
587

©Copyright  1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) theJournal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other infor-
mation-service systems. Permission torepublish any other portion
of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 0018-8670/96/$5.00  1996 IBM SMITH

Several members of a family of techniques called
Electric Field Sensing are described. Each
sensing technique can be understood as a
measurement of the value of a different
component in an effective circuit diagram that
summarizes all possible current pathways
involving the body to be sensed and the sensing
electrodes. An analytical model of the sensor
response is presented, and then a probabilistic
framework for inferring geometrical information
from field measurements is described. The
inference framework is demonstrated for the cases
of a two-dimensional and a three-dimensional
mouse.

lectric Field Sensing has existed in some form
since a musical instrument known as the there-

min was invented circa 1917.1-3 Before that time, only
aquatic animals had used electric fields to sense their
environments.4 The theremin combined analog sound
synthesis and an early form of Electric Field Sensing
in a single clever circuit. It is surprising how little
research attention has been focused since then on the
use of electric fields for measuring the human body,
because electric field sensors are safe, fast (millisec-
ond time scales), high resolution (millimeters), and
inexpensive (dollars per channel), and measure robust
bulk properties of the body rather than ephemeral sur-
face properties. Nevertheless, with the exception of
the work of Matthews5 and Vranish,6,7 little effort has
been made to improve upon the early, “capacitive”
form of Electric Field Sensing until recently.

There are two reasons why Electric Field Sensing has
languished. The first is that at the time of its invention,
very few devices were capable of being controlled
electronically. The physical user interface problem of

transducing voluntary human action into electronic
signals had therefore not yet become important.
Today, computers and other electronic devices are
becoming increasingly ubiquitous, and in more and
more application domains the factor that is limiting
the performance of these systems is the physical
human interface rather than raw processing power.
Devices such as the computer mouse, the trackball,
and theIBM TrackPoint* were an improvement over a
simple keyboard, but are inadequate for more com-
plex tasks, such as interacting with three-dimensional
environments or animating complex articulated three-
dimensional models. The DataGlove8 is a much more
expressive input device, but is a step backward from
the point of view of convenience, since it must be
worn and interferes with other noncomputer activity.
A noncontact three-dimensional mouse, in which the
handis the pointing device, is an appealing compro-
mise, since it allows richer interactions than a conven-
tional mouse, but with lower “transaction costs” than
the DataGlove, since it does not have to be put on and
then removed to start and then stop using it.

In addition to the initial lack of applications for Elec-
tric Field Sensing, there was also a second, technical
obstacle to its development. Since the response of the
sensors is a nonlinear function of the input (for exam-
ple, hand position), extracting useful information
from the measurements is a difficult computational
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problem and, until recently, a prohibitively difficult
one. The theremin relied on the extraordinary ability
of humans to learn complex mappings.1 The per-
former had to devote years of practice to learn to play
it, like any traditional musical instrument. A computer
mouse that required years of practice to master would
clearly be impractical.

In this paper, I present a noncontact three-dimensional
mouse as an introduction to Electric Field Sensing
and as an illustration of mathematical techniques that

may be used to extract information about a matter dis-
tribution from measurements of an electric field. In
the first section of the paper, I introduce Electric Field
Sensing, situating the recent work of the Physics and
Media Group of theMIT Media Laboratory in relation
to earlier so-called capacitive-sensing techniques. In
the second section, I present a quantitative forward
model of the response of a sensor to a small grounded
object. The third section shows how to use this for-
ward model in conjunction with a probabilistic frame-
work to solve the inverse problem of inferring the
position of an object from sensor values. The final
section describes a field mouse, a prototype noncon-
tact three-dimensional input device whose only mov-
ing part is the user’s body.

Physics of Electric Field Sensing

We will use the term Electric Field Sensing to refer to
a family of noncontact measurements of the human
body that may be made with slowly varying (approxi-
mately 50 kHz) electric fields. Previously, several of
these measurements had been lumped together under
the accurate but imprecise rubric of “capacitive sens-
ing.” Close attention to the current transport pathways
reveals that what has been called capacitive sensing is
actually comprised of several distinct mechanisms.
Furthermore, two transport pathways have been over-
looked. This has led the Physics and Media Group to

two new forms of Electric Field Sensing.9-16 For rea-
sons we will explain later, we refer to the previously
known technique as a “loading mode” measurement.
The new techniques involve previously unexplored
“shunt mode” and “transmit mode” measurements.

In shunt mode, which is the version of Electric Field
Sensing on which we will focus in this paper, a volt-
age oscillating at low frequency is applied to a trans-
mit electrode, and the displacement current induced at
a receive electrode is measured with a current amp.
The received displacement current may be modified
by the body being sensed, which need not be in con-
tact with either electrode. The basic arrangement is
shown in Figure 1.

In the figure, T is the transmit electrode,R is the
receive electrode,H is the hand, andε is the dielectric
constant of the medium in which the hand is moving.
Ri andCi are the internal resistance and capacitance of
the body. Each capacitor represents the total flow of
displacement current from one of its terminals
directly to the other. The capacitors are variable: their
values depend on the geometry. In particular,C0, C1,
andC2 depend on the hand position.

