Debugging DB2/CS
client/server
applications

by M. Meier
H. Pan
G. Y. Fuh

Thet ’:‘echnology_ ;f n;nniniq ﬁxtel;ngl frggrams (3GL) such as C or C++. There are currently two
on the server side of a relational database .
management system (RDBMS) has been -~ types of supported external programs:
developed in the past few years. Database 2™/ .
Common Server (DB2™/CS) for UNIX ™-based 1. A use(-deﬁned function (UpF) extends the func;-
platforms supports external programs (i.e., user- tionality of DB2/CS by allowing users to define t_helr
defined functions and stored procedures) that own structured query language (SQL) functions
?’;'gedwrltten bt}{ th(; application gevelgper é"+a_'_ implemented in a 3GL. Once created, a UDF can

ird-generation language such as C or . : ~
The main difficulty in debugging these external b.e 1n2v led fromgny context where an SOL expres
programs is that they are executed under the sion® 1s expected.
control of DB2/CS, which is itself a large
software system for which no source code is As an example, let “payroll” be a table populated
gg “’)'Zg;‘e’r Itto'; g”":‘;’; ﬁ;% etllecﬁ; Z’C,t;‘;’ae’ E;e?'s of with the payroll information of a company. Ex-
software of DB2/CS to locate and debug the ecution of the following soL que:y statemel.lt,)mll
external programs. It is also very difficult for the run the user-defined function “under_paid” as
debugger to determine when an external art of the query on the server machine:

p query

program will be invoked by the database engine
and in which process it will be run. In addition, in SELECT empname FROM payroll WHERE
an environment where the DB2/CS server is under_paid(salary, education, experience) = 1;
shared belween a large number of users, it is
necessary to ensure that the debugger does not 2. A stored procedure allows the application devel-

violate the security of the DB2/CS system. In this

paper, we describe a set of extensions to a oper to break a database application program into

distributed debugger and DB2/CS to support the a client part and a server part. The server part
debugging of external programs. A prototype can issue SQL requests while running on the same
was implemented to show the feasibility of the machine as the DB2/CS server. Results from the

proposed approach. execution of the stored procedure can be passed

back to the client part, which is usually running
on a different machine. In some database appli-
cations, this can greatly improve performance.

©Copyright 1997 by International Business Machines Corpora-

he technology of running external programs on tion. Copying in printed form for private use is permitted with-

the server side of a relational database manage- out payraent of royalty provided that (1) each reproduction is done
ment system (RDBMS) has been developed in the past without alteration and (2) the Journal reference and IBM copy-
few years. For example, Database 2*/Common right notice are included on the first page. The title and abstract,

" #x 1 ~ but no other portions, of this paper may be copied or distributed
Server (DB2 / CS) for UNIX**-based platforms sup royalty free without further permission by computer-based and

pqrts ?Xternal programs th?t are Writt?n by the ap- other information-service systems. Permission to republish any
plication developer in a third-generation language other portion of this paper must be obtained from the Editor.

88 MEIER, PAN, AND FUH 0018-8670/97/$5.00 © 1997 IBM IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Currently, there is no practical method for de-
bugging these external programs. Although the cur-
rent practice is to write a test driver program that
simulates the DB2/CS call to the external program,
external programs are executed under the control
of the database engine, which is itself a large soft-
ware system for which no source code is provided.
It is therefore impractical for a debugger to pene-
trate through the layers of software of the database
engine to locate and debug the external programs.
It is also very difficult for the debugger to determine
when an external program will be invoked by the da-
tabase engine and in which process it will be run.

Another problem is that external programs are not
statically linked with any executable module. Instead,
when about to be invoked they are dynamically
loaded by the database engine, which further com-
plicates the situation for the debugger.’ In addition,
in an environment where the DB2/CS server is shared
between a large number of users, it is necessary to
ensure that the debugger does not violate the secur-
ity of DB2/CS or the underlying operating system.

In this paper, we describe a set of extensions to a
distributed debugger,** SQL, and the DB2/CS data-
base engine to support the debugging of DB2/CS ex-
ternal programs. In our approach the user does not
need to make any modification to the source code
of the external programs. However, the external pro-
grams need to be recompiled with the compiler de-
bugging option turned on (e.g., the “-g” option of
the Advanced Interactive Executive® [AIX*] C com-
piler). In most cases, the user will add some addi-
tional SQL statements to the client program to ac-
tivate debugging for the external programs and to
set certain debugging options.

The extensions to the distributed debugger include
a mechanism that allows the DB2/CS database engine
to invoke a debugger library routine to request de-
bugging services from a distributed debugger that
may be running on a different machine. The distrib-
uted debugger can then “dynamically attach”® to the
process that is running the external program.

The debugger library routine will locate a distrib-
uted debugger that meets user-specified criteria and
send it a message containing the information needed
to locate the process running the external program,
including the host ID (identifier) of the machine, the
AIX process ID, and the thread ID. Also included is
the information needed to obtain authorization for
the debugger to attach to the process running the

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

external program (i.e., login ID and password) and
the instruction address in the external program where
the debugging session should begin (e.g., the entry
point of the external program).

The extensions also include proposed enhancements
to the SQL standard and the database engine. En-

In our approach the user
does not need to modify
the source code
of the external programs.

hancements to the SQOL standard are required to en-
sure that database security can be preserved in the
presence of debugging support. This approach elim-
inates any possibility of circumventing the authority
checking supported by the RDBMS. The proposed en-
hancements to SQL include a new “SET DBENV” state-
ment that the user can invoke from a client program
to set various environment variables. Some of these
environment variables are used by the debugger li-
brary routine to locate a debugger in a distributed
environment and to specify various debugger options.
Also proposed is a new “DEBUG” SQL statement that
can be invoked from the DB2/CS client program to
indicate which external programs the database en-
gine should request debugging services for, and un-
der what conditions. In addition, we enhance the ex-
isting “GRANT” SQL statement with a new DEBUG
privilege that can be used by an RDBMS system ad-
ministrator to grant privileges for debugging a spec-
ified external program to other users. The “REVOKE”
SQL statement is correspondingly enhanced.

