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For want of a bit the
user was lost: Cheap
user modeling

The more a computer knows about a user, the
better it can serve that user. But there are
different styles, and even philosophies, of how
to teach our computers about us—about our
habits, interests, patterns, and preferences.
“Cheap” user modeling, the subject of this
essay, simply means ascertaining a few bits of
information about each user, processing that
information quickly, and providing the results to
applications, all without intruding upon the
user’s consciousness. In short, there are
techniques for personalization that can—and
should—be built into today’s systems. Like most
Journal papers, this is a description of an
existing system: DOPPELGANGER. Butitis also
an exhortation for readers to incorporate the
described techniques and philosophy into their
own systems.

ser modeling is nothing more than a fancy term

for automated personalization. Humans model
each other all the time. | am modeliygu as |
write; my topics, presentation, and language are all
aimed at a hypothetical, average reader of this jour-
nal. If | have guessed well, you will enjoy this essay.
If not, you will skip to the next one. That is what
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user modeling systems do—they make guesses, and
hopefully educated ones, about their users.

Of course, not all readers are the same, and what
entices one reader may alienate another. Ideally, this
essay would itself be adaptive, able to gauge the
interests of individual readers and transform itself
accordingly. But since that is not yet possible, | will
employ some “cheap” user modeling. | will make a
one-bit distinction between philosophy and engi-
neering in this essay: after this paragraph, the left
column contains the “big picture,” and the right col-
umn contains details. (The separation is suspended
for the section “A user modeling toolbox,” then
resumes until the “Reprise.”) Read either column, or
both, depending on your interests.
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Figure 1 The DOPPELGANGER user modeling system gathers data about users from sensors, makes inferences on
those data, and makes the results available to applications.
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User modeling: Philosophy

You have experienced user modeling, even if you
did not know it at the time. Any application that
behaves differently for different users employs a
user model. The models themselves can be big or
small, complex or simple, rich or sparse. They often
have different names: personality profiles, psycho-
graphic profiles, or consumer databases. They are
all collections of information about an individual.

Any application with “novice” and “expert” modes
possesses a rudimentary user model—a one-bit
classification. Some applications let you specify
many customizations: default printers, background
images, the placement of windows, etc. These set-
tings, taken together, constitute a slightly richer user
model.

Such collections of information are, at best, embry-
onic precursors of an ideal user model, which would
possess an intimate and thorough knowledge of its
user (Table 1). In short, the user model (and any
sensors, servers, and engines maintaining it) should
possess all the knowledge of a lifelong friend—it
should be able to recognize the user, know why the
user did something, and guess what he or she wants
to do next.

So at one end of the user modeling spectrum, we
have a single bit dividing the entire human race into
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LEARNING TOOLBOX

APPLICATIONS

User modeling: Engineering

A user model can be as simple as a single bit, main-
tained by a single application such as a word pro-
cessor or a World Wide Web browser. For instance,
that bit might be 1 if the user has used the applica-
tion previously, and 0 otherwise.

In the DOPPELGANGERUSer modeling systefeach
user model is a collection of files, each containing
information about some domain of the user’s behav-
ior. There is one file for “vital statistics” (e.g., name,
occupation, electronic or e-mail address), one for
news preferences, another for locomotion informa-
tion, and so on. A typical user model is approxi-
mately one megabyte in size.

Large user models such BSPPELGANGER'sneed to

be stored in a representation palatable to all applica-
tions that might potentially request information
from the user modeling system—in short, as a data-
base. Users might cringe at the notion that their per-
sonal information constitutes a database, but it is
entirely accurate: there is a lot of information to be
stored, and it often needs to be retrieved quickly,
typically when an application is launched. Efficient
storage and retrieval are essentimPPELGANGER
stores its models as hash tables.

This enormous quantity of data needs to be central-
ized if our applications are to make informed deci-
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Table 1 Components of an ideal user model

Dimension Sample Use

What the user looks like A security system that

performs face recognitién

What the user sounds like A dictaphone that can
distinguish the user’s voice

from that of others

What the user knows A spreadsheet that can
ascertain when to teach

the user a new feature

A VCR that records
television shows without
explicit instruction

The user’s interests

The user’s habits A personalized newspaper

that behaves differently on
weekends

two categories: novice and expert. That single bit is
cheap to store, but is not terribly useful. At the other
end of the spectrum is a computational simulacrum
of the user, one that knows more about the user than
the user knows about him- or herself. At one end,
simplistic categorization. At the other, science fic-
tion—but it is important to realize that these two
scenarios are part of the same continuum. The more
bits our computers can collect about us, the better—
provided they put the data to good use.

Even a few bits are better than none. Vague bits,
such as the novice/expert distinction, can be used to
make arbitrarily specific inferences about the user.
They will be wrong much of the time, but a partially
informed decision is better than an uninformed
one—usually.

Breadth vs depth. The number of bits in the user
model is not the only important criterion. Are the
bits about one particular activity, or are they ger-
mane to all? Does a snippet of knowledge say some-
thing specific (“Bob would rather read small print
on a few pages than large print on more pages”) or
something general (“Bob knows a great deal about
telecommunications, and would not mind learning
more”)? A specific hypothesis about the user might
help only an application or two, while a sweeping
assertion about the user’'s behavior or knowledge
might help scores of applications.

Furthermore, applications all too often operate in
isolation—they do not talk to one another. But a
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sions about us. Each applicaticould keep its own
collection of information about the user, communi-
cating with other applications only when necessary.
But that would make it difficult to ascertain certain
aspects of the user's behavior—some inferences can
be made only when data from multiple applications
are gathered. A user modeling system (strictly
speaking, a “generalized user modeling shell sys-
tem™) reduces that overhead and makes possible
broad inferences about the user’s activities.

