
The effects of the 
business model 
on object-oriented 
software development 
productivity 

Unless the business  model that governs software 
production adjusts to new  technology, it is 
unlikely that an investment in  the technology will 
result in real productivity benefits.  Commercial 
development  always  takes  place in  the context of 
a business  model,  and in  that context an 
understanding of how  business constraints 
influence commercial software development is 
imperative. As software markets  become  more 
competitive and  business  pressures shorten 
software development  cycles,  improved software 
development productivity continues to be a 
major  concern in  the software industry. Many 
believe that new software technology, such as 
object-oriented development,  provides a 
breakthrough solution to this problem. 
Unfortunately, there is little quantitative evidence 
for this belief. In this paper we explore the 
relationship between the business  model  and the 
productivity that a software development 
methodology  can  achieve in a commercial 
environment  under that model. We first examine 
empirical data from several  commercial products 
developed  using object-oriented methods.  The 
results indicate that object-oriented development 
may not perform any better than “procedural” 
development  in  environments that lack  incentives 
for early completion of intermediate project 
tasks. We then model  and simulate the impact of 
the software task-completion incentives  and 
deadlines  on the productivity that might be 
expected from a technology with high- 
performance potential. We show  how  and  why 
some  common  business practices might lower 
project productivity and project completion 
probability. We also  discuss to what extent poor 
software process control and (im)maturity of the 
technology  compounds the problem. 

by T. E. Potok 
M. A. Vouk 

I t is  widely  believed that object-oriented (00) de- 
velopment l has  considerable potential for  increas- 

ing software development productivity. The reasons 
for the gains range from reuse, through better prob- 
lem understanding, to  better (less complex and less 
costly)  designs and implementations. However, there 
is little quantitative evidence that productivity of real- 
life object-oriented software development is indeed 
consistently better  than  that of “classical” or  “pro- 
cedural” software development. Furthermore, most 
studies related to object-oriented development pro- 
ductivity do not consider it  in conjunction with the 
business practices under which the software is being 
developed. According to Jacobson et al.: 

A business model shows  what the company’s  envi- 
ronment is and how the company acts in relation 
to this environment. By environment we mean ev- 
erything the company interacts with to perform 
its  business  processes,  such  as customers, partners, 
subcontractors and so on. It shows employees at 
every  level  what  must be done  and when and how 
it should be done.’ 
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Business models tend to focus on cost and calendar 
events (e.g., quarterly reports) and tend to form 
deadlines that  are governed by marketing and com- 
petitive pressures, often regardless of the real soft- 
ware engineering  capabilities of the organization. On 
the  other hand, software engineering development 
models tend  to focus  mainly on the complexity of a 
software project and the capabilities of the devel- 
opment teams and the software methodologies. In 
a meaningful evaluation of project viability  we need 
to consider both in an integrated fashion. 

In this paper we model and quantitatively explore 
the relationship between the business  incentives and 
deadlines, and the productivity that a potentially  high 
productivity  software  development  methodology  can 
achieve  in a commercial  environment. We  use object- 
oriented software development as a specific  exam- 
ple of such a technology, and we develop our mod- 
els  and  analyses based on empirical information we 
have collected about object-oriented development 
as practiced in a commercial development environ- 
ment. 

Related work. Lewis et al. performed an experiment 
with undergraduate software engineering students 
to study the effects of reuse.3 Based on their tests 
of the recorded productivity metrics, they  concluded 
that  the object-oriented paradigm can improve pro- 
ductivity by about 50 percent when reuse4 is present. 
However, they did not find  any statistically signif- 
icant evidence that  the object-oriented paradigm has 
higher productivity than procedural methods when 
reuse is not  a factor. Melo et al. conducted an ex- 
periment with graduate  students  that resulted in 
seven projects ranging  in  size from 5000 to 25 000 
lines of code.5  The projects were developed using 
a waterfall process model, object-oriented design, 
C+ +, and varying  levels of reuse. Their results sup- 
port the conclusion that reuse rates can increase pro- 
grammer productivity  as  much  as  two to three times.' 
In general, optimistic economic models of reuse in- 
dicate that break-even reuse levels  may be as low as 
10-20 percent,' while  pessimistic models show that 
break-even levels may be  difficult to achieve  even un- 
der very  high  levels  of reuse.' 

There is  also evidence that different development 
methodologies have  differing  effects on the software 
development process. For example, Boehm-Davis 
et al. report on a comparison of Jackson program 
design, object-oriented design, and functional de- 
composition, using professional programmers.' 
Some of the insights from the study are  that Jack- 
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son's method and object-oriented methodologies 
produce more complete solutions, require less time 
to design and code a problem, and produce less  com- 
plex  designs than functional decomposition. How- 
ever, a quantitative comparison of productivity  as- 
sociated with  different methodologies was not given. 
Zweben et al., again in an experiment with graduate 
and undergraduate students, show that in Ada lay- 
ering and encapsulation (an object-oriented trait) 
may reduce development effort. '" 
There are many other studies  and  books that describe 
the benefits of the object-oriented approach in gen- 
eral""8 and of the value of reuse in p a r t i c ~ l a r . ~ ~ " - ~ ~  
However, there are very  few, if any,  convincing quan- 
titative studies that focus on the productivity related 
to software developed for commercial use  by pro- 
fessional programmers who  use object-oriented 
methods. A recent paper by Hansen indicates that 
commercial software development should always be 
considered in the context of its  business  model.24 Our 
own work, discussed  in more detail in later sections, 
supports this.25,26 

Approach. In this  study  we  focus on the effects that 
some business practices may  have on the productiv- 
ity observed in software projects. We  used empir- 
ical information to identify the effects and to help 
formulate a detailed simulation  model of interactions 
among an iterative software development process, 
its  maturity,  and the applied  business  model.  We then 
used  this model to explore how business constraints 
can  affect  productivity and market timeliness when 
potentially high-productivity methodologies, such as 
object-oriented development, are used. 

In the next section we present some empirical data 
that relate business practices and software develop- 
ment productivity. In a  later section we formulate 
a simulation model of the interactions, then use the 
model to study the impact of business-imposed in- 
centives and deadlines on the software development 
productivity that might be expected from a relatively 
new high-performance software technology. Sum- 
mary and conclusions are given  in the last section. 

