
Debugging DB2/CS
clientlserver
applications

by M. Meier
H. Pan
G. Y. Fuh

The technology of running external programs
on the server side of a relational database
management system (RDBMS) has been
developed in the past few years. Database 2TMl
Common Server (DB2TMlCS) for UNIXTM-based
platforms supports external programs (Le., user-
defined functions and stored procedures) that
are written by the application developer in a
third-generation language such as C or C+ +.
The main difficulty in debugging these external
programs is that they are executed under the
control of DB2/CS, which is itself a large
software system for which no source code is
provided. It is therefore impractical for a
debugger to penetrate through the layers of
software of DB2lCS to locate and debug the
external programs. It is also very difficult for the
debugger to determine when an external
program will be invoked by the database engine
and in which process it will be run. In addition, in
an environment where the DB2lCS server is
shared between a large number of users, it is
necessary to ensure that the debugger does not
violate the security of the DB2lCS system. In this
paper, we describe a set of extensions to a
distributed debugger and DB2ICS to support the
debugging of external programs. A prototype
was implemented to show the feasibility of the
proposed approach.

T he technology of running external programs on
the server side of a relational database manage-

ment system (RDBMS) has been developed in the past
few years. For example, Database 2*/Common
Server (DBZ*/CS) for uNIx**-based platforms’ sup-
ports external programs that are written by the ap-
plication developer in a third-generation language

88 MEIER, F ’AN, AND FUH

(3GL) such as C or C+ t. There are currently two
types of supported external programs:

1. A user-dejinedfinction (UDF) extends the func-
tionality of DB2ICS by allowing users to define their
own structured query language (SQL) functions
implemented in a ~ G L . Once created, a uDF can
be invoked from any context where an SQL expres-
sion2 is expected.

As an example, let “payroll” be a table populated
with the payroll information of a company. Ex-
ecution of the following SQL query statement will
run the user-defined function “undergaid” as
part of the query on the server machine:

SELECT empname FROM payroll WHERE
under-paid(salary, education, experience) = 1 ;

2. A stored procedure allows the application devel-
oper to break a database application program into
a client part and a server part. The server part
can issue SQL requests while running on the same
machine as the DB2/CS server. Results from the
execution of the stored procedure can be passed
back to the client part, which is usually running
on a different machine. In some database appli-
cations, this can greatly improve performance.

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8670/97/$5.00 0 1997 IBM IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Currently, there is no practical method for de-
bugging these external programs. Although the cur-
rent practice is to write a test driver program that
simulates the DB2ICS call to the external program,
external programs are executed under the control
of the database engine, which is itself a large soft-
ware system for which no source code is provided.
It is therefore impractical for a debugger to pene-
trate through the layers of software of the database
engine to locate and debug the external programs.
It is also very difficult for the debugger to determine
when an external program will be invoked by the da-
tabase engine and in which process it will be run.

Another problem is that external programs are not
statically linked with any executable module. Instead,
when about to be invoked they are dynamically
loaded by the database engine, which further com-
plicates the situation for the d e b ~ g g e r . ~ In addition,
in an environment where the DBYCS server is shared
between a large number of users, it is necessary to
ensure that the debugger does not violate the secur-
ity of DB2/CS or the underlying operating system.

In this paper, we describe a set of extensions to a
distributed d e b ~ g g e r , ~ ’ ~ SQL, and the DB2/CS data-
base engine to support the debugging of DB2ICS ex-
ternal programs. In our approach the user does not
need to make any modification to the source code
of the external programs. However, the external pro-
grams need to be recompiled with the compiler de-
bugging option turned on (e.g., the “-g” option of
the Advanced Interactive Executive* [AIX“] C com-
piler). In most cases, the user will add some addi-
tional SQL statements to the client program to ac-
tivate debugging for the external programs and to
set certain debugging options.

The extensions to the distributed debugger include
a mechanism that allows the DB2ICS database engine
to invoke a debugger library routine to request de-
bugging services from a distributed debugger that
may be running on a different machine. The distrib-
uted debugger can then “dynamically attach”‘ to the
process that is running the external program.

The debugger library routine will locate a distrib-
uted debugger that meets user-specified criteria and
send it a message containing the information needed
to locate the process running the external program,
including the host ID (identifier) of the machine, the
AIX process ID, and the thread ID. Also included is
the information needed to obtain authorization for
the debugger to attach to the process running the

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

external program (i.e., login ID and password) and
the instruction address in the external program where
the debugging session should begin (e.g., the entry
point of the external program).

The extensions also include proposed enhancements
to the SQL standard and the database engine. En-

In our approach the user
does not need to modify

the source code
of the external programs.

hancements to the SQL standard are required to en-
sure that database security can be preserved in the
presence of debugging support. This approach elim-
inates any possibility of circumventing the authority
checking supported by the RDBMS. The proposed en-
hancements to SQL include a new “SET DBENV” state-
ment that the user can invoke from a client program
to set various environment variables. Some of these
environment variables are used by the debugger li-
brary routine to locate a debugger in a distributed
environment and to specify various debugger options.
Also proposed is a new “DEBUG” SQL statement that
can be invoked from the DBYCS client program to
indicate which external programs the database en-
gine should request debugging services for, and un-
der what conditions. In addition, we enhance the ex-
isting “GRANT” SQL statement with a new DEBUG
privilege that can be used by an RDBMS system ad-
ministrator to grant privileges for debugging a spec-
ified external program to other users. The “REVOKE”
SQL statement is correspondingly enhanced.

The extensions proposed to the DB2ICS database en-
gine allow the debugger to retrieve its internal state,
at run time, as a set of data structures analogous to
the caller stack of C. The data structures are main-
tained by the database engine in shared memory, ac-
cessible to the debugger, allowing it to determine,
for example, the calling sequence (e.g., a DB2ICS cli-
ent program invokes a stored procedure that in turn
executes an SQL statement that executes a user-de-
fined function, etc.).

