
The effects of the
business model
on object-oriented
software development
productivity

Unless the business model that governs software
production adjusts to new technology, it is
unlikely that an investment in the technology will
result in real productivity benefits. Commercial
development always takes place in the context of
a business model, and in that context an
understanding of how business constraints
influence commercial software development is
imperative. As software markets become more
competitive and business pressures shorten
software development cycles, improved software
development productivity continues to be a
major concern in the software industry. Many
believe that new software technology, such as
object-oriented development, provides a
breakthrough solution to this problem.
Unfortunately, there is little quantitative evidence
for this belief. In this paper we explore the
relationship between the business model and the
productivity that a software development
methodology can achieve in a commercial
environment under that model. We first examine
empirical data from several commercial products
developed using object-oriented methods. The
results indicate that object-oriented development
may not perform any better than “procedural”
development in environments that lack incentives
for early completion of intermediate project
tasks. We then model and simulate the impact of
the software task-completion incentives and
deadlines on the productivity that might be
expected from a technology with high-
performance potential. We show how and why
some common business practices might lower
project productivity and project completion
probability. We also discuss to what extent poor
software process control and (im)maturity of the
technology compounds the problem.

by T. E. Potok
M. A. Vouk

I t is widely believed that object-oriented (00) de-
velopment l has considerable potential for increas-

ing software development productivity. The reasons
for the gains range from reuse, through better prob-
lem understanding, to better (less complex and less
costly) designs and implementations. However, there
is little quantitative evidence that productivity of real-
life object-oriented software development is indeed
consistently better than that of “classical” or “pro-
cedural” software development. Furthermore, most
studies related to object-oriented development pro-
ductivity do not consider it in conjunction with the
business practices under which the software is being
developed. According to Jacobson et al.:

A business model shows what the company’s envi-
ronment is and how the company acts in relation
to this environment. By environment we mean ev-
erything the company interacts with to perform
its business processes, such as customers, partners,
subcontractors and so on. It shows employees at
every level what must be done and when and how
it should be done.’

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

140 POTOK AND VOUK COl8-8670/97/$5.w @ 1997 IBM IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Business models tend to focus on cost and calendar
events (e.g., quarterly reports) and tend to form
deadlines that are governed by marketing and com-
petitive pressures, often regardless of the real soft-
ware engineering capabilities of the organization. On
the other hand, software engineering development
models tend to focus mainly on the complexity of a
software project and the capabilities of the devel-
opment teams and the software methodologies. In
a meaningful evaluation of project viability we need
to consider both in an integrated fashion.

In this paper we model and quantitatively explore
the relationship between the business incentives and
deadlines, and the productivity that a potentially high
productivity software development methodology can
achieve in a commercial environment. We use object-
oriented software development as a specific exam-
ple of such a technology, and we develop our mod-
els and analyses based on empirical information we
have collected about object-oriented development
as practiced in a commercial development environ-
ment.

Related work. Lewis et al. performed an experiment
with undergraduate software engineering students
to study the effects of reuse.3 Based on their tests
of the recorded productivity metrics, they concluded
that the object-oriented paradigm can improve pro-
ductivity by about 50 percent when reuse4 is present.
However, they did not find any statistically signif-
icant evidence that the object-oriented paradigm has
higher productivity than procedural methods when
reuse is not a factor. Melo et al. conducted an ex-
periment with graduate students that resulted in
seven projects ranging in size from 5000 to 25 000
lines of code.5 The projects were developed using
a waterfall process model, object-oriented design,
C+ +, and varying levels of reuse. Their results sup-
port the conclusion that reuse rates can increase pro-
grammer productivity as much as two to three times.'
In general, optimistic economic models of reuse in-
dicate that break-even reuse levels may be as low as
10-20 percent,' while pessimistic models show that
break-even levels may be difficult to achieve even un-
der very high levels of reuse.'

There is also evidence that different development
methodologies have differing effects on the software
development process. For example, Boehm-Davis
et al. report on a comparison of Jackson program
design, object-oriented design, and functional de-
composition, using professional programmers.'
Some of the insights from the study are that Jack-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

son's method and object-oriented methodologies
produce more complete solutions, require less time
to design and code a problem, and produce less com-
plex designs than functional decomposition. How-
ever, a quantitative comparison of productivity as-
sociated with different methodologies was not given.
Zweben et al., again in an experiment with graduate
and undergraduate students, show that in Ada lay-
ering and encapsulation (an object-oriented trait)
may reduce development effort. '"
There are many other studies and books that describe
the benefits of the object-oriented approach in gen-
eral""8 and of the value of reuse in p a r t i c ~ l a r . ~ ~ " - ~ ~
However, there are very few, if any, convincing quan-
titative studies that focus on the productivity related
to software developed for commercial use by pro-
fessional programmers who use object-oriented
methods. A recent paper by Hansen indicates that
commercial software development should always be
considered in the context of its business model.24 Our
own work, discussed in more detail in later sections,
supports this.25,26

Approach. In this study we focus on the effects that
some business practices may have on the productiv-
ity observed in software projects. We used empir-
ical information to identify the effects and to help
formulate a detailed simulation model of interactions
among an iterative software development process,
its maturity, and the applied business model. We then
used this model to explore how business constraints
can affect productivity and market timeliness when
potentially high-productivity methodologies, such as
object-oriented development, are used.

In the next section we present some empirical data
that relate business practices and software develop-
ment productivity. In a later section we formulate
a simulation model of the interactions, then use the
model to study the impact of business-imposed in-
centives and deadlines on the software development
productivity that might be expected from a relatively
new high-performance software technology. Sum-
mary and conclusions are given in the last section.

Empirical information

We began our study with empirical information ob-
tained from a large commercial software develop-
ment organization. We describe the information in
the vocabulary of the organization, and we start this
section by defining the terms needed to do so. We
also define the metrics we used in our analysis."

POTOK AND VOUK 141

Figure 1 Task completion delay

Metrics and definitions. In the context of this paper
we define productivity in terms of new and changed
product lines of code (LOC), but with an understand-
ing that the effort (or time) expended includes many
activities in addition to coding that are necessary for
developing a viable commercial product. A software
team may consist of one or more software profes-
sionals, not all of whom need to be engaged in soft-
ware coding and testing activities. We define aver-
age individualproductivity of a software professional
on the team in LOC per person-month. In contrast,
to focus on the calendar-time nature of the market-
ing requirements and other business-related factors,
we express software teamproductivity in terms of LOC
or thousands of LOC (KLOC) per calendar month.

A software product is a commercially available soft-
ware system that includes packaged software, doc-
umentation, and support. It is thoroughly tested, and
its quality is certified prior to release. It can be de-
veloped using classical, or procedural** methods or
object-oriented methods. In general terms, each de-
livery of a software product is considered a gener-
ation. Specifically, a software product is referenced
by version and release. We will refer to second and
later versions or releases as follow-on versions or re-
leases. A software product schedule directs the ex-
ecution and completion of a series of tasks, from the
initial planning stages through the final product ship-
ment. A task or activity is a unit of work that requires
a finite amount of time to complete. Individual tasks
can be viewed as individual segments of a project.
The significant events in the schedule are called mile-
stones. In the context of an iterative process (such
as the one described in the next subsection), we dis-

142 POTOK AND VOUK

tinguishproject iterations as collections of individual
tasks.