Empirical  information 

We began our study  with empirical information ob- 
tained from a large commercial software develop- 
ment organization. We describe the information in 
the vocabulary of the organization, and we start this 
section by defining the terms needed to  do so. We 
also define the metrics we used  in our analysis." 
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Figure 1 Task completion delay 

Metrics and definitions. In the context of this paper 
we define  productivity in terms of  new and changed 
product lines of code (LOC), but with an understand- 
ing that  the effort (or time) expended includes many 
activities in addition to coding that  are necessary for 
developing a viable commercial product. A software 
team may consist of one  or more software profes- 
sionals, not all of whom need to be engaged in soft- 
ware coding  and testing activities.  We define aver- 
age individualproductivity of a software professional 
on the team in LOC per person-month. In contrast, 
to focus on the calendar-time nature of the  market- 
ing requirements and other business-related factors, 
we express  software teamproductivity in terms of LOC 
or thousands of LOC (KLOC) per calendar month. 

A software product is a commercially  available soft- 
ware system that includes packaged software, doc- 
umentation, and support. It is  thoroughly tested, and 
its quality  is certified prior to release. It can be de- 
veloped using  classical, or procedural** methods or 
object-oriented methods. In general terms, each de- 
livery of a software product is considered a gener- 
ation. Specifically, a software product is referenced 
by version and release. We will refer to second and 
later versions or releases as follow-on versions or  re- 
leases. A software product schedule directs the ex- 
ecution and completion of a series of tasks, from the 
initial  planning  stages through the final product ship- 
ment. A task or activity is a unit of work that requires 
a finite amount of time to complete. Individual tasks 
can be viewed  as  individual segments of a project. 
The significant  events  in the schedule are called mile- 
stones. In  the context of an iterative process (such 
as the  one described in the next subsection), we dis- 
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tinguishproject iterations as collections of individual 
tasks. 

In our experience, the statistic that best highlights 
the influence of business-related factors on software 
development tasks  is the completion of tasks rela- 
tive to a planned deadline. We  call  it task  comple- 
tion delay (see Figure 1). This value  is the difference 
between the planned end date and the actual end 
date for a given  task. A negative  value indicates that 
the task  finished  early, a zero value indicates the task 
was on schedule, and a positive value shows that  the 
task finished late. We use  this variable to eliminate 
differences  in  individual task start  and completion 
calendar dates when we compare tasks  as a  popu- 
lation. 

Software and business processes. The empirical data 
were collected at the IBM Software Solutions Lab- 
oratory in Research Triangle Park, North Carolina. 
The laboratory was certified ISO 90OOz9 in  1994, and 
it has consistently  received  high marks in internal 
assessment against the Malcolm  Baldrige3' criteria. 
The general model that drives its software develop- 
ment recognizes two major software product subcat- 
egories: versions and releases. A new  version  is  typ- 
ically quite large and contains a significant product 
enhancement, or change in functionality. A version 
is ordinarily followed by one  or more maintenance 
releases, usually  much smaller than  a version, that 
contain defect fixes and minor enhancements. The 
calendar-time duration for the development of ver- 
sions  and releases is  strongly  driven by market forces. 
Versions tend  to take longer than releases, but are 
within the 18- to 24-month time frame common to 
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Figure 2 The  development  process  used for a second-generation object-oriented project 

the industry today. 31 Release development will nor- 
mally be at least 9 to 12 months. Reasons for this 
include distribution costs,  arrival rate of release-type 
fixes and changes, and even user-perceived quality 
(e.g., scheduling a release very soon after a version 
can give the impression of quality problems). While 
all  new development must be completed with a lim- 
ited number of personnel, existing projects will  have 
an established team. Typically an effort  is made to 
maintain (or even increase) the size of the  team, be- 
cause it  may not be cost-effective to dismantle it be- 
tween versions. Therefore, it is not unusual to have 
a large version developed with  tight resource and 
time constraints, then a smaller follow-up mainte- 
nance release developed over a more relaxed sched- 
ule  using the same team. 

The development of both versions and releases is 
subject to frequent high-level  reviews of their status 
against dates for key development milestones estab- 
lished  at the beginning of the product cycle. The prog- 
ress  toward these dates is  reviewed  regularly and in 
detail, and schedule slips against any major mile- 

stones are strongly discouraged. Detailed project 
schedules are required at  the beginning of the prod- 
uct  development  cycle, and they  trigger  business pro- 
cesses,  including funding, planning, marketing, sup- 
porting, and certification of the quality of a product. 
The most prevalent software development process 
followed  in the organization is called “iterative.” The 
iterative process is a variant of a combination of evo- 
lutionary prototyping” and “successive versions.”33 
In theory, each software “iteration,” is  fully planned, 
designed, coded, and tested before work  begins on 
the next i terati~n.’~ The duration and amount of 
code produced for each iteration is approximately 
the same. A typical project activity diagram is  illus- 
trated in Figure 2. 

Figure 2 shows a high-level PERT (program evalu- 
ation and review technique) diagram of the process 
used for one of the commercial products developed 
at the laboratory. The product was a second-gener- 
ation object-oriented “port” between platforms. In 
this diagram, edges represent activities and have du- 
rations associated with them, while nodes are mile- 
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stones. Different activities and milestones are  de- 
scribed in Table l. The final product delivered 
approximately 64000 of C + +  code; the port re- 
quired over 8 person-years of effort and took 16 
months to complete. A Booch-type'' object-oriented 
methodology was used. 

There  are five (unfolded) iteration cycles. The first 
iteration ends with milestones 7 and 8, the second 
with 13  and 14, the  third with 19 and 20, the  fourth 
with 25 and 26, and  the final iteration with node 30. 
The system testing activities run in parallel but are 
mainly  focused on the software emerging out of the 
final  cycle. 35 When  an iteration is completed the work 
is  reviewed, and suggested changes and enhance- 
ments are examined during the planning phase of 
the next iteration. When all development iterations 
are completed, depending on the measured prod- 
uct  quality, the product may be ready for delivery or 
it may require additional system testing. 

