BB SRINIVASAN AND CHANG

Object persistence
in object-oriented
applications

Object-oriented models have rapidly become the
model of choice for programming most new
computer applications. Since most application
programs need to deal with persistent data,
adding persistence to objects is essential to
making object-oriented applications useful in
practice. There are three classes of solutions for
implementing persistence in object-oriented
applications: the gateway-based object
persistence approach, which involves adding
object-oriented programming access to
persistent data stored using traditional non-
object-oriented data stores, the object-relational
database management system (DBMS) approach,
which involves enhancing the extremely popular
relational data model by adding object-oriented
modeling features, and the object-oriented
DBMS approach (also called the persistent
programming language approach), which
involves adding persistence support to objects in
an object-oriented programming language. In
this paper, we describe the major characteristics
and requirements of object-oriented applications
and how they may affect the choice of a system
and method for making objects persistent in that
application. We discuss the user and
programming interfaces provided by various
products and tools for object-oriented
applications that create and manipulate
persistent objects. In addition, we describe the
pros and cons of choosing a particular
mechanism for making objects persistent,
including implementation requirements and
limitations imposed by each of the three
approaches to object persistence previously
mentioned. Given that several object-oriented
applications might need to share the same data,
we describe how such applications can
interoperate with each other. Finally, we describe
the problems and solutions of how object-
oriented applications can coexist with non-
object-oriented (legacy) applications that access
the same data.

0018-8670/97/$5.00 © 1997 IBM

by V. Srinivasan
D. T. Chang

bject-oriented modeling, design, and program-

ming'~ have rapidly become the model of
choice for programming new computer applications.
Since most application programs need to deal with
persistent data, adding persistence to objects is es-
sential to making object-oriented applications use-
ful in practice. Before the advent of object-oriented
application development, applications typically used
relational database management systems {DBMSs) to
store their persistent data (and most still do).

Relational DBMSs typically provide support for stor-
ing data used in traditional business applications such
as banking transactions and inventory control. The
relational model® is the basis of many commercial re-
lational DBMS products (e.g., DB2*, Informix**, Or-
acle**, Sybase**) and the structured query language
(sQL)” is now a widely accepted standard for both
retrieving and updating data. The basic relational
model is simple and mainly views data as tables of
rows and columns. The types of data that can be
stored in a table are basic types such as integer, string,
and decimal, and other special types such as BLOB
(binary large object) and CLOB (character large ob-
ject). These systems typically do not allow users to
extend the type system by adding new data types.
They also only support first-normal-form relations’

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

in which the type of every column must be atomic,
i.e., no sets, lists, or tables are allowed inside a col-
umn. Relational DBMSs have been extremely success-
ful in the marketplace, growing into an approximately
four-billion-dollar market in a decade. These systems
are extremely good for a class of applications with
simple data models and extensive querying needs.
The use of a standard declarative query language in
SOQL makes it possible for applications to transpar-
ently access relational DBMS data from different
vendors.

As opposed to the simple data model used by tra-
ditional business applications using a relational
DBMS, object-oriented applications make extensive
use of many new object-oriented features such as a
user-extensible type system, encapsulation, inheri-
tance, dynamic binding of methods, complex and
composite objects (not first-normal-form objects),
and object identity. The limitations of the data mod-
els supported by the relational DBMS therefore
needed to be relaxed in order to enable the building
of more complex (object-oriented) business and non-
business applications. As a result, there has been
much activity in designing and implementing systems
to handle object persistence. Recently it has become
clear that there are essentially three major ap-
proaches to object persistence: the gateway-based
object persistence approach, the object-relational
DBMS approach, and the object-oriented DBMS ap-
proach (also called the persistent programming lan-
guage approach). Each of these three approaches
to object persistence evolved to support certain
classes of object-oriented applications, and each ap-
proach has been therefore affected by the require-
ments of the class of applications it supports. Next,
we provide an overview of the three types of object-
persistence systems.

Gateway-based object persistence (GOP) is used to sup-
port an object-oriented programming model for ap-
plications while using traditional non-object-oriented
data stores to store data for an object. GOP is com-
monly used in cases where users want to write ap-
plications on top of existing non-object-oriented data
stores using object-oriented programming models.
The objects for an application have a different data
model from that of the data store schema that isused
to store the persistent state of the objects in the data
store. GOP systems therefore have to perform a map-
ping between the object-oriented schema for the ap-
plication and the non-object-oriented data store
schema used to store the data. At run time, these
systems translate objects from the representation

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

used in the data store to the representation used in
the application and vice versa. For ease of use, GOP
systems make this translation process transparent to
the application programmer (except during the map-
ping process when user input may be needed for
other than simple mappings). Gateway-based object
persistence is used by several systems including Vi-
sualAge C++ Data Access Builder*, SMRC,* Ob-
jectStore Gateway**, Persistence**, UniSOL/M™**,
Gemstone/Gateway™**, and Subtleware/SQL**. This
approach is essentially a middleware approach, be-
ing both application and data independent.

The standards activity relevant to GOP is being de-
veloped by the Object Management Group (OMG).
OMG is a consortium formed in 1989 to focus on
adopting de facto standards on distributed objects.
The most important specification it has adopted is
CORBA (Common Object Request Broker Architec-
ture), which defines the fundamental architecture for
object interactions. In addition to CORBA, the Ob-
ject Management Architecture (OMA) consists of the
following additional components: CORBA services,’
CORBA facilities, CORBA domain objects, and appli-
cation objects. OMG is adopting specifications on all
the components except application objects. Aside
from CORBA, the following adopted specifications are
directly related to object persistence: Persistent Ob-
ject Service, Object Query Service, Object Relation-
ships Service, Object Transaction Service, and Ob-
ject Security Service.

Object-relational DBMSs (ORDBMSs) are built on the
premise that extending the relational model is the
best way to meet the challenge of new object-ori-
ented applications. As shown by relational DBMSs,
the relational model has been extremely successful
in practice and the SOQL is already a global standard.
Object-relational DBMSs therefore add support for
object-oriented data modeling by extending both the
relational data model and the query language while
keeping the already successful technology (especial-
ly the sQL) of a relational DBMS relatively intact.
There are two classes of object-relational DBMSs in
the market; those that have been built from scratch
(e.g., IMustra**, UniSQL**), and those that are (or
will be) built by extending existing relational DBMSs
(e.g.: DB2, Informix, Oracle, and Sybase). This ap-
proach is essentially a bottom-up approach, being
data (or database) centric.

As might be expected, the standards activity on this
area is based on an extension of the SQL standard.
X3H2 (the American committee responsible for the

SRINIVASAN AND CHANG 67

specification of the SQL standard) has been working
on object extensions to SQL since 1991. These ex-
tensions have become part of the new draft of the
SQL standard named SQL3. The SQL3 standard" is
an ongoing attempt to standardize extensions to the
relational model and query language.

Object-oriented DBMSs (OODBMSs) are basically built
on the principle that the best way to add persistence
to objects is to make objects persistent that are used
in an object-oriented programming language (OOPL)

We discuss building 00
applications, creating
persistent data, and

sharing access to data.

like C+ + or Smalltalk. Because OODBMSs have their
roots in object-oriented programming languages,
they are frequently referred to as persistent program-
ming language systems. Object-oriented DBMSs, how-
ever, go much beyond simply adding persistence to
any one object-oriented programming language. This
is because, historically, many abject-oriented DBMSs
were built to serve the market for computer-aided
design/computer-aided manufacturing (CAD/CAM)
applications in which features like fast navigational
access, versions, and long transactions are extremely
important. Object-oriented DBMSs, therefore, sup-
port advanced object-oriented database applications
with features like support for persistent objects from
more than one programming language, distribution
of data, advanced transaction models, versions,
schema evolution, and dynamic generation of new
types. Even though many of these features have lit-
tle to do with object orientation, object-oriented
DBMSs emphasize them in their systems and appli-
cations. There are several object-oriented DBMSs in
the market (e.g., Gemstone**, Objectivity/DB**,
ObjectStore**, Ontos**, O2**, Itasca**, Matisse™*).
This approach is essentially a top-down approach,
being application (or programming language) cen-
tric.

A standard for OODBMSs has been specified by the
Object Database Management Group (ODMG).
ODMG is a consortium that consists mainly of

68 SRINIVASAN AND CHANG

OODBMS vendors. ODMG has specified the ODMG-93
standard, published in book form." ODMG-93 de-
fines an Object Definition Language (ODL), an Ob-
ject Query Language (0OQL), and C++ and Small-
talk language mappings to ODL and OQL. ODMG is
currently working on Java™* language mappings to
ODL and OQL.