In our experience, the statistic that best highlights
the influence of business-related factors on software
development tasks is the completion of tasks rela-
tive to a planned deadline. We call it task comple-
tion delay (see Figure 1). This value is the difference
between the planned end date and the actual end
date for a given task. A negative value indicates that
the task finished early, a zero value indicates the task
was on schedule, and a positive value shows that the
task finished late. We use this variable to eliminate
differences in individual task start and completion
calendar dates when we compare tasks as a popu-
lation.

Software and business processes. The empirical data
were collected at the IBM Software Solutions Lab-
oratory in Research Triangle Park, North Carolina.
The laboratory was certified ISO 90OOz9 in 1994, and
it has consistently received high marks in internal
assessment against the Malcolm Baldrige3' criteria.
The general model that drives its software develop-
ment recognizes two major software product subcat-
egories: versions and releases. A new version is typ-
ically quite large and contains a significant product
enhancement, or change in functionality. A version
is ordinarily followed by one or more maintenance
releases, usually much smaller than a version, that
contain defect fixes and minor enhancements. The
calendar-time duration for the development of ver-
sions and releases is strongly driven by market forces.
Versions tend to take longer than releases, but are
within the 18- to 24-month time frame common to

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 2 The development process used for a second-generation object-oriented project

the industry today. 31 Release development will nor-
mally be at least 9 to 12 months. Reasons for this
include distribution costs, arrival rate of release-type
fixes and changes, and even user-perceived quality
(e.g., scheduling a release very soon after a version
can give the impression of quality problems). While
all new development must be completed with a lim-
ited number of personnel, existing projects will have
an established team. Typically an effort is made to
maintain (or even increase) the size of the team, be-
cause it may not be cost-effective to dismantle it be-
tween versions. Therefore, it is not unusual to have
a large version developed with tight resource and
time constraints, then a smaller follow-up mainte-
nance release developed over a more relaxed sched-
ule using the same team.

The development of both versions and releases is
subject to frequent high-level reviews of their status
against dates for key development milestones estab-
lished at the beginning of the product cycle. The prog-
ress toward these dates is reviewed regularly and in
detail, and schedule slips against any major mile-

stones are strongly discouraged. Detailed project
schedules are required at the beginning of the prod-
uct development cycle, and they trigger business pro-
cesses, including funding, planning, marketing, sup-
porting, and certification of the quality of a product.
The most prevalent software development process
followed in the organization is called “iterative.” The
iterative process is a variant of a combination of evo-
lutionary prototyping” and “successive versions.”33
In theory, each software “iteration,” is fully planned,
designed, coded, and tested before work begins on
the next i terati~n.’~ The duration and amount of
code produced for each iteration is approximately
the same. A typical project activity diagram is illus-
trated in Figure 2.

Figure 2 shows a high-level PERT (program evalu-
ation and review technique) diagram of the process
used for one of the commercial products developed
at the laboratory. The product was a second-gener-
ation object-oriented “port” between platforms. In
this diagram, edges represent activities and have du-
rations associated with them, while nodes are mile-

POTOK AND VOUK 143 IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

stones. Different activities and milestones are de-
scribed in Table l. The final product delivered
approximately 64000 of C + + code; the port re-
quired over 8 person-years of effort and took 16
months to complete. A Booch-type'' object-oriented
methodology was used.

There are five (unfolded) iteration cycles. The first
iteration ends with milestones 7 and 8, the second
with 13 and 14, the third with 19 and 20, the fourth
with 25 and 26, and the final iteration with node 30.
The system testing activities run in parallel but are
mainly focused on the software emerging out of the
final cycle. 35 When an iteration is completed the work
is reviewed, and suggested changes and enhance-
ments are examined during the planning phase of
the next iteration. When all development iterations
are completed, depending on the measured prod-
uct quality, the product may be ready for delivery or
it may require additional system testing.

Previous results. We examined 19 commercially
available software products from the IBM Software
Solutions Laboratory. There were three distinct cat-
egories of products, those developed using procedural
methods, those developed using object-oriented
methods, and those developed using object-oriented
methods and later ported to another platform. Four
projects were ports, seven were developed using ob-
ject-oriented methods, and eight were developed
with procedural methods. All object-oriented efforts
were either first- or second-generation products. The
details of that study are reported e l ~ e w h e r e . ~ ~ , ~ " ~ ~ ~ In
the following paragraphs we briefly summarize the
key findings. We found:

144 POTOK AND VOUK

1. No statistically significant difference between soft-
ware development productivity recorded for pro-
cedural and object-oriented products that were
not ports

2. An unusual economy of scale for both object-ori-
ented and procedural software development that
was difficult to explain with traditional produc-
tivity factors

3. A remarkably compliant tracking pattern between
the actual and planned deadlines of several proj-
ect schedules that we examined in detail

While software ports are expected to exhibit higher
prod~ctivity,~~ it was surprising to see that, on the
average, there was no significant difference in pro-
ductivity between object-oriented and procedural
software development. This contradicts studies done
on object-oriented productivity in a noncommercial
environment, leading to the question of the business
influences over object-oriented development. The
data also show a very strong economy of scale. For
example, the time per programmer required to com-
plete a 1 KLOC task decreased as project size in-
creased, and as a general rule, smaller projects ex-
hibited lower productivity than larger projects
regardless of the methodology. This result, although
not unique, counters most previous studies.32 Fur-
ther, there is no obvious explanation as to why this
result has occurred. It is possible that there is a large
but constant overhead associated with all projects,
or that smaller projects are, for some reason, more
complex, but there was no evidence of either. How-
ever, there was evidence3' that larger teams may have
been dictated for certain types of smaller projects,
namely intermediate product releases, to preserve

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

continuity of skills and expertise between large re-
leases of the product. While this could provide a par-
tial explanation for lowered productivity in the small-
est projects, it does not really explain the productivity
growth observed for larger projects. One could also
argue that larger projects have stronger development
teams, accounting for the economy of scale. This also
was not supported by our data. Based on interviews
and observations, the development teams had
roughly the same experience and skill level through-
out the organization.

The remarkable schedule adherence between the ac-
tual and planned deadlines that we observed was also
difficult to explain solely on the basis of the software
methodology. The deadlines are used by manage-
ment, in accordance with the defined business pro-
cesses and culture, to control product development
and delivery, so one possible explanation is that the
product planning process was very accurate. But,
given the very wide variation in the observed aver-
age productivity over the examined projects, it is
more likely that good schedule compliance was
achieved through dynamic schedule enforcement of
deadlines for key milestones than that it was achieved
using highly accurate productivity forecasting. An-
other explanation could be that the schedules were
met because software functionality was changed or
testing time was reduced to meet them. Examina-
tion of the project records showed that no major
functions were added or deleted in these projects,
and that time was not saved by shortening testing
cycles.

This information prompted us to conjecture that the
governing influence may be, not the software devel-
opment technology, but the business model, which
includes market and business constraints imposed
on schedules, tasks, and resources. It also prompted
us to hypothesize that two related effects, Parkin-
son’s Law”z40 and the Deadline E f f e ~ t , ~ ~ , ~ ~ are prob-
ably the key factors in many commercial software
development efforts. Parkinson’s Law states that
work will expand to fill the allocated time. For ex-
ample, if a project is assigned to three similar de-
velopment teams with three easily achievable, but
different deadlines, the projects will not complete
at the same time, but according to the deadlines set.
The Deadline Effect occurs when programmers are
compelled to invest extra effort in order to complete
a task by a given deadline. If there is strong pressure
to meet a deadline, people will work additional hours
solely to meet the deadline. We consider these ef-
fects as special cases of “goal theory” described in

industrial psychology literature. Industrial psychol-
ogists report42 significant evidence that personal pro-
ductivity increases with specific, challenging goals,
such as aggressive deadline^.^',^^ This supports the

Parkinson’s Law and
the Deadline Effect

are probably the key factors
in many commercial software

development efforts.

notion that programmer productivity can be strongly
influenced by schedule goals. For example, given the
same task size and complexity, team productivity for
hard, specific schedules will most likely be higher
(within reason) than it is for less challenging sched-
ules.