This need not be inefficient! User modeling systems
such asDoPPELGANGERanNdBGP-MsS (Belief, Goal,

and Plan Maintenance Systénare structured as
servers (see Figure 1) that collect, massage, and
ultimately provide information about users to appli-
cations (or even users). Applications pose questions
about the user (“Would the user like this article?”
“What is the user’s e-mail address?”); the server
answers them. Most of the inferences performed by
DOPPELGANGER can be done very quickly when
“cheap” techniques, such as the ones described in
this essay, are used.

The term “modeling” often implies a certain level of
computational complexity. That is not always nec-
essary—useful personalization can often be achiev-
ed by making the right data streams accessible. If
your mail program can parse your electronic date-
book, it can automatically generate replies on your
behalf. If it cannotparse your datebook, you have
two choices: you can explicitly type in whatever it
needs to know, or use a user modeling system that
can extract the required information, making it
available to all your applications.

It is unreasonable to expect every calendar program
to save its information in a form amenable to every
mail program. And applications will not suddenly
be written with user modeling in mind. Instead, user
modeling should cope with the applications as they
exist now. That makes acquiring user models
harder, but it ensures the feasibility of user model-
ing in consumer applications.

But most user modeling research is predominantly
theoretical, owing to its origins in knowledge repre-
sentation and linguistics. Arguably, user models are
merely an extension of linguisticdiscourse mod-
els which represent how a speaker models his or
her conversational partner. Many of the theoretical
results in that discipline are applicable to user mod-
eling as welk
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mail program might benefit from consulting your
calendar program when replying automatically on
your behalf: “He’s in a meeting now; he’ll read your
message at 4:00.” User models can contain informa-
tion gathered by one application to be used with
another, allowing applications to communicate with
one another through the user modeling system.
Applications become not just consumers of infor-
mation, but providers as well, helping to flesh out
the user model.

Acquiring user models. For a user model to
become either deep or broad, it must acquire its
information about the user somehow. Where does
that information come from, and what does it mean
to acquire it “cheaply”?

There is a wealth of readily available information
about each of us. We all continuously radiate infor-
mation—every action that we take, whether we are
typing, talking, or walking, reveals something about
us. The problem is gathering the information—our
computers might have cameras and microphones,
but they cannot use them very well. Humans make
better use of their eyes and ears, which is why we
are so capable of subconsciously modeling our con-
versational partners. The rich backchannel of infor-
mation (gestures, inflections, facial movements)
makes user models easy, or cheap, to acquire.

» As we walk, our locomotion reveals our destina-
tions.

« As we talk, our speech reveals our intentions.

» As we gesture, our motions reveal our thoughts.

These are all data streams: sources of information

that could be used to personalize applications, if

only our computers had sensors capable of gather-
ing the data. When our computers can make as

much sense of these data streams as humans can
they will be able to make the same inferences about
people. Until then, our systems can focus on more

accessible data streams:

< As we read, our gaze reveals our focus of atten-
tion.

* As we type, our keystrokes reveal our intentions.

* As we surf the World Wide Web, our clicks
reveal our interests.

Within a decade or two, we can expect to see a dra-

matic increase in the connectivity of the things
around us. Our computers will no longer have a
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The actual inferences that can be made about users
depend on the nature of the data available to the sys-
tem. Many of the data streams made available by
operating systems can be quite helpful:

e Our log-in patterns can help applications prepare
for our arrival.

e Our computer commands can reveal the nature of
our tasks.

e Our schedules can tell applications where we are,
and how long we will be there.

e The articles we read indicate which topics
intrigue us.

Most of DOPPELGANGER’ssensors are of this sort.
There are two exceptions: a chair sensor that can
discern when a user is sitting in it, and Olivetti
Active Badges, which track users as they walk
around a building.

Interactivity should never be required. The
degree of interactivity preferred by users should
itself be a component of the user modsbPPEL-
GANGER has a related “tolerance for intrusion”
parameter. The higher that number, the more often
the user is sent e-mail with questions such as ‘I
think you're interested in football. Is that true?” and
“Who would you say you most resemble: John Doe,
Jane Buck, or Chris Lamb?” The user can reply if
he or she wishesbBOPPELGANGER'se-mail is just
another data stream, and its parser is just another
sensor. If the user’s reply is expressed in sufficiently
simple English, it is incorporated into the user
model.

In addition, each user receives a weekly “modeling
redux,” for whichDOPPELGANGERCOMPOSES a cou-

ple of paragraphs summarizing what has been
learned about the user over the past week. The sum-
mary is written in predetermined (but perfect)
English that makes the user modeling system seem
like a conversational partner.

Unfortunately, as Brennan notespmputer literacy

is dangerous—when it is the computer being liter-
ate. When users interact with a program that gener-
ates complex prose, they tend to assume that the
computer can understand text in kind, and reply
with equally complex sentences.

This raises more general concerns about the quality

of communication between the user modeling sys-
tem and the user. For instance, how can the system
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monopoly on computation; instead, our clothes,
appliances, and furniture will all constantly relay
information about us to one another. Your television
set will know which shows you watch; your coffee-
maker will know the settings on your alarm clock,
and your chair will know when you are sitting in it.

So we have many different channels and modalities
of information. Let us presume some sensors that
make the data available to some centralized storage-
and-retrieval facility: the user modeling system. The
term “sensor” is intentionally broad: sensors might
be hardware (a camera), software (a program that
parses a user's command history), or even embed-
ded into the user’s environment (a file system that
notifies the user modeling system when applications
are launched).

An ignorant user is a happy userUser modeling
should be like movie soundtracks: only mistakes are
noticeable. Users should not be required to supply
information to their user models; after all, not all of
us want to tell our computers precisely what we
want all the time. Consider a personalized newspa-
per application: casual users will quickly become
frustrated if they have to navigate through a series
of pull-down menus every time they want to read
their newspaper, and revert to impersonal but famil-
iar mass media.

