Field mice: Extracting
hand geometry

from electric field
measurements

Several members of a family of techniques called
Electric Field Sensing are described. Each
sensing technique can be understood as a
measurement of the value of a different
component in an effective circuit diagram that
summarizes all possible current pathways
involving the body to be sensed and the sensing
electrodes. An analytical model of the sensor
response is presented, and then a probabilistic
framework for inferring geometrical information
from field measurements is described. The
inference framework is demonstrated for the cases
of a two-dimensional and a three-dimensional
mouse.

lectric Field Sensing has existed in some form

since a musical instrument known as the there-
min was invented circa 1917 Before that time, only
aquatic animals had used electric fields to sense thei
environments.The theremin combined analog sound
synthesis and an early form of Electric Field Sensing
in a single clever circuit. It is surprising how little

research attention has been focused since then on th

use of electric fields for measuring the human body,
because electric field sensors are safe, fast (millisec
ond time scales), high resolution (millimeters), and

inexpensive (dollars per channel), and measure robus
bulk properties of the body rather than ephemeral sur-

face properties. Nevertheless, with the exception of
the work of Matthewsand Vranish; little effort has
been made to improve upon the early, “capacitive
form of Electric Field Sensing until recently.

”

by J. R. Smith

transducing voluntary human action into electronic
signals had therefore not yet become important.
Today, computers and other electronic devices are
becoming increasingly ubiquitous, and in more and
more application domains the factor that is limiting
the performance of these systems is the physical
human interface rather than raw processing power.
Devices such as the computer mouse, the trackball,
and theem TrackPoint were an improvement over a
simple keyboard, but are inadequate for more com-
plex tasks, such as interacting with three-dimensional
environments or animating complex articulated three-
dimensional models. The DataGléve a much more
expressive input device, but is a step backward from
the point of view of convenience, since it must be
worn and interferes with other noncomputer activity.
A noncontact three-dimensional mouse, in which the
handis the pointing device, is an appealing compro-
fmise, since it allows richer interactions than a conven-
tional mouse, but with lower “transaction costs” than
the DataGlove, since it does not have to be put on and
then removed to start and then stop using it.

?n addition to the initial lack of applications for Elec-

_tric Field Sensing, there was also a second, technical

obstacle to its development. Since the response of the
sensors is a nonlinear function of the input (for exam-
ple, hand position), extracting useful information
from the measurements is a difficult computational
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problem and, until recently, a prohibitively difficult two new forms of Electric Field Sensif#. For rea-
one. The theremin relied on the extraordinary ability sons we will explain later, we refer to the previously
of humans to learn complex mappirig¥he per- known technique as a “loading mode” measurement.
former had to devote years of practice to learn to play The new techniques involve previously unexplored
it, like any traditional musical instrument. A computer “shunt mode” and “transmit mode” measurements.
mouse that required years of practice to master would
clearly be impractical. In shunt mode, which is the version of Electric Field
Sensing on which we will focus in this paper, a volt-
In this paper, | present a noncontact three-dimensionalage oscillating at low frequency is applied to a trans-
mouse as an introduction to Electric Field Sensing mit electrode, and the displacement current induced at
and as an illustration of mathematical techniques thata receive electrode is measured with a current amp.
The received displacement current may be modified
by the body being sensed, which need not be in con-
| tact with either electrode. The basic arrangement is
shown in Figure 1.

Electric Field Sensing refers to a . _ _ _
family of noncontact measure- In the fl@fure,sz .theh ”ﬁ”sg"t eij?Ctrﬁdﬁ. > the
receive electrodé is the hand, anelis the dielectric
r.nems of the hl“.lman bOdy ma‘de constant of the medium in which the hand is moving.
with slowly varying electric fields. R andC, are the internal resistance and capacitance of
the body. Each capacitor represents the total flow of
] displacement current from one of its terminals
directly to the other. The capacitors are variable: their
values depend on the geometry. In particular,C,,
may be used to extract information about a matter dis-andC, depend on the hand position.
tribution from measurements of an electric field. In

the first section of the paper, | introduce Electric Field |_ater in this section, we explain the physics of Elec-
Sensing, situating the recent work of the Physics andtric Field Sensing in terms of an effective circuit dia-
Media Group of the/T Media Laboratory in relation  gram whose components correspond to current trans-
to earlier so-called capacitive-sensing techniques. Inport pathways. Both existing and new Electric Field
the second section, | present a quantitative forward Sensing techniques can be understood as measure-
model of the response of a sensor to a small groundednents of component values in this diagram. But
object. The third section shows how to use this for- pefore explaining the effective circuit model, we
ward model in conjunction with a probabilistic frame-  describe the actual sensing circuitry developed by the
work to solve the inverse problem of inferring the physics and Media Group.

position of an object from sensor values. The final

section describes a field mouse, a prototype noncon-yargware. The Physics and Media Group has devel-
tact three-dimensional input device whose only mov- oped an evaluation board, “The Fisghfor experi-

ing part is the user's body. menting with Electric Field Sensing. A more capable,
almost all-digital successor, “The Smart Fish,” is cur-
Physics of Electric Field Sensing rently under developmefft.The Fish consists of a

transmitter that can be tuned from 20 kilohertz (kHz)