To illustrate how Parkinson’s Law and the Deadline
Effect apply in our case, and that the task comple-
tion schedule compliance we observed is probably
the result of a combination of process and business
factors, we now present an analysis of task delay data
for three project schedules, one for each project cat-
egory we encountered.

Task completion delay analysis. All products were
developed under the iterative process model de-
scribed earlier, and under the same business model.
The project subset discussed here includes: a first-
generation product version with 38 KLOC in C+ +
developed using object-oriented methods (Project
A), a second-generation product version that was a
port of 64 KLOC in C+ + also developed using object-
oriented methods (Project B, shown in Figure 2), and
a follow-on maintenance release of a product where
the development team followed a procedural meth-
odology to produce 6 KLOC in C (Project C). In ad-
dition to the variation in product sizes, the projects
showed wide variation in average individual produc-
tivity. The procedural project was lowest, the first-
generation object-oriented project was two and a half
times greater, and the ported object-oriented proj-
ect was nearly ten times greater than the first-gen-
eration object-oriented project. Although we hope
that at least some of the credit for these differences
in productivity can be given to the object-oriented

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 POTOK AND VOUK 145

Figure 3 Task completion delay distribution for Project A (first-generation object-oriented project)

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00 I
-1

A

I\

0 1 2 3 4 5 8 7 6 9 i o il 12 13
TASK DELAY (WEEKS)

methodology, other factors can produce similar vari-
ability.

For each major task of the three projects, we ob-
tained the following raw scheduling information: the
planned start time, the planned end time, the actual
start time, and the actual end time. The planned end
time represents the task completion deadline. Each
task may have its own deadline, or there may be a
common deadline for several tasks. The granularity
of the task schedules was typically from one to four
weeks and involved from one to three software pro-
fessionals. Examples of tasks are design-level reviews,
the design of a small component, and the unit test
of a component (see Table 1). From the raw data
we can calculate a number of task parameters, such
as the planned task duration, the actual task dura-
tion, early task starts, late task starts, and so on.

In Figures 3,4, and 5 we plot histograms of individ-
ual task completion delays (rounded to the nearest
week) for the three projects. While all three met the
original planned shipping deadline, the distribution
of task completion delays shows that a number of
dates for intermediate milestones were not met. For
example, the plot in Figure 3 shows the fraction of

tasks with a given completion delay (in weeks) for
Project A. The distribution has a peak at zero, in-
dicating that about 45 percent of the tasks required
to develop this project finished on the planned dead-
line (note that all tasks planned for the final ship-
ping date are in this category). However, the remain-
ing 55 percent of the tasks missed the planned
deadlines. For instance, the secondary peak around
Week 5 is due to a four-to-five week slip in several
of the coding and driver-build tasks, while the third
peak at Week 12 was due to administrative delays
in getting the design specification approval signa-
tures.

Figure 4 shows the completion delay distribution for
Project B. This distribution shows that most (over
60 percent) of the tasks finished on schedule. Again,
all tasks scheduled for the final (aggregate) dead-
line were in this category. However, while this team
had the highest productivity level of the three, only
one task finished early.

Finally, Figure 5 shows the task completion delay
distribution for Project C. We again see that most
of the tasks completed on time. This includes all tasks
scheduled for the final deadline. The fraction of on-

146 POTOK AND VOUK IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

L

0.60

0.50

0.40

0.30

0.20

0.10

0.00

J

-

-

-

-

-

-3 -2 -1 0 1 2 3 4 5 6 7 8
TASK DELAY (WEEKS)

~~

Figure 5 Task completion delay distribution for Project C (procedural project)
~~ ~

0.25 -

0.10 -

0.05 -

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
TASK DELAY WEEKS)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
TASK DELAY WEEKS)

time tasks was smaller than in the other two projects, ilarities that might be expected, given the business
and there is a much larger range in the delay dis- model under which they were developed. Specifically:
tribution. Some intermediate tasks were as many as
23 weeks late. 1. In all three projects the most frequent value for

the task completion delay was zero. About 35 to
We see that although the three projects are quite 60 percent of the tasks finished on the date orig-
different in nature, they show some interesting sim- inally planned. This includes all tasks scheduled

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 POTOK AND VOUK 147

forcement of the final deadhe, and of many key
intermediate deadlines, was in effect.

2. Apparently, it is uncommon to finish a task early.
Only one project showed a task completing early.
This is a strong indicator that Parkinson’s Law
was operating.

3. In all three cases, a (small) group of intermedi-
ate- or low-priority tasks was significantly late,
from 7 to 23 weeks after the original deadline.

The business model used to guide these and other
projects that we examined strongly discourages late
completion of key milestones, since the final dead-
lines tend to be driven by market pressures. Failure
to meet a key deadline usually has strong negative
consequences. However, the same model does not
provide strong incentives for early completion of ei-
ther intermediate or final milestone tasks. Indeed,
examination of the significantly late tasks revealed
that these tasks were not only of low priority, they
did not in any way gate (restrict) the development
of their product.

During our task completion delay analysis, we found
confirmation of another of our previous results. Since
releases typically produce small amounts of code and
the business model allows the size of the program-
ming team to remain almost unchanged between ver-
sions, releases will appear comparatively overstaffed
and are likely to exhibit lowered productivity in terms
of Loc/person-month.

In order to better understand the empirical results
and to further examine the interactions between the
business model and a new (potentially high-produc-
tivity) technology, such as object-technology, we de-
veloped an integrated productivity-based simulation
model of the software and business processes. In the
following section we describe the model, and then
we use it to further investigate the productivity issues.

Model

The model makes several assumptions regarding or-
ganizational capabilities and business priorities:

1. The organization is capable of meeting given
deadlines. This means that the organization has
in place technological capabilities for developing
required software within the defined schedule and
software process and risk management structures

I

148 POTOK AND VOUK

2. ThYe irojects are: driven by calendar schedules, and
all changes in the project requirements, person-
nel, or milestone dates can be represented as
changes in effective team productivity over a pe-
riod of time.

3. When in effect, Parkinson’s Law is assumed to af-
fect all deadlines.

4. Project deadlines are enforced only at specified
milestones. The most likely deadline to be en-
forced is the final deadline; however, any set of
deadlines can be enforced.

Software project iterations. The granularity of our
model is at the level of project iterations, the se-
quences of tasks described earlier in our discussion
of Table 1. In addition to an individual iteration, we
recognize aggregations of iterations. The start of an
aggregation of iterations is conditioned on comple-
tion of the iterations that precede it. Representing
the duration of a project iteration as a function of
team productivity requires estimation of the effec-
tive size or complexity of a project iteration (e.g., in
terms of equivalent KLOC), and of the average team
productivity over the iteration in the same units (e.g.,
in KLoc/calendar development month). The dura-
tion of an iteration is then46

iteration duration (months) =

iteration size (KLOC)
team productivity (KLoc/month) (1)

The relationship between iteration duration and size
is linear if and only if team productivity is constant
with size and time. Once an iteration completion time
is determined, the duration of the overall project can
be computed by adding the estimated durations of
the iterations on the critical path(s) of the project,
as is typically done with a PERT network. 32 For the
remainder of this discussion, we will assume that we
operate on the critical path of the project.