The extensions proposed to the DB2/CS database en-
gine allow the debugger to retrieve its internal state,
at run time, as a set of data structures analogous to
the caller stack of C. The data structures are main-
tained by the database engine in shared memory, ac-
cessible to the debugger, allowing it to determine,
for example, the calling sequence (e.g., a DB2/CS cli-
ent program invokes a stored procedure that in turn
executes an SQL statement that executes a user-de-
fined function, etc.).

MEIER, PAN, AND FUH

89

Figure 1 Run-time environment of DB2/CS

% f m—m——
. = ! PROC .
(MYCLIENT) | /T i’ PROCESS PROCESS
| e "T {MYUDF2) (MYSP)
1 ! i
| | | | UNFENCED
] | 1 | UDF
P ! | PROCESS

(MACHINE 1) } | (MYUDF1)

!N__,_,__‘ AGENT UNIT 1

EXECUTION ENVIRGNMENT

The rest of the paper is organized as follows. In the
next section we describe the external programs and
the run-time environment of DB2/CS. Following sec-
tions introduce the architecture of a distributed de-
bugger, describe extensions to the debugger, describe
the extensions we propose to the SQL standard and
the DB2/CS database engine, and summarize our de-
bugging scenario. The final section contains our con-
cluding remarks.

DB2/CS external programs and run-time
environment

As mentioned earlier, there are two kinds of exter-
nal programs: user-defined functions (UDFs) and
stored procedures. In DB2/CS, a UDF can be run in
two modes, fenced and unfenced. A fenced UDF pro-
vides better security, reliability, and data integrity
at the expense of performance by creating a “fire-
wall” between the database engine run-time code and
the UDF run-time code. This is achieved by running
UDF code in its own separate process. An unfenced
UDF provides better performance at the expense of
security, reliability, and data integrity by running the
UDF code in the same process as the database en-
gine.

Figure 1 characterizes the DB2/CS run-time environ-
ment. A client program, “myclient,” is running in a
process on Machine 1. DB2/CS external programs (i.c.,
stored procedure and user-defined functions) are ex-

90 MEER, PAN, AND FUH

DATABASE MANAGEMENT SYSTEM (MACHINE 2)

ecuted under the control of the DB2/CS server on Ma-
chine 2.

The DB2/CS server is a set of control processes, rep-
resented by the DBMS control unit' box, created at
the same time as the database instance. The control
unit “listens” for “connection requests” from clients.
For each connection request, the control unit spawns
a new set of processes referred to as an agent unit.
The newly created agent unit is then connected to
the corresponding client for receiving and serving
the subsequent database requests. The agent unit
consists of an agent process and, optionally, a set of
fenced UDF processes, a set of stored procedure pro-
cesses, or both.

Because it runs most of the database engine code,
the agent process is also referred to as the “data-
base engine.” It receives the client request and dis-
tributes it to various service components to accom-
plish the requested action. In addition to the
database engine code, the agent process runs un-
fenced UDF code.

A fenced UDF has its own process, which executes
the run-time code to communicate with the agent
process, dynamically loads the UDF library, and runs
the fenced UDF code. There can be several UDF pro-
cesses associated with an agent unit.” In many as-
pects, a stored procedure process has the same run-
time characteristics as a fenced UDF process.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 2 Architecture of a distributed debugger

r-

! USER

FE

MONITOR CLIENT

Pl

DEBUG

MONITOR
SERVER

However, unlike a fenced UDF process, a stored pro-
cedure process runs the external program as if it were
a stand-alone application on the server machine.

A scenario using the components shown in Figure
1 follows. The client program “myclient” executes
a stored procedure named “mysp.” The stored pro-
cedure then executes an “SQL SELECT” statement that
contains a call to an unfenced UDF named “myudf1.”
The body of “myudf1” contains an SQL statement

that invokes the fenced UDF named “myudf2”:%

mysp:
SELECT empname FROM payroll WHERE
myudfi(salary, ssn) = 1;

The database engine loads the stored procedure and
the fenced UDF, in their own separate processes, on
the machine that is running the DB2/CS server (Ma-
chine 2). The unfenced UDF is loaded into the same
process as the database engine.

Architecture of a distributed debugger

Figure 2 shows the architecture of the prototype dis-
tributed debugger “Parallel and Distributed Dynamic
Analyzer” (pPDDA),* which is the basis of our work
described in this paper. PDDA was originally devel-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

MONITOR
SERVER

MONITOR ‘
SERVER

oped to debug parallel and distributed applications
that use Open Software Foundation’s Distributed
Computing Environment** (OSF DCE**).” It is based
on a prototype version of the AIX xldb " single pro-
cess debugger. Xldb, an 1BM program product, is
based on the X Window System**. Using the Mc-
Dowell-Helmbold classification of basic approaches
for debugging concurrent programs,'' PDDA can be
categorized as an extension of traditional debugging
techniques (breakpoints set by users) for paraliel and
distributed programs. PDDA has recently been ex-
tended to support debugging for IBM Distributed Sys-
tem Object Model (DSOM)'? applications.* The ar-
chitecture of PDDA includes a front end (FE) and one
or more back ends (BEs) attached to processes (P1,
P2, P3) running the application programs that use
the underlying debugging support of the operating
system (e.g., the AIX/6000% “ptrace” function).