Later in this section, we explain the physics of Elec-
tric Field Sensing in terms of an effective circuit dia-
gram whose components correspond to current trans-
port pathways. Both existing and new Electric Field
Sensing techniques can be understood as measure-
ments of component values in this diagram. But
before explaining the effective circuit model, we
describe the actual sensing circuitry developed by the
Physics and Media Group.

Hardware. The Physics and Media Group has devel-
oped an evaluation board, “The Fish,”17 for experi-
menting with Electric Field Sensing. A more capable,
almost all-digital successor, “The Smart Fish,” is cur-
rently under development.18 The Fish consists of a
transmitter that can be tuned from 20 kilohertz (kHz)
to 100 kHz and four receive channels that use syn-
chronous detection, a measurement technique de-
scribed below. The transmitter consists of an oscilla-
tor connected to an op-amp. The op-amp defines the
voltage on the transmit electrode, as specified by the
oscillator, by putting out as much current as required
to maintain the correct voltage. The amount of power
that the user is exposed to is on the same order of
magnitude as that received from a pair of stereo head-
phones, and is several orders of magnitude below the
amount permitted byFCC regulations.

Electric Field Sensing refers to a
family of noncontact measure-
ments of the human body made

with slowly varying electric fields.
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Each receive channel consists of an op-amp gain
stage, a multiplier, and another op-amp used as an
integrator; these components are used to implement
synchronous detection. In the version of this tech-
nique used in the Fish, the received signal is multi-
plied by the original transmitted signal, and the
resulting function is integrated over an interval of 60
milliseconds (ms). The effect of these two operations
is to project out all of the Fourier components of the
received signal except for the component that was
transmitted. The multiplier and integrator are comput-
ing (in analog electronics) the inner product of the
transmitted signal functionst and the received signal
functionsr, with a window function set by the integra-
tion time. The sense in which the multiplier and inte-
grator project out all undesirable Fourier components
is the following: because all distinct pairs of Fourier
components are orthogonal, the contribution to the
inner product <st,sr> from all the undesirable (i.e., dif-
ferent fromst and therefore orthogonal) components
is zero. The input stage is therefore a very sharp filter
that rejects all signals not of the proper frequency and
phase. If desired, phase shifts may also be measured
by performing a second, quadrature demodulation.
Synchronous detection gives very high immunity to
noise because of this sharp filtering.

It is also possible to describe the sensing circuitry in
terms of amplitude modulation. The transmitter may
be thought of as a carrier whose amplitude is modu-
lated by the person’s body. The receive multiplier
mixes the carrier down to direct current (DC), and then
the final low-pass filter rejects all signals other than
those superimposed on the carrier.

Lumped circuit model and sensing modes. This
subsection considers a lumped circuit model of a sin-
gle transmit-receive pair with a single target object,
in whose position we are interested. The various
“modes” in which the Fish circuitry can be used have
clear interpretations as current paths through the cir-
cuit diagram shown in Figure 1. For each sensing
mode, we give a brief overview from a user’s point of
view and then explain the physics of the mode in
terms of this diagram.

Figure 1 depicts the model. There are four “termi-
nals”: the transmitter, the receiver, the target object
(shown as a hand), and ground. The six distinct inter-
conductor capacitances are shown. The small resistor
Ri and capacitorCi represent the internal capacitance
and resistance of the body. CapacitorC5 is the target
object’s coupling to ground. If a person is being

sensed,C5 is usually dominated by the capacitance
through the shoes of the person. The ground terminal
may either be a groundplane in close proximity to the
transmitter and receiver, or the ambient room ground.

The sensors can be used in a variety of ways,
explained below, each of which modifies these capaci-
tances differently. We measure capacitance by mea-
suring the current arriving at the receiver, as explained
in the earlier subsection on hardware.

Transmitter loading mode. This mode is the original
Electric Field Sensing pathway. When a hand
approaches the transmitter, the capacitance between
the two conductors increases. In the theremin this new
value ofC1 changes the oscillation frequency of a par-
allel inductor-capacitor resonant circuit, orLC tank,
which is then mixed with a constant frequency to pro-
duce an audible beat. In the work of Vranish,6,7 the
value of C1 is found by measuring the current lost
through the transmitter. In loading mode, there is no
receiver.

Figure 1 Lumped circuit model of Electric Field Sensing
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The Smart Fish18 has circuitry to measure the current
being lost at the transmit electrode.

Transmit mode. In transmit mode,11,16 the transmit
electrode is put in contact with the user’s body, which
then becomes a transmitter, either because of direct
electrical connection, or capacitive coupling through
the clothes, which is shown as current pathC1 in the
circuit diagram.

When the hand moves, the spacing to the receiver
changes, which changes the value ofC2. This sensing
technique is one that has been overlooked until
recently.

When the spacing from the hand to the receiver is
large, the received signal goes roughly as 1/r 2,
because the hand acts like a point object and the field

falls off as 1/r 2. By Gauss’s law, the induced charge
on the receiver also goes as 1/r 2. Since the potentials
on the electrodes are defined by the Fish circuit, we
know the capacitance to beC = Q/V, and the received
currentIR = 2πfCV, as explained in the previous sub-
section. When the hand is very close to the receiver,
C2 (typically) has the geometry of a parallel plate
capacitor, and the signal goes as 1/r.

Shunt mode. The remainder of this paper will be con-
cerned with shunt mode, which is the most radical
departure from previous practice, since it is a three-
terminal measurement. With shunt mode it is possible
to extract more geometrical information per electrode
than with other modes, as we will subsequently
explain.

