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The average person with a computer will soon
have access to the world’s collections of digital
video and images. However, unlike text that can be
alphabetized or numbers that can be ordered,
image and video has no general language to aid in
its organization. Tools that can “see” and
“understand” the content of imagery are still in
their infancy, but they are now at the point where
they can provide substantial assistance to users in
navigating through visual media. This paper
describes new tools based on “vision texture” for
modeling image and video. The focus of this
research is the use of a society of low-level
models for performing relatively high-level tasks,
such as retrieval and annotation of image and
video libraries. This paper surveys recent and
present research in this fast-growing area.

onsider the following scenario about vision tex-
ture. Suppose you have a set of vacation photos

of Paris and the surrounding countryside, and you
accidentally drop them on the floor. Although they are
out of order, you pick them up, sorting them back into
two stacks—city and country. With only a quick
glance at each photo, you are able to re-sort them to
the right categories with high accuracy. How do you
do this so quickly, without taking time to look at the
precise content of each photo?

In this scenario, and many other picture recognition
and sorting tasks, people appear to use relatively low-
level information for making “quick glance” high-
level decisions. Studies have shown that even pigeons
with their pea-sized brains can discriminate images of
water and trees1 as well as impressionist and cubist
paintings.2 Inspired by these kinds of successful
behavior, we have been exploring the use of collective
low-level features, such as texture and color, for mak-

ing relatively high-level decisions about images. Such
features tend to produce faster results than the tradi-
tional computer vision algorithms aimed at construct-
ing detailed representations of everything in a picture.
In this paper I describe several of the models we have
explored, and the important additional step of com-
bining them into systems that interact with humans.

Vision texture

Consider a computer solution to the scenario previ-
ously described. A simple measure of local orienta-
tion over scale, a low-level operation designed to
mimic part of what scientists believe occurs in the
human visual system3–5 was used with some simple
decision rules for classifying a set of 98 vacation pho-
tos. Based on only a quick decision with the low-level
orientation information, 91 out of 98 of the photos
were correctly classified into the categories “city or
suburb” or “other.”6 Two of these photos are shown in
Figure 1.7 The careful use of low-level collective
properties of image data for relatively high-level
visual tasks is referred to asvision texture.

Low-level features such as color and texture are not
just for low-level tasks. Although vision texture is not
sufficient for completing high-level relational tasks
such as “find an image with an oak tree on the left and
a lake on the right,” there are numerous demonstra-
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tions of the success of vision texture for achieving or
helping achieve relatively high-level tasks. Swain and
Ballard8 illustrated the use of simple color histograms
for retrieving images from a diverse database, and
Syeda-Mahmood has shown how a combination of
color and texture features can speed up selection of
items of interest in photos.9 Texture has also been
shown to be powerful for recognition of motions.10

Texture: beyond the traditional definition. There is
much more texture in the world than most people real-
ize. Texture is ubiquitous; it is felt on the tiny surface
of a shriveled pea, can be heard in the interwoven
melodies of a fugue, can be seen in the rocking
motion of a boat, and even shows up in human affect
and behavior patterns. Eluding precise definition, tex-
ture is usually distinguished by being tactile, pat-
terned, rhythmic, or noisy.

It is generally an ill-posed problem to say “find the
texture in this picture.” Texture eludes precise defini-
tion. Some researchers define it like pornography,
“you know it when you see it.” I find it helpful to list
properties usually associated with texture, such as the

three that follow. These three properties are not mutu-
ally exclusive, but are separated for easier discussion
of how they influence applications.

Property 1: lack of specific complexity. The first prop-
erty is illustrated by considering three categories of
patterns, shown by the one-dimensional (1D) strings
of letters in Figure 2. (These strings were inspired by
the discussion of different kinds of entropy in Refer-
ence 11.)