Of course, some users will want to be active partici-
pants in the user modeling process. They will want
to know what the system is inferring about them,
and why. More power to them! User modeling sys-
tems produce the best results when users help them
out. But users should never be forced to provide
information to the system—they should be able to
choose their own degree of interactivity.

Consider our minimalist user model, the one with
the single novice/expert bit. The user can toggle the
bit only if he or she is aware of it, which is by no
means guaranteed with the feature-laden interfaces
found in many of today’s applications. It would be
better for the application to perform the toggling
itself. It could look at the actions taken by the user,
at the user’s settings for other, similar applications,
or at the settings for other, similar people. Or all
three.

The best source of information is often users them-
selves; the application could simply ask the user
whether he or she is a novice or an expert. But user
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Table 2 The privacy tags used in DOPPELGANGER

Label Meaning

Private Visible only to the user
him- or herself

Semi-private Visible only to particular
applications or users

Semi-public Visible to all but certain
applications and users

Public Visible to everyone and

everything

describe the modeling process when the mathemati-
cal techniques involved are complex? An intuitive
interface to the user modeling system is needed—
one that can explain how the user is being modeled,
and how the user can correct inaccuraties.

In addition to the user’s preferred amount of inter-
activity and tolerance for intrusion, user models
should also provide some mechanism for allowing
users to mark information as private. DOPPEL-
GANGER every portion of the user model is catego-
rized as shown in Table 2.

PGP (pretty good privacy) cryptography software
based on thesa (Rivest-Shamir-Adleman) public-
key cryptographic algorithm, is used for all network
transactions containing potentially sensitive user
information.

When there are user modeling systems in the home
acting on behalf of the occupants, and similar sys-
tems in the office assembling demographic data
about those occupants, they are competing with one
another. The first wants to keep personal informa-
tion private from the second. In such an environ-
ment, privacy will be inversely proportional to your
information bill. Consider an application providing
movies-on-demand to your computer. Your com-
puter might request specific movies, in which case
only those bits will be transmitted. Additionally, the
distributor might subsidize the transmission in
exchange for the rights to use any derived infer-
ences about your movie preferences. Either way, the
distributor knows what you have requested, and
when you requested it, and so a little privacy is lost.
Or, your computer could request the entire library of
movies, keeping your subsequent selections (or its
selections on your behalf) secret. The size of the
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modeling systems should keep intrusion to a mini-
mum. Forcing questionnaires on users is, in the long
run, disastrous: users will take the path of least
resistance, or worse, complain about the interface
and switch to a less insistent application. And there
is an additional downfall to relying on the user for
information: even when information can be
obtained, it is bound to change, or even to be wrong.
People do not remain novices forever.

Unfortunately, passive sensors cannot retrieve as
much information as sensors that actively query the
user for information. And the information they do
retrieve is less likely to be accurate.

Given these passive mechanisms for inferring infor-

mation about users, mistakes will be made, espe-
cially when the system has had little exposure to the
user. How, then, can user modeling systems inspire
trust in their users? A user presented with a newspa-
per purporting to be personalized just for him or her

will be skeptical, and rightfully so.

Users will be even less likely to trust a system that
continuously records sensitive information about
their interests, tastes, and comings and goings. All
of that information must be kept private if users are
to trust the user modeling system, resulting in a
truly personal computer that knows everything
about you—including your privacy boundaries—so
that it can gate the flow of information between it
and the outside world according to your desires.

Predicting behavior. How predictable are people?
And what are some cheap methods for making pre-
dictions about them?

There is no simple answer to either question. It
depends upon what is being inferred, the amount of
data available, and how quickly the computation
must take place. There is no single recipe for user
modeling; the best one can hope for is a cookbook
that lets developers choose whichever techniques
best match the tasks at hand. User modeling should
make use of statistics and machine learning—two
domains where messy data, such as the error-prone
bits gathered by user modeling systems, are
expected.

Before user modeling is incorporated into an appli-
cation (or operating system), designers must first
realize that predictions need not be 100 percent
accurate to be useful. User modeling is an inexact
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transmission, and therefore the expense will soar.
That is the price of privacy.

The notion of a system that learns about its users,
while an anathema to privacy, is necessary if our
computers are to adapt to changes in our on-line
behavior. Beyond the learning techniques demon-
strated in this essay, two broad classes of machine
learning techniques will prove relevant:

« Distributed learning in which geographically or
computationally remote sites gather information
about the same phenomenon, but can only occa-
sionally (or slowly) communicate with one
another.

» Cost-based learningn which there are quantifi-
able penalties for wrong (or tardy) answers,
prompting the system to choose the hypothesis
that maximizes the expected utility for the user,
rather than the choice with the highest probability
of being right.

One notion common to most machine learning para-
digms is confidence: estimating the probability that
an assertion is correct. IDOPPELGANGER every
assertion comes tagged with a confidence value,
arising from either the technique’s confidence in the
data, or fromDOPPELGANGER's confidence in the
technique. Applications can do whatever they wish
with that value. “Loose” applications might ignore
it; “tight” applications might reject all assertions
with a greater than 20 percent chance of being
wrong.

So how much information is involved? How many
bits of data are needed to describe a person? What
level of mathematical complexity is needed to pre-
dict that person’s actions? More importantly, given
an arsenal of modeling methods, which ones should
the system use, and when? Ideally, user modeling
systems would themselves choose which techniques
to use. Since most systems will rapidly amass huge
amounts of data, they can test competing techniques
for self-consistency—seeing which techniques
would have predicted the already observed data.
Faced with conflicting information from different
techniques, how can a user modeling system choose
a reasonable middle path?

In some instance®OPPELGANGERIets techniques
vote (or even bid) on hypotheses about the user.
Suppose that three sensors each claim to know the
strength of the user’s preference for football in his
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discipline; assertions about user preferences and
cognitive state are bound to be wrong much of the
time.

