Workflow-based
applications

A significant number of companies are re-
engineering their business to be more effective
and productive. Consequently, existing
applications must be modified, and new
applications must be written. The new
applications typically run in a distributed and
heterogeneous environment, performing single
tasks in parallel, and demanding special
transaction functionality for the supporting
environments. Workflow-based applications offer
this type of capability. In this paper, their
principal advantages are derived and set in
context to transaction, object, and CASE
(computer-assisted software engineering)
technology. In particular, a method is proposed
to develop these workflow-based applications in
a cohesive and consistent way.

Business re-engineering is one of the most im-
portant topics on the agenda of a large number
of companies. It has been triggered by a changing
business environment that requires companies to be
more flexible and to react faster.! New processes are
defined; existing ones are changed or even aban-
doned.

These processes are no longer only intraenterprise
processes, such as claims processing in an insurance
company or loan processing in a bank. Multiple en-
terprises are connecting their tasks together in in-
terenterprise processes to more efficiently manage
their own processes. The order activity in a produc-
tion planning process for a car company, for exam-
ple, starts the appropriate order entry process at a
parts supplier. Companies may even use common
processes to tie together parts of their various com-
panies to form virtual companies, as foreseen by NI1ip
(National Information Infrastructure Initiative).?

by F. Leymann
D. Roller

Business processes not only deal with customers; in-
ternal administrative processes are also business pro-
cesses. A typical example of such an administrative
process is the handling of an expense account form.
An employee fills in the proper information; the form
is routed to the employee’s manager for approval and
then on to the accounting department to disburse the
appropriate check and mail it to the employee. Back-
ing up and restoring databases as performed by data-
base administrators is another administrative process.

One of the key objectives of the re-engineered bus-
iness processes is to minimize the time required for
execution. In a well-defined business process, there-
fore, all unnecessary tasks have been eliminated, and
all tasks are performed with the highest degree of
parallelism possible. These tasks can be performed
by different people. Coincidentally, different equip-
ment with different software is used to perform the
tasks. Thus those business processes are run in a dis-
tributed and heterogeneous environment.

Workflow management systems (WFMSs) provide the
foundation for defining and executing business pro-
cesses. We will refer to applications built according
to the workflow paradigm as workflow-based appli-
cations.

The creation of workflow-based applications needs
a special development method, which we call process-
based CASE (computer-assisted software engineer-

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

102 LEYMANN AND ROLLER 0018-8670/97/35.00 © 1997 1BM IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 1 Evolution of application structures

APPLICATION SYSTEM

WORKFLOW MANAGEMENT SYSTEM

APPLICATION SYSTEM APPLICATION SYSTEM
’ ASSIGNMENT . } ,’A‘fa’sxéwﬁmf. D
[DATA PASSING }"{b;’éq‘eﬁmsslna S
i SEQUENCING i—seausncma

ALGORITHM ALGORITHM -

.00

ALGORITHM
L X B]

/O PROCESSING

DATABASE MANAGEMENT SYSTEM

DATABASE MANAGEMENT SYSTEM

ing). The method we are proposing in this paper pro-
vides a consistent way of developing this kind of
application. The metaphor fundamental to this
method is the two-level programming paradigm of
workflow technology, in which programming in the
small is delivered through visual builders, and pro-
gramming in the large is delivered via business mod-
eling tools and workflow build time.

The next section introduces the notion of a workflow-
based application by revealing the impact of data-
base and workflow technology on the structure of
applications. The subsequent section summarizes the
benefits of workflow-based applications. Then the fol-
lowing section sketches some relations and synergy be-
tween workflow technology and object technology. The
section after that outlines an application developer’s
wish list for a development environment that helps to
efficiently design, implement, and monitor workflow-
based applications, and the succeeding section provides
a blueprint of the components of such an environment.
That section is followed by one showing some aspects
of testing of workflow-based applications without re-
quiring the setup of a complex environment, and then
a simple example of how such an environment could

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

work is given. The last section outlines the transaction
management features of a workflow management sys-
tem desirable for further enhancing the flexibility of
workflow-based applications. The paper concludes with
a summary.

The notion of workflow-based applications

Figure 1 shows the fundamental steps in the evolu-
tion of the structure of application systems. As de-
picted in part 1 of the figure, the first application sys-
tems built were large monolithical pieces of code with
some internal structuring. The internal structuring
reflected the pieces of infrastructure code that had
to be built by the application developers, in addi-
tion to the pieces of code that implemented the ac-
tual logic of the application.

Removal of data dependency. The lower boxes of
part 1 reflect some pieces for accessing data. These
pieces include, for example, the handling of data sets,
such as opening and closing an account file, perform-
ing the actual physical input and output operations
via the appropriate I/O routines provided by the op-
erating system, such as reading an account record,

LEYMANN AND ROLLER 103

or interpreting the data retrieved according to some
inline mapping information, such as the location and
the type of the account number.

Any change to the schema of the data, such as the
addition of a field to a record or a change of access
path to the data, requires all applications that ac-
cessed the record to be changed and the data to be
migrated. Therefore, these applications are data de-
pendent.

To reduce data dependency, each application sys-
tem introduced its own files holding redundant cop-

Workflow management systems
support the definition and
execution of business processes.

ies of the “same” data with the well-known conse-
quences of jeopardizing data consistency.

The management of the information about the data,
such as which data are maintained and where the
data are used, is also cumbersome. This situation be-
came worse over time with the increasing amount
of information.

As a consequence, database management systems
(DBMSs) were developed.? Their purpose was to sup-
port the definition and concurrent manipulation of
data. Many changes to the data schema and access
paths, for example, can now be done without impact-
ing the related programs. The body of data becomes
a property in its own right; it becomes a corporate
asset. Consequently, the structure of applications
changed to the structure depicted in part 2 of Fig-
ure 1.

Removal of flow dependency. The boxes depicted
in the middle of each of the three parts are the ap-
plication logic blocks that contain the actual appli-
cation functions and business algorithms. The top
boxes in part 1 and part 2 show some pieces that are
required to put these application logic blocks to-
gether in a form prescribed by the application. To
use a banking application as an example, it would

104 LEYMANN AND ROLLER

include bringing the blocks into the correct sequence
to first withdraw money from one account and then
deposit it into another account, or passing the proper
data from one block to the next so as to pass the
amount of money to be transferred from the with-
draw block to the deposit block, or assigning the right
person to a task based on application-specific cri-
teria such as the authority of the account owner.

A change in the assignment of tasks to people, com-
monly referred to as staff assignment,* in the exe-
cution sequence of the application logic blocks, or
the addition of a field to be passed between the
blocks, requires the application to be changed. Ap-
plications are flow dependent.

These changes are cumbersome and generally can-
not be performed fast enough. In addition, the ac-
tual structure of the business process is not known
to nonprogrammers. This situation becomes worse
with the increasing demand to adapt to market needs
that are changing ever faster.

Workflow management systems were developed to
help overcome these problems. Their purpose is to
support the definition and execution of business pro-
cesses. That means that the definition and execution
of the appropriate control and data flow, the assign-
ment of people to tasks, and the invocation of the
application logic blocks are externalized. By defini-
tion, changes to the process can now be done with-
out impacting the application logic blocks. The pro-
cess becomes a property in its own right—it becomes
a corporate asset.” The structure of the applications
changes to the structure depicted in part 3. The ap-
plication becomes a workflow-based application con-
sisting of a model of the underlying business pro-
cess and a set of (flow-independent) application logic
blocks.® The abstractions of the elementary pieces
of work in a business process are called activities; the
concrete realizations of these abstractions at process
exccution time are referred to as activity implemen-
tations.* The application logic blocks correspond ex-
actly to these activity implementations in a WFMS
environment.

The capability of the workflow management system
to support the definition and execution of control
and data flow, the assignment of activities to peo-
ple, and the invocation of the activity implementa-
tions associated with such an activity is not limited
to splitting up large monolithical applications. It al-
lows the various activities to be distributed to dif-
ferent computers with different systems. Different

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

systems may mean different operating systems sup-
ported by the same workflow management system
or may mean different workflow management sys-
tems. Workflow-based applications are, therefore,
by nature distributed, heterogeneous applications.