Previous results. We examined 19 commercially 
available software products from the IBM Software 
Solutions  Laboratory. There were three distinct  cat- 
egories of products,  those  developed  using  procedural 
methods, those developed using object-oriented 
methods, and those developed using object-oriented 
methods and  later  ported  to  another platform. Four 
projects were ports, seven were developed using ob- 
ject-oriented methods, and eight were developed 
with procedural methods. All object-oriented efforts 
were either first- or second-generation products. The 
details of that study are  reported e l ~ e w h e r e . ~ ~ , ~ " ~ ~ ~  In 
the following paragraphs we  briefly summarize the 
key  findings. We found: 
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1. No statistically  significant  difference  between  soft- 
ware development productivity recorded for pro- 
cedural and object-oriented products that were 
not ports 

2. An unusual economy of scale for both object-ori- 
ented and procedural software development that 
was  difficult to explain  with traditional produc- 
tivity factors 

3. A remarkably  compliant  tracking pattern between 
the actual and planned deadlines of several proj- 
ect schedules that we examined in detail 

While software ports are expected to exhibit higher 
prod~ctivity,~~ it  was surprising to see that, on the 
average, there was no significant  difference in pro- 
ductivity between object-oriented and procedural 
software development. This contradicts studies done 
on object-oriented productivity in a noncommercial 
environment, leading to the question of the business 
influences over object-oriented development. The 
data also  show a very strong economy of scale. For 
example, the time per programmer required to com- 
plete a 1 KLOC task decreased as project size in- 
creased, and as a general rule, smaller projects ex- 
hibited lower  productivity than larger projects 
regardless of the methodology. This result, although 
not unique, counters most previous studies.32 Fur- 
ther,  there is no obvious explanation as to why this 
result has occurred. It is  possible that  there is a large 
but constant overhead associated with  all projects, 
or  that smaller projects are, for some reason, more 
complex, but  there was no evidence of either. How- 
ever, there was  evidence3' that larger  teams may  have 
been dictated for certain types of smaller projects, 
namely intermediate product releases, to preserve 
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continuity of skills and expertise between large re- 
leases of the product. While  this  could  provide a par- 
tial  explanation for lowered  productivity  in the small- 
est  projects,  it does not really  explain the productivity 
growth observed for larger projects. One could also 
argue that larger projects  have stronger development 
teams, accounting for the economy of scale. This also 
was not supported by our  data. Based on interviews 
and observations, the development teams had 
roughly the same experience and skill  level through- 
out  the organization. 

The remarkable schedule adherence between the ac- 
tual and planned deadlines that we observed was also 
difficult to explain  solely on the basis of the software 
methodology. The deadlines are used by manage- 
ment, in accordance with the defined business pro- 
cesses and culture, to control product development 
and delivery, so one possible explanation is that  the 
product planning process  was  very accurate. But, 
given the very  wide variation in the observed aver- 
age  productivity  over the examined projects, it  is 
more likely that good schedule compliance was 
achieved through dynamic schedule enforcement of 
deadlines for key milestones than that it was  achieved 
using  highly accurate productivity forecasting. An- 
other explanation could be that  the schedules were 
met because software functionality was changed or 
testing time  was reduced to meet them. Examina- 
tion of the project records showed that no major 
functions were added or deleted in these projects, 
and that time was not saved by shortening testing 
cycles. 

This information prompted us to conjecture that  the 
governing influence may be, not the software devel- 
opment technology,  but the business model, which 
includes market and business constraints imposed 
on schedules, tasks, and resources. It also prompted 
us to hypothesize that two related effects, Parkin- 
son’s Law”z40 and the Deadline E f f e ~ t , ~ ~ , ~ ~  are prob- 
ably the key factors in  many commercial software 
development efforts. Parkinson’s Law states that 
work will expand to fill the allocated time. For ex- 
ample, if a project is assigned to three similar de- 
velopment teams with three easily achievable, but 
different deadlines, the projects will not complete 
at the same time, but according to the deadlines set. 
The Deadline Effect occurs when programmers are 
compelled to invest extra effort  in order to complete 
a task by a given deadline. If there is strong pressure 
to meet a deadline, people will  work additional hours 
solely to meet the deadline. We consider these ef- 
fects as special cases of “goal theory” described in 

industrial psychology literature. Industrial psychol- 
ogists report42 significant  evidence that personal pro- 
ductivity increases with  specific, challenging goals, 
such as aggressive  deadline^.^',^^ This supports the 

Parkinson’s Law  and 
the Deadline Effect 

are probably  the key factors 
in  many  commercial software 

development efforts. 

notion that programmer productivity can be  strongly 
influenced by schedule goals. For example,  given the 
same task  size and complexity, team productivity for 
hard, specific schedules will most  likely be higher 
(within reason) than it  is for less challenging sched- 
ules. 

To illustrate how Parkinson’s Law and the Deadline 
Effect  apply in our case, and  that  the task comple- 
tion schedule compliance we  observed  is  probably 
the result of a combination of process and business 
factors, we  now present an analysis of task  delay data 
for  three project schedules, one for each project cat- 
egory we encountered. 

Task completion delay analysis. All products were 
developed under the iterative process model de- 
scribed earlier, and  under  the same business model. 
The project subset discussed here includes: a first- 
generation product version with 38 KLOC in C+ + 
developed using object-oriented methods (Project 
A), a second-generation product version that was a 
port of 64 KLOC in C+ + also  developed  using object- 
oriented methods (Project B, shown  in Figure 2), and 
a follow-on maintenance release of a product where 
the development team followed a procedural meth- 
odology to produce 6 KLOC in C (Project C).  In ad- 
dition to  the variation in product sizes, the projects 
showed  wide variation in average individual produc- 
tivity. The procedural project was  lowest, the first- 
generation object-oriented project was  two and a half 
times greater, and the  ported object-oriented proj- 
ect was  nearly ten times greater than the first-gen- 
eration object-oriented project. Although we hope 
that  at least some of the credit for these differences 
in  productivity  can be given to the object-oriented 
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Figure 3 Task completion  delay  distribution  for Project A (first-generation object-oriented project) 
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methodology, other factors can produce similar  vari- 
ability. 

For each major task of the  three projects, we ob- 
tained the following  raw  scheduling information: the 
planned start time, the planned end time, the actual 
start time, and the actual end time. The planned end 
time represents the task completion deadline. Each 
task may have its own deadline, or  there may be a 
common deadline for several tasks. The granularity 
of the task schedules was  typically from one  to four 
weeks and involved from one  to  three software pro- 
fessionals.  Examples of tasks are design-level  reviews, 
the design of a small component, and  the unit test 
of a component (see Table 1). From the raw data 
we can calculate a number of task parameters, such 
as the planned task duration,  the actual task dura- 
tion, early  task starts, late task starts, and so on. 