In shunt mode, neither the transmitter nor the receiver
is in contact with the user’s body. When the user’s
body is out of the field, current flows from transmitter
to receiver through the effective capacitanceC0.

When part of the user’s body, such as a hand, enters
the field, it functions as a third terminal, and the
capacitance matrix changes, often drastically. In par-
ticular, the values ofC0, C1, andC2 shift. Since the
voltage between the transmitter and receiver is held
constant, the change in the component values between
the transmitter and receiver leads to a change in the
current arriving at the receiver. From the amount of
current that fails to arrive at the receiver, one can infer
something—what, exactly, is the question addressed
in the third section of this paper—about the “amount
of arm” in the vicinity of the sensor.

There is a strong sense in which shunt mode is more
informative than loading mode: with shunt mode one
can maken2 measurements using onlyn electrodes,
whereas loading mode allows onlyn measurements
with the same number of electrodes. This allows shunt
mode measurements to distinguish conductivity dis-
tributions that yield identical loading mode measure-
ments. Figure 2 shows two distributions that yield
identical loading-mode measurements and distinct
shunt-mode measurements. We will explain the exam-
ple in detail later, after we have discussed the effective
circuit mode quantitatively.

Quantitative discussion of lumped circuit model. An
expansion in a (small) time rate parameter of the field
generated by the transmitter shows that 100 kHz is
comfortably in the quasistatic regime for measure-
ments on room scales (10 m) or smaller.19 By using

Figure 2 Two conductivity distributions that by
construction yield identical loading-mode
measurements and distinct shunt-mode
measurements
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the quasistatic approximation, calculating the current
received at a particular electrode is straightforward.

The static charge on a conductori is due to the static
termE0 in the expansion of theE field:

(1)

whereSi is the surface ofi, n is the outward normal to
Si, φ0 is the potential of whichE0 is the gradient, and
the permittivityε is a function of position, since the
medium is not homogeneous. This expression relates
the macroscopic charge on a measurement electrode
to the microscopic permittivity fieldε that we are ulti-
mately interested in knowing. This microscopic per-
mittivity field determines the value of the collective
property of capacitance, which we will find by mea-
suring a current.

Using the standard definition, the capacitance of con-
ductor i due to a conductorj is the ratio between the
charge onQi and the voltage betweenj and a refer-
ence. If we know the capacitance and voltages for a
pair of electrodes, we can find the charge induced on
one by the other. Because of the linearity of all the
equations involved, the total charge oni induced by
all the other conductors is the sum of the separately
induced charges20 (but note that the capacitances are
not linear functions of position):

(2)

An element of the matrixCij  represents the ratio
betweenQi andVj assuming all the otherVs are zero.

The macroscopic quantity we actually want to mea-
sure, because it encodes geometrical information, is
the capacitance. But it is easier to measure current
than charge, and we can extract the same information
from the current. The currentI i entering receiveri is
given by the time derivative of the charge oni: I i =
dQi /dt.

(3)

The off-diagonal terms of the capacitance matrixCij

represent the ratio betweenQi andVj for i not equal to

j when all the otherVs are zero. The diagonal “self-
capacitance” termsCii  represent the charge oni when
it is held atVi and all the other electrodes are at zero.
Thus the diagonal terms correspond to a loading-
mode measurement, and the off-diagonal terms corre-

spond to shunt-mode measurements. For pure shunt-
mode measurements (no contribution from transmit
mode) made with identical electrodes, sensor values
are invariant under the operation of interchanging the
transmitter and receiver, so the matrix is symmetrical.
This is not the case in transmit mode, so it may be
possible to separate the contributions from shunt and
transmit mode by splitting the capacitance matrix into
its symmetric and antisymmetric components.

Having introduced the capacitance matrix, we can
now give a clearer explanation of Figure 2, the exam-
ple of a pair of conductivity distributions that can be
distinguished by shunt measurements but not loading
measurements. For clarity we will compare the load-
ing measurements that can be made with a set ofn
electrodes to the shunt-only (we assume there is no
transmit mode contribution) measurements that can
be made with the same electrodes. Since the shunt
measurements are symmetric with respect to inter-
change of the transmitter and receiver, withn elec-
trodes,n(n–1)/2 distinct shunt measurements may be
made, whereas justn loading-mode measurements are
possible. It is not untiln ≥ 4 that n(n–1)/2 > n, so
shunt mode does not have an advantage over loading
mode in terms of the number of measurements per
electrode when there are fewer than four electrodes.

Figure 2 shows two distributions that, by construction,
give the same loading measurements: the four small
dark objects that comprise the second distribution can
be moved in from infinity until the signals are the
same as those from the first distribution. Thus the
loading-mode measurements on all four electrodes are
the same for the two distributions. So  = , where

Qi εn ∇φ0⋅ ad
Si∫–=

Qi Cij V j
j

∑=

I i
d
dt
----- Cij V j

j
∑ Cij

dVj

dt
---------

j
∑= =

Cii
1 Cii

2

With shunt mode it is possible
to extract more geometrical
information per electrode
than with other modes.
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the superscript indicates the distribution. Even assum-
ing that the shunt measurements around the sides of
the square formed by the electrodes yield the same
values for the two distributions (i.e., that  =  =

 =  =  =  =  = ), the remaining
shunt-mode measurements clearly distinguish the two
cases: ≠  and ≠ . In this sense shunt-
mode measurements are more informative than load-
ing-mode measurements.