MEIER. PAN, 1 \ND FUH 89

Figure 1 Run-time environment of DBWCS
~ - ~~ ~~~ ~

r

I

L

i I 1 """""""""""""""""""""-."I

PROCESS

I - ."" i
(MACHINE 1) (MYUDF1)

AGENT UNIT 1
i

/ "

' . ! ! DBMS
I EXECUTION ENVIRONMENT CONTROL

~ 1 /
1 UNIT

L"" "_"~__" """""" """..~"~

DATABASE MANAGEMENT SYSTEM (MACHINE 2)

The rest of the paper is organized as follows. In the
next section we describe the external programs and
the run-time environment of DB2ICS. Following sec-
tions introduce the architecture of a distributed de-
bugger, describe extensions to the debugger, describe
the extensions we propose to the SQL standard and
the DB2ICS database engine, and summarize our de-
bugging scenario. The final section contains our con-
cluding remarks.

DBP/CS external programs and run-time
environment

As mentioned earlier, there are two kinds of exter-
nal programs: user-defined functions (UDFS) and
stored procedures. In DBYCS, a UDF can be run in
two modes, fenced and unfenced. A fenced UDF pro-
vides better security, reliability, and data integrity
at the expense of performance by creating a "fire-
wall" between the database engine run-time code and
the UDF run-time code. This is achieved by running
UDF code in its own separate process. An unfenced
UDF provides better performance at the expense of
security, reliability, and data integrity by running the
UDF code in the same process as the database en-
gine.

Figure 1 characterizes the DBYCS run-time environ-
ment. A client program, "myclient," is running in a
process on Machine 1. DB2ICS external programs (i-e.,
stored procedure and user-defined functions) are ex-

90 MEIER, PAN, AND FUH

ecuted under the control of the DBYCS server on Ma-
chine 2.

The DBYCS server is a set of control processes, rep-
resented by the DBMS control unit' box, created at
the same time as the database instance. The control
unit "listens" for "connection requests" from clients.
For each connection request, the control unit spawns
a new set of processes referred to as an agent unit.
The newly created agent unit is then connected to
the corresponding client for receiving and serving
the subsequent database requests. The agent unit
consists of an agentprocess and, optionally, a set of
fenced UDFproCesses, a set of stored procedure pro-
cesses, or both.

Because it runs most of the database engine code,
the agent process is also referred to as the "data-
base engine." It receives the client request and dis-
tributes it to various service components to accom-
plish the requested action. In addition to the
database engine code, the agent process runs un-
fenced UDF code.

A fenced UDF has its own process, which executes
the run-time code to communicate with the agent
process, dynamically loads the UDF library, and runs
the fenced UDF code. There can be several UDF pro-
cesses associated with an agent unit.7 In many as-
pects, a stored procedure process has the same run-
time characteristics as a fenced UDF process.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

“f
”””””-,”””””.”
DtRECTOR ; DEBUG

”””“”””“”“”.”

I

I I J
P1 P2 P3

However, unlike a fenced UDF process, a stored pro-
cedure process runs the external program as if it were
a stand-alone application on the server machine.

A scenario using the components shown in Figure
1 follows. The client program “myclient” executes
a stored procedure named “mysp.” The stored pro-
cedure then executes an “SQL SELECT” statement that
contains a call to an unfenced UDF named “myudfl.”
The body of “myudfl” contains an SQL statement
that invokes the fenced UDF named “ m y ~ d f 2 ” : ~

mysp:
SELECT empname FROM payroll WHERE

myudfl (salary, ssn) = 1 ;

The database engine loads the stored procedure and
the fenced UDF, in their own separate processes, on
the machine that is running the DB2iCS server (Ma-
chine 2) . The unfenced UDF is loaded into the same
process as the database engine.

Architecture of a distributed debugger

oped to debug parallel and distributed applications
that use Open Software Foundation’s Distributed
Computing Environment** (OSF DCE**).9 It is based
on a prototype version of the AIX xldh ’(’ single pro-
cess debugger. Xldb, an IBM program product, is
based on the X Window System**. Using the Mc-
Dowell-Helmbold classification of basic approaches
for debugging concurrent programs, I ’ PDDA can be
categorized as an extension of traditional debugging
techniques (breakpoints set by users) for parallel and
distributed programs. PDDA has recently been ex-
tended to support debugging for IBM Distributed Sys-
tem Object Model (DSOM)’~ application^.^ The ar-
chitecture of PDDA includes a front end (FE) and one
or more back ends (BES) attached to processes (Pl,
P2, P3) running the application programs that use
the underlying debugging support of the operating
system (e.g., the AIXi6000“ “ptrace” function).

The front end provides a single user interface and
handles most of the initialization and parallel exe-
cution control issues. Moreover, it creates a back end
for each program involved in the application. The

Figure 2 shows the architecture of the prototype dis- back endruns on the same host as ‘the application
tributed debugger “Parallel and Distributed Dynamic program and will carry out requests from the front
Analyzer” (PDDA),’ which is the basis of our work end to monitor and control it. These requests include
described in this paper. PDDA was originally devel- reading and writing the program state, starting and

