM of work that
addresses the variability of resource demands. WLM
does not require the system administrator to know
these demands in advance. Goals are allowed to
change based on their cost. The term “period” is not
used subsequently in order to avoid certain techni-
cal discussions and difficulties that are not central
to the theme of this paper. The more general con-
cept of “service class” will be used in the remainder
of the paper. For a more complete description of
WLM externals, please refer to Reference 8.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

The WLM philosophy for resource adjustment is de-
scribed in some detail in subsequent sections, but it
is essentially a receiver-donor loop with respect to
adjusting resources. The fundamental principle on
which its success is based is that the system need not
determine the optimal change at any given point. It
is sufficient that the system makes an improvement
when adjustments are made. This principle allows
WLM to avoid the trap of over-analysis where sys-
tem overhead may balloon in search of optimal so-
lutions. By working only on a single problem at a
time, the algorithms leave intact resource allocations
that are working well.

With the description of how WiLM addresses resource
controls completed, the second major consideration
is to describe what requirements and assumptions
WLM makes in how the images of the parallel envi-
ronment are organized. The section on related work
described the two major approaches as clustering vs
sharing.

WLM assumes that each image is potentially capable
of running any application. Any configuration re-
quirements are the responsibility of the installation.
WLM requires no intervention to reconfigure the im-
ages based on workload so as to fully utilize capac-

ity.

WLM is designed for a data-sharing environment.
Specific resource requirements are not currently in-
corporated into WLM, e.g., configurations that are
asymmetric with respect to devices, vector, or cryp-
tographic facilities, etc. This asymmetry is currently
assumed to be handled by subsystems or dynamically
managed by operating system or subsystem cooper-
ation, For example, certain routing techniques de-
scribed in the section on balancing work across a par-
allel environment can be used to group servers that
have identical data and facility access capabilities.
These routing techniques include generic resource
and sysplex routing and allow the installation to
group like servers without WLM awareness of what
their common capabilities might be.

The third consideration for WLM to address is the
question of how to route work requests among the
images of the parallel environment.

Reference 9 describes a number of approaches for
work balancing, among which WLM can be described
as an adaptive model. Static models are not suffi-
ciently robust for commercial environments, given
the expected variability in arrival rate, resource re-
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quirements, and so forth. The WLM structure pos-
sesses several desirable attributes described in the
paper. First, it is important to ensure that the over-
head associated with keeping the necessary data and
the related calculations is low so as to avoid losing
all advantage to extra system overhead. Second, the
algorithms are not overly sensitive to inaccuracies
in the data used to drive it. Third, simple approaches
to load balancing prevail over complex algorithms.
Finally, wLM will not move a work request that has
already begun execution, since this is too expensive.

Aswill be discussed in subsequent sections, WLM also
uses feedback to correct its view of how well each
server is performing against actual business goals
when deciding whether each server is a proper
choice. However, WLM does not require nor use
knowledge of data affinity in making its decisions.
This is important for situations where this knowledge
is unavailable or where the same cost is associated
with accessing data from any candidate image as in
a data-sharing environment. As noted in Reference
4, staying current on data affinity in the face of chang-
ing applications and usage patterns can make accu-
racy of data affinity assumptions problematical (and
costly).

The wLM philosophy is to use actual measured re-
sults, which incorporate delays in all categories, and
other indicators, without attempting to determine
specific delays that cannot be directly controlled. Un-
like Reference 7, which focuses on lock contention,
WLM does not assume that data affinity can be de-
termined on the basis of the attributes of an arriving
work request. Of course, lock contention is not the
only delay that must be considered in routing work
requests.

The general philosophy adopted by wLM for balanc-
ing work across parallel systems is to place work
where it has the “best” chance of meeting its goals,
whatever they may be. This approach is superior to
trying to fill up one machine prior to going to the
next. It also addresses the problem of how to max-
imize use of resources across a parallel environment,
especially where there are diverse machine sizes—
the problem of configurational heterogeneity dis-
cussed in Reference 1.

The WLM design philosophy for routing consists of
independent cooperating images with shared state
data and uses a “push” model. A push model is one
in which work requests are directed (pushed) to a
given image for processing and is in contrast 0 a
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“pull” model wherein each image requests work ex-
plicitly. Unlike the approach described in Reference
9, WwLM does not need to probe potential target im-
ages to sece whether they are capable of absorbing
new work as the shared state data are sufficient to
make this determination. Note that in an 05/390* (for-
merly known as MVS) operating system environment,
WLM can casily manage systems that are running at
90+ percent of capacity, whereas Reference 9 de-
scribes a model that works well in a range no higher
than 70 to 80 percent of capacity. The approach of
WLM is intended for dozens to hundreds of hosts,
with overhead measured to be containable within 0.5
percent for several systems.

A number of benefits surface from the WLM philos-
ophy of goal-oriented performance management.
The most obvious of these benefits is the simplification
in defining performance objectives and initialization
states to the system. The system administrator is able
to specify business objectives directly to the system
in business terms. These objectives reflect both goals
and business importance and apply to the entire par-
allel environment controlled by the business policy.
1t is still the responsibility of the system administra-
tor to ensure that each service class contains work
with similar goals, business importance, and resource
requirements to acquire the maximum benefit from
WLM. Placing work with similar goals but diverse re-
source requirements into the same service class will
limit the ability of WM to make effective resource
trade-offs, to correctly project resource needs, and
to project the effects of resource adjustments.

First, the system administrator does not have to un-
derstand low-leve] technical controls. There is no fid-
dling with dispatch controls. The system administra-
tor does not have to understand trade-offs for setting
dispatch priorities when a machine has a single very
fast processing engine vs a single slower engine vs
multiple slower engines vs multiple very fast engines.
The system administrator does not have to individ-
ually set storage isolation targets (amount of pro-
cessor storage that should be protected or restricted
for a given address space), tune for the worst case,
and then worry that the working set changes accord-
ing to goal. The WLM algorithms will monitor and
set the appropriate values automatically on behalf
of the system administrator. Effective use of capacity
is assured by the management algorithms.

The history of performance tuning has given rise to

a number of heuristics to address different perfor-
mance problem areas. Unfortunately, these “rules
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of thumb™ are often wrong. For example, paging may
be tolerated so long as goals are being met. In the
past, the system administrator might set some con-
trol value, hear that users are unsatisfied, and then
have to retune, all the time having to balance the
needs of conflicting workloads. Performance tuning
with WLM does not require that the system admin-
istrator readjust resources, a process that is itera-
tive and expensive. Effective use of capacity is as-
sured by the management algorithms.

Next, the system administrator does not have to
worry about the placement of work to the best im-
age and best server within the parallel environment.
There is no requirement to define the resource re-
quirements of work requests to the system. Effec-
tive use of capacity is assured by the management
algorithms.

Finally, the business policy defined to WiM handles
mixed workloads, e.g., interactive, batch, transaction
processing, data mining environments, and so forth.
The system is responsible for resource management
of work in execution and for the management of de-
lays and their impact on attaining goals. There is no
need to partition the images or nodes of the parallel
environment for each separate workload. The sys-
tem administrator does not have to specify the re-
source demands of work in advance. Effective use
of capacity is assured by the management algorithms.

The second major benefit of the WLM philosophy is
to allow granular growth to be transparent to the in-
stallation. Transparency simplifies the problem of
scaling the environment as the workload grows. WLM
supports dynamic changes in adding or removing im-
ages, subsystems, and applications, as well as vari-
ability in workload characteristics and resource de-
mands. Reconfiguration need not affect performance
objectives. If there is insufficient capacity to meet
all goals, the business policy determines the relative
business importance in meeting each goal. The ad-
dition of new applications need not cause revision
of old objectives, with the attendant rebalancing of
low-level controls. WLM dynamically adjusts to all
these changes. WLM will also dynamically adjust to
short-term changes, including spikes in demand.

The third major benefit is to support high availabil-
ity objectives. This support includes rebalancing work
when an image is removed and advising in the place-
ment of restarting subsystem environments when
their host system is removed. Change management
is also simplified since a strategy of rippling hard-
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ware or software changes, or both, across images in
the parallel environment while managing existing
workload on remaining images allows for continu-
ous operation 24 hours per day, seven days per week.

The fourth major benefit of the WLM philosophy is
to require no changes at the application level. Sup-
port is provided by the operating system and major
subsystem environments. It contrasts to an imple-
mentation such as Utopia,' where there are no
kernel changes, but some major applications are
assumed to change to be sensitive to routing con-
siderations.

WLM algorithms for resource management

The Multisystem Goal-Driven Performance Control-
ler (MGDPC) contains the resource management al-
gorithms of WLM. The MGDPC is responsible for al-
locating computer system resources so that the
customer’s performance goals are met to the extent
that the goals are achievable. The MGDPC must man-
age work across multiple systems. It must manage
multiple types of work, from short transactions to
processor-intensive batch transactions. It must man-
age client/server workloads, where resources must
be allocated to servers to address the performance
of the clients. It must manage workloads that vary,
detecting performance problems and reallocating re-
sources. It must manage multiple resources. And it
must do all of this efficiently. The MGDPC must act
like a very good systems programmer. The follow-
ing subsections describe how it is done.

The code in the MGDPC combines the performance
management approaches of an experienced systems
programmer with analytic algorithms. The systems
programmer in the MGDPC has the advantages of a
wealth of data, analytic algorithms that run at ma-
chine speeds, the opportunity to make resource
changes every ten seconds, and updated data and
feedback on previous decisions every ten seconds.
The MGDPC can be thought of as a data collection
and analysis system, resource adjustment, and feed-
back loop extending across a set of interconnected,
cooperating, independent computer systems.

The MGDPC collects performance data, measures the
achievement of goals, selects the service classes that
need their performance improved, selects bottleneck
resources, selects donors of the resources, assesses
the impact of making resource reallocations, and
makes the reallocations if there is a net benefit to
the changes. The MGDPC is invoked once every ten
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seconds, referred to as a policy interval, performing
detection and correction of actual or anticipated per-
formance problems so as to make the operating sys-
tem adaptive and self-tuning.

Independent and cooperating. The MGDPC is respon-
sible for managing the performance of a workload
that is distributed across a set of interconnected, co-
operating, independent computer systems. These
computer systems are said to be cooperating in the
sense that each is exchanging operational measure-
ment data with the other computer systems in the
set. They are said to be independent in the sense that
each is an entirely separate, wholly functional com-
puter system whose resources are controlled by its
own copy of the operating system. Each system op-
erates independently and considers itself the local
system. To each system, the remote systems are ail
the other systems being managed. Each system con-
siders itself local and all other systems remote. The
MGDPC is implemented as distributed intelligence.
No system considers itself the master.