We will use the term Electric Field Sensing to refer to to 100 kHz and four receive channels that use syn-
a family of noncontact measurements of the human chronous detection, a measurement technique de-
body that may be made with slowly varying (approxi- scribed below. The transmitter consists of an oscilla-
mately 50 kHz) electric fields. Previously, several of tor connected to an op-amp. The op-amp defines the
these measurements had been lumped together underoltage on the transmit electrode, as specified by the
the accurate but imprecise rubric of “capacitive sens- oscillator, by putting out as much current as required
ing.” Close attention to the current transport pathways to maintain the correct voltage. The amount of power
reveals that what has been called capacitive sensing ishat the user is exposed to is on the same order of
actually comprised of several distinct mechanisms. magnitude as that received from a pair of stereo head-
Furthermore, two transport pathways have been over-phones, and is several orders of magnitude below the
looked. This has led the Physics and Media Group to amount permitted bycc regulations.
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Each receive C.hannel consists of an op-amp galnFigurel Lumped circuit model of Electric Field Sensing
stage, a multiplier, and another op-amp used as an
integrator; these components are used to implement
synchronous detection. In the version of this tech-
nique used in the Fish, the received signal is multi-
plied by the original transmitted signal, and the
resulting function is integrated over an interval of 60
milliseconds (ms). The effect of these two operations
is to project out all of the Fourier components of the
received signal except for the component that was
transmitted. The multiplier and integrator are comput-
ing (in analog electronics) the inner product of the
transmitted signal functiog and the received signal
functions, with a window function set by the integra-
tion time. The sense in which the multiplier and inte-
grator project out all undesirable Fourier components
is the following: because all distinct pairs of Fourier
components are orthogonal, the contribution to the
inner product s,s> from all the undesirable (i.e., dif-
ferent froms and therefore orthogonal) components
is zero. The input stage is therefore a very sharp filter
that rejects all signals not of the proper frequency and
phase. If desired, phase shifts may also be measure:
by performing a second, quadrature demodulation.
Synchronous detection gives very high immunity to
noise because of this sharp filtering.

GROUND

It is also possible to describe the sensing circuitry in

terms of amplitude modulation. The transmitter may

be thought of as a carrier whose amplitude is modu-

lated by the person’s body. The receive multiplier

mixes the carrier down to direct currenty, and then sensedC, is usually dominated by the capacitance

the final low-pass filter rejects all signals other than through the shoes of the person. The ground terminal

those superimposed on the carrier. may either be a groundplane in close proximity to the
transmitter and receiver, or the ambient room ground.

Lumped circuit model and sensing modesThis

subsection considers a lumped circuit model of a sin- The sensors can be used in a variety of ways,

gle transmit-receive pair with a single target object, explained below, each of which modifies these capaci-

in whose position we are interested. The various tances differently. We measure capacitance by mea-

“modes” in which the Fish circuitry can be used have suring the current arriving at the receiver, as explained

clear interpretations as current paths through the cir-in the earlier subsection on hardware.

cuit diagram shown in Figure 1. For each sensing

mode, we give a brief overview from a user’s point of Transmitter loading modélhis mode is the original

view and then explain the physics of the mode in Electric Field Sensing pathway. When a hand

terms of this diagram. approaches the transmitter, the capacitance between
the two conductors increases. In the theremin this new

Figure 1 depicts the model. There are four “termi- value ofC, changes the oscillation frequency of a par-

nals™: the transmitter, the receiver, the target object allel inductor-capacitor resonant circuit, T tank,

(shown as a hand), and ground. The six distinct inter- which is then mixed with a constant frequency to pro-

conductor capacitances are shown. The small resistorduce an audible beat. In the work of Vrarfishhe

R and capacitoC; represent the internal capacitance value of C, is found by measuring the current lost

and resistance of the body. Capaci@gris the target  through the transmitter. In loading mode, there is no

object’s coupling to ground. If a person is being receiver.
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2 ) i
Figure 2 Two conductivity distributions that by falls off as 1/>. By Gauss's law, the induced charge

construction yield identical loading-mode on the receiver also goes as?15ince the potentials
measurements and distinct shunt-mode on the electrodes are defined by the Fish circuit, we
measurements

know the capacitance to = Q/V, and the received
currently = 2rfCV, as explained in the previous sub-
section. When the hand is very close to the receiver,
C, (typically) has the geometry of a parallel plate
capacitor, and the signal goes as 1/

Shunt modeThe remainder of this paper will be con-
- cerned with shunt mode, which is the most radical

departure from previous practice, since it is a three-
terminal measurement. With shunt mode it is possible
3 4 to extract more geometrical information per electrode
than with other modes, as we will subsequently
explain.

In shunt mode, neither the transmitter nor the receiver
- is in contact with the user’s body. When the user’s
body is out of the field, current flows from transmitter
to receiver through the effective capacita@ge

When part of the user’s body, such as a hand, enters
- - the field, it functions as a third terminal, and the
capacitance matrix changes, often drastically. In par-

ticular, the values o€, C;, andC, shift. Since the
voltage between the transmitter and receiver is held
constant, the change in the component values between

the transmitter and receiver leads to a change in the
- current arriving at the receiver. From the amount of
current that fails to arrive at the receiver, one can infer
something—what, exactly, is the question addressed
in the third section of this paper—about the “amount
of arm” in the vicinity of the sensor.