The first string (String 1) is a1D periodic texture. It
has a basic primitive, a specific set of rules for replica-
tion of the primitive, and allowance for minor pertur-
bations. The primitive may be complex, but its
complexity is leveraged over the whole pattern, result-
ing in low overall complexity as the string becomes
longer. Periodic textures like this show up in physical
materials such as nylon and crystals, and in audio seg-
ments such as the sound of a copy machine repeatedly
sounding “ker-chunk ker-chunk slurp,…” Periodic
textures also occur in two-dimensional (2D) imagery
of tile floors, and in repetitive space-time patterns
such as the two feet of a person riding a bicycle.

Figure 1 Quick glance recognition: city or country?
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The second string (String 2) is a sample of a1D sto-
chastic texture, perhaps generated with a random
number generator or filtered noise. A random
sequence may look complex, but it has no specific
order; it is characterized by a probability distribution.
Random polymers, the sound of applause, and nucleic
acids are other1D examples; turbulent water and the
footsteps of children playing tag make higher-dimen-
sional stochastic textures.

The third string (String 3), like the structure ofDNA
(deoxyribonucleic acid) and proteins, is distinguished
by having both specific order and complexity.
Although it is an anagram of the second, and may be
extracted from the same probability distribution, its
specificity makes it qualitatively different. (Note that
Shannon deliberately left “meaning” out of his proba-
bility-based information theory.12) This third string
and its higher-dimensional analogues are not textures.
For example, an analogous image would be a human
face; without its underlying specific arrangement of
eyes, nose, and mouth, it would cease to be recog-
nized as a face. A single face is not a texture.

Note that my use of “texture” here includes most tex-
tures used in computer graphics, but is not as broad as
the use of the term “texture” in the “texture-mapping”
literature. The latter refers to arbitrary pixel maps
placed over a three-dimensional (3D) structure to add
realism to the scene. In computer graphics, an image
of a face might be “texture mapped” onto polygons or
a finite-element mesh to render a more realistic3D
face. The face is not a texture by the properties out-
lined here, but is being treated like a texture with
respect to the surface onto which it is being mapped.
Similarly, a texture image such as sand might be tex-
ture-mapped onto a3D polygon shaped like a mound
to render the effect of a3D pile of sand.

The three strings may also be combined in higher
dimensions. For example, an image of a plowed field
combines randomness along one direction with peri-

odicity along the other. The Wold model, which will
be highlighted later, is based on such a separation of
random and deterministic components.

There is no hard boundary between the three cases.
Consider the following two examples:

Example 1: String 3 can be replicated, resulting in a
periodic texture like the case of String 1. The bound-
ary between nontexture and texture is analogous to
the boundary between nouns used for counting and
nouns used to describe mass: Asking how many repli-
cations of a nontexture it takes to make a texture is
like asking how many grains of sand it takes to make a
pile.

Example 2: String 3 can be gradually permuted until
the order is no longer recognizable as a meaningful
sentence, and it becomes like the case of String 2. An
analogy in the image domain would be to overlay
multiple views of a face, so that it suddenly had multi-
ple eyes, noses, and mouths, no longer in the expected
specific arrangement. The result is an effect similar to
that achieved by Picasso with cubism, and may
explain why people (and pigeons, perhaps) sometimes
think such paintings look like textures.

Property 2: high frequencies. Although both texture
and nontexture can contain high-frequency changes,
these tend to occur more with texture. This property is
perhaps most important, and annoying, to researchers
in image coding where standardized coding methods
utilize basis-functions such as the discrete cosine
transform. These methods attain the best compression
in smooth (low-frequency content) areas, so that pic-
tures with lots of texture tend to be hard to compress
efficiently.

Note that extreme smoothness can still be considered
to be a texture, especially in the tactile domain (“feel
the ‘silky smooth’ texture of this garment”) but in dig-
ital imagery, smooth regions generally are considered
as nontextured.