In the remainder of this paper, we describe the ma-
jor characteristics and requirements of object-ori-
ented applications and how they affect the choice of
each of the three approaches to object persistence
previously mentioned. We subdivide the discussion
into three sections: data modeling, data access, and
data sharing. In the data modeling section, we focus
on the various programming language features used
in building object-oriented applications. Next, in the
section on data access, we focus on mechanisms for
creating and accessing persistent data. Finally, in the
data sharing section, we focus on shared access to
persistent data. In each of the three sections, we con-
sider various specific features, and compare and con-
trast the three approaches to object persistence (GOP,
ORDBMS, and OODBMS). In order to simplify the un-
derstanding of these issues, we have provided a sum-
mary of our discussion in tables that appear in each
of the sections.

Data modeling

Object-oriented applications that are programmed
in existing object-oriented programming languages
like C+ + and Smalltalk use a number of object-ori-
ented modeling features like encapsulation, inher-
itance, and dynamic binding. The reader is assumed
to be familiar with all the features used in develop-
ing applications using an object-oriented program-
ming language like C+ + or Smalltalk (for instance,
refer to Reference 12 for C++ application devel-
opment techniques). While object-oriented DBMSs
might not support all of the features available in a
native object-oriented programming language, the
data models they support are much more complex
than the data models supported by a traditional re-
lational DBMS. Object-relational DBMSs are now be-
ginning to support many of these features.

One of the main problems that object-oriented
DBMSs solve by supporting the data model of an ob-
ject-oriented programming language is the imped-
ance mismatch" problem that exists in relational
DBMSs, where the data model used in the applica-
tion is different from that of the data model used in
the database. This difference in data models causes

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

two major problems for applications thus resulting
in the impedance mismatch:

1. An application programmer has to program in two
different languages with distinct syntax, seman-
tics, and type systems, namely, the application pro-
gramming language (e.g., C++ or 0O COBOL)
and the data manipulation language of the DBMS
(i-e., SOL). The logic of the application is imple-
mented using the programming language while
SQL is used to create and manipulate the data in
the database.

2. When any data are retrieved from a relational da-
tabase, they have to be translated from their da-
tabase representation to the in-memory program-
ming language specific representation for the
application. Similarly, any updates needed to be
made to the data have to be explicitly commu-
nicated to the database using another SQL state-
ment, causing the data to be translated from the
in-memory representation back to the database
representation. All this communication back and
forth between the database and the application
leads to unnecessary processing that could be en-
tirely eliminated if the same data model were used
in both the application and the database.

Object-oriented DBMSs (OODBMSs) avoid the imped-
ance mismatch described above by providing exten-
sive support for the data modeling features of one
or more object-oriented programming languages. In
an OODBMS, therefore, the data model that is used
by an application is identical to the data model used
by the DBMS to store the application data. OODBMSs
have had great success in solving the second prob-
lem mentioned above, but they are less successful
in solving the first problem, especially when object
query is involved.

Object-relational DBMSs (ORDBMSs) also start to ad-
dress impedance mismatch by providing more and
more support for the data modeling features of ma-
jor object-oriented programming languages. How-
ever, the data model that is used by an application
can be close but not identical to the data model used
by the DBMS to store the application data. There-
fore, ORDBMSs will not be as successful in solving the
second problem mentioned above, but they can be
as good in solving the first problem, especially when
object query is involved. ORDBMSs mitigate the sec-
ond problem by providing rich support to execute
portions of the application within the database
server. Such support is typically provided by extend-
ing the relational support for stored procedures to

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

now support language environments that can in turn
execute user defined functions and methods.

The gateway-based object persistence (GOP) at-
tempts to alleviate impedance mismatch through the
use of schema mapping tools and automatic code
generation. The intent is to give the user the illusion
of working with only one data model—the data
mode! used in the application. (The one exception
is the user who defines the mapping between the data
model used in the application and the data model
used in the DBMS.) Therefore, it appears to the user
as if an object-oriented DBMS is being used, thus solv-
ing the first problem mentioned above in a similar
fashion. The GOP additionally provides facilities to
automate and optimize whatever conversions are re-
quired, thus alleviating the second problem.

As might be expected, several complex issues arise
in providing support for an object-oriented data
model. We now proceed to discuss these issues in
more detail (See Table 1).

Object identity. Object identity is one of the most
important issues that needs to be handled for object
persistence. In a program running as a process, ob-
jects can be created, copied, deleted, and accessed.
Since none of these transient objects persists beyond
the life of the process, the virtual memory address
of an object in a process can be used as the iden-
tification (ID) of the object (OID). In a DBMS, OIDs,
like data, have to be persistent. An OID by definition
refers to exactly one object in the database. The ref-
erence to the same OID for an object by an appli-
cation and by another object in the DBMS refer to
the same identical object.

Non-object-oriented DBMSs also have to wrestle with
the problem of object identity (or record identity)
but they are usually able to get by with value-based
identity. Relational DBMSs typically support value-
based access to persistent data, i.e., if an application
needs to access a particular row in a database, it has
to query the database using the name of the relation
that the row is in and a primary key value that is equal
to the value of the primary key value of a row in the
table. This form of access to persistent data alone
isinadequate in an object-oriented application, since
objects might actually have identical vaiues but be
different objects. This is because object-oriented ap-
plications support non-first-normal-form values
where an object can contain another object (e.g., two
employees might own the same make, model, and
year of a car but each respective car object might

SRINIVASAN AND CHANG 69

Table 1 Data modeling

(objects containing
non-first-normal-
form data)
Composite objects
(grouping of objects
for copying,
deleting, etc.)

Relationships

Encapsulation

Inheritance

Method overriding,

schema mapping

Can be supported using.
schema mapping
(however, there can be
limitations)

Can be supported using
schema mapping and
code generation

Supported at application
but not at database

Can be supported using
schema mapping
(however, there can be
technical limitations)

Supported as in an OOPL

to the relational data
model

Starting to provide
support through a
combination of triggers,
abstract data types, and
collection types

Strong support available
including referential
integrity

To be supported using
abstract data types (row
objects will remain
unencapsulated)

To be supported (separate
inheritance hierarchies
for tables and abstract
data types)

Supported (method

Feature Gateway-Based Object Object-Relational Object-Oriented
Persistence (GOP) Database Management Database Management
System (ORDBMS) System (OODBMS)
Object identity (OID) Support limited by Starting to provide Supported
underlying database support through row
identification
Complex objects Can be supported using Supported by extensions Supported

Supported using class
libraries

Supported using class
libraries

Supported (but broken for
queries)

Supported as in an object-
oriented programming
language (OOPL)

Supported as in an OOPL

overloading, and
dynamic dispatching

dispatching is based on
the generic function
model not the classical
object model)

not be shared between the two employees, resulting
in an identical valued car object in each employee
object). OIDs might also be needed for direct access
to an object in a database.

In a GoP environment, where distributed and het-
erogencous systems prevail, it is difficult to expect
or require uniform OID representations. Object iden-
tity support in a GOP system will be limited by the
database or file system (e.g., relational, network, flat
file) that stores the underlying data.

Some ORDBMSs are also beginning to provide an OID,
as well as the traditional value-based object identity.
One method for supporting OIDs in an ORDBMS is
by creating an 1D for every row in the database in-
dependent of the values in the row. Every row in any
table of an object-relational database can then be
directly accessed using the 1D for the row.

70 SRINIVASAN AND CHANG

The best support for OIDs is found in OODBMSs, and
all 0ODBMSs implement some form of OIDs. In the
ObjectStore DBMS, ™ for example, database refer-
ences can be thought of as equivalent to OIDs. The
application merely has to provide the reference, and
the database in which the reference resides is au-
tomatically opened and the object retrieved. it is pos-
sible, however, that the object does not exist any-
more and retrieving an object using a database
reference in ObjectStore could result in an error.
Other OODBMS:s also provide support for OIDs in a
similar though not identical manner.

Complex objects. A complex object mechanism al-
lows an object to contain attributes that can them-
selves be objects. In other words, the schema of an
object is not in first-normal-form, unlike relational
tuples whose schema is in first-normal-form (i.e.,
their components, or columns, can only be simple

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

base types like integer, character, or BLOB). Exam-
ples of attributes that can comprise a complex ob-
ject include lists, bags, and embedded objects. An
example of a complex object definition in C+ +-like
syntax is:

class Person {
char =name;
int age;
Car car;
Set(Person) children;
List(string) phones;
Set(Person) same_age;

)

In the above example, an instance of the class Person
is a complex object that contains as attributes two
basic attributes (name and age), an embedded Car
object (car), a set of Person objects (children), a list
of character strings (phones), and another set of Per-
son objects (same_age), where all the objects are em-
bedded.

Complex object support (previously mentioned) is
extremely useful in modeling non-first-normal-form
schemas that occur routinely in most object-oriented
applications. The objects that are defined inside
other objects (e.g., the attribute car inside class
Person) are entirely part of the containing object and
do not have any identity of their own—components
of complex objects are automatically created (recur-
sively) when the top-level object is created and are
automatically deleted when the containing object is
deleted. The connection between the complex ob-
ject and its component is always valid and cannot be
removed. In this respect, complex objects differ from
the composite objects that are described next.