Component values. Now that we have discussed the
effective circuit diagram qualitatively, we will present
some typical component values. The circuit diagram
contains only one (small) resistor because the real
impedance of free space is essentially infinite, and the
real impedance of the body is nearly zero. Barber21

gives resistivity figures on the order of 10Ωm (ohm-
meters), plus or minus an order of magnitude: cere-
brospinal fluid has a resistivity of 0.65Ωm, wet
bovine bone has 166Ωm, blood has 1.5Ωm, and a
human arm has 2.4Ωm longitudinally and 6.75Ωm
transversely.

Zimmerman measured the capacitance between the
right hand and the left foot of a living human, and
found a value of 9.1 picofarads (pF).22 A simple paral-

lel plate model of feet in shoes with 1-centimeter (cm)
thick soles gives a capacitance of 35 nanofarads (nF),
usingC = ε0 A/d, and takingA = 2 feet× 20 cm× 10
cm andd = 1 cm. For 10-cm thick platform shoes, the
value ofC = 3.5 nF. (We have neglected the dielectric
constant of the soles.)

Variations inC5 can cause offsets of the sensor values.
The C5 of a person wearing 10-cm thick platform
shoes would be one tenth that of a person wearing
shoes with 1-cm thick soles. In fact, the value ofC5

can vary even more, for example, when the person is
barefoot or standing on an actual platform such as a
stage.23 But C5 can be measured for calibration pur-
poses with a single loading-mode measurement of the
current out of a transmitter that the user touches
before operating the equipment.24

Forward problem

Having introduced the various forms of Electric Field
Sensing, I now present analytical calculations of sen-
sor readings given hand positions.

General case. The sensor values can be determined in
the most general case by solving the Laplace equation

C12
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Figure 3 The unperturbed electric field impinging on the receiver, left, and the perturbed field, right

C5



IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 SMITH 593

with an inhomogeneous permittivityε

(4)

and then using Equation 1 to find the charge induced
on the receive electrodes by the field that solves Equa-
tion 4. However, for a problem as simple as the three-
dimensional mouse, this model is too general. We do
not need to solve Laplace’s equation each time we
move the mouse. In this section an approximate for-
ward model of the response of the sensor to a single
point-like grounded object will be presented, and its
relevance to more general problems discussed. A
more detailed discussion of the model is presented in
Reference 19; for the purposes of this paper, the main
point is that the model is consistent with the sensor
data, as shown later in Figure 4. There are two parts to
the model: the first part describes how the sensed
object interacts with any electric field, and the second
models the particular electric field induced by our
transmitter and receiver.

Modeling the interaction: The point absorber. We
want to model the effect of a small, perfect conductor
h at a pointx in space, connected to ground through a
capacitanceC5 and a wire whose effect on the field is
negligible. To create a simple model of the effect ofh
on the displacement current arriving at the receiver,
we will assume that the object affects the field only in
a limited way: the field lines (of the unperturbed field)
are attenuated when they intersect the object, but the
path through space traced out by any particular field
line is unchanged.

To find the change in received displacement current
using this approximation, we can start with a Gauss-
ian surface surrounding the receiver and add a tube
from the perturbation back to the surface, with the
axis of the tube everywhere parallel to the field line
from the perturbation to the surface, as shown in Fig-
ure 3. Since the tube is small, its surface is also paral-
lel to the field, so there is no flux through any part of
the tube except the end cap, which is adjacent to the
object and perpendicular to the field at that point. The
change in flux through the Gaussian surface that
results from the perturbation is therefore proportional
to the original field strength at the location of the per-
turbation diminished by an attenuation factor and
multiplied by the area of the perturbation. Gauss’s law
then gives the charge induced on the receiver. So the
received currentIR ∝ I0 – αE(x) · dA, whereI0 is the
unperturbed current,α is an attenuation factor be-

tween 0 and 1, anddA is a vector representing the area
of the cap. If the object has no orientational depen-
dence (i.e., if it is spherical) and its size is fixed, then
the area and attenuation factors may be combined into
a single constant, and the dot product replaced with
the magnitude of the field strength, givingIR ∝ I0 –
E(x). Having introduced a model for how an object
changes the received signal that depends on the field
strength at the location of the object, we now present a
model of the unperturbed field itself.

Modeling the field: The dipole approximation. We
will approximate the field resulting from a pair of
small, identical, rectangular electrodes of dimension
b × c and displaced from one another bya along thex-
axis as a dipole with the same spacing. The dipole
moment of a charge distribution is

(5)

If the surface charge density on the electrodes had a
uniform value ofν,25 then Equation 5 yieldspx = νabc
and py = 0. The expression forpx makes sense:νbc
yields the total charge on one electrode, so we could
write px = Qa. Thus the pair of rectangular electrodes
displaced from one another bya and charged to +Q
and –Q has the same dipole moment as a pair of point
charges +Q and –Q displaced by the same amount.

To justify the dipole approximation more rigorously,
we could solve for the charge distribution on the elec-
trode surfaces and then perform a multipole expan-
sion of the charge distribution. The dimensions at
which the higher-order terms became significant
would be the limits of the approximation’s validity.