The front end provides a single user interface and
handles most of the initialization and parallel exe-
cution control issues. Moreover, it creates a back end
for each program involved in the application. The
back end runs on the same host as the application
program and will carry out requests from the front
end to monitor and control it. These requests include
reading and writing the program state, starting and

MEIER, PAN, AND FUH 01

Figure 3 Dynamic connection to a debugger in a distributed environment

DEBUGGER SERVER
{FRONT END)

; 5 ATTAGH A MONITOR/CONTROLLER DEBUGEE |-
‘ (BACK END) TO THE DEBUGEE ’

»

4 REQUEST DEBUGGING SERVICE
(DEBUG 1T MESSAGE)

DEBUGGER
CLIENT

2 LOCATE A

DEBUGGER SERVER ‘l—f"

3 SOCKET ADDRESS OF A
DEBUGGER SERVER

1 REGISTER THE
DEBUGGER SERVER

MESSAGE
HANDLER

—
TOOL LOCATOR

stopping the execution of the program, and moni-
toring the program for interrupts (e.g., breakpoints,
floating point exceptions, etc.).

A back end can be created either during debugger
initialization or dynamically during the debugging
session, using the “dynamic connection” approach
described in the next section. When the back end is
created during debugger initialization, the program
to be monitored and controlled must be specified.
When the back end is created dynamically, the pro-
gram to be monitored and controlled is not speci-
fied at debugger initialization; instead the applica-
tion program calls a debugger library routine to
request debugging services from a particular instance
of a distributed debugger. An application program
can request debugging services for itself or for an-
other program.

Extensions to the distributed debugger

Although intuitively it seems that the debugging of
an external program should be under the control of
the DB2/CS client program that invokes it, there are
three obstacles.” The first is a timing obstacle. The
DB2/CS external program’s process is created on de-
mand, and the external library is loaded and un-
loaded dynamically. The next is an authorization ob-
stacle. A DB2/CS process usually runs under a special
user ID so that normal users cannot attach it. Finally,
there is an access obstacle. In general a remote user

02 MEIER, PAN, AND FUH

does not have a user account on the DBMS server ma-
chine, making it extremely difficult, if not impossi-
ble, to debug an external program’s process from the
client machine.

These three obstacles may appear to be orthogonal.
However, as we examined them carefully we discov-
ered that they all originate from the same source:
the expectation that the debugger is to be initiated
from the DB2/CS client program. We then started to
think from an entirely different perspective: suppose
the DBMS initiated the debugger? This would over-
come the timing obstacle, the authorization obsta-
cle, and the access obstacle.

The obstacles were then reduced to the problem of
how to initiate a debugging session from the DBMS.
To solve this problem we have developed a general-
purpose facility, the “Dynamic Connection” " com-
ponent. This component allows an application pro-
gram to locate a distributed debugger front end in
a distributed environment at run time and send it a
message requesting debugging services. The debug-
ger then attaches a back end (monitor/controller)
to the process for which debugging services were re-
quested. The DBMS can use the “Dynamic Connec-
tion” component to initiate a debugging session for
an external program.

Dynamic connection overview. Figure 3 illustrates a
dynamic connection to a debugger in a distributed

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

environment. Before describing it, we define some
of the terms used. A debugee is a program that is to
be debugged (e.g., a DB2/CS external program). A de-
bugger server is a program that provides debugging
services (i.e., the distributed debugger front end). A
debugger client is a program (e.g., the DB2/CS data-
base engine) that sends a request to a debugger
server to provide debugging services for a debugee.
The debugee can be the debugger client itself, or an-
other program running anywhere on the network.
A monitor/controller is a program that is attached to
the debugee, by the debugger server, to monitor and
control its execution and to read and write state in-
formation (i.e., the distributed debugger back end).

The debugger client calls a debugger library routine
to locate a debugger server and send it a message
that contains the information needed to locate the
debugee and obtain authorization to attach a
monitor/controller. Additionally, the message will in-
clude the instruction address in the debugee where
the user would like the debugging session to begin
(e.g., at the current instruction address of the de-
bugee or at entry to a routine invoked by the de-
bugee program).

The debugger server may or may not be running on
the same machine as the debugee. To locate the de-
bugger server, the tool locator, a new component, is
used. The debugger client and debugger server can
communicate with the tool locator through socket
connections. ™

Figure 3 shows the sequence of steps for a debugger
client (e.g., the DB2/CS database engine) to dynam-
ically request debugging services for another pro-
gram (e.g., a DBZ/CS external program). (1) A debug-
ger server (i.c., a distributed debugger front end) is
started and registers itself with the tool locator, in-
dicating that it is available to serve debugging re-
quests. (2) A debugger client sends a message to the
tool locator to locate a debugger server. (3) The tool
locator returns the socket address of a debugger
server that matches the debugger client’s specifica-
tion. (4) The debugger client sends a “debug it” mes-
sage to request debugging service for the debugee
from the debugger server. (5) The debugger server
attaches a monitor/controller to the debugee.

Tool locator. The tool locator is a general-purpose
mechanism for first registering, then locating pro-
grams that have certain properties in a distributed
environment. The DB2/CS database engine as debug-
ger client can call a debugger library routine that will

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

use the tool locator to find a registered distributed
debugger front-end server with certain properties,
such as the user ID it is running under, the machine
it is running on, the X Window System display it is
using, the programming languages and operating sys-
tems it supports, etc.