Property 3: restricted range of scale. Textures, unless
they are truly fractal,13 tend to exist over a finite range
of scales. Tree bark may look smooth from a distance,
grooved as you move in closer, and pitted when you
press your nose to the trunk. A brick wall looks peri-
odic from a distance, but loses its periodicity when
you are so close that you can see only a few bricks.
This lack of persistence of texture over scale compli-
cates the association of objects with texture; a range

Figure 2 Defining texture: two texture strings and a
third string that is not a texture
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of scale and “typical views” must be a part of the
association.

Scaling similarity also shows up in a less obvious way
—across very different phenomena at different scales.
In his delightful book on patterns in nature, Stevens14

shows pictures of gas clouds and of milk poured into a
black slate sink—two different materials at scales
ranging from a centimeter to over ten quintillion kilo-
meters, both of which can be generated as “turbu-
lence” textures. Stevens examines many of the
common behaviors of natural patterns, including close
packing, spirals, branching, shrinking surfaces, and
turbulence—revealing a small number of underlying
mechanisms responsible for an astronomical variety
of patterns. This variety of mechanisms for forming
patterns in nature suggests that we might find more
than one model useful in forming digital patterns.

The three properties just described—lack of specific
complexity, presence of high frequencies, and
restricted scale—hint at the difficulty of characteriz-
ing textures, but more importantly, illustrate an
expanse of possible forms. Texture occurs in audio,
chemical structures, motion, imagery, and even
human behavior patterns. A significant research chal-
lenge is to develop a family of models useful for rep-
resenting, manipulating, comparing, and recognizing
textures in digital libraries.

In the rest of this paper, the focus will be on texture
models for image and video and on the systems we
have developed using vision texture for applications
such as browsing, retrieval, and annotation.

A society of models

A ski jumper “shoots” out of the starting gate, speeds
down the snowy slope, forms an airfoil—flying—
steady—then lands. To predict the jumper’s motion,
one might picture a straight trajectory lifting at the top
of the hill, lowering at the bottom, and followed by a
switch into two possibilities at the instant of landing.
At that instant, the predictor may switch from a
“straight-ahead” model, to a “tumbling-out-of-con-
trol” model. Two models—straight, or random—are
useful for efficiently describing the motion. Similarly
in football, whether we watch the motion of the ball
being passed, carried, or fumbled, we switch naturally
between different mental models of prediction. The
right repertoire of models, and their proper combina-
tion, is more effective than trying to use one model for
all tasks.

Figure 3 contains several models that have been used
in computer vision, image processing, and computer
graphics. Some of these are general enough to repre-
sent arbitrary signals and may be used for synthesiz-
ing data—perhaps for simultaneous compression and
recognition in digital libraries. Other models only
capture some features of a given signal that are useful
for recognition or query. “Analysis” usually refers to
the estimation of features or parameters of the model.
Sometimes model features might be used (for exam-
ple, within an optimization framework) to approxi-
mate a reconstruction to the data, but in general they
need not be sufficient for reconstructing the data.
Such features might be useful, however, for discrimi-
nating among several categories of data. Both kinds of
models—those that can resynthesize the data, and
those that cannot, have applications in digital librar-
ies.

One of the realities of research is that each model
tends to have a trendy period of use, and then it is
abandoned in pursuit of a presumably newer and bet-
ter model. Instead of searching for one “best” model,
the approach here is that it is important to study a
variety of models, to learn what they do best, and to
learn how they may be effectively combined. This
approach shares the spirit of Minsky’s Society of
Mind,15 whereby specialized agents, or models in this
case, interact to make sense of what they see. Just
because a model is capable of representing everything
does not mean that it is the best one to use for every-
thing.