Modeling the sensor response. Using the point
absorber model together with the dipole approxima-
tion of the field geometry, we can model the sensor
response data measured using a small grounded object
as a hand phantom. Figure 4 shows a plot of the func-
tion I0 – E(x), whereI0 is a constant andE(x) is a
dipole field, given by the gradient of the dipole poten-
tial . The dipole momentp is a constant repre-
senting charge multiplied by the vector from the
center of the transmitter to the center of the receiver.
Measurements were made in a plane parallel to the
dipole axis, using a grounded metal cube (one inch on
a side) as a hand phantom. The electrodes were one
inch square pieces of copper foil spaced eight inches
apart. The theoretical plot is for a plane parallel to the

∇ εE0⋅– ∇ ε∇φ0( )⋅ ε∇2φ0 ∇ε ∇φ0⋅+ 0= = =

p x'ρ x'( )d3
x'∫=

p r̂ /r2⋅
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Figure 4 Comparison of functional form of dipole model with experimental data
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dipole axis, at a distance of .9a above the dipole axis,
wherea is the dipole spacing.

Figure 5 shows sensor measurements along thez-axis,
perpendicular to the transmit-receive axis, and the
dipole response model. Sincex and y are zero, the
dipole model simplifies toE(0,0,z) = 1/z3. Scale and
offset parameters for the distance (abscissa) and sen-
sor value (ordinate) have been fit to the data. The
function plotted is shown at the top of the graph. Mea-
surements were made along a line originating at the
dipole origin and extending outward, perpendicular to
the dipole axis. At very short distances, transmit mode
starts to dominate, and the signal rises again.

Isosignal shells. Given this field model, we can plot
surfaces of constant sensor readings. These plots are
very helpful in shaping one’s intuition about the
behavior of the sensors, and the isosignal surfaces
themselves are fundamental to understanding what

information a measurement provides. The surfaces are
ellipsoidal shells. The central axis of the ellipsoid is
the dipole axis. Figure 6 shows two nested isosignal
shells for two different sensor readings. The outer
shell has been cut away to reveal the inner one. The
dipole generating the field lies along the central axis
of the ellipsoid. A shell represents the ambiguity class
of a measurement, that is, the set of points in model
parameter space all of which explain the data as well
as possible. A point in parameter space that is not part
of the shell generated by a measurement corresponds
to a setting of model parameters that does not explain
the data as well as the points that are part of the shell.
Measurements made by additional electrodes generate
additional shells in parameter space. The intersection
of all the shells gives the set of points in parameter
space whose members all explain the data as well as
possible. In the case of a three-dimensional mouse,
the parameters are spatial coordinates, so the parame-
ter space is ordinary three-dimensional space.

Figure 5 Comparison of functional form of dipole model with experimental data
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Later, we will also interpret these ellipsoidal shells as
the ambiguity class for a single sensor reading. We
will use the term ambiguity class to mean the set of
points in model parameter space, all of which are
maximally likely given the data readings. Our goal
will be to use multiple sensor readings to reduce the
ambiguity class from a two-dimensional manifold to a
single point, the unique setting of model parameters
that explains the data.

With the isosignal shells in mind, this is a good place
to consider the generality of the point-absorber
model. Can it be extended? What happens if there are
two point absorbers? Though the sensor values are not
linear, they do depend monotonically on distance, at
least in the shunt regime. Furthermore, in the shunt
regime, adding another point absorber can only
decrease the received displacement current. This
means that in the general case of an arbitrary number

Figure 6 Nested isosignal shells for two readings returned by a sensor
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of point absorbers, a sensor reading guarantees that
the interior of the (single-absorber) shell is free of
absorbers, and makes, in the worst case, no guarantees
whatsoever about the exterior of the shell.

This shows that even though the capacitance is not a
linear function of the absorber configuration, the point
absorber still plays a crucial role in understanding the
behavior of the sensors in the presence of more com-
plex geometries. We are presently developing an elec-
tric field imaging method called the Swiss Cheese
algorithm that is based on this understanding of the
relationship between the single absorber response
function and the response to a general distribution.

Groundplane. The dipole approximation discussed
above also turns out to be a good model of the
response of a sensor in the presence of a groundplane.
The reasons for this are discussed in Reference 19.
Here we only explain the consequences of having an
analytical model for the behavior of a single transmit-
receive pair in the presence of a groundplane.

Since receivers are virtual grounds, the field configu-
ration produced by, say, one transmitter, should not be
changed by replacing a patch of groundplane with a
receiver. In other words, the field produced by a trans-
mitter surrounded by groundplane is identical to that
produced by a transmitter surrounded by a patchwork
of receivers and ground. This in turn means that, in
the presence of a groundplane, receivers do not affect
one another—they are entirely independent dipoles.
So we now have an approximate analytical solution to
the forward problem of predicting the sensor values
given a hand location, and this solution will be very
helpful in solving the inverse problem.

Constructing the ambiguity class

In this section we introduce a general probabilistic
framework that will allow us to solve inversion prob-
lems such as the framework needed to make the three-
dimensional (3D) mouse. The framework will also
suggest a means of designing maximally informative
sensor geometries. This approach, as applied to imag-
ing problems, is described by Jaynes,26 Herman et
al.,27 Gull and Daniell,28 and Skilling and Gull.29

The essence of the approach is to view hand finding,
for example, as an inference problem. We define a
model whose parameters—in the case of the3D
mouse, the three coordinates of the hand—we wish to
know, and a probability distribution over those param-

eters. As more data become available (for example, as
we consider additional sensors), the volume of the
feasible set of model parameters decreases, and the
probability distribution becomes increasingly peaked
around the “true” values of the parameters.