The Smart Fisti has circuitry to measure the current There is a strong sense in which shunt mode is more
being lost at the transmit electrode. informative than loading mode: with shunt mode one
can maken? measurements using ontyelectrodes,
Transmit mode.In transmit modéli the transmit  whereas loading mode allows ormymeasurements
electrode is put in contact with the user’s body, which with the same number of electrodes. This allows shunt
then becomes a transmitter, either because of directmnode measurements to distinguish conductivity dis-
electrical connection, or capacitive coupling through tributions that yield identical loading mode measure-
the clothes, which is shown as current pathn the ments. Figure 2 shows two distributions that yield
circuit diagram. identical loading-mode measurements and distinct
shunt-mode measurements. We will explain the exam-
When the hand moves, the spacing to the receiverple in detail later, after we have discussed the effective
changes, which changes the valu€ofThis sensing  circuit mode quantitatively.
technique is one that has been overlooked until
recently. Quantitative discussion of lumped circuit modéh
expansion in a (small) time rate parameter of the field
When the spacing from the hand to the receiver is generated by the transmitter shows that 100 kHz is
large, the received signal goes roughly as? 1/ comfortably in the quasistatic regime for measure-
because the hand acts like a point object and the fieldments on room scales (10 m) or smaHeBy using
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the quasistatic approximation, calculating the current
received at a particular electrode is straightforward.

The static charge on a conductds due to the static
termE, in the expansion of the field:

Q = &N [Me,da (8]

whereS§ is the surface df n is the outward normal to
S, @, is the potential of whiclk, is the gradient, and
the permittivitye is a function of position, since the

medium is not homogeneous. This expression relates

j when all the othe¥s are zero. The diagonal “self-
capacitance” term€; represent the charge omwhen

it is held atV, and all the other electrodes are at zero.
Thus the diagonal terms correspond to a loading-
mode measurement, and the off-diagonal terms corre-

With shunt mode it is possible
to extract more geometrical
information per electrode
than with other modes.

the macroscopic charge on a measurement electrode

to the microscopic permittivity fielel that we are ulti-
mately interested in knowing. This microscopic per-
mittivity field determines the value of the collective
property of capacitance, which we will find by mea-
suring a current.

Using the standard definition, the capacitance of con-
ductori due to a conductgris the ratio between the
charge onQ, and the voltage betwegrand a refer-
ence. If we know the capacitance and voltages for a
pair of electrodes, we can find the charge induced on
one by the other. Because of the linearity of all the
equations involved, the total charge iomduced by

all the other conductors is the sum of the separately
induced chargés(but note that the capacitances are
not linear functions of position):

Q= zcijvj )

An element of the matriXC; represents the ratio
betweerQ, andV, assuming all the othafs are zero.

The macroscopic quantity we actually want to mea-

spond to shunt-mode measurements. For pure shunt-
mode measurements (no contribution from transmit
mode) made with identical electrodes, sensor values
are invariant under the operation of interchanging the
transmitter and receiver, so the matrix is symmetrical.
This is not the case in transmit mode, so it may be
possible to separate the contributions from shunt and
transmit mode by splitting the capacitance matrix into
its symmetric and antisymmetric components.

Having introduced the capacitance matrix, we can
now give a clearer explanation of Figure 2, the exam-
ple of a pair of conductivity distributions that can be
distinguished by shunt measurements but not loading
measurements. For clarity we will compare the load-
ing measurements that can be made with a set of
electrodes to the shunt-only (we assume there is no
transmit mode contribution) measurements that can
be made with the same electrodes. Since the shunt
measurements are symmetric with respect to inter-
change of the transmitter and receiver, witlelec-
trodes,n(n—1)/2 distinct shunt measurements may be

sure, because it encodes geometrical information, ismade, whereas justioading-mode measurements are
the capacitance. But it is easier to measure currentyogsiple. It is not untih = 4 thatn(n—1)/2 >n, so

than charge, and we can extract the same informationspynt mode does not have an advantage over loading

from the current. The currehtentering receiver is
given by the time derivative of the charge io; =
dQ/dt.

dv;

i

yC 3)

J

The off-diagonal terms of the capacitance ma@jx
represent the ratio betwe@andV, for i not equal to
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mode in terms of the number of measurements per
electrode when there are fewer than four electrodes.

Figure 2 shows two distributions that, by construction,
give the same loading measurements: the four small
dark objects that comprise the second distribution can
be moved in from infinity until the signals are the
same as those from the first distribution. Thus the
loading-mode measurements on all four electrodes are

the same for the two distributions. 8% C# , where
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Figure 3 The unperturbed electric field impinging on the receiver, left, and the perturbed field, right

R

the superscript indicates the distribution. Even assume-lel plate model of feet in shoes with 1-centimeter (cm)
ing that the shunt measurements around the sides ofhick soles gives a capacitance of 35 nanofarads (nF),
the square formed by the electrodes yield the sameusingC = ¢, A/d, and takingA = 2 feetx 20 cmx 10
values for the two distributions (i.e., @, C% = cmandd=1cm. For 10-cm thick platform shoes, the
Cl, = C% =CL, =C2, =C%, =C2), the remaining Value ofC = 3.5 nF. (We have neglected the dielectric
shunt-mode measurements clearly distinguish the twoconstant of the soles.)