The primary objective of the MGDPC is to meet per-
formance goals across all the systems being managed.
This objective is met without any centralized con-
trol. Instead, each system receives performance data
from all the other systems being managed and, based
on its view of how the entire distributed workload
is doing, makes resource allocation decisions to best
meet sysplex (System/390* Parallel Sysplex* '*)-wide
goals. A secondary objective of the MGDPC is to meet
performance goals on its local system, in which case
resource allocation decisions are made using local
and remote data.

Each local MGDPC collects data on its local system,
periodically broadcasts its view to the other systems
in the sysplex, and implements mechanisms that can
run independently on each system so that each sys-
tem knows which class of work to help, by how much,
and in what order, and knows the effects that re-
source reallocations on the local system will have on
the sysplex performance of each class of work.

Each system’s understanding of the sysplex effects
of resource reallocations is the key to each system
being able to independently make local resource
trade-offs to achieve sysplex performance goals. Each
system must also understand which portion of the
problem it must solve so multiple systems do not all
try to solve all parts of the problem at the same time.

Another feature of the MGDPC allows the systems to
reallocate resources to help work that is doing poorly
on the local system even though the work is doing
well from a sysplex perspective. This local optimi-
zation is allowed as long as it does not adversely af-
fect the relative sysplex performance of other classes
of work. If an individual system determines that there
is nothing it must do to assist work to achieve sys-
plex performance goals, it is free to work on local
performance problems to the extent that sysplex
goals are not adversely affected. It has enough data
to project the effect of local resource reallocations
on sysplex goals.

Fundamental concepts. In this subsection, the fun-
damental concepts of MGDPC operation are dis-
cussed.

Data histories. The MGDPC algorithms require effi-
cient access to large quantities and varieties of per-
formance data. Individual MGDPC algorithms need
data summarized over different periods of time. Since
individual algorithms also need different levels of sta-
tistical confidence in the data, they need to be able
to look at different minimum numbers of data points.
The use of the data determines how far back in time
it is necessary to look or the minimum number of
data points required to get a valid representation of
a phenomena, or both. It is therefore important to
maintain the number of data points represented in
the performance data, and it is not always sufficient
to merely keep a single summary value. Keeping all
the individual observations of all the types of per-
formance data in virtual storage, and searching and
summarizing on demand, would consume far too
much storage. Accessing the data from disk would
require far too much time.

The MGDPC solved the problem with data histories.
A data history is a mechanism to collect and analyze
data over time. By using data histories the MGDPC
can use data that have enough samples to be rep-
resentative without using data so old that the data
might be out of date. A data history contains n rows
of data and a roll counter that determines when data
should roll out of each row. Each row represents data
from a range of time in history. Row 1 contains data
from the most recent period only. Subsequent rows
contain varying ranges of older data. Values for the
number of rows have been found that have been
proven to be effective for the 05/390 environment.
The roll counter controls when to roll a row of data
from one time range to another further back in time.
The roll counter is incremented each policy inter-
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val. Each row has associated with it a number that
corresponds to the roll counter value specifying when
the data in the row should be rolled into the next
row. If the counter value of row m is 1, it means row
m is rolled into row m + 1 every interval. If the
counter of row m is 4, it means row m is rolled every
fourth interval.

Data are added to the history as follows. New data
are added to row 1. At the end of each policy in-
terval the oldest row whose roll counter value evenly
divides into the current roll counter value is found.
The content of that row is added to the next numer-
ically higher row. The content of all the numerically
lower rows are moved up one row, leaving row 1
empty. When it is time to roll data out of the last
row in the history, the data are discarded. To obtain
data from a data history, the data from rows 1
through p are added together. The value of p is cho-
sen such that the data used were gathered over along
enough interval with enough samples to be repre-
sentative.

Given the ability to summarize data for varying
ranges of time by simply including data from differ-
ent rows of the history, data can be summarized for
a minimum time or a minimum number of obser-
vations, or a combination of these criteria. The
MGDPC uses the data history facility extensively. His-
tories are used for state samples, response time
distributions, processor consumption, performance
index calculations, service consumption per trans-
action, server topology determination, and other pur-
poses.

Performance index. A fundamental problem with try-
ing to meet performance goals and make trade-offs
among different work with different goals is know-
ing how work is doing relative to its goals and rel-
ative to other work. The solution used by the MGDPC
is the performance index. The calculation of the per-
formance index for a class with a response time goal
is:

actual_response_time

performance_index = -
- goal_response_time

It is a calculated measure of how well work is meet-
ing its defined performance goals. The performance
index allows comparisons between work with differ-
ent goals. A performance index of 1.0 indicates the
class is exactly meeting its goal. A performance in-
dex greater than 1.0 indicates the class is perform-
ing worse than its goal, and a performance index less
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than 1.0 indicates the class is performing better than
its goal.

New performance indexes are calculated for every
policy interval. Performance indexes are calculated
from enough recent completions to be representative
of the results for the class. Both sysplex and local
performance indexes are calculated for each class
on each system. To operate independently, each sys-
tem must have enough information to be able to cal-
culate a performance index for each class. To pro-
vide this information, each system sends updated
information to all the other systems every policy in-
terval. The information is stored in two histories. Lo-
cal information is stored in a local history, and data
from the remote systems are stored in a history for
data from remote systems.

A projected response time is calculated for each in-
flight work unit. The projected response times for
in-flight work are combined with data from the ac-
tual response completions to calculate the perfor-
mance index. The local performance index repre-
sents the performance of work units associated with
the class on the local system. The local performance
index s calculated from data from the local response
time history. The sysplex performance index repre-
sents the performance of work units associated with
the class, across all the systems being managed. Each
system independently combines the local and remote
data histories to compute a sysplex performance in-
dex.

State sampling. The first action to be taken when try-
ing to solve the performance problem of a service
class is finding out what the problem is. The MGDPC
must determine why the work is being delayed. Many
delays can be measured quite precisely, but the cost
is prohibitive. The MGDPC solved this problem with
state sampling. Four times a second, the MGDPC sam-
ples every work unit in every system being managed.
Four times was chosen as a value because it is fre-
quent enough but not prohibitive in cost. From these
samples, the MGDPC builds a picture of the work in
each class. It learns where each class is spending its
time. It learns how much each class is using each re-
source and how much cach class is delayed waiting
for each resource. The samples are aggregated for
each policy interval, and from this picture of the work
in each class, the MGDPC can determine what to do.
The state sampling implemented by the MGDPC is
very efficient, requiring not more than one percent
of the processor time to accomplish its task. The cost
of state sampling is by far the largest contributor to
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Figure 1 State sample types

O DELAY

MPL DELAY

PROCESSOR DELAY

system overhead among the various functions per-
formed. Figure 1 shows the types of state samples.

Server topology. Client/server workloads introduce a
further level of complexity into managing resources
to meet performance goals. The client service
classes!! have the performance goals but are served
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| STORAGE DELAY

i

PROCESSOR USING

by one or more server address spaces. The client ser-
vice classes do not consume computer system re-
sources. The resources are consumed by the server
address spaces serving the client service classes. So
computer system resources must be allocated to the
server address spaces to meet the goals of the client
service classes. The MGDPC must understand the
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Figure 2 Client/server diagram

CICSA

IMPORTANCE 3

RT GOAL = 2 SEC

IMPORTANCE 2
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client/server relationships and must be able to pro-
ject the effects on the client service classes of mak-
ing resource adjustments to the server address
spaces. The MGDPC must be able to project second-
level effects.

The client service classes in the diagram of Figure
2 are labeled CICSA and CICSB (from Customer In-
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INTERNAL CLASS 1

AOR1

SERVES CICSA

- INTERNAL CLASS 2

TOR1

SERVES CICSA AND CICSB

i

INTERNAL CLASS 3

ACR3

SERVES CICSB

formation Control System, CICS*). Work requests
classified to CICSA and CICSB receive service from
several server address spaces. CICSA is served by
server spaces TOR1, AOR1, and AOR?2. CICSB is served
by server spaces TOR1, AOR2, and AOR3. Achieving
the goals of CICSA and CICSB requires that adequate
computer system resources be allocated to the server
address spaces—TOR1, AOR1, AOR2, and AOR3—
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since resources cannot be directly attributed to or
allocated to CICSA and CICSB.

The problem of learning the client/server relation-
ships was solved by sampling. The problem of allo-
cating computer system resources to server address
spaces to meet the goals of the client service classes
was solved by dynamically creating internally defined
server service classes and assigning the server address
spaces to them based on the client service classes
they were observed serving. The problem of project-
ing second-level effects was solved using a propor-
tional aggregate speed algorithm.

Four times a second, the MGDPC samples control
blocks set by the server address spaces to detect
which client service classes are being served. From
these samples, the MGDPC learns which server ad-
dress spaces serve which client service classes and
in what proportion. The MGDPC reevaluates these
client/server relationships once a minute so the to-
pology built will reflect changing client/server rela-
tionships. Server address spaces are also moved
among internal service classes once a minute to re-
flect any changes in the client/server topology.

For each distinct combination of client service classes
observed being served by one or more servers, an
internally defined server service class is dynamically
created. In the example in Figure 2, these combina-
tions are (CICSA), (CICSA, CICSB), and (CICSB). AOR1
serves only CICSA. TOR1 and AOR?2 serve both CICSA
and CICSB. AOR3 serves only CICSB. On the basis of
these combinations, the MGDPC creates the corre-
sponding internal server service classes 1, 2, and 3
and moves TOR1, AOR1, AOR2, and AOR3 to them for
management. Internal classes are a mechanism for
collecting data on and managing servers to meet the
goals of clients. To meet the client service class goals
of CIcsA and CICSB, the server address spaces will
be managed by managing server service classes 1, 2,
and 3.

Computer system resources are allocated to these
internal server service classes in order to meet the
performance goals of the client service classes. The
topology represents the client/server relationships
and the proportion of time each server is serving each
client. This learned information will adapt over time,
because the relationship between clients and server
address spaces is dynamic. The server topology sam-
ples are kept in a history. The history mechanisms
slowly age the samples out so there are less likely to
be abrupt changes based on short-term effects.
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Proportional aggregate speed. In the client/server case,
the MGDPC must improve the performance of the cli-
ent service classes indirectly. The MGDPC must be
able to assess the effect on a client service class, e.g.,
CICSA, from improving the performance of an inter-
nal service class, e.g., Internal Class 2. This improve-
ment is proportional to the extent to which the cli-
ent service class, e.g., CICSA, is served by the server
spaces in the internal service class. To be able to pro-
ject the effects on clients of the resources allocated
to the servers, the concept of the proportional ag-
gregate speed of a client class was introduced.

For a nonserved class, speed is defined as the classes’
processor “using samples” ' divided by all of the non-
idle samples of the class, multiplied by 100, and re-
sults in this calculation:

processor_using_samples

speed = nonidle_samples x 100

1f the work units in the class were never delayed, the
speed of the class would be 100.