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 MEIER, PAN, AND FUH 91

Figure 3 Dynamic connection to a debugger in a distributed environment
~~~~~ ~______ ______ _ _ _ _ _ _ _ - ~ ~ -  ~ ~ 

DEBUGGER  SERVER 
(FRONT  END) 
i 

5 ATTACH  A  MONITOR/CONTROLLER 43 DEBUGEE 
~.__~"...~~~. (BACK  END)  TO  THE  DEBUGEE 

I MESSAGf 
~ HANDLER 4 REQUEST  DEBUGGING  SERVICE (DEBUG IT MESSAGE) 
'L"" ""_ "-4 ~' DEBUGGER 

CUENT 
" V' 

2 LOCATE  A 
DEBUGGER  SERVER . I 

1 REGISTER THE 
DEBUGGER  SERVER 7 t 

MESSAGE 
HANDLER 

DEBUGGER SEWER 

I. 
""_"_"~". 

TOOL LOCATOR 

stopping the execution of the  program,  and moni- 
toring the  program  for  interrupts (e.g., breakpoints, 
floating  point  exceptions,  etc.). 

A back end can be  created  either  during  debugger 
initialization or dynamically during  the debugging 
session, using the "dynamic connection"  approach 
described in the next section.  When the back end is 
created  during  debugger  initialization,  the  program 
to  be monitored  and  controlled  must  be specified. 
When  the back end is created dynamically, the  pro- 
gram  to  be  monitored  and  controlled is not speci- 
fied at debugger  initialization;  instead the applica- 
tion  program calls a  debugger library routine to 
request debugging services from a particular instance 
of a  distributed  debugger. An application  program 
can  request  debugging services for itself or for  an- 
other  program. 

Extensions  to the distributed  debugger 

Although intuitively it  seems  that  the debugging of 
an external  program  should be  under  the  control of 
the DBziCs client  program  that invokes it, there  are 
three obstacles. The first is a timing obstacle. The 
DB2ICS external  program's  process is created on de- 
mand,  and  the external library is loaded  and un- 
loaded dynamically. The next is an authorization  ob- 
stacle. A DBUCS process usually runs under a  special 
user ID so that  normal  users  cannot  attach  it. Finally, 
there is an access obstacle. In general  a  remote  user 

92 MEIER, PAN, AND FUH 

does  not have a  user  account on the DBMS server ma- 
chine,  making  it  extremely  dificult, if not irnpossi- 
ble, to  debug  an external  program's  process  from the 
client  machine. 

These  three obstacles may appear  to  be  orthogonal. 
However, as we examined  them carefully we discov- 
ered  that they all originate  from the  same  source: 
the expectation that  the debugger is to be  initiated 
from the D B X S  client program. We then  started  to 
think  from an entirely different perspective:  suppose 
the DBMS initiated the  debugger? This  would  over- 
come  the timing  obstacle, the  authorization  obsta- 
cle, and  the access obstacle. 

The obstacles  were then  reduced  to  the  problem of 
how to initiate  a  debugging session from the DBMS. 
To solve this  problem we have developed  a  general- 
purpose facility, the "Dynamic Connection" l3  com- 
ponent.  This  component allows an application  pro- 
gram to  locate a  distributed  debugger  front  end in 
a  distributed  environment at  run  time  and  send it  a 
message requesting  debugging services. The debug- 
ger  then  attaches  a back end  (monitorkontroller) 
to  the process  for which debugging services were  re- 
quested. The DBMS can  use  the "Dynamic  Connec- 
tion"  component to initiate  a  debugging session for 
an external  program. 

Dynamic connection overview. Figure 3 illustrates  a 
dynamic connection to a  debugger in a  distributed 

IBM SYSTEMS  JOURNAL,  VOL 36, NO 1, 1997 



environment.  Before  describing  it, we define  some 
of the  terms used.  A debugee is a program  that is to 
be debugged (e.g., a DB2ICS external  program).  Ade- 
bugger  server  is a  program  that provides  debugging 
services (i.e., the distributed  debugger  front end). A 
debugger client is a  program (e.g., the DB2ICS data- 
base  engine)  that  sends a request to a debugger 
server to provide debugging services for  a  debugee. 
The debugee  can  be  the  debugger client itself, or an- 
other  program running  anywhere on the network. 
A monitor/controller is a program  that is attached  to 
the debugee, by the debugger  server, to monitor  and 
control  its  execution  and  to  read  and  write  state  in- 
formation  (i.e.,  the  distributed  debugger  back  end). 

The debugger  client calls a debugger library routine 
to locate a debugger  server  and  send it a message 
that contains the information  needed to locate  the 
debugee  and  obtain  authorization  to  attach a 
monitor/controller. Additionally, the message will in- 
clude the instruction  address in the  debugee  where 
the user would like the debugging session to begin 
(e.g., at the  current instruction  address of the  de- 
bugee or  at  entry  to a routine invoked by the  de- 
bugee  program). 

The debugger  server may or may not  be running on 
the same  machine as the  debugee.  To  locate  the  de- 
bugger  server, the tool locator, a new component, is 
used. The  debugger client  and  debugger  server  can 
communicate with the  tool  locator  through socket 
connections. l 4  

Figure 3 shows the  sequence of steps  for a debugger 
client (e.g., the DBYCS database  engine)  to dynam- 
ically request  debugging services for  another  pro- 
gram (e.g., a DB2ICS external  program). (1) A  debug- 
ger  server  (i.e., a distributed  debugger  front end) is 
started  and  registers itself with the  tool  locator, in- 
dicating that it is available to serve debugging re- 
quests. (2) A debugger  client  sends  a message to  the 
tool  locator to locate  a  debugger  server. (3) The tool 
locator  returns  the  socket  address of a debugger 
server that  matches  the  debugger client’s specifica- 
tion. (4) The debugger client sends  a  “debug  it” mes- 
sage to  request debugging service for  the  debugee 
from  the  debugger  server. ( 5 )  The  debugger server 