casesCl, # C?, andC}; # C3, In this sense shunt- Variations inC fsets of th |
mode measurements are more informative than load-varations ints can cause otisets of tne sensor values.

ing-mode measurements. The G, of a person wearing 10-cm thick platform
shoes would be one tenth that of a person wearing

Component valueNow that we have discussed the Shoes with 1-cm thick soles. In fact, the valueCof

effective circuit diagram qualitatively, we will present €an vary even more, for example, when the person is

some typical component values. The circuit diagram Parefoot or standing on an actual platform such as a

contains only one (small) resistor because the realStag€¥ But C; can be measured for calibration pur-

impedance of free space is essentially infinite, and theP0ses with a single loading-mode measurement of the

real impedance of the body is nearly zero. Batber current out qf a transmitter that the user touches

gives resistivity figures on the order of @on (ohm-  Pefore operating the equipmefit.

meters), plus or minus an order of magnitude: cere-

brospinal fluid has a resistivity of 0.68m, wet Forward problem

bovine bone has 166@m, blood has 1.52m, and a

human arm has 2.@m longitudinally and 6.7%2m Having introduced the various forms of Electric Field

transversely. Sensing, | now present analytical calculations of sen-
sor readings given hand positions.

Zimmerman measured the capacitance between the

right hand and the left foot of a living human, and General caseThe sensor values can be determined in

found a value of 9.1 picofarads (FFA simple paral- the most general case by solving the Laplace equation
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with an inhomogeneous permittivity tween 0 and 1, ardiAis a vector representing the area
of the cap. If the object has no orientational depen-

2 dence (i.e., if it is spherical) and its size is fixed, then
—0[8Ey = O lelgy) = e07gp+Dellgy =0 (4) the area and attenuation factors may be combined into
a single constant, and the dot product replaced with

and then using Equation 1 to find the charge inducedthe magnltL'Jde.of the field strength, givingO I "
on the receive electrodes by the field that solves Equa-_E(X)t- Having introduced a model for how an object
tion 4. However, for a problem as simple as the three- hanges the received signal that depends on the field
dimensional mouse, this model is too general. We do Stréngth at the location of the object, we now present a
not need to solve Laplace’s equation each time we Model of the unperturbed field itself.
move the mouse. In this section an approximate for- . . . L
ward model of the response of the sensor to a singleM0deling the field: The dipole approximation. We
point-like grounded object will be presented, and its Will approximate the field resulting from a pair of
relevance to more general problems discussed. Asmall, |den_t|cal, rectangular electrodes of dimension
more detailed discussion of the model is presented inP > ¢ and displaced from one anotherébglong thex-
Reference 19: for the purposes of this paper, the main®iS as a dipole with the same spacing. The dipole
point is that the model is consistent with the sensor Moment of a charge distribution is
data, as shown later in Figure 4. There are two parts to
the model: the first part describes how the sensed 3
object interacts with any electric field, and the second P = IX p(x)d™x ()
models the particular electric field induced by our
transmitter and receiver.
If the surface charge density on the electrodes had a
Modeling the interaction: The point absorber.We  uniform value of, then Equation 5 yields, = vabc
want to model the effect of a small, perfect conductor andp, = 0. The expression fqs, makes senseibc
h at a pointx in space, connected to ground through a yle_Ids the total charge on one electrode, so we could
capacitanc&; and a wire whose effect on the field is  Write p, = Qa. Thus the pair of rectangular electrodes
negligible. To create a simple model of the effediof ~displaced from one another layand charged to@
on the displacement current arriving at the receiver, and -Q has the same dipole moment as a pair of point
we will assume that the object affects the field only in charges ® and -Q displaced by the same amount.
a limited way: the field lines (of the unperturbed field)
are attenuated when they intersect the object, but thel0 justify the dipole approximation more rigorously,
path through space traced out by any particular field we could solve for the charge distribution on the elec-
line is unchanged. trode surfaces and then perform a multipole expan-
sion of the charge distribution. The dimensions at
To find the change in received displacement current Which the higher-order terms became significant
using this approximation, we can start with a Gauss- would be the limits of the approximation’s validity.
ian surface surrounding the receiver and add a tube ) _ )
from the perturbation back to the surface, with the Modeling the sensor responseUsing the point
axis of the tube everywhere parallel to the field line absorber model together with the dipole approxima-
from the perturbation to the surface, as shown in Fig- tion of the field geometry, we can model the sensor
ure 3. Since the tube is small, its surface is also paral-feésponse data measured using a small grounded object
lel to the field, so there is no flux through any part of as a hand phantom. Figure 4 shows a plot of the func-
the tube except the end cap, which is adjacent to thetion |, — cE(X)0, wherel, is a constant anB(x) is a
object and perpendicular to the field at that point. The dipole field, given by the gradient of the dipole poten-
change in flux through the Gaussian surface thattial p [i/r% The dipole momer is a constant repre-
results from the perturbation is therefore proportional senting charge multiplied by the vector from the
to the original field strength at the location of the per- center of the transmitter to the center of the receiver.
turbation diminished by an attenuation factor and Measurements were made in a plane parallel to the
multiplied by the area of the perturbation. Gauss’s law dipole axis, using a grounded metal cube (one inch on
then gives the charge induced on the receiver. So thea side) as a hand phantom. The electrodes were one
received currenty O |, — aE(X) - dA, wherel, is the inch square pieces of copper foil spaced eight inches
unperturbed currenty is an attenuation factor be- apart. The theoretical plot is for a plane parallel to the
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Figure 4 Comparison of functional form of dipole model with experimental data
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Figure 5 Comparison of functional form of dipole model with experimental data
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dipole axis, at a distance ofa.@bove the dipole axis, information a measurement provides. The surfaces are