In the rest of this section I will survey six models that
have been the focus of our recent research. These six
models are chosen to represent a variety of forms,
including deterministic, stochastic, mixed, linear, and
nonlinear forms. Some have parameters that are phys-
ically motivated, some that are perceptual, and some
that are semantic. Most can be applied to arbitrary
digital signals, although the emphasis here is on mod-
eling imagery in space and time. Information on the
other models in Figure 3 can be found in the refer-
ences, especially overviews such as Reference 16 and
Reference 17. There is not space here for equations
and details, but these are referenced for each model.
The focus in the descriptions that follow is to famil-
iarize the reader with each model, highlight some
apparent strengths and weaknesses of each model, and
point to important relations between the models. A
following section of this paper then discusses two sys-
tems we have built that rely on a society of models for
more effective performance.
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Figure 3 A society of models. Although some of these can model any signal, each has different strengths and
weaknesses.

A(z)

GABOR FILTERS

CLUSTER-BASED

FRACTALS

EIGEN-PATTERNS

CO-OCCURRENCE

MORPHOLOGY

WAVELETS

ARMA

STEERABLE

BOMBING PROCESSES

RANDOM FIELD

PARTICLE

WOLD

“SOCIETY OF MODELS”

GRAMMAR

FOURIER BINS

REACTION-DIFFUSION

(E.G., POISSON)

PROBABILITY

SYSTEMS

PYRAMID



IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 PICARD 297

Reaction-diffusion models: beyond zebra stripes
and leopard spots. Nature appears to use simple non-
linear mechanisms for pattern formation, ormorpho-
genesis. For example, butterfly wings exhibit a great
variety of patterns, all of which must be produced
within a simple, light-weight, insect structure. The
spots and stripes on lepidoptera are also found on
brightly-colored tropical fish, zebras, leopards, tigers,
cheetahs, birds, and more. In a digital library of such
imagery, one might expect a reaction-diffusion model
to be powerful for both representation and retrieval.
The painting by Lenore Ramm in Figure 4 illustrates
some of the variety of animal patterns that are well
modeled by digital texture models. In particular, reac-
tion-diffusion models may be used for efficient

description of most natural patterns involving spots
and stripes.

Turing proposed in 195218 that dappled patterns could
be synthesized by a set of coupled nonlinear partial
differential equations known as areaction-diffusion
system. Under certain conditions, reaction-diffusion
models also can be used for analysis.19 Inspired by
Turing’s work, we have developed a new nonlinear
“M-Lattice” model that solves the biggest practical
problem of the original Turing model (boundedness),
and is still good at making spots and stripes.

Figure 5 demonstrates an application to halftoning,
the representation of gray-level images by black spots

Figure 4 Biological patterns like these can be mimicked by digital texture models.
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on a white background.20 In Figure 5, a reaction-diffu-
sion model was used to make a “faithful” halftone in
Figure 5A, a “special effects” halftone in 5B, and,
using an original noisy fingerprint image (5C), a
binary enhanced fingerprint image in 5D. The new M-
Lattice solves a variety of nonlinear optimization

problems, such as the creation of the “Wall Street
Journal style” halftone, that grows patterns along
visually dominant directions, much like the hand-
drawn versions made by artists.21 The basic idea here
is that the error introduced by halftoning gets pushed
into perceptually favorable directions, along lines that

Figure 5 Use of a reaction-diffusion model (stripes and spots) for halftone images

(A) (B)

(C) (D)
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already exist in the image. We have also demonstrated
the creation of color halftones with these effects using
the M-Lattice.22

Stripes, such as those on zebras and fish, are well-
modeled by the nonlinear Turing and corresponding
M-Lattice models. However, digital libraries of zebras
and fish are not presently as abundant as those of fin-
gerprints. Human fingerprints, which resemble bifur-
cating stripes on zebras, have recently been
successfully modeled with the new M-Lattice for the
purposes of enhancement and binarization. Instead of
merely removing noise, the M-Lattice boosts the
underlying fingerprint pattern, effectively suppressing
unwanted noise and intensity variations.20