One of the characteristics of the schedules we an-
alyzed is wide variance in the average team produc-
tivity. To incorporate this variance in the iteration
duration estimates, we define the minimum and max-
imum team productivity and use this range to esti-
mate the minimum and maximum iteration duration
range (IDR). The minimum duration for an iteration
can be achieved only if the programming team is
working at their maximum productivity; this will al-

IBM SYSTEMS JOURNAL, VOL 36, NO l , 1997

Figure 6 Planned (shaded box) and actual (heavy line) iteration durations and corresponding metrics

.I___

ACTUAL DURATION,
4

k PLANNED DURATION, ti,pian
bl

I
PLANNEDSTART 4 I I I

I . . / I
MINIMUM DUW\nON, ticmi" * PuNNEDEND/

MAXIMUM DURATION,

ITERATION DURATION RANGE (IDR)
4 b

4 b
TIME I I I I

I I I I k
JAN FEB MAR APR

most certainly include code developed from over- for that iteration. We represent the duration of it-
time work. The maximum iteration duration is the- eration i with the random variable T i . Ti can assume
oretically infinite, but in practice is usually limited values between the minimum duration and the
by market forces, such as a fraction of an 18-month maximum duration ti,max. Duration of a project with
development cycle. n successive iterations is a random variable D de-

Figure 6 illustrates the quantitative characteristics
of an iteration, i.e., the metrics we define for an in- D = T , + T , + . . . + T ,
dividual iteration. Let the duration of an iteration

fined by

(2)
be t. For each iteration i we define the actual iter-
ation duration, which we denote byt,,a,,, the planned
duration t,, , the maximum duration ti,mox, and the
minimum duration ti,min. If we assume that the size
of the problem being solved in an iteration remains
essentially constant during that iteration, then the
minimum and maximum durations are functions of
maximum and minimum team productivity, respec-
tively, in that iteration. In practice, a new project it-
eration will not start before the previous iteration
has completed. Hence, for each iteration we can also
recognize the chain of events that lead to it, i.e., its
aggregate duration, d , that includes durations of all
the sequential iterations that precede it.

The aggregate duration of iteration i is a function
of the sequence of iterations that precede it on the
critical path, d , = Xti. For example, d l = t , , d2 =
t l + tZ, etc. As with the individual tasks and iter-
ations, there are four aggregate durations: actual,
planned, maximum, and minimum.

The minimum and maximum duration times for an
iteration define a range of possible completion times

For example, adding the minimum iteration dura-
tion time from each iteration on the critical path,
Z t i , m , n , gives the minimum duration time for the
overall project, d,, Adding the maximum task du-
ration times, Xt,,,,, gives the maximum duration
time for the project, d,, max.

To simulate the duration of a project whose itera-
tions fallwithin the intervals [t l , t,, ,,], i = 1, * . . ,
n, we take a sample from each interval according to
the distribution assigned to that interval. This pro-
vides an estimate of the individual iteration dura-
tion times for the project.

From this estimate the aggregate durations can be
determined, as well as the overall project duration
time. We repeat this sampling until the required sim-
ulation accuracy is achieved.

In the work reported in this paper we used a uni-
form di~tr ibut ion~~ to sample individual productiv-
ity ranges. However, note that aggregation of the it-
eration delays is equivalent to convolution, and that

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 POTOK AND VOUK 149

introduction of business effects, such as the Dead-
line Effect and Parkinson’s Law delay, requires con-
strained sampling of these intervals so that the re-
sulting conditional distributions are not uniform
anymore. For example, the Irwin-Hall distribution
can be used to describe a general milestone distri-
bution obtained through unconstrained convolution
of uniform distributions.36 Also, in this paper we do
not address team-dependent inter-iteration corre-
lation. Our experience is that in practice this is a
lower-order effect compared to effects we deal with
in the present analysis. A more detailed discussion
of team-dependent correlated delays, and of the im-
pact this has on the development process, can be
found in P ~ t o k . ~ ~

Next we quantify Parkinson’s Law and deadline en-
forcement, then we apply these effects to the derived
iteration and project duration distributions.

Parkinson’s Law. Cyril Parkinson published a cob
lection of aphorisms about economics in 1957. Most
remembered is “work expands to fill the time,” or
as originally stated, “work expands so as to fill the
time available for its ~ompletion.”~’ Gutierrez et al.
have developed a stochastic model to represent the
effects of Parkinson’s Law on a project.40 One of the
fundamental concepts they propose is that uncon-
strained activity modeling (such as that seen in PERT
models) may be inappropriate to represent real
projects, and that completion time should be a func-
tion of the time scheduled for a project. If we con-
sider a project iteration as a single task, then the ba-
sis for their model can be expressed as

where w(d,, p l a n) is the work expansion function, and
d,,,J,n, is the project deadline. Projects under Par-
kinson’s Law will generally not have an aggregate
duration of less than the scheduled duration. That
is, if d2,plan, . . . , d,,plun are the scheduled
durations for iteration aggregates, then iteration 1
is planned to complete by time d I , p l u n , iterations 1
and 2 are planned to complete by time d2,p lan , and
so on. We model Parkinson’s Law by delaying the
aggregate completion times that are less than the
planned duration times. An aggregate duration that
would normally be shorter than the planned dead-
line is expanded so that it meets the deadline, while
an iteration that would normally finish after the dead-
line is not modified. Tasks under Parkinson’s Law
either finish, or are expanded to finish, within the

interval [di,plan - F , di,,,,], where E is a small time
period, typically one or two weeks. The lower bound
is defined by the planned aggregate iteration dura-
tion, while the upper bound is the actual maximum
duration for the aggregate.

Deadline effect. According to Boehm: “The amount
of energy and effort devoted to an activity is strongly
accelerated as one approaches the deadline for com-
pleting the a~tivity.”~’ This effect on software is
widely known but surprisingly little studied. How-
ever, in industrial psychology the effect has been thor-
oughly described and studied through goal
Goal theory supports both Parkinson’s Law-per-
formance is lower if goals are easy-and the Dead-
line Effect-performance is higher if the deadline
is challenging. The Deadline Effect depends on en-
forcement of milestone (task and iteration) dead-
lines. We model this by discarding the cases for which
any of the hard deadline aggregate tasks in the case
finish after their deadline. This provides us with con-
ditional distributions for the subset of samples that
meet the constraints.

For example, the combined effect of Parkinson’s Law
and deadline enforcement over a set of possible it-
eration and project durations is described by the al-
gorithm that follows. The iteration durations are
bounded by upper and lower productivity ranges and
are under the influence of both Parkinson’s Law and
deadline enforcement. When simulating software de-
velopment, we generate a number of case samples
(j = 1, + . . , k , e.g., k = 100 000) each of which rep-
resents one complete set of project iterations (i =
1, . . . , n) . Function HARD() returns true if the
deadline is “hard” and false if it is “soft” (i.e., allows
slippage).

F o r (j = l;..,k)do
Acquire sample t,,act, . . . , t,,,, for case j
Calculate d,,,,,, . . . ,
Loop through all iterations (1, . . . , n)

If d,,,,, < (d,,plan - E) then
expand iteration duration to the deadline
recompute current and all remaining di,,,,

(i, . . . , n)
EndIf

EndLoop
Loop through all di,p,an (7, . . . , n)

If [HARD @;,plan) and d ,ac t d;,planI then
discard this case and exit loop

EndIf
EndLoop

EndFor

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

This algorithm, which is equivalent to constrained
discrete convolution of iteration completion times,36
provides a model for how constrained iterations com-
plete around a given milestone.