In Figures 3,4,  and 5 we  plot histograms of individ- 
ual  task completion delays (rounded  to  the nearest 
week) for the  three projects. While all three met the 
original planned shipping deadline, the distribution 
of task completion delays  shows that  a number of 
dates for intermediate milestones were not  met. For 
example, the plot  in Figure 3 shows the fraction of 

tasks  with a given completion delay (in weeks) for 
Project A. The distribution has a peak at zero, in- 
dicating that about 45 percent of the tasks required 
to develop this project finished on the planned dead- 
line (note  that all tasks planned for the final ship- 
ping date  are in  this  category).  However, the remain- 
ing 55 percent of the tasks  missed the planned 
deadlines. For instance, the secondary peak around 
Week 5 is due  to  a four-to-five week slip  in several 
of the coding and driver-build tasks,  while the third 
peak at Week 12 was due to administrative delays 
in getting the design  specification approval signa- 
tures. 

Figure 4 shows the completion delay distribution for 
Project B. This distribution shows that most (over 
60 percent) of the tasks  finished on schedule. Again, 
all  tasks scheduled for the final (aggregate) dead- 
line were in this category. However, while  this team 
had the highest  productivity  level of the  three, only 
one task  finished early. 

Finally, Figure 5 shows the task completion delay 
distribution for Project C. We again see that most 
of the tasks completed on time. This includes  all  tasks 
scheduled for the final deadline. The fraction of on- 
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Figure 5 Task completion  delay  distribution  for Project C (procedural  project) 
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time tasks  was  smaller than in the other two projects, ilarities that might be expected, given the business 
and there is a much larger range in the delay dis- model under which  they  were  developed.  Specifically: 
tribution. Some intermediate tasks were as  many  as 
23 weeks late. 1. In all three projects the most frequent value for 

the task completion delay was zero. About 35 to 
We see that although the  three projects are quite 60 percent of the tasks finished on  the  date orig- 
different in nature, they show some interesting sim-  inally planned. This includes all tasks scheduled 
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forcement of the final deadhe, and of many  key 
intermediate deadlines, was  in  effect. 

2. Apparently, it  is uncommon to finish a task  early. 
Only one project showed a task completing early. 
This is a strong indicator that Parkinson’s Law 
was operating. 

3. In all three cases, a (small) group of intermedi- 
ate-  or low-priority  tasks  was  significantly late, 
from 7 to 23 weeks after the original deadline. 

The business model used to guide these and  other 
projects that we examined strongly discourages late 
completion of key milestones, since the final dead- 
lines tend to be  driven by market pressures. Failure 
to meet a key deadline usually has strong negative 
consequences. However, the same model does not 
provide strong incentives for early completion of ei- 
ther intermediate or final milestone tasks. Indeed, 
examination of the significantly late tasks revealed 
that these tasks were not only of low priority, they 
did not in  any  way gate (restrict) the development 
of their product. 

During our task completion delay  analysis,  we found 
confirmation of another of our previous  results.  Since 
releases typically produce small amounts of code and 
the business model allows the size of the program- 
ming team to remain almost  unchanged  between  ver- 
sions, releases will appear comparatively  overstaffed 
and are likely to exhibit  lowered  productivity in terms 
of Loc/person-month. 

In  order  to  better understand the empirical results 
and to further examine the interactions between the 
business model and a new (potentially high-produc- 
tivity) technology, such as object-technology, we de- 
veloped an integrated productivity-based simulation 
model of the software and business  processes. In the 
following section we describe the model, and then 
we  use  it to further investigate the productivity  issues. 

Model 

The model makes  several assumptions regarding or- 
ganizational capabilities and business priorities: 

1. The organization is capable of meeting given 
deadlines. This means that  the organization has 
in place technological capabilities for developing 
required software  within the defined  schedule  and 
software process and  risk management structures 

I 
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2. ThYe irojects are: driven by calendar schedules,  and 
all changes in the project requirements, person- 
nel, or milestone dates can  be represented as 
changes in effective team productivity  over a  pe- 
riod of time. 

3. When  in  effect, Parkinson’s Law  is  assumed to af- 
fect all deadlines. 

4. Project deadlines are enforced only at specified 
milestones. The most  likely deadline to be en- 
forced is the final deadline; however,  any set of 
deadlines can be enforced. 

Software project iterations. The granularity of our 
model is at  the level of project iterations, the se- 
quences of tasks described earlier in our discussion 
of Table 1. In addition to an individual iteration, we 
recognize aggregations of iterations. The start of an 
aggregation of iterations is conditioned on comple- 
tion of the iterations that precede it. Representing 
the  duration of a project iteration as a function of 
team productivity requires estimation of the effec- 
tive  size or complexity of a project iteration (e.g., in 
terms of equivalent KLOC), and of the average team 
productivity  over the iteration in the same units (e.g., 
in KLoc/calendar development month). The  dura- 
tion of an iteration is then46 

iteration  duration  (months) = 

iteration size (KLOC) 
team productivity (KLoc/month) (1) 

The relationship between iteration duration and  size 
is linear if and only if team productivity is constant 
with  size and time. Once an iteration completion  time 
is determined, the duration of the overall project can 
be computed by adding the estimated durations of 
the iterations on the critical path(s) of the project, 
as is  typically done with a PERT network. 32 For the 
remainder of this discussion, we  will assume that we 
operate on the critical path of the project. 