In GOP systems, complex objects in the data model
of an application need to be mapped to the under-
lying data in a data store. Any mapping is typically
accompanied by some application-specific generated
code that can translate back and forth between the
data model in the application and that used in a da-
tabase. Such mappings can be quite inefficient if the
underlying database is not equipped to store the com-
plex object. For example, consider the following two
solutions for storing a (fixed length) array attribute
for a complex object in a relational DBMS:

1. Store the elements of the array in a tuple with
one column for each element of the array (mul-
tiple columns will be needed per element if the
array element itself is a complex object).

2. Store the array element in a separate table with

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

every tuple of this table storing a single array el-
ement with the index of this element in the array.

Obviously, neither of these solutions works very well
(and does not work at all for variable length arrays).
Another solution that has been proposed for this
problem is to store a complex object in a BLOB (bi-
nary large object) field.

ORDBMSs provide extensions to the relational data
model to support non-first-normal-form data such
as lists, bags, sets, etc. These extensions in the data
model can then be used to define complex objects
in an application.

OODBMSs are extremely strong in supporting com-
plex objects since they are based on object-oriented
programming languages that have extensive features
for defining complex objects in the data model.

Composite objects. Composite objects are individ-
val objects that are related and form part of a group.
Typically object-oriented applications utilize a com-
posite object as a group of objects that are part of
a parent object that is typically a collection. A com-
posite object is an object that might have to be treated
as being owned by a particular object but can be
pointed to by other objects in a normal way. The
pointer from an owning object to an owned object
is special. An example of an application scenario
where composite object support is needed is given
in the next paragraph.

A design object for a car might consist of the design
objects for the engine, the power train, the wheels,
the body, etc. It is quite possible that the engine (and,
therefore, its design object) remains unchanged for
several related car models while the external body
shape is different for each model. In such a case, it
is necessary to be able to treat some portions of the
car object and its components as one entity while
sharing other component objects with design objects
of other cars. An example definition of composition
is shown as follows and an example scenario is il-
lustrated in Figure 1:

class Car{
char *name;
char *model;
Ref(Engine) engine;
CompositeRef(Body) body;

SRINIVASAN AND CHANG 71

Figure 1 A composite object

1993 CAR

1994 CAR

= e o o e e e]
. ; ot
6993 CAR BODDE",

P REFERENCE TO INDEPENDENT OBJECT
=== REFERENCE TO COMPOSITE OBJECT

TWIN-CAM ENGINE |

L

1994 CAR BODY

-

Associated with composite objects is the issue of cas-
cading the deletion and copying. In certain applica-
tions, if an assembly object is deleted, the compo-
nent objects are kept around since they can be reused
for alternative assemblies, e.g., a car model might
go out of sale but the engine design might continue
to be used in other new models. While copying ob-
jects, it might still be necessary to copy every com-
ponent object in an assembly. In other words, cas-
cading the delete might not be needed, while
cascading the copy (sometimes referred to as deep
_ copy) might be essential. Such properties can be spec-
ified using properties of the composite object.

In GOP systems, composite object support is provided
using a combination of schema mapping and appli-
cation-specific code generation. However, since GOP
systems depend on other autonomous database sys-
tems to store the data, there might be limitations to
the support that can be provided (e.g., clustering at
an object level might not be available at the data store
and therefore cannot be provided for composite ob-
jects).

ORDBMS:s are beginning to provide support for com-
posite objects using a combination of triggers (used
for propagation of delete, for example), abstract data
types (ADTs), and collection types (e.g., lists, bags,
sets, etc.). While propagation of deletion and copy-
ing can be easily supported, it is not clear how
ORDBMSs will support clustering of components of
a composite object near each other. This is because
ORDBMSs, by definition, cluster at the table level and

72 SRINIVASAN AND CHANG

not all of them can cluster rows from different ta-
bles on the same disk page.

Composite object support might or might not be ex-
plicitly supported by the various OODBMSs. In Ob-
jectStore, for example, composite object support is
not explicitly present. Nevertheless, an application
can implement complex object support by using re-
lationships with the property that the deletion (or
copying) is propagated. In the Versant** OODBMS
the extent of a class can be thought of as a compos-
ite object that collects all of the instances of the class.
Deleting an object will automatically remove it from
the extent of its class. Deleting an extent for a class
will result in deletion of all instances of the class.

Relationships. Relationships are a generalization of
referential integrity constraints in relational DBMSs
where a particular foreign key points to the primary
key, and this reference is automatically maintained
by the database. Relationships in a DBMS are ref-
erences between objects in a database and have the
following features: automatic propagation of dele-
tion, setting one side of a bidirectional relationship
automatically sets the other side also, and deleting
an entry from one side also automatically deletes the
inverse entry on the other side (i.e., referential in-
tegrity is maintained).

In Figure 2, we show an example of three types of
relationships that occur commonly in applications.
First, employees (represented by the Emp class) can
be related to other employees via the spouse rela-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ONE TO MANY

DEPARTMENTS
{Dept)

tionship that is an example of a one-to-one relation-
ship. In addition, employees are related to depart-
ments (represented by the Dept class) by a one-to-
many relationship, i.e., every employee can work in
exactly one department while a department can have
many employees. Finally, employees work in projects
(represented by the Proj class), an example of a many-
to-many relationship, i.c., an employee can work on
many projects and a project can have several em-
ployees.

In a GOP system, relationships can be supported at
the application level by a combination of schema
mapping and appropriate query generation at run
time to automatically retrieve related objects. Re-
lationships at the application level need to be
mapped into the database using the database fea-
tures available, such as primary keys, foreign keys,
and row ids. This may pose some limitations, espe-
cially in terms of performance, since retrieving re-
lated objects might require multiple join queries to
be executed against a traditional relational DBMS.
The OMG Relationships Service specification also de-
scribes relationships spanning more than two object
types resulting in special objects to implement re-
lationships.

Object relational systems provide extremely strong
support for relationships. This is to be expected since
traditionally, their precursors, relational DBMSs, have
provided excellent support for referential integrity.
Row ids and collections in an ORDBMS, along with
the referential integrity support, can be used to fully
support relationships.

Since OODBMSs allow Iists and sets as attributes in-
side an object, these relationships can be imple-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ONE TO ONE

EMPLOYEES

S

MANY TO MANY

PROJECTS
Proj)

g

mented between objects with embedded sets of
pointers to store the associations. Typically OODBMSs
support two-way relationships whose members are
maintained using embedded sets in the objects be-
ing related (no new objects are needed to implement
arelationship). Next we illustrate how such a schema
might be defined using the ODL (Object Definition
Language) of the ODMG standard.'' Individual
OODBMSs use variations of such a syntax to define
such a schema.

class Emp {
Ref(Dept) dept
inverse emps_in_dept;
List(Ref(Proj)) projects
inverse emps_in_proj;
Ref(Emp) spouse
inverse spouse;

}

class Dept {
Set(Ref(Emp)) emps_in_dept
inverse dept;

}

class Proj {
Set(Ref(Emp)) emps_in_proj
inverse projects;

}

The non-first-normal-form support in OODBMSs
makes the representations of many-to-many relation-
ships here more compact than in an equivalent re-
lational schema. For instance, an intermediate ta-
ble would be required in a relational schema in order

SRINIVASAN AND CHANG

Figure 3 Encapsulation in an OODBMS

PR T A
Employee
INTERFACE STRUCTURE | DATABASE DESIGN
. eid name
hire(} eid T ‘
fire() name A
give_raise() salary Y

to model the many-to-many relationship between
projects and employees.

Encapsulation. The programming language view of
encapsulation clearly differentjates between the
method of accessing an ADT (abstract data type), re-
ferred to as the interface, and the internal data struc-
ture used to implement the ADT. An ADT interface
is available to users of the ADT and does not change
with any change in the ADT internal structure. The
interface is therefore said to encapsulate the inter-
nal structure of the ADT (we refer to this as proce-
dural encapsulation). In object-oriented program-
ming languages, the ADT is typically also referred to
as a class and the interface is referred to as a set of
public methods. For example, a stack ADT might have
methods push(elemtype), empty(), pop() and the stack
itself might be implemented using a fixed-length ar-
ray. Later, if we decide to change the implementa-
tion of the stack to use a more dynamic data struc-
ture such as a linked list, none of the applications
using the stack needs to be changed (in some cases,
the application needs to be recompiled).

While making objects persistent, one more level of
implementation needs to be considered in addition
to the interface and the internal structure present
for an ADT in a programming language, namely the
physical database implementation. The physical da-
tabase implementation determines (1) whether the
data are stored in sorted order of primary key or as
a heap, (2) the primary and secondary indices avail-
able to access the data, and (3) the clustering strat-
egies (e.g., a Department object might be stored phys-

74 SRINIVASAN AND CHANG

ically clustered with all of the Employee objects
belonging to that Department object). In Figure 3,
the class Employee has an interface with three meth-
ods, hire(), fire(), and give_raise(). The data structure
of each Employee object is a record with three fields,
namely eid, name, and salary. The physical database
design consists of the Employee objects stored as a
file sorted in order of eid indexed by two indices, one
on eid (the primary index that is clustered) and an-
other on name (a secondary index, unclustered).