Maturity. It is worth noting that the same simula-
tion models allow us to examine the influence of the
organizational software process maturity, and of the
maturity of software development technology, by
varying the iteration (task) productivity ranges (or
IDRS). For example, we would expect that mature
software processes and technology would promote
small productivity variance (i.e., smaller duration
range in Figure 6), while poor process control or im-
mature technology may result in a much wider range
of productivities and consequently larger iteration
(task) duration ranges.

Simulation

We first use the simulation model to explore the four
business models and their effect on productivity. We
then model and discuss the effect of process matu-
rity.

Projects. In the simulations presented here we use
two hypothetical projects. One project has a “nor-
mal” team productivity range in each iteration. The
second project differs from the first only in that the
upper bound on its team productivity range is twice
as large. Both sets of ranges have the same lower
bound. In the examples given below, we assume that
the development tearnprodu~tivity~~ for the first proj-
ect ranges from 500 Loc/week to 1250 Loc/week,
while the range for the second project team is from
500 Loc/week to 2500 Loc/week. From Equation (1)
it follows that a project of the normal type has it-
eration duration range from 8 to 20 weeks, while for
a project of the second type the IDR is 4 to 20 weeks.
Iteration duration times are sampled from these
ranges assuming a uniform distribution. Note that
the productivity difference between the two types is
consistent with empirical studies of differences in
productivity between noncommercial procedural and
object-oriented projects.3,5

The normal range could be considered as procedural
development, and the second range could represent
a development technology that has potential for
greater average productivity, such as object technol-
ogy. We will sometimes refer to the high average pro-
ductivity project as the “object-oriented project” and
to the other one as the “procedural project.” Note
that since the object-oriented project has the same

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

lower productivity bound as the procedural project
but a higher upper bound, the sample set from the
object-oriented project IDR has higher variance. This
suggests that there is less control over the develop-
ment process that implements the new technology.
Of course, this does not have to be the case, and a
new technology could offer not only a higher mean
value for its IDR (as compared with procedural IDR),
but also a smaller IDR range around that mean value.
We discuss this later.

We also make the following assumptions. When a
business model is applied, both projects start at the
same time and operate under the same milestone

We would expect that
mature processes and

technology would promote
small productivity variance.

constraints. When Parkinson’s Law is in effect the
IDR lower bound is no earlier than one week before
the deadline. When deadline enforcement is active
on iteration i, its IDR upper bound is the same as the
planned deadline (di, These restrictions are con-
sistent with our empirical data. Both simulated
projects are assumed to have five equally sized it-
erations. The planned duration for each iteration is
set to 10 weeks. This translates to planned deadlines
at 10,20,30,40, and 50 weeks, respectively. We also
assume that an equivalent of 10 KLOC is developed
during each iteration, i.e., a total of 50 KLOC per
project.

Business models. Our first case, Model A, simulates
the effect of a business practice that provides incen-
tive to finish a project as soon as possible, with no
penalty for finishing late. This represents the situ-
ation where the process can be viewed as being free
from both deadline and Parkinson’s Law effects. The
cumulative distributions for the duration of the
projects under this model are shown in Figure 7. The
mean completion time for the object-oriented proj-
ect is about 58.8 weeks, with a standard deviation of
10.0 weeks, while the mean for the procedural proj-
ect is about 67.5 weeks, with standard deviation of
7.8 weeks. Further, only about 20 percent of the ob-

POTOK AND VOUK 151

Figure 7 Cumulative distributions for high and low productivity projects without milestone constraints
(Business Model A)

I I

0.4
u'3 4
0.1 1

I / / 500 - 1250 LOCNVEEK

0.2 4

0 r ((, , , , ~ , 1 1 1 , 1 1 , , 1 , , 1 , , , ~ 1 , , 1 , , , , , , , , / I

22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 84

14- 00 PROJECT
f PROCEDURAL PROJECT

ject-oriented samples finish at or before the Week
SO deadline, and only about 1 percent of the pro-
cedural samples complete in this time frame. It is
obvious that, for the type of project in question, the
50-week deadline is quite aggressive and exceeds the
capability of either technology to reliably meet it.
However, an object-oriented approach still has a bet-
ter chance to do so than the procedural project. On
the other hand, if we assume that the final project
deadline is 72 weeks, we see that the higher-produc-
tivity methodology has over 90 percent chance of
meeting it. For comparison, the COCOMO (Construc-
tive Cost Model)32 average for a 50-KLoc project is
between 14.5 and 240 person-months, with a com-
pletion time of 17 months (or about 68 to 70 weeks).

The second case, Model B, provides no incentive for
finishing early and no penalty for finishing late. This
represents the situation where Parkinson's Law is in
effect for all milestones. Figure 8 shows the result-
ing project completion distribution. The mean com-
pletion time for the object-oriented project is now
61.3 weeks, two and a half weeks longer than under
Model A, but with a smaller standard deviation of
eight weeks. On the other hand, the procedural proj-

152 POTOK AND VOUK

ect results differ only slightly from the Model A case,
with a mean of 67.8 weeks and standard deviation
of 7.5 weeks. Since under Model B assumptions there
is no incentive to finish early, we would expect that
any iterations that naturally complete early would
be prolonged. This reduces the fraction of projects
that finish before or on the SO-week deadline by
nearly 10 percent for object-oriented samples, but
by only about 0.5 percent for the procedural sam-
ples. It is obvious that this lack of incentive to com-
plete early, i.e., Parkinson's Law delay, has greater
impact in the case of the object-oriented project.
Deadlines are often set so that the product can be
favorably marketed; for example, product releases
may be timed for shipment with a new version of an
operating system. Delays can limit or negate the po-
tential productivity gain a technology may offer.

Under this business model, the average project du-
ration and variance become more similar for the two
methodologies and the potential for productivity
gains from object-oriented development is less pro-
nounced. This is illustrated further in Figure 9, which
shows the corresponding estimated probability den-
sity functions. We see that the delay in the early com-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 8 Cumulative distributions for high and low productivity projects conducted under Parkinson’s Law
(Business Model 6)

1 ‘0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

P y
I t 1 I , I (, I , , , , / I , , / I , , , I 1 ! , I , I , , , 1 1 , I / , , I / I , , , I
51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93

Q 00 PROJECT
+ PROCEDURAL PROJECT

DURATION (WEEKS)

Figure 9 Probability density functions for high and normal productivity projects with Parkinson’s Law applied
(Business Model B) ~ _ _ ~

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

C 1 , , , , ~ , , , . . , , .
49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 ’ 89 91 93 95

, . .

0 00 PROJECT
PROCEDURAL PROJECT

DURATION (WEEKS)

M SYSTEMS JOURNAL, VOL 36, NO 1, 1997 POTOK AND VOUK 153

Figure 10 Average team productivity required to complete the project by Week 50 deadline (Business Model C)

1200 -
1150 -

950 -

900 -

a50 -

ITERATON 1 ITEMTlON 2

00 PROJECT

pletions translates into a relaxation spike at Week
50, but we also see that this effect is more pronounced
in the case of the potentially more productive meth-
odology.