attaches a monitor/controller to  the  debugee. 

Tool locator. The tool  locator is a general-purpose 
mechanism  for first registering,  then  locating  pro- 
grams that have certain  properties in a distributed 
environment. The DBUCS database  engine as debug- 
ger client can call a debugger library routine  that will 

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 

use the  tool  locator  to find a  registered  distributed 
debugger  front-end  server with certain  properties, 
such as  the  user ID it is running  under,  the  machine 
it is running on, the X Window System display it is 
using, the programming languages and  operating sys- 
tems  it  supports,  etc. 

When  a  distributed  debugger  front end is started, it 
calls a debugger library routine to register with the 
tool  locator, passing to it a string that  containsprop- 
erty-name = propee-value substrings  separated by 
commas. For example, the string 

“hostname=atlantic,userid=hpan,opersys=AlX, 
language=C,language=CPP” 

indicates that  the distributed  debugger is running on 
a host named  “atlantic”  under  the  user ID “hpan” 
and  supports  the  debugging of programs  written in 
C and C+ + on AIX. DB2ICS can  then  execute a de- 
bugger library routine, specifying as one of its ar- 
guments  search  criteria  for a debugger front  end  run- 
ning under  the user ID “hpan”  that  supports C+ + 
on AIX. 

The search  criteria  argument is a  string  that  contains 
conjunctions  and  disjunctions of property-name = 
property-value expressions. Parentheses  can  be used 
to specify precedence. There  are no predefined  prop- 
erty  names or property values; these  are simply ar- 
bitrary  sequences of case-insensitive alphanumeric 
characters.  For  example,  the  string 

“userid= hpan and machtype=rs6000 and 
opersys=AIX and language=C and language=CPP” 

could be  used  to  locate any debugger  front end  run- 
ning on any host under  user ID “hpan”  that  supports 
the debugging of C and C+ + programs  running in 
AIX on a RISC (reduced  instruction-set  computer) 
System/6000**. 

As another example, the string 

“opersys=WindowsNT and language=CPP and 
machtype=PowerPC and 

((userid=hpan and hostname=davinci) or 
(userid=meier and hostname=atlantic) or 
userid=fuh)” 

could  be  used to  locate any distributed  debugger 
front  end  that  supports  programs  written in C+ + 
for Windows NT* * on a PowerPC* that is either  run- 
ning under  user ID “hpan” on a host named “davinci” 

MEIER, F ’AN, E \ND f ‘UH 93 



or running  under  user ID "meier" on a  host  named 
"atlantic" or running under user ID "fuh" on any host. 

The tool  locator  returns  to  the  library  routine  a 
socket  address  for  the first debugger  front  end  that 
matches the criteria. (If more  than  one debugger 
front  end matches the search  criteria,  their  socket 
addresses  can  be  retrieved by subsequently  execut- 
ing a  series  ofFindNext calls to the  tool  locator.) The 
library  routine will use the socket  address to  create 
a  socket  connection  and  send  a message to  the  de- 
bugger  front end,  requesting it to attach  a 
monitor/controller  to  the  process  that is running the 
external  program. 

Debugger client application program interface. Two 
application programming interface (API) routines are 
provided by the  debugger library for  the debugger 
client to request  debugging services. If the debug- 
ger  client is also the  debugee, it calls "debugMe." 
If another  program is to  be debugged, the client calls 
"debugIt." 

The debugZt routine. A call to  the debuglt routine  re- 
quires  a  search  criteria  used to locate  a  distributed 
debugger  front end (i.e., the debugger  server). The 
arguments  include all of the  information  needed  to 
locate  a  particular  application  program  and  attach 
a  debugger  back end (i.e., monitor/controller)  to  it: 

void debugIt(char *searchcriteria, 
char *netaddr, 
char *userid, 
char *password, 
int addrspaceid, 
int threadid, 
unsigned int instraddr; 
char *dbgservargs[256], 
int *status); 

where: 

searchcriteria is a  string that  contains  the  search cri- 
teria  described  earlier. If NULL is specified then 
the  current value of the DEBUGSEARCHCRITERIA 
environment  variable will be used. 

netaddr is the network  address of the machine  where 
the  debugee is running. 

userid is the  user ID that  the  debugee is running 
under. 

password is the password of the  user ID that  the  de- 
bugee is running  under. 

addrspaceid is the address-space ID (i.e., UNIX pro- 
cess ID) that  the  debugee is running  under. 

94 MEIER, PAN, AND FUH 

threadid is the  thread ID that  the  debugee is running 
under. 

instraddr is the instruction  address  where the  debug- 
ging session should  begin.  Ifzero is specified, then 
the  current instruction  address of the  debugee is 
used. 

dbgservargs is a  string of up  to 256 characters (in- 
cluding the  terminating NULL) that  can contain op- 
tions for  the debugger (e.g., where to find source 
code). 

status is a  pointer to  an integer  where the status  code 
is returned.  The value returned is one of 
error-status-ok Normal  completion 
dbg-no-debugger-server-found No debugger 

server  found  for specified search  criteria 
dbg-debugger-server-reject Request rejected 

For example: 

debuglt ("userid=hpan and machtype=rs6000 and 
opersys=AIX and language=CPP", 

"thistle.stl.ibm.com", "meier", "mypasswd", 
35647, 1, 0, 

"-s /u/hpan/code -s /u/hpan/src", &status): 

will cause the debuglt routine  to: 

1. Look  for  an  environment  variable  named 
TOOLLOCATORHOST that specifies the host name 
of the  tool locator. 

2. Execute a call to  the Beginsearch debugger library 
routine, passing the search  criteria.  The Begin- 
Search  routine will return a socket to  be used to 
communicate with the tool  locator. 