The proportional aggregate speed of a client service
class is the apportioned speed of all the internally
defined server service classes serving it. The propor-
tional aggregate speed for each client service class
is determined by allocating all of the client’s serv-
er’s state samples to the client service class in pro-
portion to the portion of time that each server ser-
vice class was observed serving each client service
class. The portion of time is determined from the
client/server topology. The proportional aggregate
speed of a client service class is calculated by divid-
ing the total processor using samples apportioned
to the client service class from all server service
classes, divided by the total processor using samples
plus all delay samples apportioned to the client ser-
vice class from all server service classes. The calcu-
lation follows:

2 processor using samples apportioned to class A

servers

2 using and delay samples apportioned to class A

SErvers

For each client service class, the client’s performance
index is plotted versus the proportional aggregate
speed of the client class. This plot, shown in Figure
3, is then used to determine the effect, i.e., the per-
formance index delta, on the client of changing the
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Figure 3 Class A proportional aggregate speed plot
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allocation of system resources to server address
spaces.

Performance index delta. Just as the performance in-
dex is the measure of how well a class is doing with
respect to its goals, the performance index delta is
the common unit of measure for the relative value
of making resource reallocations. The performance
index delta is always calculated from delay sample
deltas. Each individual resource fix algorithm uses
algorithms unique to the resource to determine the
delay sample delta that will result from a resource
reallocation. Then the delay sample deltas are used
to calculate the performance index deltas that are
used to assess the relative value of the resource re-
allocation.
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For nonserved classes, performance index deltas are
calculated as shown below. The calculation is a three-
step process. First, the projected response time delta
is calculated. It is the actual response time multiplied
by the proportion of the total nonidle samples rep-
resented by the sample delta. If the total samples
were 100, and the delay samples projected to be elim-
inated were 20, the response time would be projected
to be reduced by 20 percent. Then the delta to the
local performance index is calculated from the pro-
jected response time delta. Finally, the sysplex per-
formance index delta is calculated from the fraction
of total observations in which the class was observed
on the local system. Note that these equations apply
to both receivers and donors. For a receiver, the de-
lay sample delta is negative, so the performance in-
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dex is projected to be lower, which is an improve-
ment. For a donor, the delay sample delta is positive,
reflecting additional delay and an increased perfor-
mance index.

proj_response_time_delta

delay_sample delta .
= X actual_response_time

(1

~ nonidle_samples

local_proj_performance_index_delta

proj_response_time_delta

goal 2

sysplex_proj_performance_index_delta

local_observations
~ sysplex_observations

X local_proj_performance_index_delta (3)

For client/server classes, the performance index delta
is determined from the client’s proportional aggre-
gate speed plot. To read the projected performance
index from the plot, a projected proportional aggre-
gate speed must be calculated. The calculation starts
with delay sample deltas calculated by the individ-
ual fix algorithms. Projected delay sample deltas are
calculated for each server that serves the client class.
Then the sample deltas are apportioned to the cli-
ent class based on the server topology. The server
topology represents the client/server relationships
and the proportion of time each server is serving each
client class. After the sample deltas of the server are
apportioned to the client, the projected proportional
aggregate speed is calculated for the client class.
Then, the projected performance index is read from
the client’s proportional aggregate speed plot. The
performance index delta of the client class is the dif-
ference between the projected performance index
of the client class and the current actual performance
index of the client class. Proportional aggregate
speed plots contain sysplex data, so no local-to-sys-
plex performance index delta conversion is required.

Policy adjustment framework. The policy adjustment
algorithm is invoked periodically to assess reallocat-
ing system resources to better meet performance
goals. The policy adjustment algorithm is invoked
every ten seconds. Ten seconds was chosen as a value
sufficiently small to be responsive to changing sys-
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tem conditions and external user perceptions, but
sufficiently large to allow enough samples to be ac-
quired on which to base new resource allocations.
This period of ten seconds is referred to as a policy
interval. The effects of the resource reallocations
made during one policy interval are observed in sub-
sequent policy intervals and function as a feedback
loop for continuous adaptive policy adjustment.

The resource readjustment actions taken are incre-
mental, having the advantage of leaving resource al-
locations alone except when changes are needed to
meet performance goals. Since the MGDPC is invoked
every ten seconds, there are ample opportunities for
it to make sufficient changes to address any prob-
lems and to obtain feedback before making further
changes. Some of the most “human” behavior ob-
served in the MGDPC is its inclination to jump in im-
mediately to help whenever it can but also to rec-
ognize when its help is not needed.

The MGDPC helps by searching for the one set of ac-
tions most beneficial to the service class most in need
of help. The select receiver algorithm is used to se-
lect the receiver service class most in need of help
and to select alternative receivers if needed. The find
bottleneck algorithm is used to find the resources
causing the receiver delay. The select donor algorithm
selects potential donor service classes to donate bot-
tleneck resources to the receiver. The net value al-
gorithm determines whether there is net value to the
donation. The receiver value algorithm determines
whether there is sufficient value to the receiver to
make the donation worth doing. The fix delay algo-
rithms are unique for each resource and are used to
assess changes and calculate the value of changes in
common value units (performance index deltas) to
be used by net value and receiver value algorithms.
These algorithms are invoked in a loop, referred to
as the policy adjustment loop, illustrated in Figure 4,
until one receiver service class is helped or all ser-
vice classes have been assessed, and there is no way
or no need to help. All of these algorithms are dis-
cussed further in the following subsections.

The policy adjustment loop selects a class to help
(select receiver), determines the resource causing the
class the largest delay (find bottleneck), assesses re-
allocating resources from one or more donor classes
to the receiver (fix delay, select donor, net value, and
receiver value), and makes the changes if there is
value to the aggregate attainment of goals. If there
is insufficient net value or receiver value with one
set of donors, other sets of donors will be assessed.
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Figure 4 Policy adjustment algorithm loop

SELECT A RECEIVER
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B. ASSESS EFFECT OF REALLOCATING RESQURCES
C. IF REALLOCATION HAS VALUE, COMMIT CHANGE

IF REALLOCATION WAS DONE
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iIF MORE RECEIVERS

EXIT

If there is insufficient net value or receiver value with
any combination of donors for a given resource and
receiver, the resource causing the receiver the next
largest delay will be determined and donors of that
resource assessed. If there is no combination of do-
nors of any resource for a given receiver, the next
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most deserving receiver will be selected, and all re-
sources and donors assessed for that receiver until
all possible receivers have been assessed or until a
receiver is helped. When a receiver has been helped,
the MGDPC exits to await feedback on the changes
during the next policy interval.
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The policy adjustment loop and the select receiver,
find bottleneck, select donor, net value, and receiver
value algorithms are all common for all the resources.
The fix delay algorithm is unique for each resource.
This loop is a very powerful framework for perfor-
mance management. A fix algorithm for any resource
can fit into this framework. The only requirements
are that a delay that indicated a lack of the resource
can be sampled, a control variable controlling access
to the resource can be defined, and a relationship
can be found between the control variable and the
resulting delay samples. These concepts, as they ap-
ply to dispatch priority, 1/O priority, storage alloca-
tion, and MPL" slots, are described in later subsec-
tions.

Assemble performance data. At the beginning of each
policy interval, performance data that have been col-
lected asynchronously by state sampling and other
processes are assembled into efficiently accessible
data structures to prepare for running the adjustment
algorithms. Performance indexes are calculated, data
received from other systems are assembled into his-
tories, points are added to plots, sample sets are built,
and the server topology is updated. It is similar to
what a system programmer would do in preparation
for tuning a system. The difference is that the
MGDPC does data assembly at machine speed.

Select receiver. The first decision the policy adjust-
ment algorithm must make is to decide which class
to help. The MGDPC makes incremental improve-
ments every ten seconds. It attempts to find one re-
ceiver to help each policy interval and looks for the
most deserving receiver each time. Making incre-
mental changes ensures that there is a solid base of
feedback data to use in the algorithms during each
policy interval. Potential receivers are selected based
on importance, sysplex and local performance index,
and the likelihood of the MGDPC being able to help
the receiver. Classes that are missing sysplex goals
are selected before classes that are meeting sysplex
goals but missing goals on the local system. Classes
missing goals are selected in order of importance.
Classes meeting goals are selected in sysplex perfor-
mance index order and then in local performance
index order. Because the worst-off classes are se-
lected first, it is more likely that a resource reallo-
cation with significant value will be found.

The policy adjustment algorithm also remembers
whether it has tried unsuccessfully to help a receiver
in a recent interval. If it did, the select receiver al-

gorithm skips over assessing the receiver. This is an
optimization which saves the cycles that would be
used to again come to the conclusion that the re-
ceiver could not be helped. Select receiver also knows
when to leave resource allocations alone. It only se-
lects classes that have a current performance index
above 0.9. Classes that are meeting goals but have
a performance index above 0.9 are close enough to
going over 1.0 to merit some attention if their per-
formance can be improved without harming other
work. However, classes with a current performance
index of 0.9 or lower are easily meeting their goals
and do not need help. The select receiver algorithm
has the intelligence to know when to quit.

Find bottleneck. Once the receiver class has been se-
lected, the next step is to select which resource de-
lays to address. For nonserved classes, the selection
of the next bottleneck to address is made by select-
ing the delay type with the largest number of delay
samples that has not already been selected for this
receiver during the current policy interval. If fixing
that delay does not provide sufficient receiver or net
value, the next largest delay is assessed and so on
until all delays have been considered.

In the client/server case, both a bottleneck resource
and the associated bottleneck server must be se-
lected. The selection of which bottleneck to address
is made by selecting the server-delay combination
with the largest number of apportioned delay sam-
ples that has not already been selected during the
policy interval. The server samples are apportioned
to each client class on the basis of the server topol-
ogy described previously. The delay type having the
largest number of samples apportioned to the re-
ceiver class is selected as the resource bottleneck de-
lay type to be addressed on behalf of the receiver
class. The server that experienced the bottleneck de-
lay is selected as the bottleneck server.

In either the nonserver case or the client/server case,
on each invocation, the delay with the next largest
number of delay samples is selected to be assessed.
No minimum number of samples is required for a
delay to be assessed for fixing. Any defined minimum
would by its nature be arbitrary and might eliminate
a valuable change from consideration. The MGDPC
handles the problem of making insignificant changes
by requiring sufficient receiver value for a change.
If too few samples would be eliminated to make a
significant improvement, the change for that delay
would fail the receiver value algorithms. But at that
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point the decision would have been well thought out,
not arbitrary.

Generic delay fix. There is a specific fix algorithm for
each delay addressed by the MGDPC. The function
of each fix algorithm is to improve the performance
of the receiver class or determine that there is not
sufficient value to make a change. Improving per-
formance is done by changing a control variable spe-
cific to the delay being addressed. To determine
value, the fix algorithm must be able to project the
performance index delta that results from changing
the control variable. A fix algorithm specific to the
delay to be addressed is invoked when that delay is
selected by the find bottleneck algorithm.