wherea is the dipole spacing. ellipsoidal shells. The central axis of the ellipsoid is
the dipole axis. Figure 6 shows two nested isosignal
Figure 5 shows sensor measurements along-aes, shells for two different sensor readings. The outer

perpendicular to the transmit-receive axis, and the shell has been cut away to reveal the inner one. The
dipole response model. Singeandy are zero, the  dipole generating the field lies along the central axis
dipole model simplifies t&(0,02) = 1/A2. Scale and  of the ellipsoid. A shell represents the ambiguity class
offset parameters for the distance (abscissa) and senef a measurement, that is, the set of points in model
sor value (ordinate) have been fit to the data. The parameter space all of which explain the data as well
function plotted is shown at the top of the graph. Mea- as possible. A point in parameter space that is not part
surements were made along a line originating at the of the shell generated by a measurement corresponds
dipole origin and extending outward, perpendicular to to a setting of model parameters that does not explain
the dipole axis. At very short distances, transmit mode the data as well as the points that are part of the shell.
starts to dominate, and the signal rises again. Measurements made by additional electrodes generate
additional shells in parameter space. The intersection
Isosignal shells.Given this field model, we can plot of all the shells gives the set of points in parameter
surfaces of constant sensor readings. These plots argpace whose members all explain the data as well as
very helpful in shaping one’s intuition about the possible. In the case of a three-dimensional mouse,
behavior of the sensors, and the isosignal surfacesthe parameters are spatial coordinates, so the parame-
themselves are fundamental to understanding whatter space is ordinary three-dimensional space.

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 smitH 595



Figure 6 Nested isosignal shells for two readings returned by a sensor

Later, we will also interpret these ellipsoidal shells as With the isosignal shells in mind, this is a good place
the ambiguity class for a single sensor reading. Weto consider the generality of the point-absorber
will use the term ambiguity class to mean the set of model. Can it be extended? What happens if there are
points in model parameter space, all of which are two point absorbers? Though the sensor values are not
maximally likely given the data readings. Our goal linear, they do depend monotonically on distance, at
will be to use multiple sensor readings to reduce the least in the shunt regime. Furthermore, in the shunt
ambiguity class from a two-dimensional manifold to a regime, adding another point absorber can only
single point, the unique setting of model parameters decrease the received displacement current. This
that explains the data. means that in the general case of an arbitrary number
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of point absorbers, a sensor reading guarantees thaeters. As more data become available (for example, as
the interior of the (single-absorber) shell is free of we consider additional sensors), the volume of the
absorbers, and makes, in the worst case, no guarantedegasible set of model parameters decreases, and the
whatsoever about the exterior of the shell. probability distribution becomes increasingly peaked
around the “true” values of the parameters.
This shows that even though the capacitance is not a
linear function of the absorber configuration, the point As mentioned in the previous section, we will define
absorber still plays a crucial role in understanding the the ambiguity class for a set of measurements and
behavior of the sensors in the presence of more com-model parameters to be the maximally probable sub-
plex geometries. We are presently developing an elec-set of model parameter values, given the measured
tric field imaging method called the Swiss Cheese values. As we remarked in the discussion of the for-
algorithm that is based on this understanding of the
relationship between the single absorber response
function and the response to a general distribution.
..

Groundplane. The dipole approximation discussed
above also turns out to be a good model of the

response of a sensor in the presence of a groundplane In the presence of a
The reasons for this are discussed in Reference 19 groundplane, receivers do not
Here we only explain the consequences of having an affect one another.

analytical model for the behavior of a single transmit-
receive pair in the presence of a groundplane.

|
Since receivers are virtual grounds, the field configu-

ration produced by, say, one transmitter, should not be
changed by replacing a patch of groundplane with a