When a distributed debugger front end is started, it
calls a debugger library routine to register with the
tool locator, passing to it a string that contains prop-
erty-name = property-value substrings separated by
commas. For example, the string

"hostname=atlantic,userid=hpan,opersys=AIX,
language=C,language=CPP"

indicates that the distributed debugger is running on
a host named “atlantic” under the user 1D “hpan”
and supports the debugging of programs written in
C and C+ + on AIX. DB2/CS can then execute a de-
bugger library routine, specifying as one of its ar-
guments search criteria for a debugger front end run-
ning under the user ID “hpan” that supports C++
on AIX.

The search criteria argument is a string that contains
conjunctions and disjunctions of property-name =
property-value expressions. Parentheses can be used
to specify precedence. There are no predefined prop-
erty names or property values; these are simply ar-
bitrary sequences of case-insensitive alphanumeric
characters. For example, the string

"userid=hpan and machtype=rs6000 and
opersys=AIX and language=C and language=CPP"

could be used to locate any debugger front end run-
ning on any host under user ID “hpan” that supports
the debugging of C and C++ programs running in
AIX on a RISC (reduced instruction-set computer)
System/6000**.

As another example, the string

"opersys=WindowsNT and language=CPP and
machtype=PowerPC and
((userid=hpan and hostname=davinci) or
(userid=meier and hostname=atlantic) or
userid=fuh)"

could be used to locate any distributed debugger
front end that supports programs written in C++
for Windows NT** on a PowerpC* that is either run-
ning under user ID “hpan” on a host named “davinci”

MEIER, PAN, AND FUH 93

or running under user ID “meier” on a host named
“atlantic” or running under user ID “fuh” on any host.

The tool locator returns to the library routine a
socket address for the first debugger front end that
matches the criteria. (If more than one debugger
front end matches the search criteria, their socket
addresses can be retrieved by subsequently execut-
ing a series of FindNext calls to the tool locator.) The
library routine will use the socket address to create
a socket connection and send a message to the de-
bugger front end, requesting it to attach a
monitor/controller to the process that is running the
external program.

Debugger client application program interface. Two
application programming interface (API) routines are
provided by the debugger library for the debugger
client to request debugging services. If the debug-
ger client is also the debugee, it calls “debugMe.”
If another program is to be debugged, the client calls
“debuglt.”

The debuglt routine. A call to the debuglt routine re-
quires a search criteria used to locate a distributed
debugger front end (i.e., the debugger server). The
arguments include all of the information needed to
locate a particular application program and attach
a debugger back end (i.e., monitor/controller) to it:

void debuglt(char *searchcriteria,
char *netaddr,
char *userid,
char *password,
int addrspaceid,
int threadid,
unsigned int instraddr;
char *dbgservargs[256],
int “status);

where:

searchcriteria is a string that contains the search cri-
teria described earlier. If NULL is specified then
the current value of the DEBUGSEARCHCRITERIA
environment variable will be used.

netaddr is the network address of the machine where
the debugee is running.

userid is the user ID that the debugee is running
under.

password is the password of the user ID that the de-
bugee is running under.

addrspaceid is the address-space ID (i.c., UNIX pro-
cess ID) that the debugee is running under.

094 MEIER, PAN, AND FUH

threadid is the thread ID that the debugee is running
under.

instraddr is the instruction address where the debug-
ging session should begin. If zero is specified, then
the current instruction address of the debugee is
used.

dbgservargs is a string of up to 256 characters (in-
cluding the terminating NULL) that can contain op-
tions for the debugger (e.g., where to find source
code).

status is a pointer to an integer where the status code
is returned. The value returned is one of:
error_status_ok Normal completion
dbg_no_debugger_server_found No debugger

server found for specified search criteria

dbg_debugger_server_reject Request rejected

For example:

debuglt ("'userid=hpan and machtype=rs6000 and
opersys=AIX and language=CPP",
"thistle.stl.ibm.com'’, "meier", "mypasswd",
35647, 1, 0,

"-s /u/hpan/code -s /u/hpan/src'', &status);
will cause the debuglt routine to:

1. Look for an environment variable named
TOOLLOCATORHOST that specifies the host name
of the tool locator.

2. Execute acall to the BeginSearch debugger library
routine, passing the search criteria. The Begin-
Search routine will return a socket to be used to
communicate with the tool locator.

3. Execute a call to the FindNext debugger library
routine, which, if successful, returns the socket
address of the next corresponding debugger
server. If unsuccessful, debuglt returns to the
caller, passing back the error status.

4. Use the socket address returned by the FindNext
routine to establish a connection to the distrib-
uted debugger frontend (i.e., the debugger server)
and send it a “debug it” message that includes all
of the arguments passed to the debuglt routine:
network address, login 1D, password, address-
space 1D, thread ID, instruction address, and the
debugging options for the debugger front end.

5. Receive from the distributed debugger front end
an acknowledgment message. If a negative ac-
knowledgment is received or a time-out occurs,
then debuglt repeats the previous two steps until
astatus is returned from FindNext indicating that
there are no more distributed debugging front
ends that meet the criteria.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

6. Execute a call to the EndSearch debugger library
routine to end the search session and close the
connection to the tool locator

The debugMe routine. A call to the debugMe routine
requires the same search criteria as the debuglt rou-
tine. In this case, the debugger client is the debugee.
The debugMe routine calls the debuglt routine, pass-
ing the search criteria along with the current net-
work address, login 1D, password, address-space 1D,
thread 1D, and an instruction address where the de-
bugging session should begin, which in this case is
the return address of the debugMe call.