As mentioned in the previous section, we will define
the ambiguity class for a set of measurements and
model parameters to be the maximally probable sub-
set of model parameter values, given the measured
values. As we remarked in the discussion of the for-

ward model, for a single shunt-mode measurement
and model (mx,my,mz), the ambiguity class is a two-
dimensional manifold, an ellipsoidal isosignal (and
thus isoprobability) shell. A second measurement
yields a one-dimensional ambiguity class (the inter-
section of the two single-measurement ambiguity
classes), and a third measurement yields a zero-
dimensional ambiguity class, i.e., a single point or set
of isolated points. Because each additional (nonde-
generate) measurement reduces the dimensionality of
the ambiguity class by one, each measurement allows
the value of an additional model parameter to be
inferred. Thus, with two measurements, we can infer
the values of two position parameters or one position
and one size parameter; with three measurements, we
can infer two positions and one size, or two positions
and one orientation, or three positions, and so on.
Each additional measurement allows us to infer the
value of an additional parameter characterizing the
distribution.

Ill-posed (underdetermined) problems, in which there
are more unknown parameters than measurements,
can be made well-posed either by collecting addi-
tional data or by specifying additionala priori con-
straints on the feasible set. This is the Bayesian view
of regularization. These constraints can be encoded in

In the presence of a
groundplane, receivers do not

affect one another.
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the prior probability distribution that defines the ini-
tial feasible set.

If enough measurements have been made to yield a
zero-dimensional ambiguity class, then the posterior
probability distribution has isolated peaks at the maxi-
mally probable points. In this paper, we always use a
prior (a prior probability distribution) to select a sin-
gle one of these peaks; this corresponds to a design
choice about the working region of the mouse. Given
a peaked probability distribution, we can analyze the
uncertainty of our estimate of the model parameter
values by examining the curvature of the distribution
in the vicinity of the maximum.

Assuming a Gaussian approximation to the posterior
probability distribution, the inverse curvature of a
peak in a particular direction gives the uncertainty of
the estimate of the parameter value (or linear combi-
nation of parameter values) corresponding to that
direction. The amount of information provided by a
measurement can be quantified by the change in
entropy of the distribution that resulted from the mea-
surement. The problem of designing sensor arrays
may be posed in terms of maximizing the expected
information provided by a measurement.

Since the sensors are subject to additive Gaussian
noise,19 the probability of the data given some setting
of model parameters is given by

(6)

whereσ is the standard deviation,30 D is a data value,
f(m) is the data value predicted by our analytical for-
ward model given a model configuration (hand posi-
tion) m. This distribution is normalized: if we
integrate over all values ofD, we get 1.

By Bayes’s theorem,

(7)

For the case of a two- or three-dimensional mouse, we
can choose a priorp(m) that renders the inversion

well-posed by, for example, restricting the possible
hand positions to positive coordinate values. This
restriction selects one of the two peaks in the posterior
distribution. A useful prior (probability) for one of the
model parametersmx is p(mx) = c/(1+ ), defined
in some finite range ofmx, wherec is a normalizing
constant andβ is a sharpness parameter. This function
is a way to approximate a step function with a closed
form expression. A possible advantage of using this
function over a hard step function is that numerical
optimization techniques are able to follow it back into
the high probability region, since it is smoothly vary-
ing. The prior for our entire model is the product of
the priors formx, my, andmz. So the posterior, with the
prior for just one dimension shown, is

(8)

Apart from the prior, which we might have chosen to
be a constant over some region, the functional form of
p(mD) is identical to that ofp(Dm). The fact that the
p(mD) distribution and thep(Dm) distribution,
which have completely different meanings, have the
same functional form is the content of Bayes’s rule.
However, the similarity in functional form is in some
sense superficial. Consider the normalization of
p(mD). Rather than performing the analytically trac-
table Gaussian integral overD (tractable and Gaussian
because when we integratedp(Dm), m and therefore
f(m) was fixed), we must integrate over all values of
m, which means integrating our forward model com-
posed with a Gaussian. The difficulty of performing
this integration depends on the form off. This normal-
ization constant, which Bayesians grandly call the
evidence, is not important for finding the best setting

 of the model parameters, since a scaling of the
dependent variable (probability) has no effect on the
location of maxima. However, it does become impor-
tant when making any sort of comparison between
different functionsf, or calculating entropies.31

Information collected by multiple sensors can easily
be fused: simply take the product of the posterior
termsp(mDi) for each separate sensori to find the
posterior distribution given all the available data. (We
are assuming that each sensor makes just one mea-
surement; otherwise we would need separate indices
for the sensors and the data values.) Thus ifD now
denotes the set ofN measurementsDi,

p D m( ) 1

2πσ
--------------e

D f m( )–( )2

2σ2
------------------------------–=

p m D( ) 1

2πσ
--------------e

D f m( )–( )2

2σ2
------------------------------–

p m( )
p D( )

------------------------------------------=

e βmx–

p m D( ) e
D f m( )–( )2

2σ2
------------------------------– c

1 e βmx–+
----------------------∝

m̂
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(9)