Each fix algorithm is responsible for selecting po-
tential donors of the resource, projecting the effect
on attainment of performance goals if the donor or
donors donated to the receiver, accepting or reject-
ing changes, selecting alternate donors, and reallo-
cating the resources if any reallocation is found that
has net value. In all cases, the individual resource
fix algorithm projects delay sample deltas and uses
them to project performance index deltas for the re-
ceiver and donor or donors. The projected perfor-
mance index deltas are then used to determine
whether the resource reallocation has net value. The
details of these calculations are specific to individ-
ual resources and are described later.

Select donor. The purpose of the select donor algo-
rithm is to choose the most eligible class that will
donate the required resource to the receiver from
the set of classes owning that resource. Donors are
selected in an order that is generally the reverse of
the order used to select receivers. However, the do-
nor order is dynamic even within a policy interval.
Multiple donors may be needed to provide enough
of a resource donation to reach sufficient receiver
value. As each tentative donation is evaluated and
accumulated, the resulting performance index
changes are calculated and factored back into the
donor order. The dynamically changing list feature
is important, especially when finding storage donors,
where donation can take many forms.

Additional constraints on the select donor algorithm
require that the donor own the resource needed by
the receiver. For example, a dispatch priority donor
must be running at a dispatch priority that is at least
equal to the dispatch priority of the receiver. In the
case of storage, the donor can hold the resource in
any form. For example, if the receiver needs MPL
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slots, the donor does not have to donate MPL slots.
What the receiver actually needs is storage for MPL
slots. The donor’s storage can be in the form of a
protective processor storage target or in the form of
MPL slots. If the resource required to help the re-
ceiver is increased 1O priority, the I/O donor must
be in the same /O cluster* as the 1/0 receiver. This
requirement must be met for the donation to have
any effect on the receiver.

In addition, the select donor algorithm will not se-
lect a class as a donor of a resource if it was selected
as a receiver for the same resource in the same pol-
icy interval. This is an example of including the expe-
rience of a system performance analyst in the code.

Net value. The net value algorithm keeps the
MGDPC from making bad resource reallocations. The
performance index value for a class is the measure
of bow well that class is meeting its specified goal.
The measure of the value of a contemplated resource
reallocation to the receiver is the projected change
in the performance index of the receiver that occurs
as a result of the contemplated resource realloca-
tion. Similarly, the measure of the net value of a con-
templated resource reallocation is the improvement
in the performance index of the receiver relative to
the degradation of the performance index of the do-
nor.

The net value algorithm uses the projected perfor-
mance index deltas for the receiver and donor to cal-
culate whether there is net value to the contemplated
donation from the donor to the receiver. Net value
takes the sysplex and local performance indexes into
consideration as well as the importance of the re-
ceiver and donor or donors. All donors are checked.
A receiver will only be improved by reallocating re-
source from a specific donor if a net positive value
to the resource reallocation is projected. If using a
donor to improve a receiver is projected to result in
more harm to the donor than improvement to the
receiver relative to the goals and importance, the re-
source reallocation is not done. If the result will yield
more improvement for the receiver than harm to the
donor relative to the goals, the resource realloca-
tion is done.

Receiver value. The receiver value algorithm is a key
feature that keeps the MGDPC from making resource
reallocations that are either too small or too drastic.
Acreceiver will only be helped when sufficient receiver
value is projected. The receiver value criteria are a
minimum performance index improvement or the

AMAN ET AL. 259




elimination of a minimum number of delay samples.
These criteria are designed to reject very small im-
provements. The reason for rejecting actions hav-
ing too little receiver value is to avoid making changes
that yield only marginal improvements. Marginal
changes are not made, and the MGDPC goes on to
select and assess another bottleneck for the current
receiver or to select a new receiver.

The receiver value criteria also perform the func-
tion of indicating to the “individual resource delay
fix algorithm” at what point it has given the receiver
enough help. These criteria keep one system in a sys-
plex from trying to solve all of the performance prob-
lems of a class when the class is running on more
than one system. The criteria also keep multiple sys-
tems in the sysplex from trying to solve all parts of
the problem simultaneously and running the risk of
making too much of a correction. None of the systems
require explicit communication or coordination to
know how much of the problem is theirs to fix.

Send data. At the end of each policy interval on each
system, the MGDPC sends data to all the other sys-
tems in the set of independent cooperating systems
being managed. Performance data and control data
are sent. This action is of key importance to the dis-
tributed intelligence of the MGDPC.

The MGDPC on each system maintains a history for
each type of performance data received. The histo-
ries cover enough intervals of time such that late or
out-of-order data do not require special handling or
error processing. The late data just roll into the his-
tory whenever the data arrive. If a system fails, and
its data stop arriving, it simply stops being included
in the history, and stops being considered in deci-
sions. The data from the failing system will grace-
fully age out of the history without the other systems
having to be specifically notified that a system went
down. It eliminates the need for special-case and er-
ror-handling mechanisms and abrupt changes in re-
source allocation policies on individual systems. The
use of histories to manage the remote performance
data allows the systems being managed to operate
independently.

Control data are also sent to remote systems at the
end of each policy interval. An example is sending
the fact that an /0 priority change was made. 1/0 pri-
ority changes require a relatively longer time to pro-
vide feedback than other changes such as dispatch
priority. Since these changes take longer to provide
feedback, they are made less frequently. To accom-
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plish this longer interval between changes, each sys-
tem must know whenever another system made such
a change.

Processor delay fix.
This subsection de-
scribes how perfor-
mance is improved
by reducing the de-
lay the receiver ex-
periences waiting to
run on the proces-
sor. The controlled
variable In this case
is the dispatch prior-
ity.

Theory. The processor delay experienced by the re-
ceiver is a function of the processor time available
to the receiver. Processor time available to the re-
ceiver is a function of the processor demand from
work running at higher dispatch priorities than the
receiver and the processor demand from work run-
ning at the same dispatch priority as the receiver.
Processor delay is also a function of both the receiv-
er’s mean-time-to-wait and the receiver’s mean-time-
to-wait compared with the mean-time-to-wait of the
other work at the same dispatch priority as the receiver.

For the processor delay fix algorithm to fit with the
resource adjustment framework discussed previously,
the processor delay fix algorithm has to be able to
project the processor delay sample deltas that would
result from dispatch priority changes. Multiple steps
and relationships are required to do these projec-
tions. In working backward from sample deltas, pro-
jected processor sample deltas are a function of the
actual processor delay samples of an individual class
and the actual wait-to-using ratio and projected wait-
to-using ratio. The projected wait-to-using ratio of an
individual class is a function of both the actual mean-
time-to-wait of the class and the actual mean-time-to-
wait of the class compared to the actual mean-time-
to-wait of the other work at the same dispatch priority.
The projected wait-to-using ratio at a priority is a func-
tion of the processor demand of work running at higher
dispatch priorities and the processor demand of work
running at the same dispatch priority.

Actual delay samples, actual wait-to-using ratios, and
actual mean-time-to-wait values are measurable.
That leaves the problem of defining algorithms to
project processor demand, wait-to-using ratios, and
delay samples.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997




Maximum processor demand. The first problem with
projecting the effects of dispatch priority changes is
that the inherent processor demand of the work units
in a class cannot be measured directly. If a class con-
sumes x amount of processor service when it runs
at dispatch priority a, it cannot be assumed that it
will still consume the same amount of service when
it runs at a higher or lower priority or with a more
or less competing demand. The MGDPC required an
algorithm to project the processor consumption of
a class at any dispatch priority. The solution was to
define the concept of maximum processor demand.

Maximum demand is defined as the theoretical max-
imum percentage of total processor time that work
units in a class can consume if the demand has no
processor delay. Its calculation follows:

maximum_demand_percentage

number_of work_units
X processor_using_samples X 100

- total_samples — processor_delay_samples

Maximum demand is calculated for each class and
accumulated for all the classes at each priority.

Wait-to-using ratio. The next step in projecting pro-
cessor sample deltas is to project the wait-to-using
ratio that will be experienced by the classes at each
priority given that one or more classes have tenta-
tively changed priority. The aggregate projected wait-
to-using ratio at a priority is a function of the pro-
cessor demand of work running at higher dispatch
priorities and the processor demand of work run-
ning at the same dispatch priority. The data used in
the algorithm are the maximum demand of all the
work running at each priority and the processor-us-
ing and delay samples accumulated by the classes at
each priority. The current values of aggregate wait-
to-using and aggregate maximum demand at each
priority are used to determine the current functions
relating wait-to-using to maximum demand. For each
policy interval, these functions are derived dynamicaily
to fit the current environment. Then the dynamicalily
derived functions are used to project the aggregate
wait-to-using ratios expected to be experienced by
the work at each priority after one or more classes
and their demands are moved from one priority to
another.

Individual wait-to-using ratio. Next the individual

wait-to-using ratio for each class is calculated as
shown below. The aggregate projected wait-to-us-
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ing ratio at a priority was calculated above. The in-
dividual mean-time-to-wait was measured. Individ-
ual mean-time-to-wait is a function of the work units
in the class and does not vary with priority. Service-
weighted mean-time-to-wait is the sum of the prod-
ucts of individual mean-time-to-wait and individual
processor service consumption with the sum divided
by the total processor service consumption at the pri-

ority.
proj_ind_wait_to_using_ratio

service_weighted_average mean_time_to_wait

individual_mean_time_to_wait
X proj_wait_to_using

Processor delay sample delta. Finally, projected pro-
cessor delay sample deltas are calculated as shown
below. The projected individual wait-to-using ratio
was calculated above. The actual wait-to-using ratio
was measured, and the actual processor delay sam-
ple value was measured.

proj_delay samples

proj_ind_wait_to_using_ratio

~ actual_ind_wait_to_using_ratio

X actual_processor_delay_samples

The projected processor delay samples are equal to
the actual observed processor delay samples, mul-
tiplied by the projected wait-to-using ratio, divided
by the actual wait-to-using ratio. The delay sample
delta is equal to the projected delay samples, minus
the actual samples.

Operation. A state machine was developed to select
and examine combinations of receivers and donors
in order to identify and assess combinations of dis-
patching priority changes. The state machine is the
mechanism used to determine whether the next pri-
ority move should be to move the receiver up, to
move the donor down, to checkpoint interim
changes, to commit final changes, or to select an-
other donor. Figure 5 shows an example of a state
machine.