The reaction-diffusion model has found applications
in image processing,20,23computer vision,24 and com-
puter graphics.25,26In the latter, the emphasis has been
on synthesis, although the synthesizing parameters
could certainly be stored in a database of synthetic
imagery and used for data manipulation, annotation,
and retrieval. The effectiveness of reaction-diffusion
as a biological model, not just for animal coat pattern
formation, but also for emergence of structure of all
kinds, is an ongoing research topic in mathematical
biology.27 In the digital arena, the model has been
most successful in the synthesis of textures or images
comprised of spots and stripes. However, the model is
still new and largely unexplored. As a nonlinear
model with a huge space of possible behaviors, it will
be some time before its strengths and weaknesses are
fully characterized.

Markov random field models: from grass and sand
to monkey fur. The reaction-diffusion model is deter-
ministic. However, there is another class of models
that bears a resemblance to reaction-diffusion but
which is stochastic—the class of Markov random
field (MRF) models. Unlike most texture models, an
MRF is capable of generating random, regular, and
even highly structured patterns. In theory, it can pro-
duce any pattern. It does not just describe some char-
acteristics for distinguishing textures, but it can be
used for both texture analysis and synthesis.

TheMRF has simultaneous roots in the Gibbs distribu-
tion of statistical mechanics and the Markov models
of probability. The Gibbs distribution has a rich his-
tory of applications in physics including the modeling
of lattice gases, molecular interactions in magnets,
and ordering processes in condensed matter. In com-
puter vision and image processing, theMRF is touted

for its ability to relate the Markov conditional proba-
bilities to the Gibbs joint probability. It can be easily
incorporated into a Bayesian framework, making it
flexible for a variety of applications.

Hassner and Sklansky28 appear to have been the first
to suggest the use of Markov and Gibbs models for
image texture. Cross and Jain29 conducted the first
explorations of theMRF for gray-level texture model-
ing and showed that it generated natural-appearing
microtextures such as grass or sand. A GaussianMRF
has been applied to texture classification and model-
ing by Chellappa and Chatterjee30,31 and Cohen et al.32

Given successful use in these small sets of data, the
MRF should also be useful in large digital library prob-
lems, when the library data are well-described by the
model. For example, the aura framework derived from
anMRF model has been shown to be useful for charac-
terizing spatial yields of semiconductor wafers.33

Searches through a database of wafer-yield imagery
might therefore favor this model for finding similar
patterns.

The interplay between microscopic dynamics and
macroscopic force, such as that associated with a
phase transition34 triggered by temperature, is an
important factor in natural pattern formation. The
effects of a temperature parameter on pattern forma-
tion with MRFs have been studied35 revealing relation-
ships between structuring models within math-
ematical morphology and the useful statistical fea-
tures of co-occurrence.36 However, these relationships
also indicate limitations on the patterns that can occur
at low temperature.37 Although in theory theMRF can
model anything, these low-temperature relationships
point to weaknesses of theMRF model.

In particular, although theMRF can make structures
such as the stripes and spots favored by the reaction-
diffusion model, it does not typically make such pat-
terns unless coupled with an external structuring
force, or forced into a low-temperature state.38 For
example, running at low temperature on low-fre-
quency structural cloud images was successful at
simultaneously capturing cloud texture while preserv-
ing cloud shape.39 In general, the expertise of theMRF
does not seem to lie in large-scale structured patterns,
except in a few special cases, and when careful tem-
perature control is exercised.

The strength of theMRF appears to lie with homoge-
neous microtextures and simple attractive-repulsive
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interactions. Figure 6 shows the use of anMRF model
for synthesizing the microtexture of fur in two patches
of a mandrill image. Details as to how this was done,
as well as its potential for model-based semantic
image compression, are discussed in Reference 40.
Although the model is successful for fur in this exam-
ple, the reader should keep in mind that the model is

not typically successful on nonhomogeneous or non-
microtextures, and was not found to be successful
when trained on other parts of the mandrill image. To
summarize: in theory theMRF can represent all pat-
terns; however, in practice, its strengths make it suit-
able to only certain kinds of imagery that might occur
in a digital library. Like all the models we have exam-

Figure 6 Illustration of a strength of the MRF model. The top image is the 256 by 512 original; the bottom image is the
same except for two 64 by 64 patches of synthetic fur. Can you see them?
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ined, its utility depends greatly on the contents of the
digital library.