Encapsulation in GOP systems is supported at the ap-
plication but not in the data model used to store the
data in the underlying database. Objects that are en-
capsulated for the application need to be constructed
from the data in the database using a translation
mechanism that uses the schema mapping as well as
application-specific generated code libraries. This
scheme is extremely flexible as different applications
using the same underlying data can use different
schema mappings and therefore different encapsu-
lation rules.

ORDBMSs support encapsulation using ADTs that can
be columns in a table. The row objects of a table
themselves are not encapsulated. This is because ob-
ject-relational systems are (“backwards”) compat-
ible with the first-normal-form relational model
where columns of tables are unencapsulated. A
schema for a table is used in queries using SQL and
hence encapsulation does not make sense here. In-
terestingly, even OODBMSs break encapsulation rules
for queries, as can be seen later.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 4 Example of an inheritance hierarchy

OODBMSs depart from the strict procedural encap-
sulation of ADTs enforced by programming lan-
guages, and sometimes allow direct access to the
structure of a class bypassing the methods. Break-
ing of encapsulation rules is usually done in
OODBMSs for executing ad hoc queries. Always ac-
cessing a class by using a method might not be ef-
ficient, and sometimes even be inadequate if there
is no method to get the required answer. A query
might loosely be thought of as a dynamically defined
procedure used to compute the answer by looking
at the internal structure of one or more classes of
objects. Ad hoc queries are discussed in more detail
in a later section.

Inheritance. Object-oriented systems use inheritance
in order to realize implementations that mirror real
situations. For example, in a university database, the
inheritance hierarchy shown in Figure 4 might be
used. Inheritance, which is a powerful modeling tool,
in conjunction with the encapsulation support de-
scribed earlier, enables sharing of implementations
across classes that are part of the same inheritance
hierarchy. There are several types of inheritance in
use in the various programming languages and
00DBMSs are affected by these. We will describe two
major types of inheritance, namely operation-based
inheritance and structure-based inheritance.

In operation-based inheritance, class B is said to in-
herit from class A (i.e., class B is a subclass or sub-
type of class A), if for every (public) method in class
A, there is an equivalent (public) method in class B
that has an identical interface. In other words, for
the purpose of method calls, an instance of class A
can be replaced with an instance of class B. Oper-
ation-based inheritance is illustrated in Figure 5.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Note how the structures of class A and B are com-
pletely different, but that does not affect the fact that
class B is a subclass of class A. An example of a lan-
guage that supports operation-based inheritance is
Smalltalk.

In structure-based inheritance, class B is said to in-
herit from class A, if for every (public) method in
class A, there is an equivalent (public) method in
class B that has an identical interface, and if class
B has a superset of the structure of class A. In other
words, an instance of class A can be replaced by an
instance of class B for accessing structural informa-
tion of A in addition to method calls. Structure-based
inheritance is illustrated in Figure 6. Note that the
structure of class B contains every aspect of the struc-
ture of class A, in addition to the methods of class
A. Structure-based inheritance is more restrictive
than operation-based inheritance. An example of a
language that supports structure-based inheritance
is C++.

Application designers who want to address multiple
platforms (i.e., port) should be aware that applica-
tions that make use of structure-based inheritance
are not as easily portable and extendable as those
built using only operation-based inheritance. The
IBM system object model (SOM), *° which can be used
for developing a single application to be run on mul-
tiple platforms, therefore, only supports operation-
based inheritance. One advantage of structure-based
inheritance is that objects are compact and most
method calls can be dispatched at compile time. This
turns out to be very efficient. Operation-based in-
heritance requires more work (such as method
lookup and integrity checks) to be performed at run
time, and hence could be slow for applications that

SRINIVASAN AND CHANG 75§

Figure 5 Operation-based inheritance

A

access millions of objects and call several methods
on each of these objects.

Multiple inheritance is the term used when a single
class can inherit from multiple parents. In Figure 4,
the class Student_Employee inherits from both
Student and Employee and is an example of a mul-
tiple inherited class. Multiple inheritance is used
rarely in real applications, and we will not describe
this issue further except to state that OODBMSs sup-
port multiple inheritance if the underlying program-
ming language that they use also supports it. Mul-
tiple inheritance could cause porting problems since
different systems that implement this feature use in-
compatible rules for resolving conflicts, such as those
between inherited method names.

In GOP systems, inheritance can be supported using
schema mapping. The mapping, however, can be-
come quite complicated (as in the complex object
case discussed earlier). For example, the hierarchy

76 SRINIVASAN AND CHANG

OPERATIONS (METHODS)

STRUCTURE

stored in Figure 7 can be implemented in two dif-
ferent ways using tables:

1. There could be one table for the inheritance hi-
erarchy consisting of Student, Employee, and
Person. This table would have columns to store
the combined attributes of all classes in the in-
heritance hierarchy. In addition to that, there
would also be a special column that would tag the
row with the object type in that row, namely
Student, Employee, or Person. This scheme obvi-
ously wastes a lot of space for attributes that are
not needed for a particular object, but the col-
umns need to be stored.

2. A normalized version to store the same data is
in three separate tables, one each for the classes
Student, Employee, and Person. All of these tables
could share the primary key (i.e., the primary key
for the root class table is the same key pointed
to by objects in any subclass table). The tables for
a subclass will only contain columns for the at-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 7 Late binding

k ”Peréon " display()
_I__

Student) display()

T T
RS

tributes for that subclass thus avoiding the wasted
column space in case 1 above.

Using solutions like that previously discussed to
model inheritance could become quite complicated,
since an application that needs to access all Person
objects needs to write complex queries to figure out
what objects belong to Person or any of its subclasses
(since a Student or Employee object is also consid-
ered a Person object).

ORDBMS:s support inheritance, but two separate hi-
erarchies for tables and ADTs are used. The row ob-
jects of a table are unencapsulated while the ADTs
of a column can be encapsulated. The functionality
and semantics of these two types of inheritance are
evolving with continuing work on the SQL3 standard.
For example, it is not clear what it means to have
inheritance for tables since tables are unencapsu-
lated.

OODBMSs support the inheritance features in already
existing object-oriented programming languages and,
unlike SQL3, do not invent a new semantics on their
own. However, in order to support cross-language
support for objects stored in the database (i.e., ac-
cess a Smalltalk object from a C++ program) they
impose some limitations on the features of the pro-
gramming language that can be used in developing
such applications.

Method overriding, overloading, and dynamic bind-
ing. Inheritance allows users of a class hierarchy to
extend the interface of the hierarchy by redefining
methods that are already defined at higher levels in
the class hierarchy. Such overriding of a method al-
lows a method that is declared at a superclass to be

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

reimplemented for a subclass. In addition, object-
oriented programming systems allow overloaded
methods where a new method can be defined with
the same name as an already existing method but
with a different set of arguments (also known as a
signature). Both overriding and overloading are very
useful for writing easy-to-read code, but combined
with support for late binding (where method reso-
lution is deferred to run time) also make it useful
to write applications that can make use of any fu-
ture enhancements to existing class libraries used by
an application. We will illustrate this using an ex-
ample shown in Figure 7. The base class Person has
its own implementation of display() and so do the de-
rived classes Student and Employee. Due to the prop-
erties of inheritance, a reference to a Student or an
Employee object can also be stored in the set
teenagers. It is now possible to write generic code
to display a set called teenagers that is a set of ref-
erences to person objects without the code knowing
the subtype of the individual types of objects that
are being displayed:

Set(Ref(Person)) teenagers;
Ref(Person) person;

for person in teenagers do
person.display();

In GOP systems, the objects at the application are
programming language objects. These methods are
nonexistent at the database and run only using the
object representation of the data. The data from the
database have to be translated to the object repre-
sentation and the application code is run just like an
in-memory program. Methods are therefore dis-

SRINIVASAN AND CHANG 77

patched using the mechanisms in the programming
language.

ORDBMS:s store both methods and data within the
database and they are able to dispatch methods on
objects (ADTs) within the DBMS server. Method dis-
patching is based on the generic function model (call-
ing a function with the object as its first argument)
rather than the classical object model (which is based
on sending a message to the object). Methods can
also be used in queries, stored procedures, and user-
defined functions, as well as in application programs.
Executing methods at the server can be quite chal-
lenging since there is no access to the user terminal
from within the DBMS server. However, there have
recently been instances of stored procedures being
able to output hypertext markup language (HTML)
statements for displaying on a browser connected to
the World Wide Web portion of the Internet.