The fundamental benefits of workflow-
based applications

In this section the following four fundamental ben-
efits inherent to workflow-based applications are dis-
cussed:

« Flexibility in changing the model of the underly-
ing business process

» Integration capabilities for even disparate appli-
cations

+ Reusability of activity implementations and pro-
cess models

s Scalability of application development and execu-
tion

Flexibility. The first benefit is based on the two-level
programming paradigm underlying workflow-based
applications. The specification of all flow relation in-
formation is, as was already described, separated
from the specification of the logic of the application
functions, that is, the algorithmic aspects of the ap-
plication. This separation allows the model of the
process underlying the subject applications to change
without affecting the associated activity implemen-
tations. It is the predominant reason why enterprises
are investing in workflow technology today.

Integration. The second benefit is based on multi-
ple features.

First, the ability of a WFMS to persistently store the
workflow-related execution context of each activity
implementation (that means the containers*) and
share it between different activities via the supported
data flow features allows for an integration of ac-
tivity implementations that is different from the cur-
rent standard approach of accessing a joint database.

Second, transaction features tailored toward support
in WFMSs have been proposed (for example, see Ref-
erences 7, 8, 9, 10, and 11) to especially allow the
integration of activity implementations that are ac-
cessing different DBMSs into atomic units (in the sense
of “all or nothing”) or compensation units (in the
sense of “joint compensation”); see the last section
for more details.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Third, the heterogeneity feature currently being
worked on by the Workflow Management Coalition
(wmMC)'? and NP2 strives toward support of cross-
enterprise business processes. That support means
that each application part may even be managed by
a different vendor’s WEMS. The goal is to enable “vir-
tual enterprises” not only by supporting cross-enter-
prise sharing of data based on the STEP (STandard
for the Exchange of Product definition data) stan-
dard (for example, see Reference 13), but also to
share business processes across enterprises and to
enable interoperation of workflow management sys-
tems.

Reusability. The third benefit is based on the struc-
ture of workflow-based applications themselves. As
claborated earlier, activity implementations for pro-
cess models are typically flow-independent and free
of assumptions about their usage (with the final con-
sequence that external transaction mechanisms are
needed; see the last section). Therefore, a particu-
lar activity implementation can be used in many dif-
ferent process models. If both the activity implemen-
tation and the workflow manager comply with the
WwiMC standard for “invoked applications,” ' the ac-
tivity implementation can ultimately be used in many
different WEMSs. As a result, the exploitation of work-
flow technology stimulates reuse of code with activ-
ity implementations (for proper application logic)
as the granules of code reuse. Whereas the reuse of
class libraries, frameworks, parts, and design patterns
is coupled with object technology (for example, see
Reference 14), reuse based on workflow technology
is independent of it.

Furthermore, there is a strong demand for reusing
process models themselves. For this purpose, many
WFMSs allow for activity implementations that are
realized as process models, so-called “subpro-
cesses,” thus enabling top-down and bottom-up mod-
eling of processes that helps stimulate the reuse of
process models as subprocesses.

Industry consortia such as the Object Management
Group (OMG) and the Object Definition Alliance
(0DA), as well as various vendors, are currently de-
fining reusable components for the purpose of be-
ing able to construct applications out of prefabricated
parts. The expectation is that these components will
eventually be sold as off-the-shelf components.

The formation of a joint work group of the OMG and
WfMC indicates that these components will be spec-
ified in a manner such that they can be used as ac-

LEYMANN AND ROLLER 105

tivity implementations within business process mod-
els. This will further help to promote the paradigm
of workflow-based applications.

Similarly, industry interest groups and vendors are
in the process of specifying de facto standards for
models of business processes that apply to partic-
ular application domains. These process models can
be reused in particular as subprocesses in enterprise-
specific processes. In this context, it is interesting to
note that vendors of standard software, SAP with
R/3**1 for example, are currently describing their
applications via models of business processes, mak-
ing use of workflow management systems so that the
application performs according to the process model.
Workflow-based applications will thus very likely play
a major role in this area, too.

Scalability. The fourth benefit of workflow-based ap-
plications is their scalability in terms of application
development and application execution. Scalability
allows workflow-based applications to be used for
small applications, such as the management of a doc-
tor’s office, and for large applications, such as the
order process in a manufacturing company involv-
ing processes of outside suppliers. At first glance, one
would assume that covering such a broad spectrum
demands specialized workflow management systems
that have nothing in common except a few basic
ideas. However, that is not the case. It seems that
the development groups of workflow management
system vendors strive for one system architecture and
design that caters to the demands of small and large
applications.

Application development. The development of work-
flow-based applications provides scaling through the
underlying two-level programming paradigm, the
top-down process modeling capabilities, and the re-
use of process models and business objects.

Developing an application in two separate levels,
first, the development and test of the business pro-
cess and, second, the development and test of the
activity implementations, reduces the complexity of
the application from a design, implementation, and
testing standpoint. In particular, the parallel devel-
opment of the activity implementations, made pos-
sible by the fixed interfaces to the business process,
provides for a faster development cycle.

The support of subprocesses allows the top-down de-
velopment of business processes. First, the high-level
business process is developed and tested, and then

106 LEYMANN AND ROLLER

the low-level business processes are developed and
tested. This sequence facilitates the parallel devel-
opment of business processes.

Using business objects and reusable process models
makes business process development as well as ac-
tivity implementation development easier.

Application execution. Scaling of the application dur-
ing execution is facilitated through the workflow
manager’s execution environment: subprocesses can

Scalability allows workflow-based
applications to be used for hoth
small and large applications.

be executed on different servers; workload balanc-
ing supports exploitation of the available resources;
dynamic invocation of activity implementations (even
on remote processors) provides flexibility in execut-
ing activity implementations; and distribution of
work items allows the assignment of users to servers
to be balanced.

Objects can benefit from workflows

Enterprises are investing today in object technology
to improve the productivity of their programmers
and to enable even non-data-processing profession-
als to build applications via visual builders (described
in alater section). Here we discuss some of the ben-
efits object technology might gain from workflow
technology and how workflow-based applications can
be built with objects. Note that vendors of standard
software (like SAP) are also combining object tech-
nology and workflow technology (for example, see
References 15 and 16).

Flow-independent objects. One of the underpinnings
of object technology is the insight that robustness of
a system is normally achieved by encapsulating things
that might become subject to changes. So, for ex-
ample, if the order in which operations are to be per-
formed can change, or if operations can be added
or removed, the guidelines of object technology con-
sequently recommend a dedicated control object.
That control object encapsulates the scheduling of

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

various operations. Thus, to achieve robustness via
encapsulation, not only behavior and data must be
taken into account (what is usually done), but also
“ordering.”

If the last proposition is ignored, following the en-
capsulation paradigm tends to hide fragments of the
proper business processes in the implementations of
the objects.'” In this situation not only the objects
themselves become flow-dependent, but transitively
so does each application reusing these objects. In ad-
dition, the business processes (being an asset by
themselves) are only partially described explicitly and
externalized to a broader community. In contrast,
implementing objects in such a way that they become
flow-independent will result in component-based ap-
plications that are much more flexible.

Scripting and objects. Building flow-independent
business objects will enforce a clear separation of
the more stable behavior of the business objects from
the more dynamic behavior of the business processes.
A business process explicitly describes the rules of
how, when, and by whom the services provided by
the various objects are exploited. An activity imple-
mentation within a business process may be directly
realized by invoking a method of an object.

When the statics of a business split from its dynam-
ics, the interaction between business objects is de-
fined by the process model. The process model may
be perceived as a script prescribing the use of bus-
iness objects to reach particular business goals. At
run time, the workflow management system will man-
age the flow of control and data between the bus-
iness objects, will establish transaction boundaries
around them as defined in the script, and will make
certain that the proper organizational units of the
enterprise become responsible for utilizing the ser-
vices provided by the various business objects. Note
that languages like C++ follow a similar philoso-
phy. A program consists of objects and procedural
elements explicitly describing the control flow be-
tween the method invocations of the objects.