One of the characteristics of the schedules we an- 
alyzed  is  wide variance in the average team produc- 
tivity. To incorporate this variance in the iteration 
duration estimates, we define the minimum  and  max- 
imum team productivity and use  this range to esti- 
mate the minimum and maximum iteration duration 
range (IDR). The minimum duration for an iteration 
can be  achieved  only if the programming team is 
working at their maximum productivity; this will al- 
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Figure 6 Planned  (shaded box) and actual (heavy  line) iteration durations and corresponding metrics 
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most certainly include code developed from over- for that iteration. We represent the duration of it- 
time work. The maximum iteration duration is the- eration i with the random variable T i .  Ti can assume 
oretically infinite, but in practice is usually  limited values between the minimum duration and the 
by market forces, such  as a fraction of an 18-month maximum duration ti,max. Duration of a project with 
development cycle. n successive iterations is a random variable D de- 

Figure 6 illustrates the quantitative characteristics 
of an iteration, i.e., the metrics we define for an in- D = T ,  + T ,  + . . . + T ,  
dividual iteration. Let the  duration of an iteration 

fined by 

(2) 
be t. For each iteration i we define the actual iter- 
ation duration, which  we denote byt,,a,,, the planned 
duration t,, , the maximum duration ti,mox, and the 
minimum duration ti,min. If  we assume that  the size 
of the problem being  solved  in an iteration remains 
essentially constant during that iteration, then  the 
minimum and maximum durations are functions of 
maximum and minimum team productivity, respec- 
tively,  in that iteration. In practice, a new project it- 
eration will not start before the previous iteration 
has completed. Hence, for each iteration we  can also 
recognize the chain of events that lead to it, i.e.,  its 
aggregate duration, d ,  that includes durations of all 
the sequential iterations that precede it. 

The aggregate duration of iteration i is a function 
of the sequence of iterations that precede it on the 
critical path, d ,  = Xti.  For example, d l  = t , ,  d2  = 
t l  + tZ,  etc. As with the individual tasks and iter- 
ations, there  are four aggregate durations: actual, 
planned, maximum, and minimum. 

The minimum and maximum duration times for an 
iteration define a range of possible completion times 

For example, adding the minimum iteration dura- 
tion time from each iteration on  the critical path, 
Z t i , m , n ,  gives the minimum duration time for the 
overall project, d,, Adding the maximum  task du- 
ration times, Xt,,,,, gives the maximum duration 
time for the project, d,, max.  

To simulate the duration of a project whose itera- 
tions fallwithin the intervals [ t l ,  t,, ,,], i = 1, * . . , 
n,  we take a sample from each interval according to 
the distribution assigned to  that interval. This pro- 
vides an estimate of the individual iteration  dura- 
tion times for the project. 

From this estimate the aggregate durations can be 
determined, as well  as the overall project duration 
time. We repeat this  sampling until the required sim- 
ulation accuracy  is  achieved. 

In the work reported in this paper we used a uni- 
form di~tr ibut ion~~ to sample individual productiv- 
ity ranges. However, note  that aggregation of the it- 
eration delays is equivalent to convolution, and  that 
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introduction of business  effects, such as the  Dead- 
line Effect and Parkinson’s Law  delay, requires con- 
strained sampling of these intervals so that  the  re- 
sulting conditional distributions are not uniform 
anymore. For example, the Irwin-Hall distribution 
can be used to describe a general milestone distri- 
bution obtained through unconstrained convolution 
of uniform distributions.36 Also, in this paper we do 
not address team-dependent  inter-iteration  corre- 
lation. Our experience is that in practice this  is a 
lower-order effect compared to effects  we deal with 
in the present analysis. A more detailed discussion 
of team-dependent correlated delays, and of the im- 
pact this has on the development process, can be 
found in P ~ t o k . ~ ~  

Next  we quantify Parkinson’s Law and deadline en- 
forcement, then we  apply these effects to  the derived 
iteration and project duration distributions. 

Parkinson’s Law. Cyril Parkinson published a  cob 
lection of aphorisms about economics in 1957. Most 
remembered is  “work expands to fill the time,” or 
as  originally stated, “work expands so as to fill the 
time available for its ~ompletion.”~’ Gutierrez  et al. 
have developed a stochastic model to represent  the 
effects of Parkinson’s Law on a project.40 One of the 
fundamental concepts they propose is that uncon- 
strained activity modeling (such  as that seen in PERT 
models) may be inappropriate to represent  real 
projects, and  that completion time should be a func- 
tion of the time scheduled for a project. If  we con- 
sider a project iteration as a single task, then the ba- 
sis for their model can  be expressed as 

where w(d,, p l a n )  is the work  expansion function, and 
d,,,J,n, is the project deadline. Projects under  Par- 
kinson’s  Law  will generally not have an aggregate 
duration of less than the scheduled duration.  That 
is, if d2,plan, . . . , d,,plun are  the scheduled 
durations for iteration aggregates, then iteration 1 
is planned to complete by time d I , p l u n ,  iterations 1 
and 2 are planned to complete by time d2,p lan ,  and 
so on. We model Parkinson’s Law  by delaying the 
aggregate completion times that  are less than the 
planned duration times. An aggregate duration  that 
would  normally be shorter than the planned dead- 
line is expanded so that it meets the deadline, while 
an iteration that would  normally  finish after the dead- 
line is not modified. Tasks under Parkinson’s Law 
either finish, or  are expanded to finish,  within the 

interval [di,plan - F ,  di,,,,], where E is a small time 
period, typically one  or two  weeks. The lower bound 
is defined by the planned aggregate iteration dura- 
tion, while the  upper bound is the actual maximum 
duration for the aggregate. 

Deadline effect. According to Boehm: “The amount 
of energy and effort devoted to  an activity  is  strongly 
accelerated as one approaches the deadline for com- 
pleting the a~tivity.”~’ This effect on software is 
widely  known but surprisingly little studied. How- 
ever, in industrial  psychology the effect  has been thor- 
oughly described and studied through goal 
Goal theory supports both Parkinson’s Law-per- 
formance is  lower if goals are easy-and the  Dead- 
line Effect-performance  is higher if the deadline 
is  challenging. The Deadline Effect depends on en- 
forcement of milestone (task and iteration)  dead- 
lines.  We  model  this by discarding the cases for which 
any of the hard deadline aggregate tasks in the case 
finish after their deadline. This provides  us  with con- 
ditional distributions for the subset of samples that 
meet the constraints. 

For example, the combined  effect of Parkinson’s Law 
and deadline enforcement over a set of possible it- 
eration and project durations is described by the al- 
gorithm that follows. The iteration durations are 
bounded by upper and lower  productivity  ranges and 
are  under  the influence of both Parkinson’s Law and 
deadline enforcement. When  simulating  software de- 
velopment, we generate  a number of case samples 
( j  = 1, + . . , k ,  e.g., k = 100 000) each of which rep- 
resents one complete set of project iterations (i = 
1, . . . , n ) .  Function HARD()  returns  true if the 
deadline is “hard” and false if it is “soft” (i.e., allows 
slippage). 