3.  Execute  a call to  the FindNext  debugger  library 
routine, which, if successful, returns  the  socket 
address of the next corresponding  debugger 
server. If unsuccessful, debuglt returns  to  the 
caller, passing back the  error status. 

4. Use  the socket  address  returned by the FindNext 
routine  to establish  a  connection to  the distrib- 
uted debugger front end (i.e., the debugger server) 
and  send  it  a  "debug it" message that includes all 
of the  arguments passed to  the debuglt routine: 
network  address, login ID, password, address- 
space ID, thread ID, instruction  address,  and the 
debugging  options  for the  debugger  front  end. 

5.  Receive  from the  distributed  debugger  front  end 
an acknowledgment message. If a  negative  ac- 
knowledgment is received or a  time-out  occurs, 
then debuglt repeats  the previous two steps  until 
a status is returned  from FindNext indicating that 
there  are  no  more distributed  debugging  front 
ends  that  meet  the criteria. 

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 



6. Execute  a call to  the  Endsearch debugger library 
routine to  end  the search session and close the 
connection to  the tool  locator 

The debugMe  routine. A call to  the debugMe routine 
requires  the  same search  criteria  as  the debuglt rou- 
tine.  In  this  case,  the  debugger client is the  debugee. 
The debugMe routine calls the debuglt routine, pass- 
ing the  search criteria  along with the  current  net- 
work  address, login ID, password, address-space ID, 
thread  ID,  and  an  instruction  address  where  the  de- 
bugging session should begin, which in this  case is 
the  return  address of the debugMe call. 

void  debugMe  (char  *searchcriteria, 
char  *dbgservargs[256], 
int  *status); 

where: 

searchcriteria is a  string that  contains  the search cri- 
teria  described  earlier. If NULL is specified then 
the  current value of the DEBUGSEARCHCRITERIA 
environment  variable will be used. 

dbgservargs is a  string of up  to 256 characters  (in- 
cluding the terminating NULL) that  can  contain  de- 
bugging options  for  the  debugger (e.g., where to 
find source  code). 

status is a  pointer  to  an  integer  where  the  status  code 
is returned. The value  returned is one of 
error-status-ok Normal  completion 
dbg-no-debugger-server-found No debugger 

server  found  for specified search  criteria 
dbg-tool-locator-failure Call to  the  tool  locator 

failed 
dbg-no-tool-locator-found No tool locator  found 

For example: 

debugMe (“userid=hpan,machtype=rs6000, 
opersys=AIX,language=CPP”, 

”-s /u/hpan/code“,  &status); 

calls the debuglt routine, passing the  current  net- 
work  address, login ID, password, address-space ID, 
thread ID, and  the  return  address of the debugMe 
routine  as  the instruction  address  where the 
debugging session should begin. The string 
“-s /u/hpan/code,” which is the  actual parameter for 
the variable dbgservargs, will be used by the distrib- 
uted debugger  front end (i.e., the  debugger  server) 
to locate the  source  code of the external  programs. 

Debugger server message handler. The distributed 
debugger  front  end (i.e., the debugger  server)  has 

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 

been  extended  to  “listen”  for  socket  connection re- 
quests from the DBUCS database  engine  (or any other 
debugger  client). Once a  connection is established, 
the distributed  debugger  front  end will receive a  “de- 
bug it” message from  the DB2ICS database  engine. 

The  “debug  it” message contains the network  ad- 
dress, login ID, password, address-space ID, thread 
ID, instruction  address of a  debugee  where  the de- 
bugging session should begin, and  a  debugging op- 
tions  string. The distributed  debugger  front end will 
parse  the debugger  options  string to set  the options, 
such  as  where to locate  the  source  code,  and  then 
attach  a  monitor/controller  to  the DBUCS external 
program  (i.e., the  debugee). A  breakpoint is set  at 
the instruction  address  where the debugging session 
is to begin and  an  acknowledgment message is sent 
back to  the DB2ICS database  engine.  The debugger 
will then  continue  the  execution of the DB2ICS ex- 
ternal  program  until it encounters  the  breakpoint. 

Figure 4 shows the  components of Figure 1 running 
under  the  control of a  distributed  debugger with the 
dynamic connection  extensions  and the  tool locator. 

Extensions to DBPICS 

The extensions to  the DB2/CS system include enhance- 
ments  to  both  the  database engine  and to SQL. 

Invocation stack frame. In order  to access the in- 
ternal  state of the DB2/CS server, the DBYCS agent 
process  (i.e., the  database  engine) will maintain  a 
stack of record  structures, called invocation stack 
fiames (ISFS), in shared memory. Each ISF record  rep- 
resents an invocation of a client program or an ex- 
ternal  program  and  includes  the  host  machine and 
the process ID where  the  program is running, the  user 
ID the  program is running  under,  the  entry  point of 
the external  program,  etc.  An ISF is analogous to an 
activation  record in a call stack of a ~ G L .  The most 
recently invoked client program or external  program 
is represented by the ISF record at the  top of the stack. 

Figure 5 represents  the invocation stack  for the ex- 
ample shown in Figure 4. In this case the invocation 
stack contains  four  records:  the  top  record  repre- 
sents the  fenced UDF function “myudf2,” the next 
the  unfenced UDF “myudfl ,” the next the  stored  pro- 
cedure “mysp,” and  the  bottom record  represents 
the client program “myclient.” The debugger  front 
end can  send  a  command to  the back end  that will 
execute  a  debugger library routine  named 

MEIER, PAN, AND FUH 95 



Figure 4 Debugging  environment of a typical DBUCS application 
~~~~ ~~~~ ~ ~~~ ~ . ~~ ~ ~ 