Itisimportant to note that we do not consider work-
flows as a substitute for scripting languages such as
REXX,'® LotusScript**,' or Visual Basic**.? These
languages can be considered as lightweight scripting
languages very well-suited for composing desktop ap-
plications for a single end user, perhaps done by the
end user. Defining a workflow can be considered as
heavyweight scripting suitable for composing appli-
cations requiring the collaboration of multiple peo-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ple distributed throughout an enterprise. Heavy-
weight scripting adds such features as parallelism,
heterogeneity, distribution, and context-dependency
to the notion of scripting. The implementation over-
head inherent in these features is the reason why we
call this kind of scripting “heavyweight” and why we
think two different categories of scripting have a right
to exist.

Workflows in object-oriented analysis and design.
Object technology provides many techniques to cap-
ture the dynamic behavior of an application, for ex-
ample, collaboration graphs, event flows, timing di-
agrams, and interaction diagrams. At an abstract
level, they have the structure depicted in Figure 2,
which we call a message flow diagram. Basically, such
a diagram describes the control flow between method
invocations of the participating objects.

Reference 21 points out, based on this insight, that
two principally different structures of such diagrams
can be observed (see Figure 3). Forks represent cen-
tralizing responsibilities, which means that a single
object represents the global control and data flow.
The other objects mainly provide utilities, Such a
structure is preferred by workflow purists. Stairs rep-
resent delegating responsibilities, which means that
each object knows a few other objects and how to
exploit them. Thus, each object is responsible for the
local control and data flow and is thus flow-depen-
dent. Many object purists can be found who prefer
this structure. Our proposition that robustness
achieved via encapsulation must not only regard be-
havior and data, but also ordering, is represented by
forks that typically encapsulate ordering. In contrast,
stairs express an assumed stability of ordering,. It is
obvious that fork and stair structures have to be used
in combination to yield a stable and robust structure.

One of the special strengths of workflow technology
is facilitating modifications for operation orders in
an easy manner. Thus, it is only natural to exploit
workflow technology for the implementation of fork
structures, that is, for encapsulating the ordering of
operations, Simply, the controlling object itself be-
comes an instance of a process model that in turn
describes the control and data flow between the af-
fected objects.

For this purpose, each method invocation stimulated
by the control object becomes an activity in the pro-
cess model, which finally represents the control ob-
ject. Thus, if the method m of object o is invoked,
o.m() is an activity of this process model. The con-

LEYMANN AND ROLLER 107

Figure2 Message flow diagram

-

OBJECT 1 OBJECT 2

USED OBJECTS

OBJECT_3 LA 4 OBJECT n

2

-

<MESSAGE>

SYSTEM BOUNDARY

Figure 3 Forks and stairs

trol connectors are prescribed by the time order in
which messages are sent according to the message
flow diagram. If i1 is sent to o1 and m?2 is sent to
02 and no other message is sent to any other object
in between, the flow of control is from 01.m1() to
02.m2(). Based on the structure of message flow
diagrams, no parallelism is exploited in the process
model derived by this simple algorithm. Typically a
design phase needs to be conducted to establish a
more sophisticated process model.

108 LEYMANN AND ROLLER

At run time, the WFMS will instantiate this process
model, resulting in an instance of the control object.
By definition, there will be no implementation of the
control object in the classical sense, for example, in
C++: the implementation consists of the process
model, which is interpreted on a per instance basis
by the WrFMS. Consequently, changes to the process
model will immediately affect the implementation
of the corresponding control objects instantiated af-
ter the changes.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

A method has been proposed in Reference 6 for an-
alyzing a message flow diagram in order to divide it
into a collection of subdiagrams, each of which is ei-
ther a fork structure or a stair structure. Fork struc-
tures can be transformed into skeletons of process
models in a straightforward manner. Stair structures
are natural candidates for modularization; that is,
they can be realized as programs or as subprocesses.

Application developer’s wish list

The development of workflow-based applications can
be facilitated by a new approach that helps appli-
cation developers in the design, implementation, and
testing of those applications. We call this approach
process-based CASE to indicate that the goal of the
proposed CASE method is to create applications that
are workflow-based, thus implying that the under-
lying business process is externalized and managed
by a workflow management system. This approach
is different from the notion of process-centered CASE,
where processes are used to develop applications and
coordinate development teams.” In fact, process-
centered CASE could also be applied to process-based
CASE.

First, the development of the applications should be
supported with the set of new and evolving program-
ming paradigms, such as visual programming, the
construction from parts, the usage of business ob-
jects, binary code reuse, object orientation, and, by
definition, the exploitation of workflow.

& Visual programming supports the development of
programs that are no longer performed by writing
statements in a programming language. The pro-
gram is constructed (1) by creating the advanced
graphical user interface of the program by draw-
ing the screen layouts on the screen, and (2) by
visually assembling and connecting parts to define
the behavior of the program.

% Construction of parts is a technology to build ap-
plications from existing, reusable software compo-
nents called parts.”® The assembly is typically per-
formed via the composition editor of the visual
builder. Parts provide a wide range of capabilities,
from very simple functions through complete,
highly sophisticated applications. Primitive parts
can be combined to form more complex compos-
ite parts.

* Business objects are becoming increasingly impor-
tant as granules of reuse. Typical examples may
be a customer business object or an account bus-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

iness object. Standardization is underway as shown
earlier in the third section of this paper.

% Binary code reuse is a key factor in the success of
application development productivity. Source code
reuse just will not render the productivity increase
the software industry is looking for. Business ob-
jects are the main manifestation of this paradigm.

% Workflow allows us to define, execute, and mon-
itor applications that move the work to be done
to the desktop of the person responsible for per-
forming a piece of the overall task.

Second, the development approach must cater to the
specific characteristics of workflow-based applica-
tions. It must support the design, implementation,
and testing of the distribution aspects of the appli-
cations, in particular, the parallel execution of tasks.

Third, it must support openness through compliance
with appropriate standards, including de facto stan-
dards such as CORBA (Common Object Request Bro-
ker Architecture),” OLE (Object Linking and Em-
bedding),” wiMC, OpenDoc,* and Lotus Notes**.

Fourth, this development environment must be avail-
able on a variety of platforms.

And last, the components of the development envi-
ronment must be tightly integrated. In particular,
they must provide a cohesive, seamless, and intui-
tive end-user interface.

Development environment blueprint

The essential components for the proposed environ-
ment are (1) a business modeling tool, (2} an object-
oriented analysis tool, (3) a workflow management
system, (4) a visual builder, (5) a database manage-
ment system, (6) a database design tool, and (7) ob-
ject support. Figure 4 depicts those components that
are exposed directly to the user of such a develop-
ment system. In this section we discuss the compo-
nents.

Business modeling. A business modeling toolis one
of the starting points for developing workflow-based
applications. It is intended to be used by internal or
external consultants, organization specialists, or bus-
iness re-engineering experts. IBM’s Business Process
Modeler, IDS’s ARIS** Toolset, Holosofx’s Work-
flowBPR tool, or UBIS’s BONAPART** are typical ex-
amples of this type of tool. Their main focus is on
allowing the business experts to model processes and
business objects used within a business process. They

LEYMANN AND ROLLER

109

Figure 4 Development components

BUSINESS MODELING

SCHEMA

oammasE

 PHYSICAL ,
- MONITORING

’SCHEW !

typically implement a proprietary methodology to
describe the business process. For example, the 1BM
Business Process Modeler uses an extension of the
LOVEM* (Line of Visibility Enterprise Method)
methodology developed by 1BM Canada for re-en-
gineering corporations; the ARIS Toolset uses the
ARIS methodology developed by Scheer.?

The usual result of such an analysis is a high-level
description of the business process. On a conceptual
level, this high-level process describes the business
actions and their relations, the organizational units
performing these business actions, and the business
objects that these business actions are working on.
The level of detail depends on the significance of a
particular item in the overall business process. A bus-
iness object therefore could be a complete database,
such as the payroll database, or a single column in
a table, such as a state code used to determine which
path needs to be taken within the process.

An important function of business modeling tools
is to collect metrical information about strategic tar-
get volumes of business objects and processes. This
information will be refined later in the development

110 LEYMANN AND ROLLER

process to determine the performance characteris-
tics of the process as well as the resources, both peo-
ple and IT (information technology) resources, re-
quired to perform the process.