receiver. In other words, the field produced by a trans- 5, model, for a single shunt-mode measurement
mitter surrounded by groundplane is identical to that 5,4 model iy, m,,m), the ambiguity class is a two-
produced by a transmitter surrounded by a patchwork gimensional manifold, an ellipsoidal isosignal (and
of receivers and ground. This in turn means that, in , g isoprobability) shell. A second measurement
the presence of a groundplane, receivers do not affeclje|4s a one-dimensional ambiguity class (the inter-
one another—they are entllrely mdepe_ndent d'F_m'es-section of the two single-measurement ambiguity
So we now have an approximate analytical solution to classes), and a third measurement yields a zero-
the forward problem of predicting the sensor values gimensional ambiguity class, i.e., a single point or set
given a hand location, and this solution will be very qf jsolated points. Because each additional (nonde-
helpful in solving the inverse problem. generate) measurement reduces the dimensionality of
the ambiguity class by one, each measurement allows
the value of an additional model parameter to be
inferred. Thus, with two measurements, we can infer
In this section we introduce a general probabilistic the values of two position parameters or one position
framework that will allow us to solve inversion prob- and one size parameter; with three measurements, we
lems such as the framework needed to make the threecan infer two positions and one size, or two positions
dimensional §p) mouse. The framework will also and one orientation, or three positions, and so on.
suggest a means of designing maximally informative Each additional measurement allows us to infer the
sensor geometries. This approach, as applied to imagA/a|ue of an additional parameter characterizing the
ing problems, is described by Jayfesjerman et  distribution.

al.?” Gull and Danielf® and Skilling and Gu#?

Constructing the ambiguity class

Ill-posed (underdetermined) problems, in which there
The essence of the approach is to view hand finding,are more unknown parameters than measurements,
for example, as an inference problem. We define acan be made well-posed either by collecting addi-
model whose parameters—in the case of tbe tional data or by specifying additional priori con-
mouse, the three coordinates of the hand—we wish tostraints on the feasible set. This is the Bayesian view
know, and a probability distribution over those param- of regularization. These constraints can be encoded in
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the prior probability distribution that defines the ini- well-posed by, for example, restricting the possible
tial feasible set. hand positions to positive coordinate values. This
restriction selects one of the two peaks in the posterior
If enough measurements have been made to yield adistribution. A useful prior (probability) for one of the
zero-dimensional ambiguity class, then the posterior model parametersy, is p(m,) = c/(1+e#m), defined
probability distribution has isolated peaks at the maxi- in some finite range af,, wherec is a normalizing
mally probable points. In this paper, we always use a constant an is a sharpness parameter. This function
prior (a prior probability distribution) to select a sin- s a way to approximate a step function with a closed
gle one of these peaks; this corresponds to a desigrform expression. A possible advantage of using this
choice about the working region of the mouse. Given function over a hard step function is that numerical
a peaked probability distribution, we can analyze the optimization techniques are able to follow it back into
uncertainty of our estimate of the model parameter the high probability region, since it is smoothly vary-
values by examining the curvature of the distribution ing. The prior for our entire model is the product of
in the vicinity of the maximum. the priors fom,, m,, andm,. So the posterior, with the

) ] o _ prior for just one dimension shown, is
Assuming a Gaussian approximation to the posterior

probability distribution, the inverse curvature of a

peak in a particular direction gives the uncertainty of

the estimate of the parameter value (or linear combi- iy p) g e
nation of parameter values) corresponding to that

direction. The amount of information provided by a
measurement can be quantified by the change in

entropy of the distribution that resulted from the mea- Apart from the prior, which we might have chosen to
surement. The problem of designing sensor arrayspe a constant over some region, the functional form of
may be posed in terms of maximizing the expected p(m D) is identical to that of(Dom). The fact that the
information provided by a measurement. p(mD) distribution and thep(Dcm) distribution,

) ) » _which have completely different meanings, have the
Since the sensors are subject to additive Gaussiansame functional form is the content of Bayes's rule.
noise}® the probability of the data given some setting However, the similarity in functional form is in some
of model parameters is given by sense superficial. Consider the normalization of

p(moD). Rather than performing the analytically trac-
table Gaussian integral over(tractable and Gaussian

(O-fm)’ ¢
20°

(8)

1+eP™

1 (D= f(m))? because when we integrate@®om), m and therefore
p(D|m) = e 552 (6) f(m) was fixed), we must integrate over all values of
J2no m, which means integrating our forward model com-

posed with a Gaussian. The difficulty of performing
) o ) this integration depends on the forntf.of his normal-
wherea is the standard deviatiohD is a data value,  jzation constant, which Bayesians grandly call the
f(m) is the data value predicted by our analytical for- eyigence, is not important for finding the best setting
ward model given a model configuration (hand posi- 4, of the model parameters, since a scaling of the
tion) m.This distribution is normalized: if we  yonendent variable (probability) has no effect on the
integrate over all values of, we get 1. location of maxima. However, it does become impor-
Bv Baves’s theorem tant when mgking any sort (_)f compar.ison between
y bay ' different functiond, or calculating entropies.

Information collected by multiple sensors can easily

_(D—f(m)? be fused: simply take the product of the posterior
p(m| D) = 1 e 2 p(m @) termsp(mcD)) for each separate sensoto find the
J2mo p(D) posterior distribution given all the available data. (We

are assuming that each sensor makes just one mea-
surement; otherwise we would need separate indices
For the case of a two- or three-dimensional mouse, wefor the sensors and the data values.) Thu3 ifow
can choose a priop(m) that renders the inversion denotes the set &f measurements,,
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N (D - f,(m))? vature in a particular direction (in two dimensions)