OODBMSs typically execute methods at the client since
these methods are written in a programming lan-
guage whose environment is available only at the cli-
ent. Most systems do not store methods in the da-
tabase.

Data access

Having discussed the various data modeling features
and associated issues, we next explain how applica-
tion objects can be created and stored and discuss
the support provided for navigational and ad hoc
query types of access to persistent data. In discuss-
ing these, we briefly mention the interaction between
client and server, particularly the method by which
objects are communicated between client and server.
Finally, we discuss some important application sup-
port items including schema evolution, integrity con-
straints, and triggers. Table 2 summarizes this dis-
cussion.

Creating and accessing persistent data. The best way
to support persistence is to do it in a way that is or-
thogonal to type (i.e., it is possible to create persist-
ent and transient objects of the same type in an ap-
plication). Typicaily, there are two main ways
(sometimes both are supported in the same system)
of adding persistence to objects of an instance, ei-
ther by overloading the new operator, or by requir-
ing that every class having persistent instances in-
herit from a common class whose definition and
implementation is provided by the database system.

In the operator-based approach, an overloaded
global new operator is used to create a class instance.

78 SRINIVASAN AND CHANG

Applications that need to create persistent instances
of a class will have to create objects using the system-
provided new operator. Example calls to create new
objects using the operator-based approach look like:

Ref(Employee) temp_emp = new Employee;
// The above is a transient employee object
Ref(Employee) pers_emp = new (myDB) Employee;

The first statement above (along with its comment
line) creates a transient object, while the second one
creates a persistent object in the database myDB. The
operator-based approach has the advantage that the
class definitions of the application remain unchanged
and hence all facilities available in the programming
language can be used as they exist. [t is possible that
existing applications for manipulating transient data
can be migrated to access persistent data with rel-
ative ease using this approach. The disadvantage here
is that the schema information must be somehow
transmitted to the OODBMS by translating from the
programming language version. OODBMS products
like ObjectStore and O2 use this approach for cre-
ating persistent data.

Inheriting from a common class is another popular
way of providing persistence. Many OODBMSs such
as Objectivity and Versant use this approach. GOP
systems such as VisualAge C++ Data Access
Builder also use this approach. In this approach, an
object is made persistent by the type of the object—in
other words, persistence is not orthogonal to type.
Inheriting from a common class has the advantage
that the schema information may be deduced from
the result of calling derived and redefined methods.
This in turn implies that certain methods have to be
implemented in every class that needs to contain per-
sistent instances but this is mitigated by the fact that
existing OODBMSs provide automatic generation of
application class definition files with the code for the
inherited methods that are generated automatically.
The application designer needs only to implement
the application methods for the class, since the da-
tabase-specific methods are generated automatically.
Unfortunately, however, this scheme almost always
results in multiple inheritance needed by the appli-
cation in order to merge the inheritance hierarchy
for the system with that of the application. Since mul-
tiple inheritance is not supported very well in many
object-oriented programming systems (it is rarely
used in practice), the result is a more complex and
less portable application.

Reading persistent data can be made virtually trans-
parent to the application in all three types of sys-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Table 2 Data access

Feature

Gateway-Based Object
Persistence (GOP)

Object-Relational
Database Management
System (ORDBMS)

Object-Oriented
Database Management
System (OODBMS)

Creating and
accessing

Supported (might not be
entirely transparent to

Supported (not
fransparent since

Supported (degree of
transparency depends

persistent data the application)

Navigation Can be supported by
transparently mapping
object accesses to
underlying database
operations
(prefetching/caching
needed for good
performance)

Ad hoc query facility Supported using data store
specific query language
(not integrated well with
object representation)

Object server vs Object server

page server

Limited support (complete
support might be
difficult to provide)

Schema evolution

Integrity constraints
and triggers

No support

Currently supported by

Excellent support

Object server

Supported

Strongly supported

application always has on individual product)

to take explicit action)

Supported efficiently by
joins (to be supported most products
efficiently using row

identification)

Supported but with

(impedance mismatch limitations

remains an issue)
Can be page server or
object server

Supported

No support

tems. Updating data, however, is another issue. In
a GOP system, updates are typically not transparent
and an application will need to inform the system
explicitly of objects that have been changed (some
encapsulation is possible here, for example, update
of relationships, but changing an atomic field like
an integer is impossible to encapsulate). In an
ORDBMS, updates are done using a separate
UPDATE statement and therefore are nontranspar-
ent. Finally, OODBMSs vary in their degree of trans-
parency, ranging from ObjectStore where updates
can be made completely transparent, to other sys-
tems such as Versant where an object has to be ex-
plicitly marked “dirty” by an application. In fact, the
ODMG-93 standard has a special interface defined
for marking dirty objects from an application.

Navigation. As mentioned at the beginning of this
paper, OODBMS development was driven by the ap-
plications that needed fast navigational access (e.g.,
verification and routing an integrated circuit might
be an extremely CPU-intensive operation that re-
quires fast access to component objects and other

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

component objects). Some of these OODBMSs (e.g.,
ObjectStore) provide extremely fast navigational ac-
cess to data by making use of operating system sup-
port for page faulting.'® Typically, the first access to
a data item in the database results in the item being
swizzled (resolution of a page fault condition) to an
in-memory representation and subsequent access to
the memory location is extremely fast. In some cases
such as ObjectStore, the data stored in the OODBMS
are identical in size and structure as the in-memory
structure and hence after the first access, subsequent
accesses to a data item are as fast as in an in-mem-
ory program. This excellent performance comes at
the cost of a tight integration of the application code
with the database client code that results in reduced
security. Fast navigational performance therefore
comes at a cost and application developers must be
aware of these trade-offs when using an QODBMS.

Navigation using a GOP system can be supported by
mapping object accesses to underlying accesses to
the databases that store the data. Naive algorithms
for navigation using a relational database could cause

SRINIVASAN AND CHANG 79

very poor performance (generating one SQL query
for every object access). GOP systems tackle this per-
formance problem using a two-fold strategy, (1) by
maintaining a large cache of application objects in
main memory, and (2) by providing facilities for
tetching (prefetching) objects before they are needed.
Such prefetching usually needs to be specified by the
application, thus ensuring that all of the objects
needed can be prefetched using one query.

Ad hoc query facility. Relational DBMSs have been
tremendously successful mainly due to the ad hoc
query language that they support (the SQL stan-
dard).” As we mentioned earlier, the SQL is differ-
ent from the programming languages used by appli-
cations and this causes an impedance mismatch
between the query and the applications.

A Gop system typically does not implement a new
query language on the object representation. Appli-
cations using GOP, therefore, tend to use the under-
lying data-store-specific query language (almost al-
ways SQL) for executing queries. The query works
on the underlying data model that is not object-ori-
ented and this does not work well with the applica-
tion object model. In other words, the application
is left with a worse impedance mismatch here than
exists in traditional relational DBMS systems.

An ORDBMS has excellent support for queries and
handles most of the work in optimization and index
management very well. Unfortunately, some imped-
ance mismatch still could remain since the applica-
tion data model might still be different from the da-
tabase data model. By moving as much of the
application into the ORDBMS using ADTs, user-de-
fined functions, and methods, applications can solve
this mismatch to a large degree. The problem, how-
ever, is that with client machines having enormous
caches and computing power, this server-centric ap-
proach might not be cost effective and might even
be unsuitable for highly interactive applications.

The query language supported by an OODBMS is an
extension of the object-oriented programming lan-
guage for which it is designed. Therefore, OODBMSs
mitigate the impedance mismatch by using the same
type system for ad hoc query and programming meth-
ods. Typically, OODBMS query languages do not obey
encapsulation rules and are allowed to access the
structure of the data. This is unavoidable since ad
hoc queries by nature require arbitrary computations
on the data that cannot be captured a priori using
a fixed set of methods. Unlike ORDBMSs that sup-

80 SRINIVASAN AND CHANG

port the dynamic creation of views, OODBMSs typ-
ically have no support for dynamic view creation. De-
rived attributes can, however, be implemented in a
more static manner using the inheritance hierarchy
and late binding. The support for queries varies sig-
nificantly between the various commercial OODBMS
products. Some of them until recently provided no
query language, or provided support for queries with
1o support for query optimization and index man-
agement, thus making query support virtually use-
less in practice. Other OODBMSs such as ObjectStore
restrict queries to semijoins as opposed to arbitrary
relational expressions supported by SOL—Object-
Store queries can only start on one root collection
and the result generated cannot generate new types
dynamically. ObjectStore, however, does provide
support for index management, automatic index
maintenance in the presence of updates, and query
optimization. Finally, OODBMSs such as 02 support
an unrestricted and powerful query language with
query optimization and index management. Of late,
the query languages provided by the various OODB
products are beginning to converge to the ODMG-
93-specified object query language (OQL) query stan-
dard, which unfortunately does not seem to be fully
compatible with the SQL standard.