In general, the results obtained via the business
process modeling tool are not directly usable by a
workflow management system to execute the bus-
iness processes. They need further refinement in the
specifications of IT resources, such as programs used
to perform the activities, the topology of the system,
etc. This task is performed using the build-time com-
ponent of the workflow management system. The ap-
proach is similar to the one taken in the design of
databases, where it starts with a conceptual design
that is transformed into a logical design. The con-
ceptual design, for example, done as an entity-re-
lationship model, provides an implementation-inde-
pendent view of the data. This model is then
translated into a logical design, such as the tables of
a relational database system, by adding implemen-
tation-dependent information.

How the information is handed over to the work-
flow management system is a matter of coupling the

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

business modeling tool and the workflow manage-
ment system. One approach is to have a common
data store. A simpler approach is the generation of
an interchange format that is imported into the work-
flow management system. The WMC is standardiz-
ing this format to facilitate the interchange of
process model information between different imple-
mentations of workflow management systems. Un-
til this standard is issued, the business modeling tool
must generate the workflow manager’s proprietary
exchange format, such as the FlowMark Definition
Language (FDL) of IBM’s FlowMark*. The ARi1s Tool-
set, for example, generates FDL from its process def-
initions.

Object-oriented analysis. Another approach to the
development of workflow-based applications is ob-
ject-oriented analysis and design. As outlined pre-
viously, the results of the analysis could be used in
different ways. It could be used to generate process
skeletons in the workflow manager’s exchange or, if
available, in a standardized format. It could also pro-
vide the visual builder with the proper information
to allow rapid creation of the activity implementa-
tions.

Workflow build time. The purpose of the build-time
component is to allow the user to define the pro-
cesses in terms of process logic, associated organi-
zational information, and IT infrastructure required
to execute the processes.*” As pointed out earlier,
this information may be derived from information
collected by the Business Modeling Tool or the Ob-
ject-Oriented Analysis Tool. The definition of the
information is entered via a graphical end-user in-
terface. Typically an animated process graphis used
to help determine the correctness of the process
graph and the correct invocation of the programs im-
plementing the system program. Analytical and dis-
crete simulation help to determine whether the or-
ganization is capable of handling the workload and
whether the IT resources are sufficient to cope with
the system, database, and communications load.?

Visual building. A visual builder is a visual program-
ming tool that can help develop all kinds of appli-
cations, including mission-critical applications. It al-
lows a programmer to rapidly prototype and build
applications with menu bars, entry fields, and icons.
Programs are written simply by making connections
between objects and parts.

Workflow run time. The run-time component of the
workflow management system controls the execution

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

of process instances. It allows the user to start, ter-
minate, suspend, and resume processes. It deter-
mines who should perform a particular activity, puts
the resulting work item onto the work list of the se-
lected user(s), schedules the proper program when
a work item is selected and determines what activ-
ities come next after one has been completed, and
records all these actions in an audit trail.

Process monitoring. Processes must be monitored
for various reasons: (1) to determine the workload
of people and take proper action if the workload is
unevenly distributed, (2) to recognize critical situ-
ations where work is piling up, and (3) to obtain pro-
cess statistics. The process statistics are created from
the audit trail that is automatically written by the
workflow management system during process exe-
cution. This information can be used to verify the
assumptions used during simulation, such as process
creation rates, path selection probabilities, and ac-
tivity processing time.

Schema creation. The business objects identified
during business modeling or object-oriented anal-
ysis are the input to conceptual data modeling. They
represent the local conceptual schema of the appli-
cation implemented via a business process. In gen-
eral, these objects form the kernel entities of the en-
terprise data model and thus provide the basis for
the creation of an enterprise data model through
view integration.*?

The conceptual schema is transferred into a logical
schema, the schema of the database in which the data
are stored. Reference 28 outlines the rules for trans-
ferring an entity-relationship schema into a relational
schema.

A physical schema is created from the logical schema
by choosing specific storage structures and access
paths to achieve optimum performance for the var-
ious applications. Input to the physical schema de-
sign consists of the transaction load and the data-
base load. Both pieces of data can be derived from
information collected during business modeling,
workflow definition, and application building.”

Database monitoring. The activities in the databases
must be monitored to detect performance bottle-
necks. Monitoring could trigger modifications of the
database schemes. It is also conceivable that it may
impact the structure of the business processes.

LEYMANN AND ROLLER 111

Figure 5 Verification phases

ANIMATION SIMULATION

VERIF(CATION OF
PROCESS LOGIC

VERIFICATION OF

IT INFRASTRUCTURE -
AND ORGANIZATION
(BALANCING)

BUILD TIME

Verification of workflow-based applications

The underlying business process of non-workflow-
based applications is, as outlined previously, deeply
buried in the application itself. That means the bus-
iness process and the application logic need to be
tested together. In workflow-based applications, the
business process and the programs implementing the
activities are described separately.

Testing workflow-based applications, therefore, is
much simpler, since to a large extent the testing of
the business process can be done independently of
the testing of the activity implementations. In fact,
the testing of the business process can be done be-
fore the actual implementation of the application
functions starts. As soon as testing of the business
process is completed, the interfaces for the control
and most of the data relevant to the data flow are
defined.

The verification of workflow-based applications is
performed in three phases, as shown in Figure 5. The
first step checks the process models for correctness.
Itincludes checking to see whether the process struc-
ture, the invocation of programs, and the distribu-
tion of work are correct.

What needs to be checked and what can be checked
for correctness of the process structure depends on

112 LEYMANN AND ROLLER

MONITORING -

Eﬂrﬁ

GOLLECT AND
PRESENT ACTUAL
BEHAVIOR

RUN TIME

the underlying process meta-model.* In the case of
1BM FlowMark, for example, no checks need to be
performed for loops since the process graph is a di-
rected, acyclic graph. But two basic items always need
to be checked. First, the passing of data from one
activity to a subsequent activity must be correct and
complete. Incomplete data lead to an incorrect eval-
uation of transition conditions, resuiting in incorrect
control flow and the passing of incorrect data to in-
voked programs or subprocesses. This item is par-
ticularly important for activities where a field in the
input container is the target of multiple data con-
nectors. Second, the transition, exit, and start con-
ditions must be semantically correct.

The invocation of programs includes not only de-
fining the proper invocation mechanism, but also
properly passing data to the program and returning
the appropriate data.

A staff assignment identifies the set of people who
must perform the appropriate task for each activity.
Therefore, checking the correct work distribution in-
volves not only seeing whether work is assigned to
the right person, but also obtaining a first hint of
whether the work is distributed properly.

1BM FlowMark, for example, uses the technique of
animation to help the process modeler perform this

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

task.® It offers two modes, process debugging and
the regression test. In the process debugging mode,
the user navigates through the process model step
by step. In the regression test mode, a stored script
is automatically executed. The execution of the ap-
propriate programs is simulated by displaying the in-
put to be passed to the program and allowing the
user to fill in the data to be returned by the program;
thus, the programs must not have been implemented.
The advantages of the animation are: (1) the iden-
tical presentation of the process model is used for
modeling and debugging, (2) the visualization of con-
trol and data flow as well as the status display of ac-
tivities allow design errors to be easily recognized,
(3) animation can be done at any time, even if the
process model is syntactically and semantically in-
correct, (4) the work list of the process participants
is visualized, and (5) the interaction in the process
debugging mode can be stored to be used in regres-
sion test mode.

In a second step, the process models are checked to
see whether the organization as well as the IT infra-
structure is capable of supporting the number of ex-
pected process instances. The technique used for this
phase is simulation: analytical and discrete.

Simulation is based on metrical information that is
collected for the process and the activity level and
is mostly provided by the business analyst. The pro-
cess-level information includes the number of pro-
cesses started, the probability that a certain branch
is taken in the process, the probability that an ac-
tivity is repeated, and the size of the process input
and output containers. For the activity, it includes
process-related information, such as the average time
required to perform the activity, including idle and
wait time.