What is important is that systems minimize the
number and severity of incorrect guesses, learn
from their mistakes, and model not just udmrsthe
techniques themselveso that they can bundle each
guess with a numeric confidence in its accuracy.

A user modeling toolbox

No single technique will be best for all, or even a
majority, of tasks. Some data streams are temporal,
others spatial; some are discrete, others continuous;
some are numeric, others symbolic. It will not
always be clear which technique is best, or even
valid, for a particular domain. User modeling sys-

or her newspaper: the first asserts that the user’s
preference is 0.6 out of 1.0 with confidence 0.35;

the second says 0.3 with confidence 0.2; the third
says 0.65 with confidence 0.8.

DOPPELGANGER(irst normalizes the confidences so
that they sum to 1. Then the estimate of the “true”
strength is straightforward: the sum of the strength-
confidence products, yielding 0.585 in our example.
The confidence is defined to be &-=2/n, wheren

is the number of samples, so that very high vari-
ances yield confidences approaching 0, and very
low variances yield confidences approaching 1.

This calculation assumes that the strengths range
between 0 and 1, and that the distribution across all
users is uniform. While that is a reasonablgriori
assumption, additional information (such as the
user's age, nationality, or occupation) might influ-
ence the distribution. In such cases, the strength is
calculated in the same way, but the confidence cal-
culation changes to reflect the additional informa-
tion.

Philosophical discussions of artificial intelligence
(A1) occasionally mention Al-complete” tasks:
tasks so difficult that, if they are ever accomplished,
they will have paved the way for the solution to
most other significant problems m. (The notion
originated with the set ofP- [nondeterministic
polynomial] complete problems in complexity the-
ory.) Perhaps there areum-complete” tasks as
well: an application whose user modeling needs are
so great that success entails modeling the user
well—so well that most other applications can be
personalized too. Such a task would require recog-
nizing a number of user patterns, such as when an
event will next occur. For thabOPPELGANGERUSES
linear prediction

becomes impaired, the system should exhibit grace-
ful degradation—the quality of the modeling will
decrease, but the modeling should not stop.

Several techniques will be described here: linear
prediction, the Beta distribution, Markov models,

and cluster analysis. To demonstrate how these
techniques are used, one particular domain will be

tems need to be extensible—able to use new data explored: news.DOPPELGANGER was originally
streams and sensors as they become available. They developed for use with personalized electronic
should be general enough to handle the seamless newspaper$;customizing a newspaper spans sev-

integration of new sensors. If a sensor suddenly
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eral aspects of users’ lives, both cognitive (what
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Figure 2 DOPPELGANGER'’s depiction of linear prediction values. Each blue bar represents the number of seconds
between the user’'s newspaper readings; each green bar represents the duration of the actual reading. The
solid bars are previously observed values; the shaded values are DOPPELGANGER's predictions for the
future. The higher the color saturation, the greater DOPPELGANGER's confidence.
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they are thinking) and pragmatic (what they are
doing). It is much more than merely choosing the
right articles.

* Topic selectiomequires knowing user interests.

» Timely serviceequires knowing when a newspa-
per will be requested.

e Breaking newsrequires being able to reach the
user quickly and gauging the importance of news
for a particular user.

* Tailoring presentationsrequires knowing how
much time the user has and how to compose
effective newspaper layouts.
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Suppose a user logs in every morning at 8:00 to read
his or her electronic newspaper. Article selection
and organization might take a few minutes: news
wires have to be scanned, breaking news has to be
assimilated, collated, and rendered, and the newspa-
per must send its data to the user’s electronic mail,
pager, or windowing system.

All of that takes time. It would be nice if the news-
paper could know beforehand when the user is
going to read the newspaper, and how much time he
or she has to read it. That requires a series of dis-
crete, linear, cyclical, and numeric observations:
perfect for linear prediction.
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Modeling events with linear prediction

Linear prediction (not to be confused with linear
extrapolation) is particularly good for predicting
cyclical behaviorsboPPELGANGERUSES linear pre-
diction to guess when users will next read their
newspaper, and how long they will spend reading it.
It is an inexpensive technique—it does not require
much computation, and the amount of computation
required is scalable: computation can be sacrificed
for accuracy.

Linear prediction is just one way to predict the
occurrence and duration of an event. But any pre-
dictive technigue used for predicting reading behav-
ior needs to be robust enough to withstand the
vagaries of daily life. Suppose a technique assumed
that a user reads the newspaper (or mail) every 24
hours. And then, one day, that person comes to
work at 10:00A.M. instead of 9:00a.M. due to
unusually heavy traffic. If the system merely looked
back one day, it would incorrectly conclude that the
user would again read the newspaper at 18:Q0

the following day.

Suppose you had a slightly more clever algorithm
that computed a moving average. Then a single
anomalous observation would not severely impair
the accuracy for our tardy user. After eighty 9:00
A.M. observations and a single 10:A®. observa-
tion, the system would predict a value just slightly
after 9A.M.—not a bad estimate.

But suppose that user reads news twice a day, in the
early morning and early afternoon. Then a moving
average would yield an intermediate value, late
morning. Thus the moving average is not good
enough—something more is needed.

The best way to explain linear prediction is to con-
sider the canonical domain for it: ocean tides. Tides
possess daily cycles, seasonal cycles, and trends
over the years. The cycles and trends are undeniably
present, but possess innumerable small variations
affecting both magnitude and phase, just like pat-
terns of newspaper reading behavior.