Cluster-based probability modeling: audiovisual
patterns. As previously mentioned, theMRF can theo-
retically represent any pattern, but is typically only
good at capturing low-order interactions due to the
complexity of its parameter estimation. The mandrill
fur is a typical example of what it is good at synthe-
sizing. TheMRF fails at capturing patterns like those
shown in the top row of Figure 7 (from the Brodatz41

album). To capture more complicated structures than
in microtextures, we now consider a higher-order
probabilistic model.

The key problem with increasing the order of a proba-
bilistic model is that it exponentially increases the
space of possibilities. For example, to consider joint
interactions among a set of 14 pixels in a 256 gray-
level image results in 2112 possibilities. This number
dwarfs even the total number of images all of human-
kind could have ever seen, a mere 270 possibilities.
(The latter assumes 10 billion humans with their eyes
open 24 hours per day, watching 30 frames per sec-
ond, living 100 years each.) Clearly, a model dealing
with this many possibilities will run into practical
problems.

The approach taken to make this model practical is
described in Reference 42. To illustrate its power at
capturing both microtexture features and higher-struc-

tured features, its parameters have been trained on five
patterns shown in Figure 7, using 14th order joint
probability statistics. To jointly model 14 variables is
a significant increase over theMRF; the latter is com-
putationally tractable usually only for up to 3rd-order
joint statistics. A multiresolution maximum-likeli-
hood method was used to synthesize textures from the
model parameters; these results are shown in the bot-
tom row of Figure 7. Notice that the probability distri-
butions did not involve enough variables to enforce
globally regular structures; nonetheless, much of the
character of the original is present in the full-resolu-
tion result. For example, the probabilistic model
trained on the wire mesh in the first column captures
relatively high-level features such as shading, bend-
ing, and even occlusion of the wire strands.

The cluster-based probability model implemented
here is related to several other models, such as Gauss-
ian mixture models; these relations, along with the
application of this model to image restoration and
compression, are discussed further in Reference 43.
One of the drawbacks of the model is that it presently
requires a lot of parameters compared to other texture
models. Research is under way to determine how the
parameters can be leveraged across large classes of
patterns, to make the model more efficient for use in
digital libraries.

The cluster-based probability model has recently been
shown to be capable of realistic sound texture synthe-

Figure 7 Top row: 256 by 256 patches used to train cluster-based probability models. Bottom row: deterministic
multiresolution synthesis. The textures are, from left to right, D1 (aluminum wire mesh), D15 (straw), D20
(magnified French canvas), D22 (reptile skin), and D103 (loose burlap).
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sis,44 and to perform well on certain perceptual simi-
larity comparisons of sounds.45 Indeed, a truly
effective society of models will include models that
work not just for visual features, but also for arbitrary
perceptual and semantic information features. Digital
libraries often contain mixed media such as audio and
image; models that can handle multiple media offer
savings in design time, development time, and overall
system cost.

A new Wold model for perceptual pattern match-
ing. What features are important to people when mea-
suring similarity in pictures? A perceptual study by
Rao and Lohse46 has shown that the top three features

may be described by (1) periodicity, (2) directionality,
and (3) randomness. A model that explicitly gives
control over these features would potentially provide
more perceptual control over pattern formation and
visual queries.