The initial donor is selected by the general select do-
nor algorithm. Using that donor as a starting point,
the processor fix algorithm alternately assesses the
effect of increasing the dispatching priority of the
receiver (moving the receiver up) and decreasing the
dispatching priority of the donor (moving the donor
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Figure 5 State machine example

ER ‘
i ALL AFFECTED CLASSE
5 COMMIT MCN ES

down) until the combination of moves produces suf-
ficient receiver value or insufficient net value. After
each tentative priority change, net value is checked
for all classes affected by the change. If all affected
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classes pass net value, the set of interim moves is
checkpointed, and receiver value is checked. If there
is insufficient receiver value, the state machine pro-
ceeds to select another tentative move for the re-
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ceiver or donor. If the net value check fails after any
tentative move, secondary donors and receivers are
selected to be moved up with the receiver or down
with the donor to determine whether that combina-
tion of moves will pass the net value check.

If at any point a priority change has a projected det-
rimental affect on another class, the affected class
may become a secondary receiver and be moved up
with the primary receiver. Multiple combinations of
secondary receivers moved up with the primary re-
ceiver, and secondary donors moved down with the
primary donor, will be considered to the extent nec-
essary to find a combination of priority changes that
will improve the receiver without causing relative
harm to other workloads. The state machine han-
dles all combinations of primary and secondary re-
ceivers and donors.

If moving secondary donors and receivers is still not
sufficient to pass net value, the secondary donors and
receivers are moved back to the most recently ac-
ceptable set of checkpointed priorities that had
shown acceptable net value. Then if it was the pri-
mary receiver moving up that failed net value, the
moves continue with the donor moving down. Con-
versely, if it was the primary donor moving down that
failed net value, the moves continue with the receiver
moving up. In both cases, secondary donors and re-
ceivers are selected after every move if required to
pass net value and to allow the assessment to con-
tinue. If even with moving secondary receivers and
donors, neither the priority of the receiver nor the
priority of the donor can change with acceptable net
value, the whole set of tentative and checkpointed
moves is abandoned and another donor is selected
by the select donor algorithm. Then the whole pro-
cess starts over with the new donor. The purpose of
the state machine is to produce a comprehensive set
of move combinations to evaluate, i.e., to leave no
stone unturned in a search for changes to allow work
to meet goals. However, in reality, the state machine
tends to find valuable moves quickly because of the
intelligence used by the select receiver and select do-
nor algorithms when selecting initial candidates.

If a combination of priority changes with sufficient
receiver value and net value is found, all the tenta-
tive priority changes are committed. The processor
delay fix algorithm then exits and the MGDPC awaits
feedback on the effect of its actions.
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Multiprogramming
level delay fix. This
subsection describes
how performance is
improved by reduc-
ing the delay experi-
enced by the re-
ceiver while it is
waiting to be admit-
ted to the multipro-
gramming set. An
address space must
be admitted to the multiprogramming set before it
can be swapped in and execute. The controlled vari-
able in this case is the number of MPL slots allocated
to the class. One MPL slot represents one address
space.

Theory. The MPL delay experienced by the receiver
is a function of the fraction of ready users in the class
that have MPL slots available to them. A ready user
is an address space that is ready to execute. If there
are fewer MPL slots allocated to the class than the
class has ready users, some users will experience MPL
delays. The class will not experience MPL delay if the
number of MPL slots always equals or exceeds the
number of ready users. The MPL delay fix algorithm
uses an MPL delay plot to predict the effects on MPL
delay of increasing or decreasing the MPL slots al-
located to a class. At every policy interval, for each
class, the MGDPC plots the most recent value of MPL
delay per completion as a function of the fraction
of ready users that have MPL slots available to them.
Figure 6 depicts an MPL delay plot.

A complication arises when using the MPL delay plot
because the number of ready users, required to read
off the plot, is a function of the number of MPL slots.
If there are too few slots, users will back up at any
workload level. As slots are added, the number of
ready users decreases. So the number of ready users
is a function of MPL slots. The MPL delay fix algo-
rithm uses another plot, the ready user average plot,
to deal with this complication. The ready user av-
erage plot (Figure 7) records the relationship be-
tween the number of ready users in a class and the
number of MPL slots available to them. The ready
user average plot is used to predict the number of
ready users when assessing an MPL target change.
The plot can show the point at which work units will
start backing up. The number of ready users read
off the ready user average plot is used to determine
which point to read from the MPL delay plot.
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Figure 6 Class B MPL delay plot

=z
Q
-
w
e}
a.
=
Q
&)
o
w
o
z
-
w
]
=
o
=

LITTLE OR NO MPL DELAY

FRACTION OF READY USERS WITH MPL 8LOTS

Operation. In the operation of this algorithm, first
the MPL slot increase necessary to satisfy receiver
value for the receiver class is found. This is done by
adding one to the current MPL slot allocation of the
class, using the new number of MPL slots to read the
new number of ready users off the ready user aver-
age plot, using the new number of ready users to read
projected MPL delay off the MPL delay plot, convert-
ing the new MPL delay to an MPL delay sample delta,
using the new delay sample delta to project a per-
formance index delta, and using the projected per-
formance index delta to determine receiver value.
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If there is not sufficient receiver value, another MPL
slot is tentatively added, and all the calculations are
repeated.

When a number of MPL slots with sufficient receiver
value is found, it is necessary to find storage to ac-
commodate the additional swapped-in address
spaces. Otherwise, simply adding address spaces
could cause storage contention and other problems.
Storage donors are identified using the find donor
algorithm. The projected delay sample deltas are
projected by the algorithm specific to the resource
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Figure 7 Ready user average plot
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being taken (MPL slots or storage); the performance
index delta is calculated as described previously; and
the net value algorithm is used to determine whether
the donation has value. If necessary, additional do-
nors are identified and evaluated until an acceptable
set of donors, able to donate the required storage, is
found or all donors have been evaluated and all do-
nations have been found to have insufficient net value.

If a change with sufficient receiver value and net value
is found, the additional MPL slots are allocated to
the receiver, and all the storage donations are com-
mitted. During the next policy interval, the receiver
will use the new MPL slots, and the donors will be
allowed to use less storage. The MPL delay fix algo-
rithm then exits, and the MGDPC awaits feedback on
the actual effect of its actions.
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Disk paging delay
fix. This subsection
describes how per-
formance is im-
proved by reducing
the disk paging de-
lay experienced by
the receiver. The
controlled variable
in this case is the
number of processor
storage frames pro-
tected for an address space. The protected number
of frames is referred to as the protected processor
storage target. The operating system will not steal
frames from the address space below the protected
processor storage target of the address space.
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Figure 8 Page fault rate plot
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Theory. The disk paging delay experienced by the re-
ceiver is a function of both the number of page faults
taken by work units in the class and the time required
to satisfy the page faults. The number of page faults
taken is a function of the processor storage allocated.
The time per page fault is not a function of the pro-
cessor storage allocated. It is a function of the de-
mand put on the paging subsystem by all of the work
units in any classes taking page faults. Both the num-
ber of page faults taken by the class and the time
per page fault must be used in combination to ac-
curately predict paging delay changes.

The disk paging delay fix algorithm combines two
techniques to predict disk paging delay changes. The
first technique is the page fault rate plot, shown in
Figure 8. This is a plot of page faults per completion
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as a function of processor storage allocated. A point
is plotted on the class page fault rate plot after ev-
ery few transactions in the class complete. The plot
always reflects the latest condition but also remem-
bers the page fault rate for the class when the class
was allocated a larger or smaller number of frames.
This plot is used to predict a new number of page
faults per completion given a contemplated change
to processor storage allocation.

After a new page fault rate has been read off the plot,
disk paging delay samples are used to predict the new
time that will be experienced because of disk paging
delay. This prediction is arrived at by taking the ra-
tio of the change in page fault rate and multiplying
it by the disk paging delay samples experienced by
the class. The calculation follows:

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997




projected_samples_delta

(new_page_fault_rate — old_page_fault_rate)
X disk_delay_samples

old page fault_rate

If a page fault is taking a long time because of other
demands on the paging subsystem, this situation is
reflected in the number of delay samples experienced
by the class. Introducing disk samples into the al-
gorithm serves the function of introducing time per
page fault into the algorithm. The number of page
faults and the time per page fault used in combina-
tion are accurate predictors of the disk paging delay
that will be experienced by a class after a processor
storage allocation change. The performance index
deltas are calculated from the delay sample delta as
described previously.

Operation. In the operation of the algorithm, first the
storage allocation increase necessary to satisfy re-
ceiver value for the receiver class is found. This is
done by reading the page fault rate corresponding
to increasingly larger numbers of processor storage
frames off the paging rate plot. Delay sample deltas
and performance index deltas are calculated as de-
scribed previously, and the receiver value algorithm
is applied until a storage increase with sufficient re-
ceiver value is found. The required storage increase
per address space multiplied by the number of
swapped-in address spaces yields the total number
of frames required. The storage required is found
by the find donor algorithm, and the value of the stor-
age reallocation is evaluated using the net value al-
gorithm as described previously.

The paging rate plot captures the nonlinear relation-
ship between the amount of storage allocated to work
and the value of the storage to that work as mea-
sured by the page fault rate of the work. For work
on the right side of this plot, additional storage will
be of little benefit, whereas the same amount of stor-
age could provide a very large benefit to work on
the left side of the plot. All other things being equal,
work on the left side of its paging rate plot will tend
to be a receiver of processor storage, and work on
the right side of its paging rate plot will tend to make
a good donor of processor storage.

Long-running transactions. The preceding discussion
assumed that each address space in the class would
have similar storage requirements and benefit sim-
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ilarly from the same amount of storage. This assump-
tion is true for classes where each transaction is rel-
atively short. In these cases, each transaction in the
class is given the same allocation of processor stor-
age as soon as it arrives in the system. This technique
allows short transactions to receive the benefit of the
storage before the algorithms would have had time
to learn the particular paging characteristics of each
transaction. In cases where the transactions are
longer, the transactions in a class, and their storage
requirements, are more likely to be different from
one another. Also in this case, the algorithms can
afford the time to learn about each transaction in-
dividually. To learn, the algorithms build a paging
rate plot for each individual transaction that expe-
riences significant paging delay. This plot is used sim-
ilarly to the class paging rate plot. To project the ef-
fect of giving storage to a receiver, a new paging rate
is read off the transaction paging rate plot. Then a
projected number of samples is calculated for the
transaction in the same way as a new number of pag-
ing delay samples was calculated for a class. The fi-
nal step is to project the delay sample delta for the
class by multiplying the delay sample delta for the
transaction by the proportion of the paging delta of
the class attributable to the transaction.

Client/server considerations. To improve the perfor-
mance of a client class by reducing the paging delay
seen by a server class, the delay sample delta is cal-
culated as described above for the nonserved case.
Then the projected samples are apportioned back
to the client class, and a new proportional aggregate
speed is calculated for the client class. The propor-
tional aggregate speed plot is read to obtain the pro-
jected client class performance index and calculate
the projected performance index delta as described
previously.