void debugMe (char *searchcriteria,
char *dbgservargs([256],
int *status);

where:

searchcriteria is a string that contains the search cri-
teria described earlier. If NULL is specified then
the current value of the DEBUGSEARCHCRITERIA
environment variable will be used.
dbgservargs is a string of up to 256 characters (in-
cluding the terminating NULL) that can contain de-
bugging options for the debugger (e.g., where to
find source code).
status is a pointer to an integer where the status code
is returned. The value returned is one of:
error_status_ok Normal completion
dbg_no_debugger_server_found No debugger
server found for specified search criteria
dbg_tool_locator_failure Call to the tool locator
failed
dbg_no_tool_locator_found No tool locator found

For example:

debugMe ("'userid=hpan,machtype=rs6000,
opersys=AlX language=CPP",
"-s /u/hpan/code", &status);

calls the debuglt routine, passing the current net-
work address, login ID, password, address-space 1D,
thread 1D, and the return address of the debugMe
routine as the instruction address where the
debugging session should begin. The string
“-s /u/hpan/code,” which is the actual parameter for
the variable dbgservargs, will be used by the distrib-
uted debugger front end (i.e., the debugger server)
to locate the source code of the external programs.

Debugger server message handler. The distributed
debugger front end (i.e., the debugger server) has

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

been extended to “listen” for socket connection re-
quests from the DB2/CS database engine (or any other
debugger client). Once a connection is established,
the distributed debugger front end will receive a “de-
bug it” message from the DB2/CS database engine.

The “debug it” message contains the network ad-
dress, login 1D, password, address-space 1D, thread
ID, instruction address of a debugee where the de-
bugging session should begin, and a debugging op-
tions string. The distributed debugger front end will
parse the debugger options string to set the options,
such as where to locate the source code, and then
attach a monitor/controller to the DB2/CS external
program (i.e., the debugee). A breakpoint is set at
the instruction address where the debugging session
is to begin and an acknowledgment message is sent
back to the DB2/CS database engine. The debugger
will then continue the execution of the DB2/CS ex-
ternal program until it encounters the breakpoint.

Figure 4 shows the components of Figure 1 running
under the control of a distributed debugger with the
dynamic connection extensions and the tool locator.

Extensions to DB2/CS

The extensions to the DB2/CS system include enhance-
ments to both the database engine and to SQL.

Invocation stack frame. In order to access the in-
ternal state of the DB2/CS server, the DB2/CS agent
process (i.e., the database engine) will maintain a
stack of record structures, called invocation stack
frames (ISFs), in shared memory. Each ISF record rep-
resents an invocation of a client program or an ex-
ternal program and includes the host machine and
the process 1D where the program is running, the user
ID the program is running under, the entry point of
the external program, etc. An ISF is analogous to an
activation record in a call stack of a 3GL. The most
recently invoked client program or external program
is represented by the ISF record at the top of the stack.

Figure 5 represents the invocation stack for the ex-
ample shown in Figure 4. In this case the invocation
stack contains four records: the top record repre-
sents the fenced UDF function “myudf2,” the next
the unfenced UDF “myudf1,” the next the stored pro-
cedure “mysp,” and the bottom record represents
the client program “myclient.” The debugger front
end can send a command to the back end that will
execute a debugger library routine named

MEIER, PAN, AND FUH 9§

Figure 4 Debugging environment of a typical DB2/CS application

(MACHINE 3) (MACHINE 4)
[1 i gl
| = i ez
| & | i s i
| | DEBUGGER [] | || TooL b
|| SERVER S ! | LOCATOR j
| (FRONTEND) [| i |
| S | |
3 F W B N # i ! vi
COMMUNICATION
PROTOCOL
| ‘t ! e N ; i
MONTOR/ | MONITOR/ |+ MONITOR/
MONITOR/ CONTROLLER | CONTROLLER || CONTROLLER |
CONTROLLER (BACK END) |/ (BACK END) |/ (BACKEND) [}
(BACK END)
~ INTERPROGESS 4~ INTERPROCESS 4 /7 INTERPROCESS 4/~
INTERPROCESS 4 +7ATTACH COMMUNICATION | / ATTACH COMMUNICATION | / ATTAcH COMMUNICATION | [ATTACH
COMMUNICATION, & - o 2 P
~{"{ REQUEST (A
[AL AGENT . FENCED " STORED
DI 1 > ‘ :
ﬁ%ﬂ—éﬁg : =P brocess | UDF PROCEDURE
[DEBUGEE] T\ [DEBUGGER |: PROCESS , PROCESS
RESULT CLIENT} o= [DEBUGGER | .. | [DEBUGGER
¥ CLIENT] # , CLIENT]
UNFENCED |4 FENCED o STORED
UDF L UDF PROCEDURE
esuots |- frsveer |)| fbesube
oK DEBUGEE] |
AGENT uniT 1 |_IDEBUGEE] , [7, g
5
EXECUTION ENVIRONMENT
(MACHINE 1) ,
DBMS
CONTROL
UNIT

DATABASE MANAGEMENT SYSTEM (MACHINE 2)

getinvStkFrame to read the ISF records from shared set_dbenv_stmt: .
memory and pass them back to the front end. SET DBENV environment_attr_list ;

environment_attr_list :
environment_attr |
environment_attr_list , environment_attr ;

SQL extensions. We propose new commands to be
added to SQL to specify various debugging options
and to enable debugging for a specified set of DB2/CS

external programs. .
prog S environment_attr :

SEARCHCRITERIA = string |

The following grammar rules'” define the syntax of TOOLLOCATORHOST = string |

the “SET DBENV” command. This command speci- SOURCE = string |

fies various options used by the debugMe and OPTIONS = string ;

debuglt routines to locate the debugger front end and

to set debugging options: For example, the following command:

96 MEIER, PAN, AND FUH IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

SET DBENV SEARCHCRITERIA = 'userid=fuh and
language=C and opersys=AIX',
TOOLLOCATORHOST =
'bigblue.stl.ibm.com’,
SOURCE =
'/u/ffuh/udf_src:/u/hpan/sp_src',
OPTIONS = '-T /u/fuh/mytmpdir’;

will direct the debugMe and debugit library routines
to use the instance of a distributed debugger that
has registered with the tool locator running on the
host named “bigblue.stl.ibm.com” with properties
that indicate it is running under the user 1D “fuh”
and supports the debugging of programs written in
C on AIX. The debugger will search directories
/u/fuh/udf_src and /u/hpan/sp_src for the source code
of the external programs. The options “-T
/u/fuh/mytmpdir” will be passed to the debugger by
the debugMe and debuglt routines.