DOPPELGANGER used linear prediction in tandem
with a newspaper vending machine, the kind you
might see on street corners. Instead of a stack of tra-
ditional newspapers, the machine contained a laser
printer linked to a computer. Users who had stored
their models omrcMciA (Personal Computer Mem-
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Modeling events with linear prediction

Linear predictioff uses the autocorrelation of the
data sequence to predict future values. The data
stream is assumed to be stationary—in other words,
it is assumed that the cyclical characteristics are
independent of the absolute time. That is a reason-
able assumption for predicting when a user will
read a newspaper, and for how long, as long as the
observation span is short enough. A user might
exhibit trends over the course of a year or two, but
daily and weekly cycles will dominate the schedule
over the short term.

Given a series of timag...y, linear prediction esti-
mates the next timeyy.,, by first calculating the
autocorrelation vectap:

1
@ = 0nyiv = N—i z YiYi+

Ji:1

which is then used to compute the autocorrelation
coefficientsd,, via the series of linear equations sat-

isfying:

M

> Qi-wd; = &
j=1

Once theds have been obtained,ya (for anyn,

including N+1 and other not-yet-observed times) is
estimated as:

M
yn = z djyn—j + Xn

j=1
wherex, is an estimate of the observation error.

Figure 2 shows the differences in consistency
betweenwhen the user reads the newspaper, and
how long the user takes to read it. The former
(depicted by the blue bars) is very predictable; the
latter is not.
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Figure 3 Two Beta distributions: the thick line shows the distribution generated when the user seemed to like a topic
once but dislike it twice; the thin line shows the distribution generated when 19 likes and 29 dislikes have
been observed. Note that with the larger number of observations, the variance decreases, and therefore
DOPPELGANGER's confidence increases.

ory Card International Association) cards could
insert them into thecmciA reader on top of the
machine, which caused the user’s personalized
newspaper to be generated and printed.

Unfortunately, this whole process took about ten

minutes—a long time to expect someone to wait. So
linear prediction was used to predict when the user
would next request a newspaper, so that it would be
ready for that person beforehand.

Figure 2 is a still frame from an animation; as time
elapses, the values march to the left, showing how
well DOPPELGANGER'spredictions fare against the
actual observations.
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Modeling interests with the Beta
distribution

Assuming that our newspapers know when users
will read them, how should they decide which arti-
cles to show? Selecting articles (or documents, or
electronic mail messages) for a personalized news-
paper relies upon two difficult tasks: extracting
meaning from text and identifying the user’s inter-
ests.

Extracting meaning from texHow should articles

be categorized into topics? And how should the uni-
verse of topics be organized? Commercial categori-
zation services, such as Burrelle’s Information

Services, provide a cut-and-dried hierarchy of top-
ics, but users might like an article for an entirely

different reason, such as the style or tone. Worse,
they might want to read it specifically because they
disagree with the opinions expressed.

Identifying the user’s interest$siven some feed-
back from the user about an article, user modeling
systems should attempt to extrapolate that feedback
with the goal of estimating the user’s true interest in
the topic.

Suppose a newspaper can provide one-bit feedback
(yes or no) about whether the user liked a topic.
That stream of bits might come from mouse clicks:
either they clicked on the article, or they did not. Or
the stream of bits might come from a feedback
mechanism, such as Koen’s graphical “thumbs up”
and “thumbs down” icon8.The user’s true prefer-
ence for the topic can be expressed as a strength
(ranging from 0 to 1) and a confidence (also from 0
to 1, and proportional to the number of bits
observed). The Beta distribution allovzedPPEL-
GANGER to compute strength and confidence in this
manner.

There are a few problems with this approach. First,
all observations are treated equally: the first obser-
vation affects the estimate as much as the last. It
would be better to assign higher importance to more
recent responses.

Second, the article classifications are constrained to
be all-or-nothing—an article either does or does not
belong to a particular topic, with no compromise
possible. Real life is not quite so forgiving: one arti-
cle might be only a mediocre example of a topic,
while another a great exampletafo topics.
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Modeling interests with the Beta
distribution

With linear prediction, the confidences depend on
how far into thefuture the predictions are made. In
the Beta distribution, they are proportional to how
manypastobservations have accumulated.

The Beta distribution (strictly speaking, the Beta
probability density function) is cheap to calculate. It
requires only two numbers, the number of hits and
the number of misses, and from them it can generate
an estimate and a confidence. SupposeDtbaPEL-
GANGER registersh “hits” and m “misses” for a
user’s interest in a particular topic. The Beta distri-
bution can then be used to pick the most likely value
of the user’s “true” preference, and to estimate the
probability that any particular preference is the right
one.

Two Beta curves are shown in Figure 3. In the dis-
tribution, x, ranges along all possible strengths from
0 to 1, and the height of the cuififx,) indicates the
probability that each possible strength is the “true”
value.

B(xo) = c(h, mxy "(1—x)"*
for 0 <x, < 1, where

_ _(h+m-1)
M = H - im=1)
The expected value of the Beta distribution is

h
h+

E(x) = =

as you might expect: the best estimate of the user’s
preference is the number of hits divided by the total

number of trials. The variance is not quite so intui-

tive:

~ (h+m)’(h+m+1)

0z hm

It is just a number indicating how “wide” the curve
is. The more trials, the smaller the variance, the nar-
rower the curve, and the highBDPPELGANGER's
confidence in the estimate.
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Figure 4 An automatically generated Markov model corresponding to a particular user's motion around the Media Lab.
Arrow thickness indicates the probability of movement between areas.

Third, the user feedback is limited to “yes” or
“no"—there is no distinction between ‘“liked the
article somewhat” and “liked the article very much.”

Fourth, credit assignment is difficult. Many articles
are reasonably good examples of more than one
topic: how then do we identify which topic excited
the user?

These are all serious problems. Even one of these
criticisms reveals that the Beta distribution will not
always be powerful enough for reliable predictions.
But the immediacy of news requires a fast response
from DOPPELGANGER S0 a cheap technique that can
be computed quickly, such as the Beta distribution,
iS necessary.
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The Beta distribution is useful for estimating a sin-
gle value. When the user passes through a series of
discrete states, another representation is called for,
such as Markov models.
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Modeling location with Markov models

Assume now that we know what our user wants to
read, when he or she will read, and perhaps even
how much time he or she has to read. But linear pre-
diction is no guarantee of success.