F o r ( j =  l;..,k)do 
Acquire sample t,,act, . . . , t,,,, for  case j 
Calculate d,,,,,, . . . , 
Loop through  all  iterations (1, . . . , n) 

If d,,,,, < (d,,plan - E) then 
expand  iteration  duration to the deadline 
recompute  current  and  all  remaining di,,,, 

(i, . . . , n) 
EndIf 

EndLoop 
Loop through all di,p,an (7, . . . , n) 

If [HARD @;,plan) and d ,ac t  d;,planI then 
discard this case  and  exit loop 

EndIf 
EndLoop 

EndFor 
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This algorithm, which  is equivalent to constrained 
discrete convolution of iteration completion times,36 
provides a model for how constrained iterations com- 
plete around a given milestone. 

Maturity. It is worth noting that the same simula- 
tion models allow us to examine the influence of the 
organizational software process maturity, and of the 
maturity of software development technology, by 
varying the iteration (task) productivity ranges (or 
IDRS).  For example, we would  expect that mature 
software processes and technology  would promote 
small  productivity variance (i.e., smaller duration 
range in Figure 6), while poor process control or im- 
mature technology may result in a much  wider range 
of productivities and consequently larger iteration 
(task) duration ranges. 

Simulation 

We  first  use the simulation model to explore the four 
business models and their effect on productivity. We 
then model and discuss the effect of process matu- 
rity. 

Projects. In the simulations presented here we use 
two hypothetical projects. One project has a  “nor- 
mal” team productivity range in each iteration. The 
second project differs from the first  only  in that  the 
upper bound on its team productivity range is  twice 
as  large. Both sets of ranges have the same lower 
bound. In the examples given  below,  we  assume that 
the development tearnprodu~tivity~~ for the first proj- 
ect ranges from 500 Loc/week to 1250 Loc/week, 
while the range for the second project team is from 
500 Loc/week to 2500 Loc/week. From Equation (1) 
it  follows that  a project of the normal type has it- 
eration  duration range from 8  to 20 weeks,  while for 
a project of the second type the IDR is 4 to 20 weeks. 
Iteration  duration times are sampled from these 
ranges assuming a uniform distribution. Note that 
the productivity  difference between the two  types  is 
consistent with empirical studies of differences  in 
productivity  between  noncommercial procedural and 
object-oriented projects.3,5 

The normal range could be considered as procedural 
development, and the second range could represent 
a development technology that has potential for 
greater average productivity,  such  as object technol- 
ogy.  We  will sometimes refer to the high  average pro- 
ductivity project as the “object-oriented project” and 
to the  other  one as the “procedural project.” Note 
that since the object-oriented project has the same 
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lower productivity bound as the procedural project 
but a higher upper bound, the sample set from the 
object-oriented project IDR has  higher  variance. This 
suggests that  there is less control over the develop- 
ment process that implements the new  technology. 
Of course, this does not have to be the case, and a 
new technology could offer not only a higher mean 
value for its IDR (as compared with procedural IDR), 
but also a smaller IDR range around that mean value. 
We  discuss  this later. 

We also make the following assumptions. When a 
business model is applied, both projects start  at  the 
same time and operate under the same milestone 

We would expect that 
mature processes and 

technology would  promote 
small productivity variance. 

constraints. When Parkinson’s Law  is  in  effect the 
IDR lower bound is no earlier than  one week before 
the deadline. When deadline enforcement is  active 
on iteration i, its IDR upper bound is the same as the 
planned deadline (di, These  restrictions are con- 
sistent with our empirical data. Both simulated 
projects are assumed to have five equally  sized it- 
erations. The planned duration for each iteration is 
set to 10 weeks. This translates to planned deadlines 
at 10,20,30,40, and 50  weeks,  respectively. We also 
assume that  an equivalent of 10 KLOC is developed 
during each iteration, i.e., a total of 50 KLOC per 
project. 

Business models. Our first  case, Model A, simulates 
the effect of a business practice that provides incen- 
tive to finish a project as soon as  possible,  with no 
penalty for finishing late. This represents the situ- 
ation where the process can be viewed  as being free 
from both deadline and  Parkinson’s Law  effects. The 
cumulative distributions for the  duration of the 
projects under this  model are shown  in Figure 7. The 
mean completion time for the object-oriented proj- 
ect is about 58.8  weeks,  with a standard deviation of 
10.0 weeks,  while the mean for the procedural proj- 
ect is about 67.5  weeks,  with standard deviation of 
7.8 weeks. Further, only about 20 percent of the  ob- 
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Figure 7 Cumulative  distributions for high and low  productivity projects without  milestone  constraints 
(Business Model A) 
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ject-oriented samples finish at or before the Week 
SO deadline, and only about 1 percent of the pro- 
cedural samples complete in this time frame. It is 
obvious that, for the type of project in question, the 
50-week deadline is quite aggressive and exceeds the 
capability of either technology to reliably meet it. 
However, an object-oriented approach still  has a bet- 
ter chance to do so than the procedural project. On 
the other  hand, if we assume that  the final project 
deadline is 72 weeks, we see that  the higher-produc- 
tivity methodology has over 90 percent chance of 
meeting it. For comparison, the COCOMO (Construc- 
tive  Cost Model)32 average for a 50-KLoc project is 
between 14.5 and 240 person-months, with a com- 
pletion time of 17 months (or about 68 to 70 weeks). 

The second case, Model B, provides no incentive for 
finishing early and no penalty for finishing late. This 
represents the situation where Parkinson's Law  is  in 
effect for all milestones. Figure 8 shows the result- 
ing project completion distribution. The mean com- 
pletion time for the object-oriented project is  now 
61.3  weeks,  two and a half  weeks longer than under 
Model A, but with a smaller standard deviation of 
eight  weeks. On  the other hand, the procedural proj- 
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ect results differ  only  slightly from the Model A case, 
with a mean of 67.8 weeks and standard deviation 
of 7.5 weeks.  Since under Model B assumptions there 
is no incentive to finish early, we would  expect that 
any iterations that naturally complete early would 
be prolonged. This reduces the fraction of projects 
that finish before or  on  the SO-week deadline by 
nearly 10 percent for object-oriented samples, but 
by only about 0.5 percent for the procedural sam- 
ples. It is  obvious that this  lack of incentive to com- 
plete early, i.e., Parkinson's Law delay, has greater 
impact in the case of the object-oriented project. 
Deadlines are often set so that  the product can be 
favorably marketed; for example, product releases 
may be timed for shipment with a new  version of an 
operating system.  Delays can limit or negate the po- 
tential productivity  gain a technology  may  offer. 