A new SQL “DEBUG” statement specifies which ex-
ternal programs should be debugged and under what
conditions. The following grammar rules apply:

debug_stmt :
DEBUG debug_intent program_ref_clause
debug_condition ;

debug_intent :
ON |
OFF ;

program_ref_clause :
STORED PROCEDURE sp_ref_list |
FUNCTION function_ref_list ;

debug_condition :

WHEN parameter_exp |
AT int_constant CALL;

In these grammar rules, parameter_exp represents a
Boolean function defined over the formal parame-
ters of the associated UDF, and int_constant is an in-
teger literal specifying the iteration in which the as-
sociated UDF is invoked in the current statement. A
debug_condition cannot be specified for a stored pro-
cedure.

The following examples demonstrate the use of the
“DEBUG” command:

¢ Each of the selected functions will be debugged
each time it is executed:

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 5 Example of an invocation stack containing
four invocation stack frames (ISFs)

TOP OF STACK

FENCED UDF

NAME: MYUDF2

HOST: DBSERVER.STL.IBM.COM
ADDRSPACE: 22576

THREAD: 0

USERID: DBINSTANCE

UNFENCED UDF

NAME: MYUDF1

HOST: DBSERVER,STL.IBM.COM
ADDRSPACE: 22972

THREAD: 0
USERID: DBINSTANCE

STORED PROCEDURE

NAME: MYSP

HOST: DBSERVER.STL.IBM.COM

ADDRSPACE: 29057

THREAD: 0

USERID: DBINSTANCE

STMT: SELECT EMPNAME FROM
PAYROLL WHERE MYUDF1
(MYUDF2(SALARY), SSN) = 1;

7'y

CLIENT

NAME: NULL

HOST: OS2CLIENT.STL.IBM.COM
ADDRSPACE: 77

THREAD: 3

USERID: FUH

STMT. SQLEPROC("MYSP”,..))

BOTTOM OF STACK

DEBUG ON FUNCTION udf_integer, udf_float ;

* Each of the selected functions will be debugged
if its first parameter is equal to 0:

DEBUG ON FUNCTION udf_integer, udf_float
WHEN #1 =0 ;

¢ The selected function will be debugged the first
time it is invoked in a statement:

DEBUG ON FUNCTION my_udf AT 1 CALL ;

MEIER, PAN, AND FUH §7

* The selected stored procedure will no longer be
debugged:

DEBUG OFF STORED PROCEDURE
/u/fuh/sp/sp_lib/my_sp ;

In addition, an enhanced SQL “GRANT” statement
specifies which users are allowed to debug a selected
external program. The following grammar rules ap-

ply:

debug_stmt :
GRANT DEBUG ON FUNCTION function_ref_list
TO authid_list |
GRANT DEBUG ON PROCEDURE sp_ref_list
TO authid_list ;

authid_list :
authid_item |
authid_list , authid_item ;

authid_item :
authid |
PUBLIC ;

For example, the following command:

GRANT DEBUG FUNCTION my_udf
TO hpan, meier, fuh ;

will grant authority to debug the user-defined func-
tion “my_udf” to the DB2/CS authorization IDs
“hpan,” “meier,” and “fuh.”

And finally, the SQL “REVOKE” statement has an as-
sociated new DEBUG privilege to revoke the debug-
ging capability of a selected external program from
other users:

debug_stmt :
REVOKE DEBUG ON FUNCTION function_ref_list
FROM authid_list |
REVOKE DEBUG ON PROCEDURE sp_ref_list
FROM authid_list ;

For example, the following command:

REVOKE DEBUG FUNCT!ON my_udf
FROM hpan, meier, fuh ;

will revoke the authority to debug the user-defined
function “my_udf” from the DB2/CS authorization IDs
“hpan,” “meier,” and “fuh.”

08 MEIER, PAN, AND FUH

The control of debugging activities is fully integrated
into the underlying DB2/CS. Several advantages are
offered by an integrated debugging environment:

* Debugging control is specified using SQL com-
mands; no changes need to be made in external
programs. Thus they require neither recompila-
tion nor relinking to turn debugging on and off.

* Conditional debugging, specified in terms of the
SQL context, can be efficiently supported. It would
be very difficult, if not impossible, to support this
feature without integration between the debugger
and DB2/CS.

* Since debugging activity is controlled by DB2/CS,
the authority checking currently supported by
DB2/CS can be easily extended to control the de-
bugging requests. Therefore, database security can
be preserved in the presence of debugging support.

Debugging scenario

The following is a summary of steps that are per-
formed by the DB2/CS application program (includ-
ing the client program and external programs),
DB2/CS database engine, and the distributed debug-
ger for the example shown in Figures 4 and 5.