Our third case, business Model C, provides incen-
tive for finishing early and a penalty for finishing late.
This is conceptually the same as enforcing the final
deadline but with no Parkinson’s Law effect. As men-
tioned earlier, only about 20 percent of the object-
oriented samples and only 1 percent of procedural
samples make the deadline. The mean duration for
the 20 percent of the object-oriented projects that
naturally make the deadline is 44.6 weeks with stan-
dard deviation of 4.3 weeks, while the average du-
ration for the 1 percent of the procedural projects
that naturally make the deadline is 47.9 weeks with
standard deviation of 1.7 weeks. The average team
productivity computed for these samples at each of
the five iterations is shown in Figure 10. We see that
naturally successful projects have some “slack” in the
first iteration, but after that software personnel must
maintain an average productivity that is roughly in
the middle of their range if object-oriented devel-
opment is used, and about 80 percent of their max-

154 POTOK AND VOUK

irnum for procedural development. It is very likely
that the latter requirement will put more strain on
the software team, since 80 percent of maximum pro-
ductivity probably implies overtime work.

In practice, it is unlikely that either of the three model
situations will occur in pure form. For example, it
is unrealistic to assume no penalty for late comple-
tion, and it is probably equally unrealistic t > assume
that incentives to finish early are 100 percent effec-
tive. A great deal of planning and effort is required
to ship a product, and changing the ship date late
in the cycle is costly whatever the reason and direc-
tion. Based on the workflows analyzed in this study,
Model D is a more realistic business situation, with
little or no incentive to finish earlier than planned
and a penalty for finishing late. Conceptually, this
is the same as adding both Parkinson’s Law and dead-
line enforcement to a project.

In Figure 11 we show the average team productivity
needed around the five modeled milestones, assum-
ing that all five operate under Parkinson’s Law and
that only the final project deadline (d5 ,p lan) is en-
forced. We see that for projects that meet the final

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 11 Team productivity per task for both projects under Business Model D
~~ """"""

1200 1

1150 -

1100 -

1050 -

ITERATION 3 ITERATION 4

-0 00 PROJECT

deadline, the average productivity increases steadily
as we approach it. Of course, projects that do not
naturally conform to these curves require explicit ma-
nipulation of their productivity in order to meet the
final deadline and that gives rise to the different pro-
ductivity envelopes and slopes that the Deadline Ef-
fect generates. 32 There is another interesting feature
that we see in Figure 11. A successful object-oriented
project allows the teams more slack (lower produc-
tivity) in the early project stages, which means that
they can operate in a more relaxed fashion than pro-
cedural teams. This results in early deadlines being
missed, under the expectation that the final dead-
line is not in jeopardy.

Another interesting view of Model D is provided in
Figure 12. It shows estimated iteration-duration
probability-density distributions around the interme-
diate deadlines for all project samples that meet the
final deadline. The planned duration for each iter-
ation is 10 weeks, so the deadline for Iteration 1 is
10 weeks, for Iteration 2 is 20 weeks, and so on, with
the planned finish for Iteration 5 at 50 weeks. At the
start of each iteration we see the Parkinson's Law
relaxation spike. The shape of the curves shown in

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 12 is similar to the shapes observed empir-
ically in Figures 3 through 5.

From Figure 12 we see that while both the proce-
dural and the object-oriented projects finish at the
same time, and thus have the same overall average
productivity with respect to calendar time, the bus-
iness process appears to cause a reduction in vari-
ance around the deadlines as the projects progress.
This results in a reduction in the distribution "tails"
across successive iterations. That is, the hard dead-
line at the end of Iteration 5 forces earlier comple-
tions in the iterations closer to the final deadline,
and in this way acts as a variance-reduction mech-
anism. This is interesting, since in an unconstrained
development process, convolution of iteration com-
pletion times would result in increasing, rather than
decreasing duration variance.49 Furthermore, the
lower productivity project (filled circles) requires this
better process control (i.e., shorter distribution tails
that imply lowered variance around the intermedi-
ate deadlines) in order to meet the final deadline,
while the higher productivity project (hollow circles)
can have longer tails (it can slip many of the inter-

POTOK AND VOUK 155

Figure 12 The marginal distribution of successful projects around the individual task deadlines under both
Parkinson's Law and the Deadline Effect (Business Model D)

r

I

1 .o

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 j 22

903 - 1250 LOCNVEEK

25 28 31 34 37 40 43 46 46
~ l i / i l , , , l l ((l , (, l ,) /) I , , , , , , , ' , , , 1 , (1 1 , 1 , ,
I 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

DURATION WEEKS)
4 PROCEDURAL PROJECT

156 POTOK AND VOUK IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 14 Influence of the mean and width of the productivity range
~~

r

L

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
27 32 37 42 47 52 57 62 67 72 77 62 87 !

n 20% 00
0 OOBASE

10% PROCEDURAL
A 30% PROCEDURAL

DURATION WEEKS)

mediate milestones) and still meet the final dead-
line.

Maturity and process control. So far we have as-
sumed that the two modeled projects have the same
lower bound on iteration productivity. This means
that the worst-case scenario in both methodologies
produces projects of the same duration. It could be
argued that a mature technology may have a pro-
ductivity range with less variance than a new tech-
nology, even if the new technology has potential for
higher productivity. Similarly, an organization may
have better control over projects that use a classical
methodology than over those that use a new tech-
nology. This may translate into a narrower iteration
duration range when using better controlled, mature
processes. We illustrate the effect of narrower IDRs
in Figure 13.

In Figure 13 we show the unconstrained cumulative
distribution (Business Model A) for projects that
have average team productivity of 1075 Loc/week
(filled circles) and 1500 Loc/week (hollow circles),
respectively. However, the lower average productiv-
ity project has a productivity range between 900

Loc/week and 1250 Loc/week, while the higher av-
erage productivity project range is between 500
Loc/week and 2500 Lochveek. Comparison with Fig-
ure 7 shows a striking difference. With the increased
control over the process (reduced IDRS), 90 percent
of the procedural projects are now capable of mak-
ing the 50-week deadline. This is a far higher per-
centage than is seen with the object-oriented ap-
proach, even though the latter has potential for twice
the productivity of the procedural project. In exam-
ining real products we have encountered procedural
projects that did better than object-oriented projects
and the reverse. Inspection of Figures 3 through 5
shows that the normalized task-completion delay dis-
tributions are less spread out for the object-oriented
projects than for the procedural project.

It is obvious that control over the width of the pro-
ductivity range (and by implication, control of the
software process) can play an even more important
role than potential productivity gains from a new
technology. While business-imposed incentives and
deadlines can have an important impact on the per-
ceived team productivity and on the probability that
a project finishes on time, it may be even more im-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 POTOK AND VOUK 157

control with acceptable productivity and as narrow
an IDR as possible. Doing so may increase the prob-
ability of project completion by a given deadline, even
when the deadline is aggressively set by market
forces.

In Figure 14 we illustrate possible trade-off issues
between better process control (as manifested by the
width of the productivity range) and productivity po-
tential (as manifested by the average productivity and
the upper productivity bound). Figure 14 shows cu-
mulative project completion distributions for four
cases: (1) the basic object-oriented project (range:
500-2500 Loc/week/team, average team productiv-
ity of 1500 Loc/week), (2) a project with the same

Both Parkinson’s Law delays
and the Deadline Effect
tend to be the result of

the applied business model.

upper bound on team productivity but a 20 percent
better lower bound (range: 600-2500 Loc/week, av-
erage: 1550 ~oc/week), (3) a procedural project with
average team productivity of 900 Loc/week (range:
550-1250 Loc/week), and (4) a project where the
average team productivity is 950 Loc/week and the
range is 650-1250 Loc/week. Inspection of the fig-
ure and comparison with Figure 7 shows a number
of interesting things.