Analytical simulation is used to calculate the required
people and computer resources. If this turns out to
be insufficient, any further analysis is superfluous.
The sufficiency of computer resources is evaluated
by determining the CPU load on servers and clients,
the network traffic caused by server-to-server com-
munication and data passed from one activity to the
next, and the transaction load on the database and
the transaction processing (TP) monitors. People re-
sources are calculated by determining the amount
of time required to perform the activities. The in-
formation derived for a process is then combined
with the resource information derived from other
processes.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Discrete simulation is used to determine the impact
of multiple process instances competing for the same
resources. Input to the simulation consist of scenar-
ios describing which process models should be used
in the simulation. The simulation component uses
this information to drive the navigation engine of
the workflow manager with the proper requests, such
as process start and activity completion. The results
are written to a file that serves as input to create the
simulation results. Typical results are the probabil-
ity distribution of process execution time and trans-
action rates.

The results of analytical and discrete simulation can
be used to tune the accessed databases. Using the
activity invocation rates and the database accesses
of the activity implementations, one can determine
the number and types of structured query language
(soL) calls against each database. This information
and the current or estimated size of the databases
provides sufficient input to the physical database de-
signer to determine the proper database character-
istics. Furthermore, it allows a user to determine how
the size of the database changes over time. Collect-
ing additional information, such as the distribution
of keys, allows, for example, the detection of hot spots
in tables.

The process performance monitor, by analyzing the
audit trail, helps to obtain information relevant to
the process performance, such as the average pro-
cess duration, idle time for activities, or excessive no-
tifications when work is not performed in a timely
manner.

A sample scenario

This section discusses some of the components of
the development environment in more detail and
outlines how those components could collaborate.
1BM products have been selected for purposes of il-
lustration. The components being explored further
are the business modeling tool, the build-time com-
ponent of the workflow management system, and the
visual builder. The corresponding products are the
IBM Business Process Modeler, FlowMark, and Vi-
sualAge C+ +*, respectively.

A simple loan process is used as a guide through the
various components. The loan process starts when
a customer contacts the bank and finishes when the
customer receives the appropriate response from the
bank, either a denial of the loan or the granting of
the loan.

LEYMANN AND ROLLER 113

Business modeling tool. The design of a business
process can start, as outlined earlier, with a business
modeling tool. The 1BM Business Process Modeler
implements an extended version of the IBM LOVEM
methodology. LOVEM focuses on the interactions be-
tween the customer and the company. All informa-
tion is captured via a graphical editor that supports
the creation of two sets of diagrams: hierarchical
structure diagrams and line of visibility charts. Hi-
erarchical structure diagrams provide a hierarchical
grouping of all relevant elements, such as processes,
critical success factors, computer programs, organi-
zational units, opportunity areas, problem areas, and
line of visibility charts.

There are four different types of line of visibility
charts (LOVC). The architecture LOVC (ALOVC) pro-
vides an overall view of what the company does, to-
gether with the essential customers and the sequence
of business processes. The job LOVC (JLOVC) shows
all activities of a job and provides the base for an-
alyzing the efficiency of job performance. The log-
ical LOvVC (LLOVC) provides a refinement of the
ALOVC and shows the data flow between processes
and subprocesses. The physical LOVC (PLOVC) shows
the activities within a business process and how they
are performed by connecting activities to other ac-
tivities or to document storage, office systems, and
computer systems, for example.

The charts are organized into horizontal areas, called
bands. In LLOVCs, a band represents a business func-
tion within the company, such as personnel. It shows
what processes are performed by each function and
the relations between the processes in the form of
data flows, which represent data that are generated
from or required by the process. In PLOVCs and
JLOVCs, a band represents organizational units and
contains for each organizational unit the activities,
tasks, systems, critical success factors, and other as-
pects of a business process and the relations between
those items in the form of information flows. Infor-
mation flows represent the flow of information, but
also of goods and controls.

Figure 6 shows the PLOVC of the loan process. The
horizontal bands represent the parties involved in
the process: the customer, the loan officer, and the
loan supervisor. The line between the customer and
the company is called the line of visibility. The man-
ual and automation bands are used to describe how
a particular activity is supported. When the activity
is in the manual band, it is performed manually; when
in the automation band, it is completely performed

114 LEYMANN AND ROLLER

by a computer program; when on the line, it is per-
formed by a computer system that interacts with the
user. The system shown in the figure is used to col-
lect loan information for a customer. Based on the
amount of money involved, an assessment must be
made by the loan supervisor. Finally, the customer
receives a loan contract or rejection letter.

Workflow build time. The business modeling infor-
mation must now be made available to the workflow
management system. As pointed out in the earlier
subsection on business modeling, it is done via an
interchange format. The business modeling tool con-
verts the PLOVC of the loan process into FlowMark
Definition Language, which is then imported into
FlowMark. This process skeleton must then be en-
riched with information required during process ex-
ecution, such as program names, staff resolution ex-
pressions, and data structures and data connectors.
This type of information, which is related to infor-
mation technology, is not collected during business
modeling. The amount of information to be added
depends on the amount and granularity of the in-
formation collected by the modeling tool. Because
the activities specified with the business modeling
tool are generally quite coarse-grained, as is the case
with the IBM Business Process Modeler, they often
need to be replaced by subprocesses or a set of ac-
tivities. Figure 7 shows the loan process after mak-
ing these modifications with the FlowMark process
model editor. The single system used in the PLOVC
for managing loan information has been split into
multiple smaller programs. The activity “CollectCus-
tomerInformation” obtains the customer number.
If the customer is new, all customer information, such
as the address, is collected in the activity “Collect-
CustomerData.” The next step, common again for
all customers, is the collection of credit information,
such as the amount of credit.

It should be noted that the program could have been
implemented as one large program. The decision to
break up the program has been guided by the desire
to extract control and data flow, in the spirit of work-
flow, to make future changes simpler. The one pos-
sible disadvantage is the amount of time required
by the workflow manager to navigate through the
process graph, and it can be eliminated by compil-
ing parts of the process graph.®! Note explicitly that
this function is not part of the delivered FlowMark
product.

When the credit amount is small, and the customer
risk factor is low, the loan is accepted right away,

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 6 PLOVC of loan application

Loan Oificer

Collect
_custormer
informaton

Receive
rejection

Loan Supervisor

Management
approval

and the activity “CreateAcceptanceletter” is started
automatically. In the other case, as already shown
in the PLOVC, management approval must be ob-
tained. On the basis of what management decides,
the loan is either granted or denied.

Testing of the application is performed using the an-
imation facility of FlowMark, as described in the pre-
vious section.

Visual builder. A visual builder, discussed earlier,
is the preferred tool for constructing activity imple-
mentations. More information about 1BM VisualAge
can be found in References 23 and 32.

Visual builders allow applications to be constructed
from existing, reusable software components called
parts. Parts are either visual or nonvisual. Visual parts
allow an application developer to easily construct so-
phisticated graphical end-user interfaces; nonvisual

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

parts provide programming constructs such as ac-
cessing a database or maintaining a list of text strings.

A part in VisualAge C+ +, for example, is a soft-
ware object implemented as a C+ + class that sup-
ports a simple, standardized protocol. This protocol
supports the interconnection of parts to form higher-
function parts or entire applications. The part inter-
face is composed of three distinct features: attributes,
actions, and events. These features correspond to a
natural way of viewing parts (and objects in general)
in terms of what properties (attributes) they have,
what behaviors (actions) they can perform, and what
unsolicited information (events) they can provide to
other parts.

The construction of the application is via the com-
position editor of the visual builder. The editor pro-
vides the capability to create the views for the ap-
plication, to select the parts that implement the logic,
and to make connections between the parts.