Object server versus page server. In a client/server
architecture, there is a division of labor between the
client and the server, and database management sys-
tems need to make use of the resources available at
the client and the server efficiently. A relational
DBMS client accesses data from the server using a
mechanism known as query shipping, shown in Fig-
ure 8. In query shipping, the client sends SQL que-
ries to the server. The server, on receiving the query,
optimizes the query, picks a suitable access plan mak-
ing use of any available indexes, and executes the
query. The result of the query is a set of relational
tuples that are returned to the client. The client then
processes the data and initiates further queries if nec-
essary. The tuples returned from the server to the
client are first-normal-form relations except for large
objects (e.g., CLOB, BLOB).

The availability of relatively inexpensive workstations
with powerful processors and large amounts of mem-
ory has resulted in driving computer systems from
a server-centric model to a more balanced workload
distribution between the client and server. OODBMSs
have been affected by this trend and make a differ-
ent trade-off between the client and the server re-
sources than the relational DBMS systems do. The
typical OODBMS architecture results in more work

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 8 Query shipping

CLIENT . .
7 -
PROGEAMMING == > RELATIONAL
a DBMS
INTERFACE
RELATIONAL TUPLES | SERVER
R
Figure 9 Object server architecture

CLIENT OBJEQ;TQ SERVER

APPLICATION PROGRAM

OBJECT CACHE MANAGER

e

1 r_.___‘*w
OBJECT CACHE MANAGER

FILE AND INDEX MANAGER

COMMUNICATION LAYER %+

== ==u PHYSICAL O
L

being offloaded from the server to the client than a
typical relational DBMS. In many OODBMSs (e.g., Ob-
jectStore), all but the essential jobs of storage man-
agement, concurrency, and recovery is offloaded to
the client. The data (including those in secondary
access structures like indexes) are shipped to the cli-
ent that possesses all the intelligence to execute
queries, methods, etc. OODBMSs, therefore, perform
data shipping as opposed to the query shipping done
in relational DBMSs. Data shipped between the cli-
ent and the server can be either objects (i.e., the
server provides objects to the client) or pages (where
the server provides pages to the client that contain
objects without knowing what objects are contained
in the page). We will now explain the page server
and object server architectures in some more detail.

The object server architecture is illustrated in Fig-
ure 9. An object server can either receive requests
for a single object (using, for instance, an object iden-
tifier) or a set of objects using a query. As shown in

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 9, the communication between the client and
the server is based on objects, and object caches can
be maintained on both the client and the server, thus
making use of the availability of inexpensive and
abundant memory. The objects themselves are even-
tually stored on a disk clustered physically into pages
but this is completely managed at the server with the
client being virtually unaware of this representation.

The object server architecture has the advantage that
queries, and more importantly methods, can be run
on both the client and the server. This means that
the communication between the server and the cli-
ent can be minimized by using auxiliary data struc-
tures such as indices to evaluate queries at the server.
Locking and constraint management are simplified
since these critical tasks can be performed at the
server. Robust authorization and security of the sort
implemented in relational DBMSs can be imple-
mented in an object server architecture—in fact, a
relational DBMS can be thought of as an object server

SRINIVASAN AND CHANG 81

Figure 10 Page server architecture

-
-

CLIENT

SERVER

APPLICATION PROGRAM 50!

OBJECT CACHE MANAGER mr= ==

FILE AND INDEX MANAGER 7- - -

—— i
» | PAGE SERVER LOCK/ALOG

. LY
COMMUNICATION LAYER ‘ r}

that serves primitive objects (first-normal-form
tuples).

In contrast, however, object servers have many dis-
advantages making them hard to implement. For in-
stance, query processing is complicated in the pres-
ence of updates to objects— either the changed data
on a client have to be flushed to the server before
executing any query on the server, or queries have
to be executed at both the client and the server and
the results merged. The former strategy results in
poor performance and makes caching virtually use-
less in the presence of updates, while the latter strat-
egy results in all of the hard problems associated with
distributed-query processing. When objects exist on
both the server and the client, there is a practical
problem related to the object-oriented programming
language used to implement method code. Virtually
all of the code written in object-oriented program-
ming languages needs a run-time environment to ex-
ecute it. Running methods at the server means that
the method code has to be stored in the DBMS and
the DBMS has to understand the run-time require-
ments of all of the programming languages whose
objects are stored in the database. Finally, since ob-
jects are stored on pages in a disk at the server, an
object server has to pack and unpack these objects
for transferring them to and from the clients. This
could result in more work at the server resulting in
bottlenecks (see Reference 13 for a study on three
alternative client/server strategies for OODBMSs). Per-
formance of an object server might be affected by
having to ship complete objects across the interface,
which could result in very poor performance for large
objects.

82 SRINIVASAN AND CHANG

MANAGER

PHYSICAL /O

An alternative to the object server architecture is a
page server architecture (shown in Figure 10) where
the unit of transfer between a client and a server is
pages. The server in a page server architecture per-
forms minimal functions like concurrency, recovery,
and storing pages. Objects exist only at the client.
On comparing the client of the page server with that
of an object server (Figure 9), it is clearly seen that
a server in the page server has much less function-
ality than a server in an object server and hence is
much simpler to implement.

As might be expected, a page server simplifies the
implementation of the DBMS by keeping the server
tfunction low, and good performance can be achieved
by a suitable clustering of objects to pages. A page
server minimizes the load on the server and such a
system architecture therefore enables a server to han-
dle more clients than otherwise before becoming sat-
urated.

A page server has some disadvantages in that clients
can become rather large in size since all database
functionality has to be present at the client. Messages
for accessing small objects might be larger in size
than necessary (since a page is the smallest unit of
transfer). More data than necessary might be trans-
ferred from the server to the client to compute the
result of queries since the queries cannot be shipped
to the server for remote execution. There are fur-
ther implementation complexities to providing sup-
port for object locking in a page server. In spite of
the above disadvantages, many OODBMSs use page
servers since the access characteristics for the ap-
plications in this market can be best served using a

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

page server. The impedance mismatch that exists us-
ing an object server makes it unsuitable for this class
of applications. For a more detailed comparison of
the various client/server architectures, see Reference
13.

GOP systems and ORDBMSs can be considered as ob-
ject servers, but OODBMSs can be both object and
page servers. Examples of page server architectures
include ObjectStore and O2. An example of an ob-
ject server architecture is Versant (which uses
prefetching heavily in order to minimize the over-
head of transferring many small objects between the
server and the client).

Schema evolution. All relational DBMSs support
schema evolution. Schema evolution involves two rel-
atively separate parts, the first involves changing the
schema, and the second involves evolving existing
data that are in the form of the old schema to their
new representation based on the modified schema.
Since relational DBMSs have a simple data model (no
new user-defined types are allowed) and since the
complexity of schema evolution is directly propor-
tional to the complexity of the schema, schema evo-
lution support is relatively simple to provide in a re-
lational DBMS. Typically, schema evolution can be
done dynamically on a relational DBMS by changing
the catalog definitions of relations by using special
operations that can be executed in the same way as
an SOL command (note that special authorization
might be needed for modifying the catalog). We shall
see that when we move to object-oriented schemas,
this support becomes somewhat more complex to
provide and also harder to use for an application pro-
grammer or user.

In a GOP system, schema evolution support might
be extremely limited, however, schema mapping evo-
lution (without change in the underlying data) might
be easy to achieve. In other words, the same under-
lying data can easily be viewed using a different ob-
ject model by just creating a new schema mapping
and its accompanying application-specific generated
code.

ORDBMSs can be expected to provide strong support
for schema evolution of table definitions. Evolving
complex types like ADTs and collections could cause
some problems, needing user intervention to migrate
old objects to their new representation.

In OODBMSs, the data model is complex (typically,
it has the same features as the data model of an ob-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ject-oriented programming language like C++ or
Smalltalk). We will not go into great detail on schema
evolution support except to point out that since the
type system of an object-oriented programming lan-
guage is complex, schema evolution in an OODBMS
cannot be completely automated as in a relational
DBMS. In OODBMSs, user intervention might be
needed to evolve objects belonging to a user-defined
type from the old representation to a new one. For
a detailed discussion of the issues involved in schema
evolution support for OODBMSs, see Reference 16.

Integrity constraints and triggers. As stated earlier,
the interface (see Figure 8) that separates the data
and data model at the relational DBMS server from
the data and data model of the application causes
an impedance mismatch. However, this strict sep-
aration between client and server has advantages like
the strict protection of security and integrity and gives
the DBMS full control of its data. Relational DBMSs
use this simple client/server interface along with
views to implement a robust authorization and se-
curity mechanism.

In order to minimize the crossing of the high-cost
interfare between the client and server, relational
DBMSs provide stored procedures to perform com-
plex computations including muitiple SOL statements
within the DBMS. Stored procedures are written by
“trusted” application developers and are executed
by the DBMS at the server in order to maximize per-
formance. Another class of support provided by re-
lational DBMSs includes automatic execution of trig-
gers and integrity constraints. Triggers, as their name
indicates, are automatically triggered by updates to
the database and can call stored procedures to per-
form complex tasks automatically within the DBMS.
Integrity constraints are constraints that maintain
consistency between foreign keys and the data that
the foreign keys point to—integrity constraints can
therefore be thought of as a special case of the more
general triggers.