Feedback. In all cases, if a change with sufficient re-
ceiver value and net value is found, the additional
storage is allocated to the receiver by increasing the
protected processor storage target of the receiver,
and all the storage donations are committed. The
storage donations may be in the form of reducing
MPL slots or reducing protective processor storage
targets, The disk paging delay fix algorithm then ex-
its, and the MGDPC awaits the next policy interval to
obtain feedback on the effect of its actions.

Anticipatory resource allocation. The previous top-
ics on fixing storage-related delays all discussed how
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the MGDPC responded to situations where a class was
experiencing delay waiting for MPL slots or paging.
However, a good system programmer would not just
wait for a problem with these resources to occur. The
MGDPC does not just wait for problems either. The
MGDPC anticipates what storage is needed by classes
and allocates MPL slots and protective processor stor-
age targets in advance to prevent problems. The
MGDPC does these anticipatory allocations to the ex-
tent that the storage resource is not needed to solve
problems that another class is experiencing. The
MGDPC reconsiders these anticipatory allocations ev-
ery policy interval, providing another mechanism for
the MGDPC to respond to changing situations. The
anticipatory allocations require no input from the
customer. The MGDPC determines these allocations
by observation.

I/O delay fix. This
subsection describes
how performance is
improved by reduc-
ing the 1/0 delay ex-
perienced by the re-
ceiver. The controlled
variable in this case
is the 1O priority.

Theory. Managing
access to 1/O devices
has many parallels with managing access to the pro-
cessor. Both have using time and wait time, which
suggested a wait-to-using algorithm. The concept of
maximum demand, used successfully in processor
management algorithms, is also applicable. This con-
cept led to O priority assessment algorithms that in
many ways paralleled the dispatching priority algo-
rithms. [/O maximum demand and /O wait-to-using
measures are used, and the underlying concepts in
the 1/0 projection algorithms are very similar to the
concepts in the processor projection algorithms. A
state machine is used to make a comprehensive
search for [/O priority increase and decrease moves
and secondary donors and receivers. The operation
of this state machine is similar to the operation of
the processor state machine described previously.

Resources subsets. There is a complication with 1/0
devices in that they, unlike processor and storage,
are not a common resource. All work does not use
all devices. If the MGDPC was going to affect perfor-
mance by changing the /O priorities of receivers with
respect to donors, it had to know that the donor ac-

tually affected the receiver. If the receiver uses de-
vices a, b, and ¢, and the donor uses devices X, y, and
z, changing the 1/0 priority of the receiver with re-
spect to the donor will have no effect. The MGDPC
solved this problem by determining disjoint subsets
(clusters) of /O devices such that it knew, for exam-
ple, that service classes a and b use the devices in
cluster 1, and classes ¢, d, and e use the devices in
cluster 2, and so on. The MGDPC dynamically builds
these cluster and class relationships every ten min-
utes to reflect changes in how the work in the classes
is using the devices.

Multisystem shared resources. Another problem in-
volved with management of /O priorities is that O
devices, again unlike processor and storage, can be
shared among systems. Managing I/O priorities on
one system would be an incomplete solution in a sys-
plex. It led to the more general problem of being
able to manage resources shared by multiple systems
to meet performance goals.

When processor priorities are changed, the changes
need only be done on one system because only work
on one system is affected. However, when shared re-
sources are involved, the changes must be propa-
gated across all systems that share the resource. For
example, if class a is running with an 1/0 priority of
253 on one system, it must run with an 1O priority
of 253 on all systems to maintain its priority relative
to other classes. If changes were not propagated
across all the systems so work used consistent pri-
orities, the changes on any one system would have
an unpredictable effect. The MGDPC solved this prob-
lem by coordinating the /O priority changes.

A fundamental and very valuable attribute of the
MGDPC algorithms is that the systems in the sysplex
are independent as well as cooperating. There is no
master system. Each system sees the same data and
can make changes to any resource that the MGDPC
manages. A complication arises with shared re-
sources where any system can make I/O priority
changes that it expects all systems to implement. The
MGDPC solved this problem by continuing the phi-
losophy that any system can make changes, but the
MGDPC added coordination such that only one set
of changes is propagated to all the systems at any
one time. To reduce the instances of frequent com-
peting I/O priority changes and to encourage the in-
stances of the MGDPC to work on other problems
such as storage or processor delays, the MGDPC
added the requirement that the MGDPC on each sys-
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tem had to wait “n” number of intervals since the
last 1/0 priority change by any system to make more
1/0 priority changes. The “n” used is six, so each sys-
tem knows it has to wait six intervals before consid-
ering more changes. Maintaining the independence
of the systems is very important because it allows
each system to work on its local performance prob-
lems if all the sysplex goals are being met and elim-
inates many problems of a master-slave operation.

Multisystem goal-driven performance controller in
action. This subsection describes an experiment that
was run to show how WLM can manage a large com-
mercial workload. The experiment had two phases.
In the first phase, an on-line transaction processing
and interactive workload was run. We discuss how
WLM sets dispatch priorities for this work based on
the goals and importance of the work. In the second
phase, a large batch job stream was added to this
mix. We next discuss how WLM adjusted to this
change in the workload to continue to meet the goals
of the WLM policy. It should be noted that in order
to show the robustness of the WLM adjustment al-
gorithms, the second phase of this experiment over-
loaded the processor capacity of the system in a way
that a commercial environment with important on-
line work would be unlikely to do.

The on-line transaction work consisted of two trans-
action-processing subsystems: Customer Information
Control System Version 4.1 (CICS v4.1) and Infor-
mation Management System Version 5.1 (IMS* V5.1).
Both cIcS and 1MS are considered servers by WM
(see subsection on server topology). The interactive
work was made up of 350 simulated users of the
0s/390 Time Sharing Option (TSO). The batch work
consisted of 10 large jobs designed to simulate com-
mercial batch operations. This work was divided into
two service classes, BatchHi and BatchLLow. The work-
load was run on an IBM ES/9000%/9021 with two CPUs.

Table 1 summarizes the WLM policy used for the ex-
periment.

A significant observation about this policy is that the
most important work in the system is made up of
the IMS transactions. The least important work con-
sists of the two batch service classes. The CICS trans-
action and TSO users are of medium importance.

There were two interesting phases to this experiment.
First, the nonbatch workloads were started and sta-
bilized. During this interval the system was about 80
percent utilized, and there were no storage con-
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Table 1 Goals for mixed workload with IMS more

important

Service Type of Goal Goal Importance

Class

Period
CICSTRX Response time  0.090 sec  Medium
IMSTRX Response time  1.000 sec  High
TSO Period 1  Response time  0.100 sec ~ Medium
TSO Period 2 Response time  1.000 sec ~ Medium
TSO Period 3 Response time 3.000 sec  Low
BatchHi Velocity 7% Lowest
BatchLow Velocity 1% Lowest

Table 2 Average performance index and CPU

percentage

Service Performance CPU (%)

Class Index

Period
CICSTRX 0.70 24
IMSTRX 0.12 23
TSO Period 1 0.52 11
TSO Period 2 0.34 4
TSO Period 3 0.31 8
All work N/A 70

straints. The order of dispatching priorities that WLM
chose for the work was:

1. c1cs address spaces

2. TSO Period 1

3. TSO Period 2 and TSO Period 3
4. IMS address spaces

This order might be considered a surprising result
given that the IMS transactions are the most impor-
tant work in the system. The explanation is that al-
though the IMS transactions are the most important,
they are also very easily meeting their goal as shown
by an average performance index of (.12 over this
interval. Table 2 shows the average performance in-
dexes of each service class and the percentage of the
CPU that each service class was using during the first
phase of the experiment.

Notice that all the other service class periods have
significantly higher performance indexes than the IMS
transaction class (IMSTRX). If the IMS address spaces
were given a higher dispatch priority, it would in-
crease the difference between the performance in-
dexes of the IMS transaction class and the other ser-
vice class periods.
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Table 3 Performance index and CPU percentage after
batch started

Service Class Period Performance Index CPU (%)
CICSTRX 0.65 24
IMSTRX 0.07 22
TSO Period 1 0.51 12
TSO Period 2 0.45 4
TS8O Period 3 0.66 8
BatchHi 0.82 25
BatchLow 0.60 4
All work 0.60 99

Now consider how a system programmer might go
about setting the dispatch priority for this workload.
Given that the IMS transactions are the most impor-
tant work for this installation, the system program-
mer would probably not give the IMS address spaces
the lowest dispatch priority. If IMS address spaces
were given a higher dispatch priority, response time
for at least TSO Periods 2 and 3 would be unneces-
sarily elongated, whereas the IMS transactions would
beat their goal by even a larger amount.

If the system programmer did set the above dispatch
priority order, the response time of the IMS trans-
actions would have to be constantly monitored to
look for a change in the workload that would cause
the IMS transactions to miss their goals. If such a
change did occur, the system programmer would
have to detect it and decide how to change the pri-
orities on the fly before too much damage was done
to the IMS transactions.

The second part of the experiment was to start the
batch work. With the batch work running, the over-
all processor demand of the total workload was sig-
nificantly more than the system could deliver. There
still was no significant storage contention. Figure 9
shows how processor service was consumed by each
of the different types of work during the overall run.

The batch work was started at about 15:47. Notice
that the batch processor service immediately jumps
to a peak of about 23 000 with a corresponding drop
in the processor service for the IMS address spaces
and TSO work. Figures 10 through 12 show plots of
how the performance index for the work changed
during the run. Figure 10 is for tMS and BatchHi and
Figure 11 is for the TSO periods. Figure 12 shows
the same data on one plot. Note that the perfor-
mance indexes for the IMS transaction class and the
TSO service class periods shoot up as their corre-

sponding processor service goes down. Because the
IMS transaction class is the most important, WLM first
addresses its problem by increasing the dispatch pri-
ority of the IMS address spaces relative to batch. The
result of this action shows clearly in Figure 9 as the
IMS processor service recovers as quickly as it
dropped off. The processor service of TSO recovers
after that of IMS since WLM addresses its processor
delay problem as the next most important work miss-
ing its goal. After WLM went through several steps
of incrementally improving the performance of TSO
by adjusting TSO Period 2 and Period 3 dispatch pri-
ority versus the BatchHi class, the final dispatch pri-
ority order that WLM sets is:

1. cIcs

2. TSO Period 1

3. IMS

4. T8O Period 2, TSO Period 3, and BatchHi
5. BatchLow

Examining the graph of performance indexes shows
this dispatch priority order allows alt the nonbatch
work to meet its goals almost all of the time. Table
3 shows the average performance index and the per-
centage of the CPU each service class was using after
the batch started and WLM had a chance to readjust
dispatch priorities.

Notice that the work that is most affected by the ad-
dition of batch operations is TSO Period 2 and Pe-
riod 3. Before the batch work started, the average
performance indexes for these periods were 0.34 and
0.31. After the workload has stabilized again follow-
ing start of the batch, the average performance in-
dexes for these periods increase to 0.45 and 0.66.
Even the BatchHi service class is able to meet its
goal on average, though it has the highest average
performance index which is reasonable, since it is
the least important work.