Under this  business model, the average project du- 
ration and variance become more similar for the two 
methodologies and the potential for productivity 
gains from object-oriented development is less pro- 
nounced. This is illustrated further in Figure 9, which 
shows the corresponding estimated probability den- 
sity functions. We see that  the delay in the early  com- 

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 



Figure 8 Cumulative  distributions  for  high  and low productivity projects conducted  under  Parkinson’s Law 
(Business Model 6) 
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Figure 9 Probability  density  functions  for  high  and normal productivity projects with  Parkinson’s Law applied 
(Business Model B) ~ _ _ ~  
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Figure 10 Average team productivity  required to complete  the project by Week 50 deadline  (Business Model C) 
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pletions translates into  a relaxation spike at Week 
50,  but we also see that this  effect  is more pronounced 
in the case of the potentially more productive meth- 
odology. 

Our third case, business Model C, provides incen- 
tive for finishing  early  and a penalty for finishing late. 
This is conceptually the same as enforcing the final 
deadline but  with no Parkinson’s Law  effect. As men- 
tioned earlier, only about 20 percent of the object- 
oriented samples and only 1 percent of procedural 
samples make the deadline. The mean duration for 
the 20 percent of the object-oriented projects that 
naturally make the deadline is 44.6 weeks  with stan- 
dard deviation of 4.3 weeks,  while the average du- 
ration for the 1 percent of the procedural projects 
that naturally make the deadline is 47.9 weeks  with 
standard deviation of 1.7 weeks. The average team 
productivity computed for these samples at each of 
the five iterations is  shown  in Figure 10. We see that 
naturally  successful projects have  some  “slack”  in the 
first iteration, but after that software personnel must 
maintain an average productivity that is  roughly in 
the middle of their range if object-oriented devel- 
opment is used, and about 80 percent of their max- 
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irnum for procedural development. It is  very  likely 
that  the  latter requirement will put more strain on 
the software team, since 80 percent of  maximum pro- 
ductivity probably implies overtime work. 

In practice,  it  is  unlikely that either of the three model 
situations will occur in pure form. For example,  it 
is unrealistic to assume no penalty for late comple- 
tion, and it  is  probably  equally unrealistic t > assume 
that incentives to finish  early are 100 percent effec- 
tive. A great deal of planning and effort  is required 
to ship a product, and changing the ship date late 
in the cycle  is  costly whatever the reason and direc- 
tion. Based on the workflows  analyzed  in this study, 
Model D is a more realistic business situation, with 
little or no incentive to finish earlier than planned 
and  a penalty for finishing late. Conceptually, this 
is the same  as  adding both Parkinson’s Law and dead- 
line enforcement to  a project. 

In Figure 11 we  show the average team productivity 
needed around  the five modeled milestones, assum- 
ing that all  five operate  under Parkinson’s Law and 
that only the final project deadline (d5 ,p lan)  is en- 
forced. We see that for projects that  meet  the final 
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Figure 11 Team productivity  per task for  both  projects  under  Business Model D 
~~ """""" 
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deadline, the average productivity increases steadily 
as we approach it. Of course, projects that do not 
naturally  conform to these curves require explicit  ma- 
nipulation of their productivity in order  to meet the 
final deadline and that gives  rise to  the different pro- 
ductivity envelopes and slopes that  the Deadline Ef- 
fect generates. 32 There is another interesting feature 
that we see in Figure 11. A successful object-oriented 
project allows the teams more slack  (lower produc- 
tivity)  in the early project stages, which means that 
they  can operate in a more relaxed fashion than  pro- 
cedural teams. This results in  early deadlines being 
missed, under  the expectation that  the final dead- 
line is not in jeopardy. 

Another interesting view  of Model D is provided in 
Figure 12. It shows estimated iteration-duration 
probability-density distributions around the interme- 
diate deadlines for all project samples that meet the 
final deadline. The planned duration for each iter- 
ation is 10 weeks, so the deadline for Iteration 1 is 
10 weeks, for Iteration 2 is 20 weeks, and so on, with 
the planned finish for Iteration 5 at 50 weeks. At  the 
start of each iteration we see the Parkinson's Law 
relaxation spike. The  shape of the curves  shown  in 
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Figure 12 is  similar to  the shapes observed empir- 
ically  in Figures 3 through 5. 

From Figure 12 we see that while both the proce- 
dural and the object-oriented projects finish at the 
same time, and thus have the same overall average 
productivity  with respect to calendar time, the bus- 
iness process appears  to cause a reduction in vari- 
ance around the deadlines as the projects progress. 
This results in a reduction in the distribution "tails" 
across successive iterations. That is, the hard dead- 
line at the end of Iteration 5 forces earlier comple- 
tions in the iterations closer to  the final deadline, 
and in  this way acts as a variance-reduction mech- 
anism. This is interesting, since  in an unconstrained 
development process, convolution of iteration com- 
pletion times would result in increasing, rather  than 
decreasing duration variance.49 Furthermore,  the 
lower  productivity  project  (filled  circles) requires this 
better process control (i.e., shorter distribution tails 
that imply lowered variance around  the intermedi- 
ate deadlines) in order  to meet the final deadline, 
while the higher productivity project (hollow  circles) 
can have longer tails (it can  slip  many of the  inter- 
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Figure 12 The marginal  distribution of successful projects around  the  individual  task  deadlines  under both 
Parkinson's Law and the Deadline  Effect  (Business Model D) 
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Figure 14 Influence of the mean and  width of the productivity  range 
~~ 
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mediate milestones) and still meet the final dead- 
line. 

Maturity  and  process  control. So far we have as- 
sumed that  the two modeled projects have the same 
lower bound on iteration productivity. This means 
that  the worst-case scenario in both methodologies 
produces projects of the same duration. It could be 
argued that  a  mature technology may have a  pro- 
ductivity range with  less variance than  a new tech- 
nology,  even if the new technology has potential for 
higher productivity. Similarly, an organization may 
have better control over projects that use a classical 
methodology than over those that use a new tech- 
nology. This may translate into  a narrower iteration 
duration range when  using better controlled, mature 
processes.  We illustrate the effect of narrower IDRs 
in Figure 13. 