We are not aware of any GOP systems that provide
support for integrity constraints and triggers.
ORDBMSs, being extensions to relational systems, pro-
vide excellent support for integrity constraints and
triggers. OODBMSs provide virtually no support for
integrity constraints and triggers.

Data sharing

In this section we describe the support provided for
applications by the various DBMSs for sharing data

SRINIVASAN AND CHANG 83

Table 3 Data sharing

Feature Gateway-Based Object

Persistence {GOP)

Object-Relational
Database
Management
System (ORDBMS)

Object-Oriented
Database Management
System (OODBMS)

ACID transactions Support limited by the
underlying data store
(cache management
might cause
complications)

Crash recovery Recovery handled by the
backend data store
(cache is not recovered)

Advanced transaction model No support

Security, views, and integrity

underlying data store

Support determined by the

Supported Supported

Strongly supported Supported (degree of
support varies with
individual product)

No support Supported in some products

Strongly supported Limited support

ACID = atomicity, consistency, isolation, durability

between concurrent users, crash recovery, advanced
transaction models (long transactions, versioning,
nested transactions), and distributed access to data
(see Table 3).

ACID transactions. Support for ACID (atomicity,
consistency, isolation, and durability) transactions in
a GOP system might be limited since the object cache
maintained at the application is loosely coupled to
the DBMS (for example, it might not be possible to
use two-phase commit between the application and
the DBMS). Therefore, unless all data in the cache
are invalidated at the end of each transaction, con-
sistency cannot be achieved. In contrast a DBMS
maintained cache would only require the log to be
flushed to the database at the end of a transaction;
the cache at a client continues to be valid. Locking
in a GOP system depends on what is supported by
the underlying database.

ORDBMSs should continue to leverage the extremely
high transaction rates achieved by relational DBMS
systems for “business” transactions. ORDBMSs should
support all the traditional lock types available in re-
lational DBMS (tuple, page, and table locks). In ad-
dition many relational DBMS systems also use ex-
tremely sophisticated locking techniques on indexes
to avoid two-phase locking on indexes that might
cause a bottleneck due to false data sharing.

OODBMSs also support the conventional type of short
transactions termed ACID transactions.!” The trans-
action rates supported by the OODBMSs do not yet

84 SRINIVASAN AND CHANG

approach the high rates achieved by relational DBMSs
on standard transaction processing benchmarks.
OODBMSs do support various types of locking. The
standard lock types are page locks and object locks
(also known as record locks in RDBMSs). Locks on
composite objects are supported in some systems
(e.g., ITASCA), as well as a special lock that locks the
extent of a class. (All instances of the class are locked
—this is analogous to the table lock in a relational
DBMS.) In addition, OODBMSs also support advanced
types of locks such as notify locks, where a holder of
the notify lock is notified if another transaction locks
the item in a conflicting mode. These new types of
locking modes are made necessary by the new types
of applications that are typically supported by
OODBMS:s.

Locking performance is affected by the granularity
of the lock (e.g., page versus object or tuple) and
how it relates to the granularity of the data transfer
between the client and the server (page versus ob-
ject). Typically, implementation is simpler and per-
formance is better if the locking granularity matches
the granularity of data transfer between the client
and the server. For more on how locking and cach-
ing interact, refer to Reference 16.

Crash recovery. Recovery from crashes as well as
more catastrophic events like media failure are well-
known characteristics of an industrial strength DBMS.
GOP systems provide whatever support is available
in the underlying data store. ORDBMSs, by virtue of
being extensions of the highly robust relational DBMS,

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

will be extremely strong in this area. OODBMSs pro-
vide recovery support but this support has not yet
reached the robustness found in commercial rela-
tional DBMSs (which provide more advanced features
such as media recovery).

Advanced transaction models. One of the major sup-
port items provided by OODBMSs that is not sup-
ported very well by existing relational DBMSs (or GOP
or ORDBMSs) is support for advanced transaction
models. A model for CAD transactions was described
first in Reference 18 and a lot of subsequent work
has been done in that area. In these systems, appli-
cations access large amounts of data (e.g., a VLSI, or
very large scale integration design database), and
tasks take a long time to complete (e.g., it might take
a week to design a register). Short-term locking of
the type usually done for ACID transactions is insuf-
ficient since the database will be inaccessible to other
users for long periods of time. In addition, logs might
be filled up during the running time of long-running
tasks and, typically, DBMSs need to quiesce the sys-
tem (eliminate any transactions) to take care of such
situations. Furthermore, in these advanced applica-
tions, rolling back a task (resetting to before the task
executed) might be a normal operation.

Typically, 0ODBMSs handle such long-running tasks
by providing support for versioning objects. Typically,
objects can be versioned, versions built into config-
urations, and a concept of work space is implemented
to access the latest version in a configuration. Ver-
sioning, by itself, is a very complex topic and the
reader is directed to Reference 19 for a detailed look
at versioning issues in a CAD system.

Object-oriented systems provide various levels of
support for versioning. All of these systems provide
support for versioning at the object level, some of
them at the composite object level (e.g., ObjectStore,
Objectivity, Versant), and allow access to a specific
version or even multiple versions in case merging two
versions is needed. In some cases, entire configura-
tion support is provided (e.g., ObjectStore), and in
other cases, primitives are supported to enable users
to build configuration support (e.g., Objectivity).
Most systems support both static access to a partic-
ular version of an object (e.g., version 1.0 of the
source code) as well as dynamic access to a current
or latest version of the object (e.g., the latest released
version of a product).

Security, views, and integrity. The traditional rela-
tional DBMS support for security is extremely strong.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

In particular, relational DBMSs (and, therefore,
ORDBMSs) support robust security mechanisms us-
ing the view mechanism, and by ensuring that the
entire application executes in its own address space
apart from the DBMS server address space (except
for stored procedures that execute in the server ad-
dress space for performance reasons). In contrast,
OODBMSs, by using the page server concept, allow
clients to cache data for acceptable performance.
They do not typically have support views at all and
the protection is at a coarse level of granularity (typ-
ically, at the page or even segment level).

Conclusions

This paper has discussed in some detail the features
used in object-oriented applications and how well
these features are supported in the three classes of
object persistence systems. In our discussion, we have
classified the systems into three categories:

1. The gateway-based object persistence (GOP) ap-
proach, which involves adding object-oriented
programming access to persistent data stored us-
ing traditional non-object-oriented data stores
like relational databases, hierarchical databases,
or flat files

2. The object-relational DBMS (ORDBMS) approach,
which involves enhancing the extremely popular
relational data model by adding object-oriented
modeling features like abstract data types to it

3. The object-oriented DBMS (OODBMS) approach
(also called the persistent programming language
approach), which involves adding persistence sup-
port to objects in an object-oriented programming
language like Smalltalk or C+ +

We now conclude by providing a short summary of
the three approaches to object persistence and what
general classes of applications are best suited to each
of these approaches.

The GOP approach is a “middleware” approach, be-
ing both application- and data-independent. It is a
very good approach for integrating diversified en-
terprise information systems and providing a com-
mon framework for building object-oriented appli-
cations. It is also extremely good for managing
shared, distributed, heterogeneous, and language-
neutral persistent business objects. One main advan-
tage of building a GOP application is that legacy ap-
plications continue to work on data that are also
being accessed by the new application. While GOP
is extremely good for providing object-oriented ac-

SRINIVASAN AND CHANG 85

cess to legacy non-object-oriented data, itis not very
good for storing arbitrarily complex objects in a leg-
acy database system. As we pointed out earlier, there
are some disadvantages (bad performance and com-
plex application logic) to blindly mapping object-ori-
ented models to non-object-oriented databases. GOP
applications can, however, access other OODBMSs and
can store complex objects natively in them while con-
tinuing to access and update data in legacy databases.
This field is still in the formative stage and has many
technical challenges lying ahead. Some critical chal-
lenges include the integration of object persistence
with object query, object transaction and workflow,
and object security. The OMG group is in the pro-
cess of specifying standards in this area. Applications
that have an overwhelming need to access legacy data
and heterogeneous data access, while allowing leg-
acy applications to continue to work on the legacy
data, are best suited for using GOP systems.