(MACHINE 3) (MACHINE 4)

DATABASE MANAGEMENT SYSTEM (MACHINE 2)

1 MONITOW I;/
CONTROLLER
(BACK END)

I

PROCESS
[DEBUGGER I
CLIENT]

I

UNFENCED
UDF
(MYUDF1)
[DEBUGEEI

UDF
(MYUDF2)
[DEBUGEE]

AGENT UNIT 1

EXECUTION ENVIRONMENT

getlnvStkFrame to read the ISF records from shared
memory and pass them back to the front end.

SQL extensions. We propose new commands to be
added to SQL to specify various debugging options
and to enable debugging for a specified set of DB2ICS
external programs.

The following grammar rules's define the syntax of
the "SET DBENV" command. This command speci-
fies various options used by the debugMe and
debuglt routines to locate the debugger front end and
to set debugging options:

set-dbenv-stmt:
SET DBENV environment-attr-list :

environment-attr-list :
environment-attr 1
environment-attr-list , environment-attr ;

environment-attr :
SEARCHCRITERIA = string I
TOOLLOCATORHOST = string I
SOURCE = string I
OPTIONS = string ;

For example, the following command:

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 96 MEIER, PAN, AND FUH

SET DBENV SEARCHCRITERIA = ‘userid=fuh and

TOOLLOCATORHOST =

SOURCE =

OPTIONS = ‘-T /ulfuh/mytmpdir’;

language=C and opersys=AIX‘,

‘bigblue.stl.ibm.com’,

‘/ulfuh/udf~src:/u/hpanlsp~src‘,

will direct the debugMe and debuglt library routines
to use the instance of a distributed debugger that
has registered with the tool locator running on the
host named “bigblue.stl.ibm.com” with properties
that indicate it is running under the user ID “fuh”
and supports the debugging of programs written in
C on AIX. The debugger will search directories
Iulfuhludf-src and Iulhpanlsp-src for the source code
of the external programs. The options “-T
/u/fuh/mytmpdir” will be passed to the debugger by
the debugMe and debuglt routines.

A new SQL “DEBUG” statement specifies which ex-
ternal programs should be debugged and under what
conditions. The following grammar rules apply:

debug-stmt :
DEBUG debug-intent program-ref-clause

debug-condition ;

debug-intent :
ON I
OFF ;

program-ref-clause :
STORED PROCEDURE sp-ref-list I
FUNCTION function-ref-list ;

debug-condition :
I

WHEN parameter-exp I
AT int-constant CALL;

In these grammar rules,parumeter-ap represents a
Boolean function defined over the formal parame-
ters of the associated UDF, and int-constant is an in-
teger literal specifying the iteration in which the as-
sociated UDF is invoked in the current statement. A
debugcondition cannot be specified for a stored pro-
cedure.

The following examples demonstrate the use of the
“DEBUG” command:

Each of the selected functions will be debugged
each time it is executed:

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

~

Figure 5 Example of an invocation stack containing
four invocation stack frames (ISFs)

-

L

TOP OF STACK

FENCED UDF
NAME MYUDF2
HOST: DBSERVER.STL.IBM.COM :,?
ADDRSPACE 22576
THREAD: 0
USERID: DBINSTANCE ,
UNFENCED UDF
NAME: MYUDFl
HOST: DBSERVER.STL.IBM.COM
ADDRSPACE: 22972
THREAD: 0
USERID: DBINSTANCE

/ t
(1

STORED PROCEDURE

HOST: DBSERVER.STL.IBM.COM
NAME: MYSP

ADDRSPACE 29057
THREAD: 0
USERID: DBINSTANCE
STMT: SELECT EMPNAME FROM

PAYROLL WHERE MYUDFl

I z I s I I 2
(MYUDFZ(SAIARY), SSN) = 1;

1 CLIENT j/
NAME: NULL S L

ADDRSPACE: 77
HOST: OS2CLIENT.STL.IBM.COM ’:;
THREAD 3
USERID: FUH
STMT: SQLEPROC(”MYSP”, .. .))

I v
BOlTOM OF STACK

_- _. -. . ” -.

DEBUG ON FUNCTION udf-integer, udf-float ;

Each of the selected functions will be debugged
if its first parameter is equal to 0:

DEBUG ON FUNCTION udf-integer, udf-float
WHEN #1 = 0 ;

The selected function will be debugged the first
time it is invoked in a statement:

DEBUG ON FUNCTION my-udf AT 1 CALL ;

MEIER, PAN, AND FUH 97

98

The selected stored procedure will no longer be
debugged:

DEBUG OFF STORED PROCEDURE
/u/fuh/sp/sp-lib/my-sp ;

In addition, an enhanced SQL “GRANT” statement
specifies which users are allowed to debug a selected
external program. The following grammar rules ap-
ply:

debug-stmt :
GRANT DEBUG ON FUNCTION function-ref-list

GRANT DEBUG ON PROCEDURE sp-ref-list
TO authid-list I
TO authid-list ;

authid-list :
authid-item I
authid-list , authid-item ;

authid-item :
authid I
PUBLIC ;

For example, the following command:

GRANT DEBUG FUNCTION my-udf
TO hpan, meier, fuh ;

will grant authority to debug the user-defined func-
tion “my-udf‘ to the DB2/CS authorization IDS
“hpan,” “meier,” and “fuh.”

And finally, the SQL “REVOKE” statement has an as-
sociated new DEBUG privilege to revoke the debug-
ging capability of a selected external program from
other users:

debug-stmt :
REVOKE DEBUG ON FUNCTION function-ref-list

REVOKE DEBUG ON PROCEDURE sp-ref-list
FROM authid-list I
FROM authid-list ;

For example, the following command:

REVOKE DEBUG FUNCTION my-udf
FROM hpan, meier, fuh ;

will revoke the authority to debug the user-defined
function “my-udf’ from the DB2/CS authorization IDS
“hpan,” “meier,” and “fuh.”

MEIER, PAN, AND FUH

The control of debugging activities is fully integrated
into the underlying DBYCS. Several advantages are
offered by an integrated debugging environment:

Debugging control is specified using SQL com-
mands; no changes need to be made in external
programs. Thus they require neither recompila-
tion nor relinking to turn debugging on and off.
Conditional debugging, specified in terms of the
sQL context, can be efficiently supported. It would
be very difficult, if not impossible, to support this
feature without integration between the debugger
and DB2ICS.
Since debugging activity is controlled by DBZ/CS,
the authority checking currently supported by
DBYCS can be easily extended to control the de-
bugging requests. Therefore, database security can
be preserved in the presence of debugging support.