LEYMANN AND ROLLER

115

Figure 7 Loan process

The workflow management system provides an ap-
plication interface so that the activity implementa-
tion can access the input and output containers of
the activity. The construction of workflow-based ap-
plications via visual builders is simplified through
nonvisual parts for the input and output containers
that wrap the latter. Reference 33 shows a method
for creating those parts from the container structures.
Figure 8 illustrates the construction of the program
that implements the loan data collection activity in
the loan process. The window for the composition
editor shows two data entry parts for displaying the
customer’s first name and last name and two data
entry parts for entering the credit amount and the
risk factor. The two nonvisual parts reflect the input
and output containers of the activity. The arrows be-
tween two parts indicate that the change of one part
attribute should be propagated to the attribute of
another part. The arrows between the input con-
tainer part and the first name and last name fields
cause the fields on the screen to be filled with the
appropriate field from the input container. The ar-

116 LEYMANN AND ROLLER

row between the address and the credit amount fields
and the output container causes the address and
credit amount fields to be put into the activities out-
put container. The arrows between the input and the
output container part cause the first name and the
last name attribute of the input container part to be
copied to the output container part.

Another application programming interface stan-
dardized by the workflow management coalition is
the work list handler application programming in-
terface. This interface allows application develop-
ers to replace the workflow manager’s standard in-
terface for managing work lists, starting work items,
and starting, terminating, and suspending processes
with a custom-designed interface. The visual builder
can facilitate the development of these interfaces by
using parts that wrap the work list handler interface.

Further integration points between the visual builder

and the build-time facility of the workflow manager
are conceivable. For example, honoring each oth-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 8 Loan data collection

First Name

Last Name

Address

Amount

Creditinfo0ut

er’s drag and drop procedure would allow an activ-
ity to be dropped on the icon of the visual builder,
which automatically opens the composition editor
and puts the appropriate input and output container
parts on the surface.

Transaction management for workflow-
based applications

Activity implementations can be not only transac-
tional programs, or classical transactions, but also
nontransactional programs. For historical reasons,
transactions as activity implementations frequently
appear when the encompassing process model rep-
resents one of the core business processes (order en-
try, etc.) of an enterprise, and nontransactional ac-
tivity implementations are frequently found within
support processes (travel expense accounts, etc.). To-
day it can be observed that many workflows contain
a mixture of transactional and nontransactional ac-
tivity implementations. In this respect, WFMSs are ve-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

hicles to connect the world of transactions and the
world of nontransactional programs. The corre-
sponding programs are “pasted together” unham-
pered; they are only restricted by business processes
that prescribe the way in which the enterprise per-
forms its businesses.

When the sophistication of an enterprise in exploit-
ing workflow technology increases, the requirement
for supporting the definition of work units within
workflows appears. The exploiters of a WFMS sud-
denly ask for advanced transaction paradigms that
relate to their business processes; they call a busi-
ness process that makes use of advanced transaction
features a business transaction or an extended trans-
action. First, it encompasses some transactions in the
classical sense and combines them with nontransac-
tional programs, thus extending the scope of tradi-
tional transaction processing. Second, it groups both
classical transactions as well as nontransactional pro-
grams together into a unit of work that reflects the

LEYMANN AND ROLLER

117

semantics and behavior of their business processes,
thus extending the classical transaction paradigm.

Note that most of the features outlined in this sec-
tion are not available in commercial systems. Because
of the relevance sketched earlier, we included this
subject as an outlook to possible extensions of some
commercial systems.

A brief sketch of transaction models. For the read-
er’s convenience, we provide a brief taxonomy of
transaction models based on the duration of the un-
derlying unit of work. More details on transaction
models can be found in References 34 and 35.

The fundamental concept in this area is the ACID par-
adigm, which enforces the collection of operations
to behave as follows:

» Either all of them are applied to the system or none
of them at all (atomicity).

s They lead to a new valid state of the system (con-
sistency).

» They do not affect (until explicitly made visible)
operations outside the collection (isolation).

» They are not undone because of any later system
failure (durability).

Tremendous work has been performed in the past
to figure out how the structure and behavior of units
of work correlate with their average duration. As a
result, different transaction models have been pro-
posed.

What is traditionally subsumed under the notion of
a transaction is a flat ACIDic unit of work with a du-
ration of about a second. Typical application areas
for which this notion of a transaction is best suited
are telephone switching, flight reservations, or ac-
counts handling. Units of work that last for tenths
of a second when using the flat ACID paradigm (like
an order entry application) resulted in the invention
of a transaction model (close-nested transaction) that
allows structuring the overall transaction as a tree
of subtransactions, thus improving parallelism within
the encompassing unit of work and enhancing its
overall response time. When huge collections of data
items have to be manipulated, as in batch updates,
durations between minutes and hours are found. In
this situation, ACIDicity results in inappropriate con-
currency and recovery behavior that means backing
out all modifications if the last manipulation fails.
That led to techniques like minibatches and save-
pointing. Incidentally, these techniques require spe-

118 LEYMANN AND ROLLER

cial programming by the application programmer,
such as persistently tracking the state of the trans-
action. They are, therefore, not suitable in more com-
plicated applications such as trip reservation systems
where multiple databases might be accessed and op-
erations can only be undone semantically by invok-
ing special compensation actions. Transaction mod-
els such as open-nested transactions, which assume
amanual invocation of compensation, or those such
as Sagas, which support system-invoked compensa-
tion, circumvent such restrictions. When units of
work last for days, weeks, or even much longer, an
appropriate transaction model must deal with
(planned and unplanned) system shutdowns with-
out losing control of the boundary of the unit of work,
must facilitate partial backout, or must cope with dif-
ferent users cooperating in the unit of work. The
compensation spheres transaction model to be de-
scribed shortly is targeted toward these conditions.

Two categories of transaction functions. When an-
alyzing the exploitation of workflow technology with
respect to extended transaction processing, the fol-
lowing two independent categories of features can
be identified.

* The WFMS should allow for coupling activities of
business processes with respect to their semantic
success. An activity is successfully completed se-
mantically if the work has been finished as it was
intended by the process modeler. An activity such
as sending an e-mail note, for example, has suc-
cessfully completed semantically when the note has
been written and sent. If the work associated with
an activity cannot be successfully completed se-
mantically, or when the results produced by a col-
lection of activities are detected to be incorrect,
the weMS should undo the already-processed cou-
pled activitics and start the affected parts of the
business process again. Basically, this is the require-
ment for a compensation-based partial backward
recovery facility, which is referred to as compen-
sation spheres. Work is undone either by automat-
ically deriving the business process representing
the reverse execution of the part to be undone or
by starting a predefined business process to repair
the situation as described below.

» The WFMS should allow for coupling transactional
activities, meaning activity implementations that
represent transactions in the classical sense, with
respect to their transactional outcome. If one of
the transactions fails (in the sense of the ACID par-
adigm), the whole collection must be aborted. Ba-
sically, this requires the ability to declare the ato-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 9 Compensation spheres

LAN

RESERVE .
CHOTEL -
ROOMS - -

CUPLAN.
| ITINERARY

RESERVE
FLIGHT

micity of collections of activities (via an atomic
commit protocol, or via close-nested transactions,
etc.). Such collections are referred to as atomic
spheres. A WFMS can manage an atomic sphere by
dynamically creating a common transactional con-
text when entering the atomic sphere and initiat-
ing the atomic commit protocol for leaving the
atomic sphere (see discussion on atomic spheres
below).

Compensation spheres. It is the nature of business
processes that activities are generally long running
(especially in tolerating system shutdowns) and must
be thus interruptible, and that they often external-
ize intermediate results. Obviously, the same is true
for business processes themselves, Furthermore, a
business process usually contains collections of ac-
tivities that are semantically coupled in the sense that
either all coupled activities must be performed suc-
cessfully or the work associated with the activities
must be backed out to allow the business process to
continue correctly. In this context, the usual trans-
action models (generally realized via mechanisms
like locking, etc.) obviously do not apply.

A transaction model, called compensation spheres,
suitable for coping with these requirements has been
introduced in Reference 9, and the reader is referred
to that publication for in-depth details. A compen-
sation sphere is any collection of activities of a pro-
cess model such that finally either all activities must

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

have run successfully, or all activities must have been
compensated. An activity that has not run is consid-
ered to be compensated via NOP (no operation, i.e.,
nothing is performed); that means in practice only
the activities of the compensation sphere that were
activated are physically compensated. Furthermore,
each activity within a compensation sphere or the
whole compensation sphere itself is associated with
an activity called its compensating activity. A com-
pensating activity might be a program or again a pro-
cess model. The basic mode of undoing a compen-
sation sphere is to automatically schedule the
compensating activities of all activities within the
sphere in an order that is the “reverse” of the order
in which the proper activities of the compensation
sphere have run. Of course, staff resolution does also
apply to the scheduling of compensating activities.