p(m| D) O |‘| € 552 1 z_ij (9) v = (co9, sinf) is given by Euler’s formulé
i i

K =V Av = chosze + Kzsinze (12)
Notice that, since log is a monotonically increasing
function, if we maximize log(moD), we will get the The inverse oA in the eigenvector basis is the matrix
samem as if we had maximized(mcD). It will be with diagonal elements A/. Thus the inverse Hessian
desirable in practice to work with log probabilities specifies “radii of curvature” of the probability distri-
rather than probabilities for several reasons: we canpution, which can be used as a measure of uncertainty.
save computation time since exponentials disappear,The determinant and trace of the inverse Hessian are
and multiplication and division become addition and independent of coordinates, so we may use these as
subtraction. Furthermore, when we multiply many local measures of the “Gauss uncertainty” and mean
probabilities together, the numbers become very uncertainty even when we are not in the eigenvector
small, so that numerical precision can become a prob-basis. Using Euler's formula above, we could deter-
lem. Using log probabilities alleviates this problem mine the uncertainty in any desired direction. Our
and reduces computation time, since exponentialsinverse Hessian is ordinarily known as the variance-
appear so often in each of our Gaussian probability covariance matrix in statistics, so the geometrical
distributions. Rather than maximizing the log proba- description is certainly not the only way to understand
bility, we could minimize the negative of the log prob- this quantity; however, we find the geometrical
ability: description helpful in the context of this problem.

Entropy: Global uncertainty and maximally infor-
N (Di_fi(m))2 py y y
2

—log p(m| D) = z mative sensor geometriesThe most general global
i 20 measure of uncertainty is the entropy. The change in
entropy of thep(moD) distribution resulting from the
+ log(1+ ePM) ~logc (10) collection of new data measures the change in uncer-
]

tainty about the values of the model parameters,
including uncertainty due to multiple maxima, given a

This quantity has the familiar interpretation of the Set of measurements. The change in total entipy
sum of squared errors between the actual data and thef the posterior distribution resulting from a measure-
data predicted by the model, with an additional error MeNtD,., IS
term derived from the prior.

AH(mM|D,,,) = H(M|D,,;)—H(m|D,) (12)
Error bars: Local uncertainty about the maxi-
mum. Once the basic degeneracies have been broken
either by collecting sufficient data or imposing con-
straints via a prior, so that there is a single maximum
in the log probability, the uncertainty about the best H(m|D,) = —J'p(ml D,) logp(m| D,)dm (13)
setting of model parameters may be represented by
the inverse Hessian matrix! evaluated at the maxi-
mum. To see why, we will consider the Hessian and The expected change in entropy when we collect a
its properties. The Hessiah gives the curvature, new piece of data, that is, the change in entropy aver-
which is a measure of confidence or certainty®n  aged over possible data values, gives a basis for com-
eigenvector basis, in which it is diagonal, the diagonal paring sensor geometries. The expected value of
elements (the eigenvalue&) represent the curvature  H(moD) is
along each of the eigenvector directions (known as the
principal directions). The curvatures along the princi-
pal directions are called the principal curvatures. The | = J’p(r‘n)H(m| D)drn (24)
product of the curvatures, the Gauss curvature, which
serves as a summary of the certainty at a point, is
given by the determinant & The average curvature wherem is an actual object position apd= f (i) ,
is given by 1/2 tracé& = (A, + A,,)/2. Finally, the cur-  with f being the forward model. Thus,

Wwhere
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| = _[D(r”n)H(mI £( fr))din (15) The larger error bar on the less §h_arply defined peak
has been scaled down by 1/3 to fit it on the page. The
usable region of the mouse is the upper right quadrant

and substituting in foH (m| f(fi) , of the region shown; in practice a nonuniform prior
would be used to eliminate the ambiguity by remov-
ing the structure in the lower quadrants.

= Ip(m)[ J‘p(m| f(m)(logp(m) f(m)))dm] dm (16) The “principal uncertainties,” or error bars, are also

shown superimposed on the maxima. The three small-

| is a measure of the quality of a sensor geometry. By €st arrows have been scaled up by a factor of 10 to
ana|ogy with Coding theory, the best measurement make them more visible. The Iargel’ arrow on the less

procedure (for single measurements) reduces thesharply defined peak has only been scaled up by 3 1/3,
so that it fits on the page.

| Application: 3D field mouse

The suitability and quality of a :jr} this s_ecti]f)n wehdescripe anothgr applichationd(_)f the
. iscussion from the previous section: a three-dimen-

sensor layout and p_rlc_Jr can be sional mouse. We choose a sensor geometry and con-
checked by examining the struct its ambiguity class for an example hand
ambiguity class. position. It is possible to check the suitability and
quality of a sensor layout and prior by examining the
= ambiguity class: if there are multiple maxima, the
inversion is ill-posed, and if the peak is not sharp (if
the maximum has high radii of curvature, that is, a
entropy as much as possible. One could thereforehigh value of the determinant of the inverse Hessian

search for optimal sensor geometries by minimizing matrix), the value is very uncertain.
|.31,33,34

Figure 10 shows the layout we selected. The electrode
Example: Two-dimensional field mouseHere we labeled T is the transmitter, and R1-R3 are the receiv-
use this technique to construct the ambiguity class anders. The surrounding square represents a groundplane.
find the most likely model parameters given two sen-
sor readings. We want to infer the position of the hand Earlier we discussed criteria for optimal sensor
in two dimensions from two sensor readings. So the design. Evaluating the entropy integrals, and averag-
model consists simply of two numbers, representing ing over all possible data values, represents a substan-
the position of the object purported to explain the sen- tial practical challenge. Efficient means of doing so
sor readings. The sensor axes are oriented perpendicuwill probably require sophisticated numerical tech-
lar to one another, and the transmit electrode is niques, except in special cases.
shared.