The most effective predictor would not have to pre-
dict at all—consider a sensor that parses the user’s
datebook. A sensor of this sort was use®byPEL-
GANGER to provide personalized weather reports;
DOPPELGANGERWouId tell the weather application
where the user was, and the weather application
would page the user with a weather forecast for the
appropriate area.

Another mathematical technique, one that will tell
us not only how long the user has to read the paper,
but what the user will do next, is the Markov model.
Markov models are used bYOPPELGANGER to
identify locomotion patterns in users, with room-
level granularity, using Olivetti Active Badgesas
location-tracking devices. Smaller motions can be
sensed with newer, passive sengbrand more
information can be transmitted with smarter badges
personalized for each usér.

Every 15 seconds, each Olivetti badge emits an
infrared pattern that uniquely identifies its wearer.

Stationary receivers (that might be mounted on

walls, desktops, or corridors) detect the badges and
relay their observations to a central computer,

which can then be used to query the user’s location.
That data stream alone, without any prediction, is
useful for applications such as “smart” phone

switches that route calls to the phone closest to a
person.

DOPPELGANGERthen archives that information, con-
structing a simplistic Markov model that can be
used to predict the user’s locomotion. Whenever the
user moves, his or her Markov model (and hence his
or her user model) changes. The more regular the
user’s schedule, and the longer the tracking period,
the better the prediction.

Informed consent. Active badges provide one of
the best solutions to the considerable privacy con-
cerns raised by user modeling. Users have to delib-
erately attach the badge to their clothing to activate
the tracking, and can remove the badge at any time
to deactivate tracking. There is never any doubt
about when data are being gathered.
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Modeling location with Markov models

Every Markov model is defined by three collections
of information:

¢ A set of statesIn DOPPELGANGER each state is a
room, or corridor, or desktop. Better modeling
might involve assigning states to microbehaviors:
“going to the water cooler” might be one state,
“leaving for the day” another.

« A matrix of transition probabilities-Given a par-
ticular state, a Markov model describes a particu-
lar probability that, on the next “time tick,” the
“system” (for our purposes, the user) will “transi-
tion” (walk) to another state (room).

« A matrix of output probabilities-Given a partic-
ular state, Markov models assume that some “out-
put symbol” will be generated by the system.
DOPPELGANGERignores these for location model-
ing (but not for behavior modeling, described
next).

When a user walks from Room A to Room B, that
affects the transition probabilities for Room A: bol-
stering the value for Room B and diminishing the
values for all other rooms. If the user stays in Room
B for a long time, that affects the transition proba-
bilities for that room: bolstering the value for Room
B and diminishing the others. Figure 4 shows the
Markov model generated for one user after ninety
minutes of observations.

This method of location modeling is the cheapest
technique described in this essay. Since new obser-
vations affect only the transition probabilities
(unless a new room is entered, in which case a new
state is grown), only a small number of multiplica-
tions and divisions are required: both updates and
prediction are nearly instantaneous. And it is practi-
cal for use on a larger scale: the time required to
update is proportional to the number of states and
constant with the number of observations; the time
required to predict is constant with both the number
of states and the number of observations.

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996



Figure 5 The Markov model for the programming state:
rapid alternation between text editing,
compiling, and “learning” (reading on-line
manual pages)

0.07

AT&T Bell Laboratories developed “smart floofs”
that sense the impact of the user’s foot on the floor,
and use time series to identify whose foot it is. It is a
more passive sensor than the Active Badges, and
therefore more convenient for users. But achieving
informed consent with such sensors is quite a bit
more difficult, since users might not have a choice
whether or not to walk over the sensed area. Fur-
thermore, notification of how the data are acquired
and what can be done with the data requires consid-
erably more explanation than will fit on a warning
sign delimiting the area.

Categorizing behavior with hidden Markov
models

DOPPELGANGER’s locomotion modeling involves
constructing a Markov model for each user. Now, let
us consider a twist: given a collection of already-
built Markov models, how do you select the one that
best predicts a series of observations? That is how
DOPPELGANGER classifies users into different
behavioral states: frustrated, busy, concentrating,
idle, and so on. The technique is quite general: it

can be used whenever there is some sequence of

discrete temporal observations that, taken as a
whole, categorize users.
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Figure 6 The “compile” state and its output symbols

cc
g+t
gcc
gmake
emacs
xlc
make

sabre

Categorizing behavior with hidden Markov
models

When DOPPELGANGER needs to categorize the
user’s behavior, it uses the sequence of the user’s
UNIX commands to choose the Markov model (each
of which corresponds to a single behavior category)
that best predicts the sequence. At the broadest
level:

For every Markov model (i.e., behavior):
Calculate its likelihood of producing the observa-
tions (i.e.,UNIX commands)

Then choose the Markov model with the highest
probability.
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Unlike the other techniques described so far, cate-
gorizing users does not bedabula rasa someone
has to define the categories. | defined eight, one of
which is shown in Figure 5. (The model shown,
“hacking; is several years old and now obsolete
owing to the surge in popularity of interpreted lan-

guages’)

The eight Markov models were determined by iden-
tifying which uNIx* commandsDOPPELGANGER
users were likely to use, and what might be inferred
from their presence.
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The Viterbi algorithn®f is used to determine the

most likelya posteriorisuccession of states through
a particular Markov model (which is then called a
hidden Markov model in the literature):

For every observation (i.eJNIX command)
For every state (i.e., class of commands),
Identify the series of states most likely to pro-
duce the observation given the previous obser-
vations.