For example, from Figure 7 we see that the prob-
ability that a project with a procedural productivity
profile (500-1250 Loc/week) completes within 67
weeks is about 50 percent, while the probability that
a project with our assumed basic object-oriented pro-
file (500-2500 Loc/week) completes within 67 weeks
is about 80 percent. However, Figure 14 shows that
if we increase the low-end productivity of the pro-
cedural profile by only 10 percent we can raise its
completion probability to 80 percent. That is, a 10
percent increase in the lower productivity bound
(from 500 to 550 Loc/week) has the same effect as
doubling the upper bound. Similarly, the probabil-
ity that the basic object-oriented project completes

158 POTOK AND VOUK

could choose a 20 percent improvement in the lower
bound of the basic object-oriented team productiv-
ity range or a 30 percent improvement in the lower
bound of the procedural profile. However, we have
to remember that business effects can counteract
these improvements. For instance, comparison of ba-
sic object-oriented profiles in Figures 14 and 8 shows
that lack of incentives to complete a project before
Week 50 reduces the probability of project comple-
tion at Week 55 from about 0.36 to about 0.25.

It is obvious that an organization has a number of
options for improving the probability that its projects
complete by some deadline. Improvements in the
process that result in a small increase in the lower
productivity bound (e.g., improved training of the
personnel in the use of the technology) can be as
effective as a shift to a new technology that has con-
siderably higher productivity potential but may be
implemented with less control (i.e., with a broader
productivity range). Of course, other effects, such as
those of the business model, also have to be taken
into account.

Conclusions

As market pressures shorten software development
cycles, an increasing emphasis is being placed on im-
proving software development productivity. Object-
oriented software development has emerged as a po-
tential solution, i.e., as technology with great
potential for reducing product time to market. While
this may be true in cases where high levels of design
and code reuse are present (which can be achieved
without object technology as well), there is little ev-
idence that this occurs in the first few product gen-
erations, at least not for commercial projects oper-
ating under a common business model.

In this paper we reported on empirical and simu-
lation-based studies of the relationship between com-
mon commercial business practices and the software
productivity that might be expected in such an envi-
ronment. Our data indicate that object-oriented
projects suffer from Parkinson’s Law delays, and
from the Deadline Effect, in much the same way that
procedural projects do. Both effects tend to be the
result of the applied business model. For example,
a rigorous enforcement of final project deadlines,
coupled with a lack of incentive to finish interme-
diate project tasks early, may trigger Parkinson’s Law
delays and negatively influence productivity. This ef-

IBM SYSTEMS JOURNAL, VOL 36, NO 1 , 1997

methods, such as object technology, but operate un-
der business models and deadlines that are more
suited for productivity expected from classical meth-
odologies.

We used simulation to show that while a method-
ology with potential for higher productivity may en-
able software development teams to operate in a less
stressful mode, the promise of high productivity
alone is not enough. An organization must be able
to control the range of productivities in which its de-
velopment teams operate. A wider range implies less
control over the process and less ability to guaran-
tee timely project completion. The decision to use
a new technology should be based not only on its
promised maximum, or even average, productivity
but also on the ability of the organization. If the bus-
iness model cannot adjust to new technology by rec-
ognizing its limitations, assessing the ability of the
organization to control it, and adjusting deadlines
to take advantage of its potential, it is unlikely that
an investment in the technology will result in real
productivity benefits.

Acknowledgments

We would like to thank Dan Blum, Chris Wicher,
and the IBM Software Solutions Laboratory in Re-
search Triangle Park (RTP) for their strong support
of this research, and Paritosh Dixit of North Caro-
lina State University (NCSu) for his assistance with
the statistical analyses. We are grateful to the anon-
ymous referees for their constructive comments that
have helped to improve the organization and pre-
sentation of this work. Work was supported in part
by IBM Canada (Centre for Advanced Studies,
Toronto), by IBM RTP, by the IBM Shared University
Research program, and by NCSU Center for Ad-
vanced Computing and Communications.

Cited references and notes

1. The latest newcomer in this arena is the Java language and
Web-based software development.

2. I. Jacobson, M. Ericsson, and A. Jacobson, The Object A d -
vantage: Business Process Reengineering with Object Technol-
ogy, Addison-Wesley Publishing Co., Wokingham, UK (1994).

3. J. A. Lewis, S. M. Henry, and D. G. Kafura, “An Empirical
Study of the Object-Oriented Paradigm and Software Reuse,’’
Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, andApplications, Phoenix, AZ, October

4. In this experiment, the reuse level may have been as high as
6-11, 1991, pp. 184-196.

25 percent in some cases.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Systems, Technical Report CS-TR-3395, Department of Com-
puter Science, University of Maryland, College Park, MD
(January 1995).

6. For high-end productivity gains reuse levels were in the range
of 40-50 percent.

7. B. Henderson-Sellers, “The Economics of Reusing Library
Classes,” Journal of Object-Oriented Programming 6, No. 4,
43-50 (1993).

8. D. Schimsky, “Software Reuse: Some Realities,” Vitro Tech-
nical Journal 10, No. I , 47-57 (1992).

9. D. A. Boehm-Davis and L. S. Ross, “Program Design Meth-
odologies and the Software Development Process,” Intema-
tional Journal of Man Machine Studies 36, No. 1,l-19 (1992).

10. H. Zweben, S. H. Edwards, B. W. Weide, and J. E. Hollings-
worth, “The Effects of Layering and Encapsulation on Soft-
ware Development Cost and Quality,”IEEE Transactions on
Software Engineering 21, No. 3, 200-208 (1995).

31. G. Booch, Object-Oriented Design with Applications, The
Benjamin/Cummings Publishing Co., Redwood City, CA
(1991).

12. D. dechampeaux, D. Lea, and P. Fauve, Object-Oriented Sys-
tem Development, Addison-Wesley Publishing Co., Reading,
MA (1993).

13. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, Object-Oriented Modeling and Design, Prentice
Hall, Inc., Englewood Cliffs, NJ (1991).

14. R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Ob-
ject-Oriented Software, Prentice Hall Inc., Englewood Cliffs,
NJ (1990).

15. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes, Object-Oriented Development: The
Fusion Method, Prentice Hall, Inc., Englewood Cliffs, NJ
(1994).

16. F. Hayes and D. Coleman, “Coherent Models for Object-Ori-
ented Analysis,” Proceedings of the Conference on Object-On-
ented Programming Systems, Languages and Applications,
Phoenix, A Z , October 6-11, 1991, pp. 171-183.

17. D. E. Monarchi and G. I. Puhr, “A Research Typology for
Object-Oriented Analysis and Design,” Communications of
the ACM 35, No. 9, 35-47 (1992).

18. B. Henderson-Sellers and J. M. Edwards, BOOK TWO of
Object-Oriented Knowledge: The Working Object, Prentice Hall,
Inc., Sydney, Australia (1994).

19. L. Berlin, “When Objects Collide: Experienceswith Reusing
Multiple Class Hierarchies,” Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, andAp-
plications, Ottawa, Canada, October 21-25, 1990, pp. 181-
193.