Figure 9 shows a process model for trip reservations.
After the client plans the itinerary, it is submitted
to travel agents who will try to make the correspond-
ing reservations for hotel rooms, rental cars, and
flights. To speed up the reservation process, these
activities can be worked on in parallel by different
people. If all reservations have been made, the re-
sulting schedule is printed and sent to the client. If
one of the travel agents fails to make an appropri-
ate reservation (for example, there is no hotel room
available for part of the itinerary), compensating ac-
tivities are scheduled to cancel the reservations al-
ready made.

LEYMANN AND ROLLER 119

Many different parameters affect actual behavior
when backing out a compensation sphere. For ex-
ample, you can specify whether compensation should
be performed and whether work within affected pro-
cess branch(es) should continue at the entry points

Writing components without any
assumptions on transaction
boundaries will enhance
their reusability.

of the compensation spheres, whether some admin-
istrative actions have to take place, or whether the
control flow simply has to continue at the entry points
of the compensation spheres without performing any
compensation. Furthermore, compensation spheres
canbecome a target of cascading backouts, and back-
out is not only performed in a “discrete” manner by
running the compensating activities associated with
the proper activities, but also in an “integral” man-
ner by simply running a compensating activity (which
can again be defined as a process model) that is di-
rectly associated with the affected compensation
sphere itself.

Compensation spheres will provide tremendous ben-
efits from a cost and re-engineering point of view in
automating compensation. Many enterprises have
special departments completely dedicated to com-
pensation. When erroneous situations are detected,
members of these departments are informed, and
they use compensation techniques to manually re-
pair the broken resources. Long-running transactions
will typically be modeled as compensation spheres.

Atomic spheres. As was described in the third sec-
tion, activity implementations are canonical candi-
dates for reuse. It is a well-known proposition from
software engineering that components built for re-
use should have weak couplings. In other words, the
number and complexity of connections between such
components should be minimized. The following ex-
ample demonstrates this constraint for an activity im-
plementation dealing with recoverable resources. Be-
cause it is striving for a high degree of reusability,
it consequently must not assume the management
of any transaction boundaries. In workflow-based ap-

120 LEYMANN AND ROLLER

plications, it must, therefore, be possible to estab-
lish transaction boundaries outside of the activity im-
plementation.

Let us assume two activity implementations, one of
which WITHDRAWs an amount from a particular
ACCOUNT, the other DEPOSITs an amount to an
ACCOUNT. Note that this could be nicely imple-
mented as two methods of an account business ob-
ject. Since a customer may sometimes wish to put
money into his or her account, or sometimes wish
to withdraw money from the account, it is seductive
for the implementer of the DEPOSIT as well as the
WITHDRAW activity implementation to establish a
separate transaction boundary that will commit or
roll back the performed work. The transfer of money
from one account to another could now reuse both
the DEPOSIT as well as the WITHDRAW activity im-
plementation by invoking WITHDRAW for the first
account and DEPOSIT for the second. It may happen
by accident that the WITHDRAW activity implemen-
tation commits, but DEPOSIT does not leave the over-
all “transaction” in a consistent state. This reveals
the necessity of being able to establish transaction
boundaries separate from the activity implementa-
tions. It is the WFMS that could issue independent
commit requests for WITHDRAW and DEPOSIT in the
first scenario but could issue a “global commit” in
the second scenario.

Writing components without any assumptions on
transaction boundaries will enhance their reusabil-
ity. This observation is reflected in OMG’s Object
Transaction framework,* which provides access to
transaction managers and resource managers. It al-
lows WFMSs to manage transaction boundaries. For
that purpose we introduce the concept of an atomic
sphere. An atomic sphere is a set of activities each
of which is “transactional” in the sense that they ac-
cess recoverable resources. Furthermore, the con-
trol flow between two transactional activities of an
atomic sphere must not leave the atomic sphere and
enter it again at a later point in time. The WFMS will
make sure at run time that either all activities that
have run within the atomic sphere are committed or
all have aborted (note that due to different heuristic
decisions of two participants® the semantics cannot
be enforced). In the second scenario of the above
example, the WITHDRAW and DEPOSIT requests are
defined as an atomic sphere so that the WFMS will
ensure a consistent end-of-transaction processing.

Note the subtle but important difference to distrib-
uted transactions: Based on the syntactic specifica-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

tion of an atomic sphere within a process model, it
is the WFMS that establishes the transaction bound-
aries dynamically (dependent on the execution context
of the workflow). Thus, the activity implementation
programmer is freed from this concern. In a raw dis-
tributed transaction environment, programmers have
to deal with it.*

At the operational level, each implementation of an
activity within an atomic sphere is required to ex-
ploit only resource managers in the sense of Ref-
erence 38 and does not provide its own end-of-trans-
action processing.

Atomic spheres might become very helpful from a
technical point of view. They permit, for example,
the tying together of independent (and, in the above
sense, well-behaving) transactions that are manip-
ulating databases in such a way that if one transac-
tion fails, the others are aborted, too. It significantly
simplifies the task of managing the associated trans-
actions. Nevertheless, atomic spheres should be ex-
ploited very selectively because of their operational
drawbacks. They use a two-phase commit protocol,
which inherently strives toward holding locks until
the end of the encompassing atomic sphere, thus re-
ducing concurrency. In addition, many messages
have to be sent so that there is a consensus to the
outcome of all participating transactions. Both lock-
ing and message traffic impact performance. There-
fore, only a few short running transactional activ-
ities should be bound into an atomic sphere.

Mixing compensation spheres and atomic spheres.
From a modeler’s perspective, compensation spheres
and atomic spheres are overlaying the model of a
business process. The result is that modelers will
specify the processes of an enterprise and identify
collections of activities that have to be explicitly un-
done in case of an erroneous situation (in the sense
of being repaired via a dedicated business process)
and resumed afterwards. They will also specify col-
lections of transactional activities that are undone
(in the sense of simply restoring the manipulated re-
sources to their original state) in case one of these
transactions fails. The sphere definitions are stored
in the WFMS with the models of the business pro-
cesses, resulting at run time in business transactions
or extended transactions, respectively, managed by
the WFMS.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Summary

We have shown that the basic routing features of a
WEFMS allow the extraction of all flow information
from an application similar to a DBMS that provides
the means to extract all proper data management
functions from an application. As a result, the ap-
plication is both data-independent and flow-indepen-
dent. Such a workflow-based application consists of
a process model and a collection of activity imple-
mentations. The activity implementations become
a subject for reuse to be exploited in different pro-
cess models. We have shown how potential trans-
actional features of a WFMS could further enhance
the reusability of activity implementations. The task
of writing activity implementations is reduced to re-
alizing proper application logic or business functions.
This task can be further eased dramatically by ex-
ploiting visual builders, reusable parts, and business
objects.

Starting from an application developer’s wish list, we
have proposed an application development method
and environment that facilitates the design, imple-
mentation, and testing of workflow-based applica-
tions. A three-phase approach, which includes an-
imation, simulation, and monitoring, helps to verify
the workflow-based application without an extensive
setup of complex environments. A sample scenario
showed partially how such an environment could be
used by an application developer.

Acknowledgment

We thank Ed Vogt for discussing with us many times
some of the ideas outlined in this paper. We would
also like to thank Birgit Schmidt-Wesche, whose
comments helped to improve the style of the paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of SAP AG, Lotus Devel-
opment Corporation, Microsoft Corporation, IDS Prof. Scheer
GmbH, or UBIS GmbH.

Cited references and note

1. M. Hammer and J. Champy, Reengineering the Corporation,
Addison-Wesley Publishing Company, Reading, MA (1994).

2. Available through NIIIP.

3. R.Elmasriand S. B. Navathe, Fundamentals of Database Sys-
temns, Benjamin/Cummings Publishing Company, Redwood
City, CA (1994).

4. F. Leymann and D. Roller, “Business Process Management
with FlowMark,” Proceedings of Compcon 94, San Francisco,
August 28-September 3, 1994, pp. 230-234.