This iteration results in a continuous pruning of
unlikely paths through the model states, making the
algorithm operate in polynomial instead of expo-
nential time. Additionally, calculation is done in
log-space so that the probabilities and weights can
be added instead of multiplied.

So how is the series of commands mapped onto the
states of the Markov model? Remember that the
Markov models used bpopPPELGANGERfor loca-
tion modeling ignored one of the components: the
output probabilities. Here, Figure 6 shows the out-
put symbols for the “compile” state. The associated
probabilities are not shown; commands that are
used for nothing but compiling (e.@¢, gco have
high probabilities; commands that can be used for
other tasks (e.gemacsmake have lower probabil-
ities.

Exactly how accurat®@OPPELGANGER'stechniques
are is hard to quantify; since the efficacy of these
techniques varies greatly from person to person and
from sensor to sensor, rigorous evaluation is diffi-
cult. People exhibit trends; interests in news topics
and expertise with applications change over time.
Furthermore, completely new topics and applica-
tions become available over time; outside of lengthy
testing (over the period of years, during whixdp-
PELGANGERWould have to be kept static) with large
test and control groups, attempts to quantifyr-
PELGANGER’s success may well raise more ques-
tions than they answer.

Furthermore, since DOPPELGANGER constantly
recalculates the efficacy of each technique for each
user, and weights them accordingly, the system
learns continuously. It changes from one day to the
next, and even from one minute to the next; few of
the techniques permit the luxury of running once
per night.
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Constructing communities with cluster
analysis

What can a user modeling system do when it has
too little information about someone? The tech-

niques described so far can identify patterns if pat-
terns exist, but what if there are not enough data?

There is no reason that our systems must bagin

ula rasa After all, humans do not: when we hear
that a graduate student spent all night at the library,
we assume that the student was researching his or
her thesis. We are making implicit assumptions
about the student based on our knowledge about
what it means to be a graduate student. It works,
because there are correlations between our occupa-
tions and our actions.

When an application’s query requires information
missing from the user modebOPPELGANGERcCanN
make an educated guess based upon the popula-
tion of users. In particulaOPPELGANGER boot-
straps hypotheses about a user by aggregating the
information from all user models. When possible, it
chooses an appropriate subset: for instance, the
communityof graduate students.

How can a system know what communities exist? In
two ways: the designer can name them, by identify-
ing certain snippets of the user model as being more
telling than others, or, the system can determine the
communities itself, by looking for correlations
between users.

A newspaper application that attempts to customize
itself for a new user might present the user with a
generic smattering of news. After making a few
hypotheses about the user’s preferences based on
his or her selections (say, that the user likeselee
communicationsand computer topics), DOPPEL-
GANGER looks at other users with similar interests
to see what else they are interested in (seignce

or advertisingor telephonepand creates hypotheses
corresponding to those “once-removed” topics.

Gathering a few bits of data from many people can
be more useful than many bits of data about a few
topics. It is cheap artificial intelligence: a memory-
based ontology.
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Constructing communities with cluster
analysis

A technique that is run once each night is iH®@
DATA unsupervised clustering algorithfwhich is
used to group users into communitieSODATA
requires an approximate number of communities
Np, @ maximum community siz& a maximum
varianceo?s (for deciding when to split a commu-
nity), a maximum distanc®,, and a maximum
number of communitielly,x (for deciding when to
merge communities). Here is a brief overview:

Fori starting at 1 anlll starting af\,,

1. Cluster the users intd communities, using K-
means clustering with amdimensional Euclid-
ean distance metric. Eliminate communities with
fewer thanT users.
If the communities have not changed since the
last iteration, exit.
If N < Np/2, orN < 2N, andi is odd, then:
Split any communities whose users form suffi-
ciently disjoint groups and increabkaccord-
ingly. If any communities have been split, go
to step 5.
4. Merge any pair of communities whose users are
sufficiently close and decreaBeaccordingly.
5. Increment and return to step 1.

Unfortunately/SODATA is not quite as unsupervised
as it could be: it requires reasonable choices of the
parameterd, Np, and so on.

S0 DOPPELGANGERUSEeS a simple program (called
AUTODATA) wrapped around th€SODATA proce-
dure. AUTODATA makes initial guesses for the
parameters and adjusts them incrementally, repeat-
ing the five steps above until a sufficiently good
clustering is found.

Unlike the other techniques described, the partition-
ing of the entire population into communities is
computationally expensive. But since communities
change far less often than people, theODATA
program can be run less often: once each night. The
results are stored in a global file, one of the few
DOPPELGANGERdatabases that is not part of an indi-
vidual user model.
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Synchronization and sharing

We have discussed hardware sensors, software sen-

sors, the operating system itself as a sensor (via

Synchronization and sharing

The user models themselves are encodedLiara
like notatiori® that is used to transmit information to

UNIX commands), and users as sensors. There is one applications and to other Doppelganger systems.

frontier left: treating user modeling systemhem-
selvesas sensors. Any given user modeling system
should be able to benefit from others. The tech-
nigues described in this essay are general and
reusable—they are not specifically tailored for per-
sonalized newspapers. They could just as easily be
employed by other user modeling systems; there
should be a mechanism for eliminating redundant
modeling and exploiting the multiple perspectives
of users that different computers can provide.

Distributed user modeling takes place witimiop-
PELGANGER (the research project); there are several
Doppelgéangers (individual systems) currently in
operation. Adhering to the privacy architecture
described earlier, there is one Doppelganger system
in each participating computer; they share informa-
tion with one another according to the user’s
wishes.

One application developed in tandem withPPEL-
GANGER was a “synchronizer” application that fer-
ries files back and forth between home and work
computers. It uses two data streams: one is the pat-
tern of log ins (gathered via thenix last com-
mand); the second is a sensor that observes the
user’s text editor to see which files he or she edits
and how often. When the Doppelgénger system on
the work computer predicts that the user is about to
leave for home (using linear prediction), the syn-
chronizer mails and installs the files on the home
computer. And when the Doppelganger system on
the home computer ascertains that the user is about
to leave for work, it mails and installs the files on
the work computer.