20. M. F. Dunn and J. C. Knight, “Software Reuse in an Indus-
trial Setting: A Case Study,” Thirteenth Intemational Confer-
ence on Software Engineering, Austin, TX, May 13-16,1991,

21. E. H. Gamma, R. Johnson, and J. Vlissides, “Design Patterns:
Abstraction and Reuse of Object Oriented Design,”Proceed-
ings of the Seventh European Conference on Object-Oriented
Programming (1993).

22. M. L. Griss, S. S. Adams, B. Howard, B. J. Cox, and A. Gold-
berg, “The Economics of Software Reuse (Panel),”Proceed-
ings of the Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, Phoenix, AZ, October

23. W. Wessale, D. Reifer, and D. Weller, “Large Project Ex-

pp. 381-390.

6-11, 1991, pp. 264-270.

POTOK AND VOUK 159

periences with Object Oriented Methods and Reuse,” Jour-
nalofSystems Software 23, No. 2,151-161 (November, 1993).

24. G. A. Hansen, “Simulating Software Development Process-
es,” IEEE Computer 29, No. 1, 73-77 (1996).

25. T. E. Potok and M. A. Vouk, “Development Productivity for
Commercial Software Using Object-Oriented Methods,” Pro-
ceedings of the 1995 CASCON Conference, Toronto, Canada,
October, 1995.

26. T. E. Potok and M. A. Vouk, Productivity of Object-Oriented
Software Development, Technical Report CACC-TR-96/31,
Center for Advanced Computing Communications, North
Carolina State University, Raleigh, NC (1996).

27. Data used by permission. The scales appearing on the axes
of all graphs, and any product and date-related information,
have been altered to provide discretion.

28. Procedural software development uses structured analysis,
design and coding, or similar techniques, to develop and im-
plement a software product.

29. IS0 9000 is a set of specifications and standards for quality
assurance management systems. It was written by represen-
tatives from the 91 countries that are members of the Inter-
national Organization for Standardization (ISO). IS0 9000
certification is granted after successfully passing an external
audit against the IS0 9001 Standard, made up of 20 elements
that define acceptable quality management systems.

30. The Malcolm Baldrige National Quality Award recognizes
United States companies for business excellence and quality
achievement. The criteria are focused on customer satisfac-
tion, continuous improvement, and business results. To be
considered for this annual award, a company submits an ap-
plication that describes its efforts against the criteria. Bus-
iness and quality experts review the applications to determine
the winner.

31. However, the advent of the World Wide Web has introduced
a new category of Web-based applications that require de-
velopment and release cycles of around three calendar months
(one “web year”). This opens some interesting process con-
trol issues, some of which we discuss in the paper.

32. B. W. Boehm, Software EngineeringEconomics, Prentice Hall,
Inc., Englewood Cliffs, NJ (1981).

33. R. E. Fairley, SoSnyare Engineering Concepts, McGraw-Hill,
Inc., New York (1985).

34. It is interesting to note that a “web-year’’ cycle could be cast
as an “iteration” with a very hard iteration deadline.

35. Note that in “web-year’’ type development full testing would
be enforced at the end of each web-year iteration.

36. T. E. Potok, Development of a Quantitative Process Model for
Object-Oriented Software Development, doctoral thesis, De-
partment of Computer Science, North Carolina State Uni-
versity, Raleigh, NC (1996).

37. M. A. Vouk, “On the Cost of Mixed Language Programming,”
ACM SIGPLAN Notices 19, No. 12, 54-60 (1984).

38. Based on interviews with the workflow owners and on a re-
view of the project documentation.

39. C. N. Parkinson, Parkinson’s Law and Other Studies in Ad-
ministration, Houghton Mifflin Company, Boston, MA f1957).

40. G. J. Gutierrez and P. Kouvelis, “Parkinson’s Law and Its
Implications for Project Management,”ManagementScience
37, No. 8, 990-1001 (August 1991).

41. D. S. Borger and M. A. Vouk, “Modeling the Behaviour of
Large Software Projects,” Centerfor Communications and Sig-
nal Processing, Technical Report TR-91/19, North Carolina
State University, Raleigh, NC (1991).

42. As of 1990, over 400 experiments have been performed test-
ing this theory, with over 90 percent supporting it.

43. E. A. Locke and G. P. Latham, A Theory of Goal Setting and

(1990).
Task Pe$ormance, Prentice Hall, Inc., Englewood Cliffs, NJ

44. G. P. Latham and H. A. Marshall, “The Effects of Self-Set,
Participatively Set and Assigned Goals on the Performance
of Government Employees,” Personnel Psychology 35,399-
404 (1982).

45. M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Ca-
pability Maturity Model, Version 1.1,” IEEE Software 10, No.
4, 18-27 (Julv 1993).

46. A. B. Badiru and P. S. Pulat, Comprehensive Project Manage-
ment: Integrating Optimization Models, Management Princi-
ples, and Computers, Prentice Hall, Inc., Englewood Cliffs,
NJ (1995).

47. One could argue that a triangular or beta distribution may
be a good starting representation for the iteration duration.
However, there is no evidence that independent uncon-
strained iteration durations have a specific distribution, so
we have opted for the more general uniform distribution.

48. It is also assumed that the average team size is about ten soft-
ware professionals.

49. S. E. Elmaghraby, E. I. Baxter, and M. A. Vouk, “An Ap-
proach to the Modeling and Analysis of Software Produc-
tion Process,” International Transactions in Operational Re-
search 2, No. 1, 117-135 (1995).

Accepted for publication September 11, 1996.

Thomas E. Potok IBM Software Solutions Division, P.O. Box
12195. Research Triangle Park, North Carolina 27709 (electronic
mail: potok@vnet.ibm.com). Dr. Potok is an advisory program-
mer at the Software Solutions Laboratory of IBM in Research
Triangle Park, North Carolina. He is currently merging the Ap-
plication Development and Database for the Software Solutions
RTP lab. He has successfully led the lab in achieving IS0 9000
certification. Prior to this, he led a team in creating an object-
oriented data model designed to work with CASE (computer-
assisted software engineering) tools to improve application de-
velopment and quality. He has led and been a member of various
other software development efforts. He has a B.S. degree in com-
puter science, an M.S. degree in computer engineering, and a
Ph.D. degree in computer engineering, all from North Carolina
State University. He has authored 11 publications and has filed
2 patents.

Mladen A. Vouk Department of Computer Science, North Caro-
lina State University, Box 8206, Raleigh, North Carolina 27695 (elec-
tronic mail: vouk@adm.csc.ncsu.edu). Dr. Vouk received B.Sc.
and Ph.D. degrees from the University of London, United King-
dom. He has extensive experience in both commercial software
production and academic computing environments. He is the au-
thor or coauthor of over 100 publications. He is currently a pro-
fessor of computer science at North Carolina State University.
His research and development interests include: software pro-
cess and risk management, software testing and reliability, sci-
entific problem-solving work flows, advanced high-performance
networking, coding theory, and computer-based education. He
teaches courses on software engineering, software testing and re-
liability, software process and risk management, and communi-
cation networks. Dr. Vouk is chairman of the IFIP (Internation-

160 POTOK AND VOUK IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

a1 Federation for Information Processing), Working Group 2.5
on Numerical Software. He is also a senior member of IEEE (In-
stitute of Electrical and Electronics Engineers) and a member of
the Reliability Society, Communications Society, IEEE Computer
Society, IEEE Technical Committee on Software Engineering,
ACM (Association for Computing Machinery), American Soci-
ety for Quality Control, and Sigma Xi. He is an associate editor
of IEEE Transactions on Reliability.

Reprint Order No. G321-5639.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 POTOK E