In statistics, there is a theorem by Wold that provides
for the decomposition of regular1D stochastic pro-
cesses into mutually orthogonal deterministic and sto-
chastic components. For images, this results in a
decomposition into three components, which approxi-
mately correspond to periodicity, directionality, and
randomness. As such, the Wold model is one of the
few models that has intuitive parameters, or semantic

Figure 8 Two examples of using Wold features for pattern retrieval, searching for patterns similar to the pattern at upper
left
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“control knobs.” An implementation of this model for
analysis and synthesis of homogeneous textures can
be found in Reference 47.

For the purposes of image retrieval, we have devel-
oped a new implementation of the Wold model. This
implementation facilitates the finding of perceptually
similar patterns in a database containing both homo-
geneous and nonhomogeneous textured images.48

When the user selects a given image, similar-looking
images are retrieved. Examples are shown in Figure 8.
The upper left image in each of the two parts of the
figure is the one selected by the user. The images that
follow represent the closest images in raster-scan
order from the selected image. Although the images
here are from the Brodatz database, they could just as
well be from a large database of fabrics, tiles, wall-
coverings, and other textiles, facilitating searches by
consumers and designers.

Although the Wold model was found to be the most
successful of five texture models48 for retrieval in the
Brodatz database, it is not necessarily the best for an
arbitrary set of imagery. To summarize, its strengths
appear to lie in natural pattern similarity, especially
when periodicity, directionality, and randomness are
distinguishing features. One of the weaknesses can be
seen in the second row of Figure 8, in the right-most
image, where round stones were retrieved, due largely
to the presence of high contrast horizontal edges near
the center of this image.

Stochastic model for temporal textures. Video is
full of motion, providing a new challenge for texture
models. Some motions are rigid, like a car moving
across a scene, and can be captured by simple non-
textural models. However, motions such as blowing
leaves and wavy water are nonrigid, and require mod-
els that exploit local collective properties—temporal
texture models.

Temporal texture is a relatively new research area;
only in the last few years have researchers been able
to deal with the growth in computational complexity
and storage caused by an extra dimension of raw data.
Our work in this area has focused on treating video as
a spatio-temporal image volume. Patterns in the vol-
ume show up as a result of periodic or random
motions—for example, a person walking across a
scene results in a periodic braided pattern at leg-
level.49 The types of queries we hope to address with
this research are queries such as “find scenes with
moving water,” or “are there other scenes where a per-

son is walking?” Like spatial texture, temporal texture
will need to be augmented with other information
before it can address relational queries such as “find
dogs chasing cars.”

In an effort to first formulate a general temporal tex-
ture model, a linear auto-regressive model (of the
auto-regressive moving average [ARMA] family in
Figure 3)50 was extended for stochastic temporal tex-
tures. The standard2D model was augmented to form
a linear spatio-temporal auto-regressive (STAR)
model, which predicts new image values based on a
volume of values lagged in space and time.51Using the
STAR model, parameters for stochastic temporal tex-
tures were estimated, and the motions were resynthe-
sized from the parameters. Resynthesis of motion
textures such as steam, river water, and boiling water
were found to look natural. These patterns might be
thought of as temporal microtextures in that their per-
ceptual characteristics are well-captured by pair-wise
(2nd order) statistics over a small volume of the data.

Figure 9 Top: original river video sequence. Bottom:
synthetic sequence made from STAR model,
illustrating similarity to the original.
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An “x-y-t” volume of an original river sequence and a
synthetic river sequence are shown in Figure 9, show-
ing how perceptually similar they appear even though
the one at the bottom was synthesized from model
parameters. Although theSTAR model was found to be
strong at characterizing such homogeneous temporal
textures, it was not found to be able to capture the
structure in less homogeneous temporal patterns, such
as swirling water going down a drain. Such patterns,
like their spatial counterparts, seem to require either a
larger joint interpixel characterization, or coupling
with some global structure, as provided by theMRF
external field. Nonetheless, a digital library might
contain data for which theSTAR model is the best
choice. Alternatively, a model that directly incorpo-
rates mechanisms of swirling and other fluid motions
might be better for some types of queries. The sixth
model, described next, is an example of a model with
explicit physically motivated mechanisms to control
motion behavior.