Notice that, since log is a monotonically increasing
function, if we maximize logp(mD), we will get the
samem as if we had maximizedp(mD). It will be
desirable in practice to work with log probabilities
rather than probabilities for several reasons: we can
save computation time since exponentials disappear,
and multiplication and division become addition and
subtraction. Furthermore, when we multiply many
probabilities together, the numbers become very
small, so that numerical precision can become a prob-
lem. Using log probabilities alleviates this problem
and reduces computation time, since exponentials
appear so often in each of our Gaussian probability
distributions. Rather than maximizing the log proba-
bility, we could minimize the negative of the log prob-
ability:

(10)

This quantity has the familiar interpretation of the
sum of squared errors between the actual data and the
data predicted by the model, with an additional error
term derived from the prior.

Error bars: Local uncertainty about the maxi-
mum. Once the basic degeneracies have been broken,
either by collecting sufficient data or imposing con-
straints via a prior, so that there is a single maximum
in the log probability, the uncertainty about the best
setting of model parameters may be represented by
the inverse Hessian matrixA–1 evaluated at the maxi-
mum. To see why, we will consider the Hessian and
its properties. The HessianA gives the curvature,
which is a measure of confidence or certainty. InA’s
eigenvector basis, in which it is diagonal, the diagonal
elements (the eigenvalues)Aii  represent the curvature
along each of the eigenvector directions (known as the
principal directions). The curvatures along the princi-
pal directions are called the principal curvatures. The
product of the curvatures, the Gauss curvature, which
serves as a summary of the certainty at a point, is
given by the determinant ofA. The average curvature
is given by 1/2 traceA = (A11 + A22)/2. Finally, the cur-

vature in a particular direction (in two dimensions)
v = (cosθ, sinθ) is given by Euler’s formula:32

(11)

The inverse ofA in the eigenvector basis is the matrix
with diagonal elements 1/Aii . Thus the inverse Hessian
specifies “radii of curvature” of the probability distri-
bution, which can be used as a measure of uncertainty.
The determinant and trace of the inverse Hessian are
independent of coordinates, so we may use these as
local measures of the “Gauss uncertainty” and mean
uncertainty even when we are not in the eigenvector
basis. Using Euler’s formula above, we could deter-
mine the uncertainty in any desired direction. Our
inverse Hessian is ordinarily known as the variance-
covariance matrix in statistics, so the geometrical
description is certainly not the only way to understand
this quantity; however, we find the geometrical
description helpful in the context of this problem.

Entropy: Global uncertainty and maximally infor-
mative sensor geometries. The most general global
measure of uncertainty is the entropy. The change in
entropy of thep(mD) distribution resulting from the
collection of new data measures the change in uncer-
tainty about the values of the model parameters,
including uncertainty due to multiple maxima, given a
set of measurements. The change in total entropy∆H
of the posterior distribution resulting from a measure-
mentDn+1 is

(12)

where

(13)

The expected change in entropy when we collect a
new piece of data, that is, the change in entropy aver-
aged over possible data values, gives a basis for com-
paring sensor geometries. The expected value of
H(mD) is

(14)

where  is an actual object position and ,
with f being the forward model. Thus,
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(15)

and substituting in for ,

(16)

I is a measure of the quality of a sensor geometry. By
analogy with coding theory, the best measurement
procedure (for single measurements) reduces the

entropy as much as possible. One could therefore
search for optimal sensor geometries by minimizing
I.31,33,34

Example: Two-dimensional field mouse. Here we
use this technique to construct the ambiguity class and
find the most likely model parameters given two sen-
sor readings. We want to infer the position of the hand
in two dimensions from two sensor readings. So the
model consists simply of two numbers, representing
the position of the object purported to explain the sen-
sor readings. The sensor axes are oriented perpendicu-
lar to one another, and the transmit electrode is
shared.

Figures 7 and 8 show the posterior distributions
p(mx, myD1) and p(mx, myD2) for the two sensors,
oriented perpendicular to one another. To make the
figure easier to view, the noise has been exaggerated
dramatically. If the actual noise levels for the sensors
had been used, the features of the surfaces would be
so minute that the contour plot routine would have
very little to display.

Figure 9 shows the posterior probability distribution
p(mx, myD1, D2) = p(mx, myD1)p(mx, myD2) with a
uniform prior. The arrows show the principal compo-
nents of the inverse Hessian evaluated at each peak.

The larger error bar on the less sharply defined peak
has been scaled down by 1/3 to fit it on the page. The
usable region of the mouse is the upper right quadrant
of the region shown; in practice a nonuniform prior
would be used to eliminate the ambiguity by remov-
ing the structure in the lower quadrants.

The “principal uncertainties,” or error bars, are also
shown superimposed on the maxima. The three small-
est arrows have been scaled up by a factor of 10 to
make them more visible. The larger arrow on the less
sharply defined peak has only been scaled up by 3 1/3,
so that it fits on the page.

Application: 3D field mouse

In this section we describe another application of the
discussion from the previous section: a three-dimen-
sional mouse. We choose a sensor geometry and con-
struct its ambiguity class for an example hand
position. It is possible to check the suitability and
quality of a sensor layout and prior by examining the
ambiguity class: if there are multiple maxima, the
inversion is ill-posed, and if the peak is not sharp (if
the maximum has high radii of curvature, that is, a
high value of the determinant of the inverse Hessian
matrix), the value is very uncertain.