LEYMANN AND ROLLER 121

L

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. F. Leymann and W. Altenhuber, “Managing Business Pro-
cesses as an Information Resource,” IBM Systems Journal 33,
No. 2, 326-348 (1994).

. F.Leymann, “Workflows Make Objects Really Useful,” Pro-
ceedings of the 6th Internal Workshop on High Performance
Transaction Systems, Asilomar, CA (September 17-20, 1995).

. Y. Breitbart, A. Deacon, H. J. Scheck, and G. Weikum,
“Merging Application-Centric and Data-Centric Approaches
to Support Transaction-Oriented Multi-System Workflows,”
SIGMOD RECORDS 22, No. 3 (1993).

. M. Hsu, A. Ghoneimy, and C. Kleissner, “An Execution
Model for an Activity Management System,” Proceedings of
the 4th Internal Workshop on High Performance Transaction
Systems, Asilomar, CA (September 1991).

. F. Leymann, “Supporting Business Transactions via Partial

Backward Recovery in Workflow Management Systems,” Pro-

ceedings of BTW 95, Springer-Verlag, Berlin (1995).

F. Leymann, “Transaction Concepts for Workflow Manage-

ment Systems,” (in German), G. Vossen and J. Becker, Ed-

itors, Geschaeftsprozessmodellierung und Workflow-Manage-
ment, International Thompson Publishing Company, Bonn

(1995).

H. Wichter and A. Reuter, “The Contract Model,” A. K.

Elmagramid, Editor, Database Transaction Models for Ad-

vanced Applications, Morgan Kaufmann Publishers, Inc., San

Mateo, CA (1992).

Workflow Management Coalition, The Workflow Reference

Model, Document Number TC00-1003, Workflow Manage-

ment Coalition Office, Avenue Marcel Thirty 204, 1200 Brus-

sels, Belgium (1994); also see http://www.aiai.ed.ac.uk/WfMC.

F. Leymann, “Towards the STEP Neutral Repository,” Com-

puter Standards & Interfaces 16, 299-319 (1994).

D. Tkatch and R. Puttik, Object Technology in Application

Development, Benjamin/Cummings Publishing Company,

Redwood City, CA (1994).

H. Wichter, “Flexible Business Processing with SAP Busi-

ness Workflow 3.0,” 6th Internal Workshop on High Perfor-

mance Transaction Systems, Asilomar, CA (September 17—

20, 1995).

SAP Business Workflow, available from SAP, Walldorf, Ger-

many (1996).

We collectively refer to parts and objects (especially business

objects) simply as object.

M. Cowlishaw, The REXX Language: A Practical Approach

to Programming, Prentice-Hall, Inc., Englewood Cliffs, NJ

(1990).

LotusScript, available from Lotus Development Corporation,

Cambridge, MA (1996).

Visual Basic Language Reference, available from Microsoft

Corporation, Redmond, WA (1993).

I. Jacobson, M. Ericsson, and A. Jacobson, The Object Ad-

vantage: Business Process Reengineering with Object Technol-

ogy, Addison-Wesley Publishing Company, Reading, MA

(1995).

1. Z. Ben-Shaul and G. E. Kaiser, “A Paradigm for Decen-

tralized Process Modelling and Its Realization—the Oz Envi-

ronment,” Proceedings of the 16th International Conference

on Software Engineering (May 1994), pp. 179-188.

IBM VisualAge C++ for OS/2 Version 3.0: Building Visual-

Age C++ Parts for Fun and Profit, S25H-6968, IBM Corpo-

ration (1995); available through IBM branch offices.

R. Orfali, D. Harkey, and J. Edwards, The Essential Distrib-

uted Objects Survival Guide, John Wiley & Sons, Inc., New

York (1996).

122 LEYMANN AND ROLLER

25. K. Brockschmidt, Inside OLE, Microsoft Press, Redmond,
WA (1995).

26. A. W. Scheer, “Aris Toolset: A Software Product Is Born,”
Information Systems 19, No. 8, 607-624 (1994).

27. D. Roller, “Performance Prediction and Optimization in
Workflow-Based Applications,” Proceedings of the 6th Inter-
nal Workshop on High Performance Transaction Systems, Asi-
lomar, CA (September 17-20, 1995), pp. 66-71.

28. C. Batini, S. Ceri, and S. B. Navathe, Conceptual Database De-
sign: An Entity-Relationship Approach, Benjamin/Cummings
Publishing Company, Redwood City, CA (1992).

29. F. Leymann, “A Meta Model to Support the Modelling and
Execution of Processes,” Proceedings of the 11th European
Meeting on Cybernetics and System Research EMCR92, Vienna,
Austria (April 21-24, 1992), pp. 287-294.

30. D. Roller, “Verification of Workflows in IBM FlowMark,”
(in German), in G. Vossen and J. Becker, Editors,
Geschiiftsprozefimodellierung und Workflow-Management, In-
ternational Thompson Publishing Company, Bonn (1995).

31. D.Roller and F. Leymann, Method and Computer System for
the Creation of Business Management Programs from Process
Models, patent filed at the European Patent Office (Novem-
ber 1995).

32. IBM VisualAge C++ for OS/2 Version 3.0: Visual Builder Us-
er’s Guide, S25H-6960, IBM Corporation (1995); available
through IBM branch offices.

33. F. Leymann and D. Roller, Method of Generating an Imple-
mentation of Reusable Parts from Containers of a Workflow
Process Model, patent filed at the European Patent Office
(May 1996).

34. J. Gray and A. Reuter, Transaction Processing: Concepts and
Technigues, Morgan Kaufmann Publishers, Inc., San Mateo,
CA (1993).

35. A.K. Elmagarmid, Database Transaction Models for Advanced
Applications, Morgan Kaufmann Publishers, Inc., San Ma-
teo, CA (1992).

36. Object Management Group, Object Transaction Services,
OMG Document TC 94.8.4, Object Management Group, Inc.,
Framingham Corporate Center, 492 Old Connecticut Path,
Framingham, MA 01701 (1994); also at http://www.omg.org.

37. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concur-
rency Control and Recovery in Database Systems, Addison-Wes-
ley Publishing Company, Reading, MA (1987).

38. X/Open Guide, Distributed Transaction Processing Reference
Model (Version 2), Open Group (1993).

Accepted for publication September 10, 1996.

Frank Leymann IBM Software Solutions Division, German Soft-
ware Development Laboratory, Hanns Klemm Strasse 45, D-71034
Boeblingen, Germany (electronic mail: frank_ley@vnet.ibm.com).
Dr. Leymann is an IBM Senior Technical Staff Member and a
member of the IBM Academy of Technology. He is the chief ar-
chitect of IBM’s workflow management system, FlowMark. His
responsibilities include FlowMark’s overall architecture and tech-
nological directions. Currently, his special interest is on database
and recovery aspects of workflow management systems, and on
the relation of workflow technology and object technology. He
has published papers in various journals and conference proceed-
ings on subjects that include database management, transaction
management, (meta)modeling, workflow management, and ob-
ject technology. Dr. Leymann has given numerous talks, presen-
tations, and tutorials at conferences and professional society meet-
ings. Since 1990 he has been a university lecturer for “databases.”

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

He holds a master’s degree (Dipl.math.) and a Ph.D. degree
(Dr.rer.nat) in mathematics.

Dieter Roller IBM Software Solutions Division, German Sofiware
Development Laboratory, Hanns Klemm Strasse 45, D-71034 Boe-
blingen, Germany (electronic mail: droller@vnet.ibm.com). Mr.
Roller is a Senior Technical Staff Member in the German Soft-
ware Development Laboratory. He joined IBM in 1974 as a jun-
ior programmer. During his IBM career he held several techni-
cal and management positions. He is currently a member of the
FlowMark architecture team focusing on application develop-
ment. He is also a member of the application development ar-
chitecture council within IBM’s Software Solutions Division. Mr.
Roller has published papers in various conference proceedings
and given talks at conferences and professional society meetings.
He holds an M.S. in physics from the University of Stuttgart.

Reprint Order No. G321-5637.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

LEYMANN AND ROLLER 123