Debugging scenario

The following is a summary of steps that are per-
formed by the DBZICS application program (includ-
ing the client program and external programs),
DBYCS database engine, and the distributed debug-
ger for the example shown in Figures 4 and 5.

1.

2.

3.

4.

5.

The user starts the debugger front end, speci-
fying that “myclient,” a DB2 client program, is
to be debugged.

The debugger front end starts “myclient” run-
ning, under control of a debugger back end.

The program “myclient” first executes the
SQL “CONNECT” command, then the SQL
“SET DBENV” command, specifying environment
variables to set debugging options, such as which
debugger front end to use and where to find the
source code for the external programs used by
“myclient.” (The DB2 client program probably
would have been coded to request the same de-
bugger front end that the user has already start-
ed.)

The program “myclient” executes SQL “DEBUG”
commands to indicate that the external programs
“mysp,” “myudfl,” and “myudf2” are to be de-
bugged.

When the agent process (the DB2 database en-
gine) receives the SQL request to begin debug-
ging, D B X S creates an ISF record for the client
program and fills in the fields. This record is then

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

pushed onto the invocation stack as the first en-
try. Note that the agent process is the debugger
client.

6. When the agent process determines that it is
about to invoke an external program that re-
quires debugging services, it creates an ISF
record, filling in all the fields, and adds it to the
invocation stack.

7. Just before the external program is to be exe-
cuted, DB2/CS calls a library routine named
debuggerBeginExtProg, located in the process
where the external program will run. The syn-
tax is:

void debuggerBeginExtProg(int *status);

where:

status is a status code with values:
error-status-ok No errors
cannot-start-debugger Unable to start the

debugger

The routine checks to determine whether or not
a debugger back end is currently attached. If not,
it sends a request to the debugger front end to
attach a debugger back end to the external pro-
gram process.

The debuggerBeginExtProg routine then executes
a breakpoint instruction to signal the debugger
back end that an external program is about to
be executed. The debugger back end in turn no-
tifies the debugger front end. The breakpoint in-
struction causes the external program process
to suspend its execution until the debugger front
end issues a “continue execution” command.

8. When the debugger front end receives notifica-
tion that an external program is about to be ex-
ecuted, it sends a command to the debugger back
end, which calls the getlnvStkFrarne debugger li-
brary routine to get the ISF record at the top of
the stack and sends it back to the front end in
a reply. This record represents the external pro-
gram that is about to be executed.

9. The debugger front end gets the entry point of
the external program from the ISF record and
sets a breakpoint there. It then executes a “con-
tinue execution’’ command for the external pro-
gram process.

IBM SYSTEMS JOURNAL, VOL 36, NO 1. 1997

10. The external program immediately encounters
the breakpoint.

11. The debugger then uses the getlnvStkFrame rou-
tine to get the information it needs to determine
the complete context for the executing program,
and displays the corresponding information to
the user.

For example, when “myudf2” is invoked, a dis-
tributed call stack4 could be displayed showing
that the “myclient” program called the “mysp”
stored procedure, which in turn executed an SQL
command that called the “myudfl” unfenced
UDF, which called the fenced UDF “myudf2.” The
user could then click on any of the items in the
distributed call stack to view the current state
of the client program, stored procedure, or UDF.

12. When the external program returns, a call is
made to debuggerEndExtProg by DB2ICS. The syn-
tax is:

void debuggerEndExtProg(int *status);

where:

status is a status code with values;
error-status-ok No errors
cannot-signal-debugger Unable to signal the

debugger

As described for the debuggerBeginExtProg rou-
tine, debuggerEndExtProg executes a breakpoint
instruction to signal the debugger back end,
which in turn notifies the debugger front end that
an external program has just ended.

13. The debugger front end then executes
getlnvStkFrame to get the ISF record at the top
of the stack. This record represents the external
program that just ended.

14. If the external program is a stored procedure,
it will detach the debugger back end from the
external program process. This detach action is
necessary, because DB2ICS assigns an already-cre-
ated process to run a stored procedure. The next
stored procedure run in that process may be for
a different client. The agent process and fenced
UDF processes are not shared among clients. For
them, the debugger back end can stay attached
and the debugger front end simply executes a
“continue execution” command.

MEIER. PAN, AND FUH 99

Now that DB2ICS has the ability to execute external
programs such as stored procedures and user-defined
functions, it is necessary to find a way to effectively
and efficiently debug these programs. We have pro-
posed a solution that provides a comprehensive de-
bugging environment for DB2/CS client/server appli-
cations. The solution involves extensions to a
distributed debugger, the SQL standard, and the
DB2/CS database engine. Based on feasibility proto-
types we have developed, we believe that the gen-
eral approach can also be applied to debugging Cus-
tomer Information Control System for the RISC
System/6000 (CICSi6000”) distributed transaction
applications and Messaging and Queuing Series for
the RISC System/6000 (MQSeries*)I7 distributed
messaging applications.

Acknowledgments

This work would not have been possible without the
continuing, enthusiastic, and inspiring support of
Vivek Sarkar, manager of IBM’S Application Devel-
opment Technology Institute. We would also like to
acknowledge Len Lyon, Brian Tran, Jyh-Herng
Chow, and the anonymous referees for their many
thoughtful comments.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Open Software
Foundation, the X Consortium, Inc., or Microsoft Corporation.

Cited references and notes

1. DATABASE 2 Application Programming Guide for Common
Server, S20H-4643-01, IBM Corporation (1995); available
through IBM branch offices.

2. DATABASE 2 SQL Referencefor Common Server, S20H-4665-
01, IBM Corporation (1995); available through IBM branch
offices.