Figure 10 shows the layout we selected. The electrode
labeled T is the transmitter, and R1–R3 are the receiv-
ers. The surrounding square represents a groundplane.

Earlier we discussed criteria for optimal sensor
design. Evaluating the entropy integrals, and averag-
ing over all possible data values, represents a substan-
tial practical challenge. Efficient means of doing so
will probably require sophisticated numerical tech-
niques, except in special cases.

Therefore, we will simply satisfy ourselves that this
layout does not lead to ill-posed inversion problems
by examining its ambiguity class. Figure 11 shows the
ambiguity classes for three single sensor measure-
ments made using this layout. The object being mea-
sured is at (x,y,z) = (0.8, 0.6, 1.05), using units of the
smallest transmit-receive spacing. The ambiguity
shells intersect at just one point in the region of inter-
est. The ambiguity class for the joint measurement of
all three sensor values is this single intersection point.
Figure 12 shows the posterior distribution for this sen-
sor layout and the object once again at (x,y,z) = (0.8,
0.6, 1.05). Each image shows a slice through the
three-dimensional posterior probability distribution,

I p m̂( )H m f m̂( )( ) m̂d∫=

H m f m̂( )( )

I p m̂( )[ p m f m̂( )( ) p m f m̂( )( )log( ) md∫– ] m̂d∫=

The suitability and quality of a
sensor layout and prior can be

checked by examining the
ambiguity class.
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Figure 7 Posterior probability p (x,y,0.9D1) where D1, the measurement on sensor 1, is given by D1 = f1(0.9, 0.6, 0.9); the
value of z is constrained to be 0.9.
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Figure 8 Posterior probability p (x,y,0.9D2) where D2, the measurement on sensor 2, is given by D2 = f2(0.9, 0.6, 0.9); the
value of z is constrained to be 0.9.
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Figure 9 Posterior probability distribution with error bars: p (x,y,0.9D1,D2) for sensors 1 and 2 given measurements
D1 = f1(0.9, 0.6, 0.9) and D2 = f2(0.9, 0.6, 0.9); the value of z is constrained to be 0.9.
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parallel to theX-Y plane. The maximum of the poste-
rior is at (0.8, 0.6, 1.05), as expected.

In the figure, the variance of the noise assumed on the
sensors was increased 400 times over the observed
noise to make the figure readable. Thus the figure
illustrates the relative uncertainty of the position esti-
mate, but not the absolute uncertainty. The figure
shows that the uncertainty in theY direction is least;
the most uncertainty is in the joint estimate ofX and
Z.

The most important feature of the plot is that there is a
single maximum. It gives an indication of the geome-
try of the uncertainty isosurfaces. We have scaled the
distribution so that the maximum value is 1. The
white at location (0.8, 0.6, 1.05) corresponds to 1, and
the black elsewhere corresponds to values near zero.

To invert the signals we maximize the log probability,
which corresponds to minimizing a prior term plus the
sum of squared error between the measured value and
that predicted by the current estimate of the hand
position.

Figure 13 shows a screen shot of the mouse. The
user’s hand motion is mapped onto the motion of the
hand icon. The hand can pick up the small cube
shown, move it around the space, and set it back on
the floor. Because we cannot yet extract hand size, we

have used a “sticky hand, sticky floor” protocol for
grasping and releasing the cube. The small cube starts
on the floor. When the hand first touches the cube, the
hand closes, and the cube “sticks” to the hand and
moves with it until the hand returns to the floor, at
which point the hand opens and the cube sticks to the
floor, where it remains until the hand returns. More
information on the3D mouse is available on the World
Wide Web.35

Conclusion

The main technical obstacle to the use of Electric
Field Sensing, the computational burden associated
with inverting the signals, appears to be tractable. We
are currently working on the problem of inferring
parameters beyond position (for example, size and
orientation) in order to make a “Gloveless Data-
Glove,” and also on the problem of extracting low-res-
olution three-dimensional images from electric field
measurements, a process we call Electric Field
Tomography.19

Electric Field Sensing could profoundly affect peo-
ple’s mode of interaction with machines, and their
expectations about the properties of objects generally.
A common first reaction to a table with embedded
electric field sensors is amazement, since it appears to
be magic. However, the interaction soon begins to feel
transparent, natural, and ordinary, rather than magi-
cal—why should you not be able to indicate your
intentions to an object by waving your hands at it?
Hume, in his famous argument on the impossibility of
miracles,36 says that the scope of the ordinary or natu-
ral can always be enlarged to subsume “magical” phe-
nomena. Our experience with Electric Field Sensing
seems mainly to support his position, but we have
found there is an enjoyable transient period, before
the user’s experience has become routinized, in which
magic is possible.
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Figure 11 The ambiguity classes for three single measurements made using the sensor geometry from the previous
figure
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Figure 12 Posterior distribution over model parameters ( x,y,z) for sensor geometry from the previous two figures:
p (x,y,zD1,D2,D3) for sensors 1, 2, and 3 given measurements D1 = f1(0.8, 0.6, 1.05), D2 = f2(0.8, 0.6, 1.05), and
D3 = f3(0.8, 0.6, 1.05)
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Figure 13 3D mouse
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