The ORDBMS approach is a bottom-up approach, be-
ing data (or database) centric. It is the best approach
for extending the usefulness of existing, legacy data
stored in relational databases. It has the best hope
for addressing the issues of impedance mismatch and
performance penalty that one encounters when ac-
cessing relational data from an object-oriented pro-
gramming language. It, however, has the drawback
of focusing only on data stored in relational data-
bases or whatever in the future can be stored in ex-
tended relational databases. ORDBMSs address the
impedance mismatch problem in relational DBMS by
providing more and more support for the data mod-
eling features of major object-oriented programming
languages. However, the data model that is used by
an application can be close but not identical to the
data model used in the DBMS to store the applica-
tion data. ORDBMSs make up for this problem by pro-
viding complex query capability and rich support to
execute portions of the application within the da-
tabase server. In addition, they have the best robust-
ness, concurrency, and crash recovery characteris-
tics among all three classes of systems. Applications
that need extremely good query support, excellent
security, integrity, concurrency, and robustness, and
high transaction rates are best candidates for using
an ORDBMS.

The OODBMS approach is a top-down approach, be-
ing application (or programming language) centric.
It is the best approach for storing application ob-
jects, e.g., presentation or view objects. It has the best
hope for providing seamless persistence, from a pro-
gramming language point of view. OODBMSs avoid

86 SRINIVASAN AND CHANG

the impedance mismatch by providing extensive sup-
port for the data modeling features of one or more
object-oriented programming languages. In an
OODBMS, therefore, the data model that is used by
an application is identical to the data model used in
the DBMS to store the application data. However,
OODBMSs do not provide as good a query facility as
ORDBMSs. Additionally, the transaction rates sup-
ported by the OODBMSs do not yet approach the high
rates achieved by relational DBMSs on standard trans-
action processing benchmarks. Applications that
need excellent navigational performance, that donot
have complex query, and that are prepared to sac-
rifice some integrity and security for achieving good
performance are best suited for using OODBMSs.

In the future, it is likely that we will see the contin-
ued presence of OODBMSs that address the needs of
specialized markets, the continued prominence of
ORDBMSs that address the needs of traditional com-
mercial markets, and the growing importance and
prevalence of the gateways—integrated with object
query, object transaction and workflow, and object
security (i.c., a full-function object middleware or
multidatabase). It therefore becomes extremely im-
portant for an object-oriented application developer
to choose the right type of system for storing objects.
As evidenced by our discussion of the various issues,
this task could be a fairly daunting one. We hope
that our discussion provides valuable insight to de-
velopers to make it easier to choose the right per-
sistent system for an object-oriented application.

Acknowledgments

Our thanks to the reviewers and the editor for giv-
ing us valuable comments.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Informix, Inc., Oracle,
Inc., Sybase, Inc., Object Design, Inc., Persistence Software, Inc.,
UniSQL, Inc,, Servio Corporation, Subtle Software, Inc., Objec-
tivity, Inc., Ontos, Inc., O2 Technology Inc., Itasca, Inc., Matisse,
Inc., Sun Microsystems, Inc., or Versant Object Technology.

Cited references

1. C. Booch, Object-Oriented Analysis and Design with Applica-
tions, second edition, The Benjamin/Cummings Publishing
Company, Redwood City, CA (1994).

2. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, Object-Oriented Modeling and Design, Prentice
Hall, Englewood Cliffs, NJ (1991).

3. B.Stroustrup, The C+ + Programming Language, second edi-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

tion, Addison-Wesley Publishing Company, Reading, MA
(1993).

4. W, Lalonde, Discovering Smalltalk, The Benjamin/Cummings
Publishing Company, Redwood City, CA (1994).

5. J. Gosling and H. McGilton, “The Java Language Environ-
ment: A White Paper,” Sun Microsystems, http:
/www javasoft.com/whitePaper/javawhitepaper_Lhtml
(1994).

6. E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM 13, No. 6 (June
1970).

7. ISO-ANSI, Database Language SQL, ISO/IEC 9075:1992
(1991); American National Standards Institute, 11 West 42nd
Street, New York, NY 10036.

8. B. Reinwald, T. J. Lehman, H. Pirahesh, and V. Gottemuk-
kala, “Storing and Using Objects in a Relational Database,”
IBM Systems Journal 35, No. 2, 172-191 (1996).

9. OMG, CORBAservices: Common Object Services Specifica-
tion, Revised Edition, OMG Doc. No. 95-3-31 (March, 1995).
Object Management Group, Inc., 492 Old Connecticut Path,
Framingham, MA 01701.

10. ISO-ANSI, Working Draft Database Language SQL/
Foundation (SQL3), Part 2 X3H2-93-329, DBL R10-004, Jim
Melson, Editor (August, 1994); American National Standards
Institute, 11 West 42nd Street, New York, NY 10036.

11. The Object Database Standard: ODMG-93, Release 1.1, R. G.
G. Cattell, Editor, Morgan Kaufmann Publishers, Inc., San
Mateo, CA (1994).

12. R. B. Murray, C+ + Strategies and Tactics, Addison-Wesley
Publishing Company, Reading, MA (1993).

13. F.Bancilhon, C. Delobel, and P. Kannellakis, Building an Ob-
Jject-Oriented System: The Story of 02, Morgan Kaufmann Pub-
lishers, Inc., San Mateo, CA (1992).

14. C.Lamb, G. Landis, J. Orenstein, and D. Weinreb, “The Ob-
jectStore Database System,” Communications of the ACM 34,
No. 10 (October 1991).

15. C.Lau, Object-Oriented Programming using SOM and DSOM,
Van Nostrand Reinhold Publishing Company (1994).

16. M.J. Carey, M. J. Franklin, M. Livny, and E. J. Shekita, “Data
Caching Tradeoffs in Client-Server DBMS Architectures,”
Proceedings of the ACM SIGMOD Conference (1991).

17. 3. Ullman, Principles of Database and Knowledge-Based Sys-
tems, Volumes 1 and 2, Computer Science Press, Rockville,
MD (1989).

18. F. Bancilhon, W. Kim, and H. Korth, “A Model of CAD
Transactions,” Proceedings of the International Conference on
Very Large Databases (1984).

19. R. H. Katz and T. Lehman, “Database Support for Versions
and Alternatives of Large Design Files,” IEEE Transactions
on Software Engineering 10, No. 2 (1984).

General references

C. Alfred, “Maximizing Leverage from an Object Database,” IBM
Systems Journal 33, No. 2, 280-299 (1994).

J. Banerjee, W. Kim, H. J. Kim, and H. F. Korth, “Semantics and
Implementation of Schema Evolution in Object-Oriented Data-
base Systems,” Proceedings of the ACM SIGMOD Conference
(1987).

J. M. Cheng, N. M. Mattos, D. D. Chamberlin, and L. G.
DeMichiel, “Extending Relational Database Technology for New
Apbplications,” IBM Systems Journal 33, No. 2, 264-279 (1994).

F. Leymann and W. Altenhuber, “Managing Business Processes

{BM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

as an Information Resource,” IBM Systems Journal 33, No. 2,326 -
348 (1994).

M. Schlatter, R. Furegati, F. Jeger, H. Schneider, and H. Streck-
eisen, “The Business Object Management System,” IBM Systems
Journal 33, No. 2, 239-263 (1994).

Accepted for publication August 23, 1996.

V. Srinivasan IBM Software Solutions Division, Santa Teresa Lab-
oratory, 555 Bailey Avenue, San Jose, California 95141. Dr. Srini-
vasan is a member of the Database Technology Institute at the
IBM Santa Teresa Laboratory. His interests include object da-
tabases, object-relational gateways, internet access to databases,
and concurrency control and recovery algorithms for indexes. At
IBM, he has contributed extensively to the design and implemen-
tation of ObjectStore/DB2 Gateway, ObjectLite, and DB2ZWWW,
Dr. Srinivasan received his B. Tech. degree in computer science
from the Indian Institute of Technology, Madras, and his M.S.
and Ph.D degrees in computer science from the University of Wis-
consin, Madison.

Daniel T. Chang IBM Software Solutions Division, Santa Teresa
Laboratory, 555 Bailey Avenue, San Jose, California 95141 (elec-
tronic mail: dtchang@vnet.ibm.com). Dr. Chang is a member of
the Database Technology Institute at the IBM Santa Teresa Lab-
oratory. His current interests focus on network data computing,
particularly mobile data agents, Java mobile agents, and Java ob-
ject data access. He was the IBM Software Solutions Division rep-
resentative to the Object Management Group (OMG) Techni-
cal Committee. He coauthored the OMG Persistent Object
Service, Relationships Service, Compound Life Cycle Addendum
to the Life Cycle Service, and Query Service. He has contributed
extensively to the design of the VisualAge C++ Data Access
Builder/Class Library and the DataBasic Data Access Class Li-
brary. Previously, Dr. Chang worked at the IBM Palo Alto Sci-
entific Center, developed a concurrent object-oriented program-
ming system named CORAL, and made major contributions to
the IBM expert systems effort. He has filed five patents in object
technology. Dr. Chang received a Ph.D. in computational chem-
istry from the University of Chicago. He has published several
papers on object technology, expert systems, software engineer-
ing, and computer simulation.

Reprint Order No. G321-5635.

SRINIVASAN AND CHANG 87