Therefore, we will simply satisfy ourselves that this
Figures 7 and 8 show the posterior distributions layout does not lead to ill-posed inversion problems
p(m, moD,) and p(m,, moD,) for the two sensors, by examining its ambiguity class. Figure 11 shows the
oriented perpendicular to one another. To make theambiguity classes for three single sensor measure-
figure easier to view, the noise has been exaggeratednents made using this layout. The object being mea-
dramatically. If the actual noise levels for the sensors sured is atXy,z) = (0.8, 0.6, 1.05), using units of the
had been used, the features of the surfaces would bemallest transmit-receive spacing. The ambiguity
so minute that the contour plot routine would have shells intersect at just one point in the region of inter-
very little to display. est. The ambiguity class for the joint measurement of

all three sensor values is this single intersection point.
Figure 9 shows the posterior probability distribution Figure 12 shows the posterior distribution for this sen-
p(m, mcoD;, D,) = p(m, maoD,)p(m, moD,) with a sor layout and the object once againxat) = (0.8,
uniform prior. The arrows show the principal compo- 0.6, 1.05). Each image shows a slice through the
nents of the inverse Hessian evaluated at each peakthree-dimensional posterior probability distribution,
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Figure 7 Posterior probability  p(x,y,0.90D;) where D;, the measurement on sensor 1, is givenby D, = f;(0.9, 0.6, 0.9); the
value of zis constrained to be 0.9.

p(x,ydD1)

15

-1t

-1.5 -1 -0.5 0 0.5 1 15
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Figure 8 Posterior probability  p(x,y,0.90D,) where D,, the measurement on sensor 2, is givenby D, = £,(0.9, 0.6, 0.9); the
value of zis constrained to be 0.9.

p(x,yoD2)

15} E

-1

—1.5 -1 -0.5 0 0.5 1 15
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Figure 9 Posterior probability distribution with error bars: p(x,y,0.90D,,D,) for sensors 1 and 2 given measurements
D, = f,(0.9, 0.6, 0.9) and D, = £,(0.9, 0.6, 0.9); the value of zis constrained to be 0.9.

p(x,y(D1, D2)

-1r
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have used a “sticky hand, sticky floor” protocol for
grasping and releasing the cube. The small cube starts
on the floor. When the hand first touches the cube, the
hand closes, and the cube “sticks” to the hand and
moves with it until the hand returns to the floor, at
which point the hand opens and the cube sticks to the
floor, where it remains until the hand returns. More
information on thebd mouse is available on the World

T R1 Wide Webs3s

Figure 10 Sensor geometry for 3D mouse

Conclusion

The main technical obstacle to the use of Electric
Field Sensing, the computational burden associated
with inverting the signals, appears to be tractable. We
are currently working on the problem of inferring
parameters beyond position (for example, size and
orientation) in order to make a “Gloveless Data-
Glove,” and also on the problem of extracting low-res-
olution three-dimensional images from electric field
measurements, a process we call Electric Field
Tomography?

R2 R3

parallel to theX-Y plane. The maximum of the poste- Electric Field Sensing could profoundly affect peo-
rior is at (0.8, 0.6, 1.05), as expected. ple’s mode of interaction with machines, and their
expectations about the properties of objects generally.
In the figure, the variance of the noise assumed on theA common first reaction to a table with embedded
sensors was increased 400 times over the observe@lectric field sensors is amazement, since it appears to
noise to make the figure readable. Thus the figure be magic. However, the interaction soon begins to feel
illustrates the relative uncertainty of the position esti- transparent, natural, and ordinary, rather than magi-
mate, but not the absolute uncertainty. The figure cal—why should you not be able to indicate your

shows that the uncertainty in thedirection is least;  intentions to an object by waving your hands at it?
the most uncertainty is in the joint estimatexoind ~ Hume, in his famous argument on the impossibility of
Z miracles3® says that the scope of the ordinary or natu-

ral can always be enlarged to subsume “magical” phe-

The most important feature of the plot is that there is a "omena. Our experience with Electric Field Sensing
single maximum. It gives an indication of the geome- S€éms mainly to support his position, but we have
try of the uncertainty isosurfaces. We have scaled thefound there is an enjoyable transient period, before
distribution so that the maximum value is 1. The the user's experience has become routinized, in which
white at location (0.8, 0.6, 1.05) corresponds to 1, and Magic is possible.
the black elsewhere corresponds to values near zero.
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Figure 11 The ambiguity classes for three single measurements made using the sensor geometry from the previous
figure
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Figure 12 Posterior distribution over model parameters (
p(x,y,z0D,,D,,D3) for sensors 1, 2, and 3 given measurements
D; = £3(0.8, 0.6, 1.05)

X,y,Z) for sensor geometry from the previous two figures:

D, = £,(0:8, 0.6, 1.05), D, = £,(0.8, 0.6, 1.05), and
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Figure 13 3D mouse
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