Given that overall this workload requires more pro-
cessor power than is available, some work is not go-
ing to run. Since BatchLow is the least important
work with the easiest goal, it is the work that is sac-
rificed. Figure 13 shows the service rate of BatchHi
versus BatchLow. Other than a small burst of ser-
vice before WLM readjusted the priorities for the new
work, BatchLow does not run until the jobs in
BatchHi begin to finish at about 16:01.

In summary, this example shows how the MGDPC
function of WLM is able to allocate system resource

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997




Figure 9 Service rate by work type
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to a diverse workload to meet the performance goals
of the installation. Because the MGDPC is continu-
ally monitoring how the work in the system is per-
forming, WLM can be more aggressive than a system
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programmer in reallocation of resources to the work
in the system having the biggest problem meeting
its goal even if it is not the most important. The or-
der in which the MGDPC chooses receivers and do-
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Figure 10 IMS and BatchHi performance index
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nors and its net value check ensures that such a re- Balancing work across a parallel environment
allocation does not hurt more important work. The . . .

first phase of this experiment shows the results of A number of problems arise with the existence of
such actions. The second phase of the experiment multiple images that share work and resources. This
shows that WLM can quickly react to major workload section describes how WLM addresses these problems
changes in reallocated resources as necessary to best while remaining focused on the goals specified by
meet the performance goals of the installation. the business policy.
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Figure 11 TSO performance index
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In many interactive or client/server environments,
a single user, while under some application suite, will
remain “connected” to a particular instance of an
application server running in the parallel environ-
ment for a protracted period of time. This time frame
may extend for minutes or hours or days, depending
on the nature of the application and the activities

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

R

of the end user. Furthermore, the intended duration
of this “connection” at the outset is unknown to the
operating system or even the application itself in gen-
eral. A further complication is that it is not known
at the outset what will be the resource requirements
of the end user, nor is it known what business goals
and importance will be associated with this work.
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Figure 12 Performance indexes
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Since workload conditions in the parallel environ-
ment may change while the “connection” exists, it
is impossible to guarantee that a decision to “con-
nect” the end user to a particular server instance on
one image will remain optimal for the entire dura-
tion. For a variety of reasons, including network pro-
tocols, the existence of transient data, and recovery
schemes, an end user cannot be arbitrarily recon-
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nected to another image or application server in-
stance by the operating system in order to rebalance
work when conditions change.

Prior to WLM, the techniques to solve this problem
in an 08/390 environment involved planning the net-
work connections so as to spread sessions across as
many images as necessary to balance the workload.
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Figure 13 Batch service rate
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End users needed to be aware of which server or im-
age they would be connected to in order to use their
application. Some improvement was offered with Vir-
tual Telecommunications Access Method (VTAM*)
support of generic resource, wherein sessions (con-
nections in a Systems Network Architecture, or SNA,
world) were balanced across eligible logical units (an
LU is an SNA session endpoint in this context). How-
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ever, this support did not incorporate any knowledge
of utilization or machine size. Techniques such as
“round-robin” have a similar deficiency, and further-
more do not incorporate knowledge when “connec-
tions” are no longer active.

The approach taken by WLM in the face of the above
limitations and uncertainties is to “connect” the end
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user to a server instance on an image that is meeting
its goals and that has a threshold amount of “dis-
placeable capacity” at the lowest importance level
among eligible servers. Displaceable capacity at the
lowest importance level refers to processor capacity
that is either unused or that is consumed by recently
observed work that is as low in business importance
(as given by the business policy) as possible to achieve
the threshold amount. The value for the threshold
is dependent on the workload to which the user be-
longs and may be calculated based on samples that
are taken as the workload runs, or may be based on
historical values for the workload or on default val-
ues.

The principle behind this approach is that work re-
quests created by the user will either have access to
unused capacity or will compete with work that is
deemed least significant by the installation business
policy. In the latter case, the WM algorithms will
adjust resources, as needed, to ensure that the most
important work achieves its business goals. This ad-
justment is the meaning of the phrase “giving work
requests the ‘best chance’ to meet their goals.”

Initially, this approach should give work requests cre-
ated by the end user a maximal opportunity to
achieve their goals. Over time, workload conditions
may change and leave the end user’s work less ca-
pable of meeting its goals, at least as compared to
other server instances or other images. Of course,
if these work requests are deemed to be sufficiently
important by the business policy, the algorithms
should ensure that sufficient resources are available
to meet their goals. However, this condition leaves
open the question of what to do for work requests
that are not sufficiently important when other im-
ages may now have unused capacity or less impor-
tant work.

This problem is addressed using techniques that are
workload-dependent. For example, some workload
environments have a further layer of “transaction
routing,” wherein a work request arriving at an ap-
plication server is then forwarded to another appli-
cation server instance that is a better choice.
cics v4 and CICSPlex* System Manager (CP SM) co-
operate to implement this approach as one exam-
ple. Another approach is to dynamically change the
“connection” based on the server’s awareness of
when this change can be done transparently.
DB2* (DATABASE 2*) V4 is able to perform this change
for distributed SQL (structured query language) re-
quests to a remote data-sharing group, as it spreads
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such requests across those members in the propor-
tions recommended by WLM. Indeed, DB2 will poll
WLM on a regular basis to ensure that the distribu-
tion pattern matches current conditions. A third pos-
sibility is that the work request may be split up, or
parallelized, to run on multiple processors (i.e., in-
struction streams) either within the same image or
on different images. For example, DB2 V4 can par-
allelize queries in this fashion. As with “transaction
routing” discussed below, some assessment must be
made that using these techniques will overcome their
cost.

Note that even when “transaction routing” can be
implemented, it imposes an additional “hop” and
therefore additional cost, which could reduce
throughput and increase response time. It is there-
fore desirable to choose the target “connection end-
point” carefully, mindful that conditions will change,
possibly unpredictably, and that elaborate analysis
may be counterproductive.

WLM supports a number of environments that ex-
hibit such “long-term” connections to a server
through a variety of interfaces, including generic re-
source, domain name server, and sysplex routing.

The generic resource and domain name server al-
low a group of equivalent servers to be treated as
a single entity by end users when requesting a “con-
nection.” Generic resource is used in the SNA world,
where a “connection” equates to a session. During
initialization, each server identifies itself as belong-
ing to a particular group and gives the (LU) name(s)
with which it is associated. Domain name server is
used in the TCP/IP (Transmission Control Protocol/
Internet Protocol) world.

The 05/390 domain name system (DNS) implemen-
tation allows system administrators to set up a com-
mon host name for a set of 0$/390 systems. When DNS
is queried for IP address resolution, WLM services are
used to choose the best system or server to place the
new work. In this way the DNS/WLM resolutions cause
incoming TCP/IP requests to be distributed intelli-
gently across the sysplex.

Sysplex routing allows a group of equivalent servers
to be registered and monitored for purposes of rout-
ing individual work requests among its members.
WLM will provide recommendations on what propor-
tions should be allocated to each server within the
group for a narrow window on the order of a few
minutes in length. Users of this service are then able
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Figure 14 Importance level service summary table

to spread individual work requests across multiple
servers in these proportions so as to enhance their
chance of meeting their goals.

WLM also provides interfaces to allow a product that
coordinates and provides services for a collection of
related server address spaces to query WiLM for its
recommendation on which server space is the best
choice for a set of related work requests. Typicaily
a daemon process within the product will interact
with WLM to manage such work requests. This in-
teraction moves the scheduling responsibility from
the daemon to WLM, where work for the entire par-
allel environment is monitored and managed.

Each of these interfaces draws on common samples,
measurements, and projections of system activity that
are described next.

Balancing data. WLM implements its routing deci-
sions and makes recommendations on the basis of
five types of information. The first indicator is the
presence of resource constraints in the recent past.
These constraints would include shortages of pro-
cessor storage, paging space (secondary storage in
a UNIX** environment), etc., or dangerously high lev-
els of paging or swapping. Systems with such prob-
lems are automatically given the lowest possible rec-
ommendation value to receive new work, since they
will likely be unable to start new server instances and
be otherwise unlikely to support an increased work-
load. In fact, such a system would be operating in
amode to shed work since it is seriously overloaded.

Next, WLM maintains a dynamic list of eligible serv-

ers, along with the image on which it is located, and
any other information needed to uniquely identify
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each server instance. This list is updated not only
with the startup and shutdown of servers themselves,
but also with the unexpected failure of images within
the parallel environment. This list is necessary so that
WLM can recognize which servers exist and make a
choice (or choices) among this list.

In addition to tracking the presence of servers, WLM
evaluates the ability of each server to meet the goals
of work requests that have flowed through the server
using an aggregated performance index (P1). This pi
takes into account the various importance levels for
such work requests and their contribution to the uni-
verse of work requests that the server accepted in
the recent past, and projects what the PI will be as
aresult of the policy actions taken. The significance
of the PI is that it incorporates the effect of all ac-
tivity in the system and reflects the real delivered re-
sponsiveness measured against the business goals.
Delays include contention and constraints for all re-
sources, including storage, locks, queuing effects, etc.

The third type of information used by WLM is the
importance level service summary table, which tracks
the normalized processor consumption of work at
each importance level on each image. To be more
precise, the cumulative processor service delivered
to all work at the given level and for all less impor-
tant work is maintained. This table includes unused
capacity, discretionary work, and system overhead
not directly attributable to any particular work re-
quest. The purpose of this table (see Figure 14) is
to allow the WLM algorithms to understand where
“displaceable capacity” exists on an image-by-image
basis, and where work may compete most favorably
for processor access.
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The fourth type of information is an assessment of
the average cost of each work request that flows
through the server. For some work environments,
this assessment may be based on historical measure-
ments or, alternatively, may represent a default cost
associated with a single end user. For other environ-
ments, this assessment may reflect the measured av-
erage cost of an end user over some recent interval.
The purpose of this estimate is to set the threshold
value for “displaceable capacity” needed, and also
to estimate the latent demand that arises when a new
“connection” has been established but before actual
demand shows up in new measurements kept in the
importance level service summary table and the ag-
gregate PIs.

The fifth type of information used by WiLM is the list
of recent selections that allows some projection of
latent demand of new connections, as discussed in
the previous paragraph. This information is aged out
fairly quickly as new measurements pick up the ac-
tual demand that has been introduced.

The above information is maintained on an ongoing
basis during normal system execution. When a wim
interface is invoked to make a recommendation, as
described above, WM will also calculate the target
service value for “displaceable capacity” that is
nceded. This value incorporates both the average
cost and an estimate for latent demand that is re-
flected by the list of recent connections.