1. The user starts the debugger front end, speci-
fying that “myclient,” a DB2 client program, is
to be debugged.

2. The debugger front end starts “myclient” run-
ning, under control of a debugger back end.

3. The program “myclient” first executes the
SQL “CONNECT” command, then the SQL
“SET DBENV” command, specifying environment
variables to set debugging options, such as which
debugger front end to use and where to find the
source code for the external programs used by
“myclient.” (The DB2 client program probably
would have been coded to request the same de-
bugger front end that the user has already start-
ed.)

4. The program “myclient” executes SQL “DEBUG”
commands to indicate that the external programs
“mysp,” “myudfl,” and “myudf2” are to be de-
bugged.

5. When the agent process (the DB2 database en-
gine) receives the SQL request to begin debug-
ging, DB2/CS creates an ISF record for the client
program and fills in the fields. This record is then

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

pushed onto the invocation stack as the first en-
try. Note that the agent process is the debugger
client.

. When the agent process determines that it is
about to invoke an external program that re-
quires debugging services, it creates an ISF
record, filling in all the fields, and adds it to the
invocation stack.

. Just before the external program is to be exe-
cuted, DB2/CS calls a library routine named
debuggerBeginExtProg, located in the process
where the external program will run. The syn-
tax is:

void debuggerBeginExtProg(int *status);

where:

status is a status code with values:
error_status_ok No errors
cannot_start_debugger Unable to start the
debugger

The routine checks to determine whether or not
adebugger back end is currently attached. If not,
it sends a request to the debugger front end to
attach a debugger back end to the external pro-
gram process.

The debuggerBeginExtProg routine then executes
a breakpoint instruction to signal the debugger
back end that an external program is about to
be executed. The debugger back end in turn no-
tifies the debugger front end. The breakpoint in-
struction causes the external program process
to suspend its execution until the debugger front
end issues a “continue execution” command.

. When the debugger front end receives notifica-
tion that an external program is about to be ex-
ecuted, it sends a command to the debugger back
end, which calls the getinvStkFrame debugger li-
brary routine to get the ISF record at the top of
the stack and sends it back to the front end in
areply. This record represents the external pro-
gram that is about to be executed.

. The debugger front end gets the entry point of
the external program from the ISF record and
sets a breakpoint there. It then executes a “con-
tinue execution” command for the external pro-
gram process.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

10.

11.

12.

13.

14.

The external program immediately encounters
the breakpoint.

The debugger then uses the getinvStkFrame rou-
tine to get the information it needs to determine
the complete context for the executing program,
and displays the corresponding information to
the user.

For example, when “myudf2” is invoked, a dis-
tributed call stack* could be displayed showing
that the “myclient” program called the “mysp”
stored procedure, which in turn executed an SQL
command that called the “myudfl” unfenced
UDF, which called the fenced UDF “myudf2.” The
user could then click on any of the items in the
distributed call stack to view the current state
of the client program, stored procedure, or UDF.

When the external program returns, a call is
made to debuggerEndExtProg by DB2/CS. The syn-
tax is:

void debuggerEndExtProg(int *status);
where:

status is a status code with values;
error_status_ok No errors
cannot_signal_debugger Unable to signal the
debugger

As described for the debuggerBeginExtProg rou-
tine, debuggerEndExtProg executes a breakpoint
instruction to signal the debugger back end,
which in turn notifies the debugger front end that
an external program has just ended.

The debugger front end then executes
getinvStkFrame to get the ISF record at the top
of the stack. This record represents the external
program that just ended.

If the external program is a stored procedure,
it will detach the debugger back end from the
external program process. This detach action is
necessary, because DB2/CS assigns an already-cre-
ated process to run a stored procedure. The next
stored procedure run in that process may be for
a different client. The agent process and fenced
UDF processes are not shared among clients. For
them, the debugger back end can stay attached
and the debugger front end simply executes a
“continue execution” command.

MEIER, PAN, AND FUH 00

Concluding remarks

Now that DB2/CS has the ability to execute external
programs such as stored procedures and user-defined
functions, it is necessary to find a way to effectively
and efficiently debug these programs. We have pro-
posed a solution that provides a comprehensive de-
bugging environment for DB2/CS client/server appli-
cations. The solution involves extensions to a
distributed debugger, the SQL standard, and the
DB2/CS database engine. Based on feasibility proto-
types we have developed, we believe that the gen-
eral approach can also be applied to debugging Cus-
tomer Information Control System for the RISC
System/6000 (CICS/6000*)'® distributed transaction
applications and Messaging and Queuing Series for
the RISC System/6000 (MQSeries*)!7 distributed
messaging applications.

Acknowledgments

This work would not have been possible without the
continuing, enthusiastic, and inspiring support of
Vivek Sarkar, manager of IBM’s Application Devel-
opment Technology Institute. We would also like to
acknowledge Len Lyon, Brian Tran, Jyh-Herng
Chow, and the anonymous referees for their many
thoughtful comments.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Open Software
Foundation, the X Consortium, Inc., or Microsoft Corporation.

Cited references and notes

1. DATABASE 2 Application Programming Guide for Common
Server, S20H-4643-01, IBM Corporation (1995); available
through IBM branch offices.

2. DATABASE 2 SQL Reference for Common Server, S20H-4665-
01, IBM Corporation (1995); available through IBM branch
offices.

3. G. Fuh, K. Nomura, M. Meier, H. Pan, and G. Wilson, “De-
bugging User-Defined Functions in RDBMS Client-Server
Environment,” Proceedings of the 1996 International Computer
Symposium, Taiwan, December 19-21, 1996. (A previous ver-
sion was released as IBM Technical Report ADTI-1994-020
[September 1994]; available by request from vndoadti@vnet.
ibm.com.)