In Figure 13 we  show the unconstrained cumulative 
distribution (Business Model A) for projects that 
have average team productivity of 1075 Loc/week 
(filled  circles) and 1500 Loc/week (hollow circles), 
respectively.  However, the lower average productiv- 
ity project has a productivity range between 900 

Loc/week and 1250 Loc/week, while the higher av- 
erage productivity project range is between 500 
Loc/week  and 2500 Lochveek. Comparison with  Fig- 
ure  7 shows a striking difference. With the increased 
control over the process (reduced IDRS), 90 percent 
of the procedural projects are now capable of mak- 
ing the 50-week deadline. This is a  far higher per- 
centage than is seen with the object-oriented ap- 
proach, even though the  latter has potential for twice 
the productivity of the procedural project. In exam- 
ining real products we  have encountered procedural 
projects that did better  than object-oriented projects 
and  the reverse. Inspection of Figures 3 through 5 
shows that  the normalized  task-completion  delay  dis- 
tributions are less spread out for the object-oriented 
projects than for the procedural project. 

It is  obvious that control over the width of the  pro- 
ductivity range (and by implication, control of the 
software process) can play an even more important 
role than potential productivity  gains from a new 
technology. While business-imposed incentives and 
deadlines can have an important impact on the  per- 
ceived team productivity and on the probability that 
a project finishes on time, it may be even more im- 
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control with acceptable productivity and as narrow 
an IDR as possible. Doing so may increase the prob- 
ability of project  completion by a given deadline, even 
when the deadline is  aggressively set by market 
forces. 

In Figure 14 we illustrate possible  trade-off  issues 
between better process control (as manifested by the 
width of the productivity range) and  productivity po- 
tential (as manifested by the average  productivity  and 
the upper productivity bound). Figure 14  shows cu- 
mulative project completion distributions for four 
cases: (1) the basic object-oriented project (range: 
500-2500 Loc/week/team, average team productiv- 
ity of 1500 Loc/week), (2) a project with the same 

Both Parkinson’s  Law  delays 
and  the  Deadline Effect 
tend to be  the  result of 

the  applied  business  model. 

upper bound on team productivity but  a 20 percent 
better lower bound (range: 600-2500 Loc/week, av- 
erage: 1550 ~oc/week), (3) a procedural project with 
average team productivity of  900 Loc/week (range: 
550-1250 Loc/week), and (4) a project where the 
average team productivity is  950 Loc/week and  the 
range is  650-1250 Loc/week. Inspection of the fig- 
ure and comparison with Figure 7 shows a number 
of interesting things. 

For example, from Figure 7 we see that  the prob- 
ability that  a project with a procedural productivity 
profile (500-1250 Loc/week) completes within  67 
weeks is about 50 percent, while the probability that 
a project  with our assumed  basic object-oriented pro- 
file  (500-2500  Loc/week) completes within  67  weeks 
is about 80 percent. However, Figure 14  shows that 
if  we increase the low-end  productivity of the  pro- 
cedural profile by only 10 percent we can raise its 
completion probability to 80 percent. That is, a 10 
percent increase in the lower  productivity bound 
(from 500 to 550 Loc/week) has the same effect as 
doubling the  upper bound. Similarly, the probabil- 
ity that  the basic object-oriented project completes 
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could choose a 20 percent improvement in the lower 
bound of the basic object-oriented team productiv- 
ity range or  a 30 percent improvement in the lower 
bound of the procedural profile. However, we have 
to remember that business  effects can counteract 
these  improvements. For instance,  comparison of ba- 
sic object-oriented profiles  in Figures 14 and 8 shows 
that lack of incentives to complete a project before 
Week 50 reduces the probability of project comple- 
tion at Week 55 from about 0.36 to about 0.25. 

It is  obvious that  an organization has a number of 
options for improving the probability that its projects 
complete by some deadline. Improvements in the 
process that result in a small increase in the lower 
productivity bound (e.g., improved training of the 
personnel in the use of the technology)  can  be as 
effective as a shift to  a new  technology that has con- 
siderably higher productivity potential but may be 
implemented with  less control (i.e.,  with a  broader 
productivity range). Of course, other effects, such as 
those of the business model, also  have to be taken 
into account. 

Conclusions 

As market pressures shorten software development 
cycles, an increasing emphasis is  being  placed on im- 
proving software development productivity. Object- 
oriented software development has emerged as a po- 
tential solution, i.e., as technology  with great 
potential for reducing product time to market. While 
this may be true in  cases where high  levels of design 
and code reuse are present (which can be achieved 
without object technology as well), there is little ev- 
idence that this occurs in the first  few product gen- 
erations, at least not for commercial projects oper- 
ating under  a common business model. 

In this paper we reported on empirical and simu- 
lation-based  studies of the relationship  between  com- 
mon commercial  business practices and the software 
productivity that might  be expected in  such an envi- 
ronment. Our  data indicate that object-oriented 
projects suffer from Parkinson’s Law  delays, and 
from the Deadline Effect,  in  much the same way that 
procedural projects do. Both effects tend to be the 
result of the applied business model. For example, 
a rigorous enforcement of final project deadlines, 
coupled with a lack of incentive to finish interme- 
diate project tasks  early, may trigger  Parkinson’s Law 
delays and negatively  influence  productivity. This ef- 
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methods, such as object technology, but  operate un- 
der business models and deadlines that  are more 
suited for productivity expected from classical meth- 
odologies. 

We  used simulation to show that while a method- 
ology  with potential for higher productivity may en- 
able software development teams to operate in a less 
stressful mode, the promise of high  productivity 
alone is not enough. An organization must be able 
to control the range of productivities in  which  its de- 
velopment teams operate. A wider range implies  less 
control over the process and less  ability to guaran- 
tee timely project completion. The decision to use 
a new technology should be based not only on its 
promised maximum, or even average, productivity 
but also on the ability of the organization. If the bus- 
iness model cannot adjust to new technology by rec- 
ognizing  its limitations, assessing the ability of the 
organization to control it, and adjusting deadlines 
to take advantage of its potential, it is  unlikely that 
an investment in the technology will result in real 
productivity benefits. 
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