Balancing algorithm. With the above data in hand,
the general approach in deciding how to place a new
“connection” is to go through the list of all servers
one at a time and assess whether the current server
is a better choice than a server previously chosen.
A server on an image that is not resource-constrained
will be given preference to a server on a resource-
constrained image. Beyond that filter, preference is
given to servers that are meeting goals, then to serv-
ers that are narrowly missing goals, and finally to
servers that are badly missing goals. Within each of
these three categories, servers are ranked accord-
ing to the importance level at which the target “dis-
placeable capacity” is achieved, with preference given
to utilizing the lowest-possible business importance.

If the interface allows multiple selections (as for sys-
plex routing), the algorithm will keep all selections
that survive with the same attributes for resource
(un)constraint, degree of meeting goals, and target
importance level. Weights are set according to the
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ratio: (target displaceable capacity)/(total capacity
of all images at target importance level).

The rationale for the above ordering reflects a num-
ber of trade-offs. As has been discussed previously,
systems that are recently resource-constrained are
immediately shunned since they are overloaded, and
the system is actively reducing the workload that is
allowed to run by disallowing new spaces from be-
ing created, reducing the number of spaces that are
swapped in, and so forth.

In the absence of a resource constraint (or when ail
relevant images are similarly constrained), the ideal
server choice is one that is meeting goals for its work
and that resides on an image with sufficient displace-
able processor capacity to accommodate new work.
Ideally this would be unused processor capacity, but
in any case, there is a preference to compete with
work at the lowest possible importance level so that
new work will be favored as much as possible.

A server that is narrowly missing its goals but with
sufficient unused processor capacity to accommodate
new work is almost as good as a server that is meet-
ing its goals, since the resource management algo-
rithms will likely address the problem—which would
generally be one of processor storage allocation.

In looking at the above categories used in ranking
server choices, it is worthwhile to observe that a
strong reliance is placed on the actual performance
of servers against the goals of the work they serve,
as measured and projected by their aggregate P1. This
observation reflects a philosophical bias to use ac-
tual observed behavior and to value feedback so as
to correct inaccurate assumptions that might be
made from other measurements or design points.
This concern has been discussed in other papers. Ref-
erence 9 discusses sensitivity to inaccuracy in the val-
ues of communication costs, locality statistics, etc.
Also observe that the number of separate factors in
making a decision is a mere handful. This latter ob-
servation reflects a second philosophical bias mir-
rored in Reference 7 relative to overly complex al-
gorithms.

Balancing algorithms in action. We now describe
an experiment designed to show how WLM allocates
work across clustered systems. The experiment was
run on three 1BM 9672 Parallel Enterprise Servers.
Each 9672 had six CPUs. At the start of the exper-
iment, CPU-intensive jobs were started on two of the
systems. Next, 1000 simulated users were logged on
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Figure 15 Idle capacity plot
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to the parallel system. We discuss how WLM distrib-
utes these new users to achieve workload balancing
across the three systems.

In Figure 15, Systems A, B, and C are receiving work

to establish 08/390 userid log-on sessions. System A
has much more idle capacity than System B or Sys-
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tem C. The CPU-intensive jobs running on B and C
are absorbing the capacities of B and C. Figure 16
shows that as new userids request to log on, WLM
places them on System A until the idle capacity of
System A falls below that of Systems B and C. WLM
then places new log-on sessions on System B because
at time 8:32, System B has more idle capacity than
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Figure 16 Total sessions placement plot
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AorC. Attime 8:38, the new users on System B have
reduced the idle capacity of B, and the graph in Fig-
ure 15 shows an amount of idle capacity equal to Sys-
tem C. WLM now directs new log-on sessions to Sys-
tem C.

This experiment shows the effect of capacity consid-
erations on the balancing algorithms of WLM and the
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responsiveness of the algorithms. Within microsec-
onds, new log-on sessions are sent to the systems with
better capacity. A human operator could not be as
responsive or vigilant 24 hours a day, every day.

Cooperating products on WLM environment.

MVS/ESA SP5.1.0 provides the initial support to allow
work managers and resource managers to cooper-
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ate with WLM to surface: completions of business
units of work, the associated delays as viewed by the
subsystem product, and which address spaces are in-
volved in processing each work request. The follow-
ing products utilize these new interfaces to make this
possible:

1. cICs v4.1

2. CP/SM V1.0

3. IMS V5.1 (transaction manager and database)
4. Resource Measurement Facility (RMF* V5.1)

The following traditional work environments are also
supported for goal definition and management in
MVS/ESA SP5.1.0:

1. APPC/MVS scheduler (ASCH)—Advanced Pro-
gram-to-Program Communication initiators for
client/server environments

2. Job Entry Subsystem (JES)—Dbatch work

3. OpenEdition* MVS (OMVS)—OpenEdition work
utilizing UNIX and other programming semantics

4. Started Task Control (STC)—started tasks

5. TSO—interactive environment

MVS/ESA SP5.2.0 provides the ability to balance ses-
stons via generic resources or balance work requests
via sysplex routing. It also supports splitting of work
requests either on a single 0$/390 image or on mul-
tiple images. Other support allows products to com-
municate the presence of user requests to WLM for
individual management within a single server as in
the following:

1. CICS v4.1—generic resource

2. pB2 v4i—distributed DB2, single-CEC (central
electronics complex) parallelism, sysplex routing,
generic resource

3. DB2 vV4.2—multi-CEC parallelism, TCP/IP routing

4. VTAM V4.2, V43—generic resource

5. RMF V5.2

087390 R3 provides the ability to dynamically control
the number of server address spaces on an applica-
tion environment level based on goal satisfaction of
the work requests queuing work to these servers. Re-
lated services allow products to dynamically route
work requests to the optimal server address space.
Additional support was added to allow server address
spaces to separately identify multiple business units of
work for classification and WLM goal management. The
following products utilize these and related services:
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Local Area Network File Server (LFS)

. System Object Model (SOM*)

. Internet Connection Secure Server (ICSS)
DB2 v4.2—WLM-managed stored procedures
. RMF V5.3

. TSO generic resource

SNV I NI

Conclusion

The systems management burden upon installations
supporting large-scale enterprise-wide computing is
growing at an alarming rate. The cost of configuring
system hardware and software, application programs,
and network configurations escalates with the intro-
duction of new servers, new networking technolo-
gies, and new application program development
technologies. The ability to absorb new technologies
is vital to those wishing to exploit the possibilities
offered—to gain business advantage. This paper de-
scribed a technology to assist such exploitation. In
addition, three significant dimensions are worthy of
discussion: a strong supporting philosophy, an ini-
tial product implementation, and a dream of what
the future may hold.

The foundation for workload management capabil-
ities described in this paper is a crisp definition—to
operating system software—of the underlying bus-
iness rationale for employing a computer system.
Knowledge of goals for work and the business im-
portance of that work provides a well-informed ba-
sis for operating system software to take direct ac-
tions having positive business value to the purchaser
of that system. The underlying philosophy is that the
system should manage itself, using all available
means, toward those business goals, with no addi-
tional requirement for human intervention. This
workload management philosophy is in sharp con-
trast with other efforts within the industry, efforts fo-
cused on delivery of tools to aid information tech-
nology professionals with the optimization of critical
resources. Low-level, detailed focus on individual ap-
plication servers and the resources consumed by the
servers enables one to quickly lose sight of what is
really important: satisfaction of business needs.

Much information can be found in the literature de-
scribing theoretical problems and solutions, evalu-
ations, and comparisons of alternative system struc-
tures, including descriptions of areas for valuable
future research. The content of this paper has been
limited to subjects embodied in software product im-
plementations being used in commercial data pro-
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cessing environments. The functional capabilities re-
quired by those users are much greater than the
topics reviewed in this paper; detailed descriptions
of many capabilities were omitted to limit the length
of this paper. Some of the additional functions are:

» The ability to dynamically instantiate application
server processes based upon trade-offs between de-
mand, the ability to satisfy goals for the work re-
quests that the servers serve, and the availability
of system resources. This function eliminates the
need for preconfigured application servers while
preventing potential problems caused by excessive
or inadequate application serving capabilities.

» The ability to manage a given work request as a
single unit of work, even though the work request
requires the services of more than one application
server. This function allows the system to manage
more closely to the requesting client view of a re-
sponse time and eliminates the need to set indi-
vidual performance goals for each application
server.

» The ability to set an overall resource consumption
limit for a set of service classes. This function pro-
vides a mechanism to guarantee availability of an
amount of capacity for one or more critical work-
loads.

s The ability to temporarily promote the “impor-
tance” of an individual work request when that re-
quest has acquired a serially reusable resource
needed by more important work. This function aids
nondisruptive management of resource conten-
tion.

» The ability to generate detailed descriptive infor-
mation showing resource consumption informa-
tion and resource delay information in the con-
text of the various service class goals in effect. This
function explains why the actual results were
achieved and provides a basis for capacity plan-
ning and system performance modeling tools.

Beyond the capabilities of the current System/390
workload management implementation lie future op-
portunities for expanding the quality of heuristic de-
cision-making and the scope of resources being con-
trolled. These opportunities represent much more
than mere enhancements to the 08/390 operating sys-
tem—they represent the implementation of a dream
where information technology resources adapt them-
selves to satisfy business objectives without requir-
ing human guidance beyond definition of those bus-
iness objectives. As long as the need exists for de-
tailed, low-level performance control parameters, the

possibility of incorrect or inappropriate definitions
will exist. Is the realization of such a dream possi-
ble? Maybe. It is easy to envision numerous func-
tional extensions that fit neatly into the framework
of the existing 05/390 workload management imple-
mentation. Some of these extensions are:

* To dynamically manage the size of memory-res-
ident buffer pools, balancing the availability of
memory against the value received from avoiding
physical /O activity and the cost of managing the
buffer pools

« To more closely coordinate the scheduling of in-
terrelated “networks” of jobs, managing an entire
set of jobs toward a specific time-of-day comple-
tion requirement

» To retain longer-term histories of resource utili-
zation patterns, so that repeatable peaks and val-
leys in workload demands can be anticipated

Although these problems appear to be solvable,
other more complex problems remain. Complete
goal-oriented management of an enterprise would
require end-to-end management of distributed, het-
erogeneous operating systems and the network in-
terconnection mechanisms that join these systems.
Although the infrastructure exists within 05/390, vary-
ing amounts of capabilities exist on other operating
system platforms. An end-to-end perspective implies
the inclusion of:

» End-user workstations having little or no program-
ming capabilities

« Network gateways and intermediate servers that
currently have no understanding of the “work” that
they process

» Operating system platforms having primitive re-
source management controls

Focusing on the operating system platforms alone
does not address the full set of requirements, since
the interconnection mechanisms must also manage
the available bandwidth toward the needs of the work
requests associated with data being transported.

These longer-term desires represent significant tech-
nical challenges.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of NCR Corporation,
X/Open Co. Ltd., or Digital Equipment Corporation.
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