4. M. S. Meier, K. L. Miller, D. P. Pazel, and J. R. Rao, “Ex-
periences with Building Distributed Debuggers,” Proceedings
of the Symposium on Parallel and Distributed Tools, Philadel-
phia, PA, May 22-23, 1996, pp. 70-79.

5. M. Meier, H. Pan, B. Harding, L. Lyon, and L. Scarborough,
“Parallel and Distributed Dynamic Analyzer (PDDA)—A
Debugger for Client/Server Programs,” IBM Technical Re-
port ADTI-1994-003 (July 1994); available by request from
vndoadti@vnet.ibm.com.

6. The AIX/6000 “ptrace” function provides the underlying sup-

100 MEER, PAN, AND FUH

port that allows a debugger to monitor and control a second
process. One of the functions provided by “ptrace” allows a
debugger to “attach” to a running process to monitor and
control its execution. See Calls and Subroutines Reference for
RISC System/6000, SC23-2198-00, IBM Corporation (1990);
available through IBM branch offices.

7. DB2/CS Version 2 and Version 3 currently allow only one
UDF process associated with an agent unit. However, our
proposed approach is designed to support multiple UDF pro-
cesses.

8. DB2/CS Version 2 and Version 3 do not currently allow SQL
statements to be executed from a UDF. However, our pro-
posed approach is designed to support this.

9. Open Software Foundation, Introduction to OSF DCE, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ (1992).

10. User’s Guide for C Set ++ Version 3.1 for ALX, SC09-1968-
01, IBM Corporation (1995); available through IBM branch
offices.

11. C. E. McDowell and D. P. Helmbold, “Debugging Concur-
rent Programs,” ACM Computing Surveys 21, No. 4, 593-622
(December 1989).

12. SOMobjects: A Practical Introduction to SOM and DSOM,
GG24-4357-00, IBM Corporation (1994); available through
IBM branch offices.

13. M. Meier and H. Pan, “Dynamic Connection to a Debugger
in a Distributed Environment,” IBM Technical Report ADTI-
1995-005 (June 1995); available by request from vndoadti@vnet.
ibm.com.

14. W. R. Stevens, UNIX Network Programming, Prentice-Hall,
Inc., Englewood Cliffs, NJ (1990).

15. In this grammar, uppercase words are “terminal” symbols.
Lowercase words are “nonterminal” symbols. Each rule starts
with a nonterminal symbol followed by a colon, contains one
or more alternative definitions for the symbol, and ends with
a semicolon. Definitions contain terminal and nonterminal
symbols; alternative definitions are separated by “|” (or). A
command is formed from its defining rule by recursively re-
placing each nonterminal symbol with its definition.

16. CICS/6000 Technical Overview, GC33-1225-00, IBM Corpo-
ration (1993); available through IBM branch offices.

17. MQSeries Concepts and Architecture, GC33-1141-01, 1BM Cor-
poration (1994); available through IBM branch offices.

Accepted for publication September 16, 1996.

Mike Meier IBM Software Solutions Division, P.O. Box 49023, San
Jose, California 95141 (electronic mail: msmeier@vnet.ibm.com).
Mr. Meier is a senior software engineer in the IBM Application
Development Technology Institute. His B.S. degree in mathe-
matics was awarded by Lawrence Technological University, South-
field, Michigan. His more than 20 years of programming expe-
rience includes database, on-line teleprocessing (OLTP), expert
systems, logic programming, semantic networks with object-ori-
ented extensions, an object-oriented framework for scheduling
applications, and debugging tools for parallel and distributed pro-
grams. Mr. Meier received an Qutstanding Technical Achieve-
ment Award for his work in expert systems, and he holds a num-
ber of patents in the area of distributed debugging.

Hsin Pan IBM Software Solutions Division, P.O. Box 49023, San
Jose, California 95141 (electronic mail: hpan@vnet.ibm.com). Dr.
Pan is an advisory software engineer in the Application Devel-
opment Technology Institute. He received the Ph.D. degree in
computer science from Purdue University, West Lafayette, In-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

diana, in 1993. His primary interest is to develop techniques and
tools to assure the software quality, reliability, and safety for both
structured and object-oriented programs. After joining IBM in
1993, he worked on the parallel and distributed debugger and
the distributed computing objects. From August 1995 to July 1996
he was an associate professor in the Department of Computer
and Information Science at National Chiao Tung University, Tai-
wan. He has been awarded a number of patents recognizing his
work at IBM. He is a member of the ACM (Association for Com-
puting Machinery), the IEEE (Institute of Electrical and Elec-
tronics Engineers), and the IEEE Computer Society.

Gene (You-Chin) Fuh IBM Software Solutions Division, P.O.
Box 49023, San Jose, California 95141 (electronic mail:
fuh@vnet.ibm.com). Dr. Fuh received a B.S. degree in computer
science from National Taiwan University in 1981, and M.S. and
Ph.D. degrees in computer science from the State University of
New York at Stony Brook in 1986 and 1989. Since then, he has
worked in the area of compiler development for various com-
puter languages, such as VHDL (IEEE 1076 VHSIC [Very High
Speed Integrated Circuit] Hardware Description Language),
Verilog, FORTRAN 90, and SQL. He is currently one of the lead-
ers in the Object Strike Force team whose mission is to develop
new object-relational technologies for future releases of DB2/CS.
Prior to joining IBM in 1993, Dr. Fuh held several technical man-
agement positions in the electronic CAD (computer-aided de-
sign) industry. His current technical interests are compiler con-
struction, language design, object-relational database, client/server
debugging methodology, and internet application development.

Reprint Order No. G321-5636.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

MEIER, PAN, AND FuH 101