3. G. Fuh, K. Nomura, M. Meier, H. Pan, and G. Wilson, “De-
bugging User-Defined Functions in RDBMS Client-Server
Environment,” Proceedings of the I996 International Computer
Symposium, Taiwan, December 19-21,1996. (Apreviousver-
sion was released as IBM Technical Report ADTI-1994.020
[September 19941; available by request from vndoadtiavnet.
ibm.com.)

4. M. S. Meier, K. L. Miller, D. P. Pazel, and J. R. Rao, “Ex-
periences with Building Distributed Debuggers,”Proceedings
of the Symposium on Parallel and Distributed Tools, Philadel-
phia, PA, May 22-23, 1996, pp. 70-79.

5. M. Meier, H. Pan, B. Harding, L. Lyon, and L. Scarborough,
“Parallel and Distributed Dynamic Analyzer (PDDA)-A
Debugger for Clientisewer Programs,” IBM Technical Re-
port ADTI-1994-003 (July 1994); available by request from
vndoadti@vnet.ibm.com.

6. The AIW6000 “ptrace” function provides the underlying sup-

100 MEIER, PAN, AND FUH

debugger to “attach” to a ruining processto monitor and
control its execution. See Calls and Subroutines Reference for
RZSC System/6000, SC23-2198-00, IBM Corporation (1990);
available through IBM branch offices.

7. DB2iCS Version 2 and Version 3 currently allow only one
UDF process associated with an agent unit. However, our
proposed approach is designed to support multiple UDFpro-

8. DB2ICS Version 2 and Version 3 do not currently allow SQL
cesses.

statements to be executed from a UDF. However, our pro-
posed approach is designed to support this.

9. Open Software Foundation, Introduction to OSFDCE, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ (1992).

10. User’s Guide for C Set + + Version 3.1 forAIX, SC09-1968-
01, IBM Corporation (1995); available through IBM branch
offices.

11. C. E. McDowell and D. P. Helmbold, “Debugging Concur-
rent Programs,”ACM Computing Surveys 21, No. 4,593-622
(December 1989).

12. SOMobjects: A Practical Introduction to SOM and DSOM,
GG24-4357-00, IBM Corporation (1994); available through
IBM branch offices.

13. M. Meier and H. Pan, “Dynamic Connection to a Debugger
in a Distributed Environment,” IBM Technical Report ADTI-
1995-005 (June 1995); available by request fromvndoadti@vnet.
ibm.com.

14. W. R. Stevens, UNIX Network Programming, Prentice-Hall,
Inc., Englewood Cliffs, NJ (1990).

15. In this grammar, uppercase words are “terminal” symbols.
Lowercase words are “nonterminal” symbols. Each rule starts
with a nonterminal symbol followed by a colon, contains one
or more alternative definitions for the symbol, and ends with
a semicolon. Definitions contain terminal and nonterminal
symbols; alternative definitions are separated by ‘‘I” (or). A
command is formed from its defining rule by recursively re-
placing each nonterminal symbol with its definition.

16. CICS/6000 Technical Overview, GC33-1225-00, IBM Corpo-
ration (1993); available through IBM branch offices.

17. MQSeries ConcepfsandArchifecture, GC33-1141-01, IBM Cor-
poration (1994); available through IBM branch offices.

Accepted for publication September 16, 1996.

Mike Meier IBMSofnvare Solutions Division, P. 0. Box 49023, Sun
Jose, California 95141 (electronic mail: msmeier@vnet.ibm.com).
Mr. Meier is a senior software engineer in the IBM Application
Development Technology Institute. His B.S. degree in mathe-
matics was awarded by Lawrence Technological University, South-
field, Michigan. His more than 20 years of programming expe-
rience includes database, on-line teleprocessing (OLTP), expert
systems, logic programming, semantic networks with object-ori-
ented extensions, an object-oriented framework for scheduling
applications, and debugging tools for parallel and distributed pro-
grams. Mr. Meier received an Outstanding Technical Achieve-
ment Award for his work in expert systems, and he holds a num-
ber of patents in the area of distributed debugging.

Hsin Pan IBM Software Solutions Division, P. 0. Box 49023, Sun
Jose, California 95141 (electronic mail: hpan@vnet.ibm.com). Dr.
Pan is an advisory software engineer in the Application Devel-
opment Technology Institute. He received the Ph.D. degree in
computer science from Purdue University, West Lafayette, In-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

diana, in 1993. His primary interest is to develop techniques and
tools to assure the software quality, reliability, and safety for both
structured and object-oriented programs. After joining IBM in
1993, he worked on the parallel and distributed debugger and
the distributed computing objects. From August 1995 to July 1996
he was an associate professor in the Department of Computer
and Information Science at National Chiao Tung University, Tai-
wan. He has been awarded a number of patents recognizing his
work at IBM. He is a member of the ACM (Association for Com-
puting Machinery), the IEEE (Institute of Electrical and Elec-
tronics Engineers), and the IEEE Computer Society.

Gene (You-Chin) Fuh IBM Sofhvare Solutions Division, P.O.
Box 49023, San Jose, California 95141 (electronic mail:
fuh@vnet.ibm.com). Dr. Fuh received a B.S. degree in computer
science from National Taiwan University in 1981, and M.S. and
Ph.D. degrees in computer science from the State University of
New York at Stony Brook in 1986 and 1989. Since then, he has
worked in the area of compiler development for various com-
puter languages, such as VHDL (IEEE 1076 VHSIC [Very High
Speed Integrated Circuit] Hardware Description Language),
Verilog, FORTRAN 90, and SQL. He is currently one of the lead-
ers in the Object Strike Force team whose mission is to develop
new object-relational technologies for future releases of DBUCS.
Prior to joining IBM in 1993, Dr. Fuh held several technical man-
agement positions in the electronic CAD (computer-aided de-
sign) industry. His current technical interests are compiler con-
struction, language design, object-relational database, clienthewer
debugging methodology, and internet application development.

Reprint Order No. G321-5636.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 I WEIER. PAN, AND FI