That application synchronizes files, not computers.
But it is the same principle: your user models
should follow you around. If user models are to be
used by everyday applications, they should be por-
table—eomputationallyportable angbhysicallypor-
table. Users should either be able to carry their
models around (as witbOPPELGANGER’s PCMCIA
cards) or they should be automatically shuttled
between computers when they move from machine
to machine. Perhaps user modeling would benefit if
systems spoke a common language when express-
ing information about users.
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(Different Doppelganger systems, one at home and
one at work, might model the same user.) Every
“chunk” of the model is a list; the first element of
each list is a numeric tag that indicates how to inter-
pret the rest of the elements. There is one tag for
assertions about user topic preferences, another for
the actual sequence of hits and misses on that topic,
and another tag for the entire user model itself. Each
user model is a hierarchy; subtrees can be passed
around between Doppelganger systems. Portions of
the user model can point to other portions of the
same user model, or to portions of a community
model.

There are approximately two hundred tags, some of
which label complex data types. For instance, there
is one tag that identifies a Markov model data type
and consists of a name (another tag) followed by a
few matrices (another tag), each of which contains
probabilities (yet another tag). All Doppelganger
systems use the same representation, which facili-
tates communication between them.

Doppelgénger systems share information with one
another through e-mail when necessary, acrliP
(Transmission Control Protocol/Internet Protocol)
communication when possible, so that information
about users can be exchanged in real time. For sites
that have no users in common, community models
are shared, so that inferences about groups of peo-
ple (scientists, artists, graduate students, etc.) spread
from system to system periodically.

This infrastructure has been used to disseminate not
just user and community models, but source code as
well: a Doppelganger system that trust®/IP con-
nections from a particulap address will automati-
cally install encryptedOPPELGANGERSOUrce code
distributed from that address.

It might be argued that the best way to model users
is to standardize applications so that they can com-
municate about users using some fixed, internal rep-
resentation. “Application suites” such as Microsoft
Office would seem like reasonable development
environments for such work—since all users use the
same set of applications, each application can
assume that all others are present and they can be
developed in unison.
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A user modeling protocol? Certainly, a protocol

for expressing information about users is desirable.
But is it possible? Consider the disparate goals of
different user modeling systems: some (such as
DOPPELGANGER perform what the user modeling
community calls “generalized” user modeling; oth-
ers focus on student modeling, cognitive representa-
tions, or natural language processing. We need
something that satisfies each of these domains with-
out an excessive level of abstraction or inefficiency.
It should be something that can be understood by a
novice programmer in a day, and it should contain a
core subset of functions that most user modeling
systems can implement, earning the right to call
themselves “compliant.”

If that happens, application developers will have the
opportunity to build provisions for user modeling
into their products, querying and providing user
data according to an Internet standard. All user
modeling helps our applications behave better, but
to maximize the impact of our work, it should per-
colate into Internet applications. That is where the
largest user populations are, and that is where we
should be gauging the success or failure of our
work.

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996

A user modeling protocol?That is a bad idea, of
course—users should not be forced to use specific
applications, or even specific operating systems.
What we need is a protocol for encoding informa-
tion about users, so that the applications and tech-
niques developed at each site will be usable at every
other site.

Should we call it a full-fledged “language,” or does
“protocol” suffice? Protocols are of a lower level
than languages, and typically deal with matters such
as the ordering of elements. Languages focus more
on expressivity. There are so many things to sense
about people, and so many scenarios and uses for
the resulting inferences, that any communication
mechanism must be open-ended, so that when new
sensors are developed, or new behavior domains
tracked, or new modeling techniques employed,
they can be incorporated without breaking previous
implementations. That suggests a language rather
than a protocol, but it is intriguing to think about
how anrFc (request for comments) for a user mod-
eling protocol could be developed, and how we can
begin to design a protocol that will not prohibit as-
yet-undreamed-of applications. A widely adopted
language would make user modeling seem more
academic; a widely adopted protocol would make
user modeling seem more stable.

It is almost too easy to choose a language rather
than a protocol: by avoiding the constraints of a
byte-by-byte representation, we can defer the hard
choices and avoid making mistakes. But we risk
creating something too general to be useful. The
user modeling community should set its sights
higher, by creating a low-level protocol for commu-

nication between applications, sensors, and user
modeling systems.

What are the basic data types of user modeling?
DOPPELGANGER'smodels contain thousands of con-
fidence values, proper names, assertions, and key-
words. Which of these merit data types? How
should we standardize the building blocks that com-
prise user models: measurement units, time zones,
if-then-else conditions, to say nothing of the more
fluid and complex components: distance metrics,
plans and goals, and broad assertions about likes
and dislikes? There will be other, thornier issues as
well: any protocol should have the capacity for let-
ting applications specify a time limit for replies.
Consider a game that needs to out-think or out-race
its human opponent—a fast but mediocre answer
will often be preferable to a slow but superb one.
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Reprise

Sadly, paper is not yet an interactive medium—
static essays such as this one can neither anticipate
reader questions nor elaborate concepts on demand.
Structuring this paper as two independent yet paral-
lel flows was meant to illustrate that documents are
“applications” too, that not all readers are the same,
and that information about users can be used for
more than merely dividing audiences into exclusive
categories. There are not really two essays here, just
a single essay designed for two hypothetical readers
and organized in an unusual way. By including
paragraphs aimed at each reader, instead of collaps-
ing the text into one homogeneous flow, a third
channel of information is created. That channel is
the organizationof the essay, and, implicitly, the
reasoning behind it: the attempt to categorize user
modeling concepts while demonstrating user mod-
eling through that very categorization.
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