Synthetic flames via polygonal particle systems.
One of the most challenging temporal textures to
model is fire. Fire is one of nature’s greatest actors,
able to evoke a wide range of feelings through its
emotional and destructive power. For filmmaking, fire

is extremely difficult to control, and results in the
expensive construction and subsequent destruction of
objects on the set. Valuable resources are spent trying
to exploit the power of fire through pyrotechnic tech-
niques, and ultimately the range of available effects is
limited by the laws of physics.

We have developed an interactive model for synthe-
sizing fires that look real, respond properly to wind
and gravity, light their environment, and spread over
and char3D objects.52 The flames are rendered using a
technique based on modified particle systems. Each
particle is a shaded translucent polygon, which com-
bines with others to build the flickering flames. The
flames are coupled with a physically based spreading
mechanism to achieve realistic movement around
polygonal 3D objects. The model parameters were
designed to give graphic engineers semantic control
knobs to change factors such as flammability of the
underlying material or velocity of the wind, and to
have the fire respond in the expected natural way. The
resulting model makes it easier for realistic-looking
synthetic fires to be placed into both artificial and nat-
ural scenes. Hence, the model avoids the costs and
dangers associated with real fires, while giving a
greater possible variety of effects. Additionally, the
parameters can be set to control flame density, shape,
blending, and noisiness, allowing nonphysical special
effects. A few flames are shown in Figure 10.

Models with semantic parameters such as this flame
model have a variety of uses beyond synthesis. As
designers construct digital libraries of synthetic video
and graphics, it becomes useful to use synthesis
parameters for retrieval: “what was the name of that
file that contained flames blowing in the wind but not
spreading?” It is also possible that some of the param-
eters of the synthetic models might be estimated from
natural footage, given that the parameters are physi-
cally motivated; this is an unexplored research area.
Currently, the model parameters also allow fast and
easy manipulation, so that a user may craft a variety
of fires (candle flame, roof fire, etc.) either for modi-
fying a particular retrieved scene to be closer to what
the user wants, or for creating a prototype to search
on. An example is “find fires spreading up vertical
structures.”

Systems for browsing, retrieval, and
annotation

The six models previously highlighted do not solve all
the problems in texture modeling, muchless all the

Figure 10 Synthetic flames
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problems in digital libraries. However, they illustrate
a variety of areas of expertise, which can work indi-
vidually or collectively to assist in representing,
manipulating, comparing, recognizing, and annotating
data in digital libraries. Which one or ones should be
used? Unless a digital library contains a highly
restricted set of data, which is known in advance, we
cannot expect a single model to be best at all the tasks
demanded of the digital library. A model that is good
for finding flames that move in a particular way is
probably not going to be good for finding particular
human motions. In this section I briefly survey two
systems we have built that incorporate vision texture
and a society of models for assisting in browsing,
retrieval, and annotation of image and video. Both
systems are flexible in their abilities to incorporate a
variety of models. The first depends on the user to
select the models; the second learns to select or com-
bine models automatically.

Photobook: browsing and retrieval. Both academic
and industrial scientists have begun researching and
developing systems to assist users in navigating
through digital imagery. Some of the earliest and larg-
est research efforts have been atIBM Almaden,53 the
Institute of Systems Science (ISS),54 andMIT.55 Early
results have already been made into products, and can
be explored interactively on the World Wide Web.56,57

The first system developed at theMIT Media Labora-
tory was Photobook. Photobook is an interface that
displays still images and video keyframes, and offers
access to a variety of tools for browsing and retrieval.
Photobook currently interfaces to databases including
faces, animals, artwork, tools, fabric samples, brain-
ventricles, and vacation photos. Depending on the cat-
egory of images, different algorithms are available for
assisting in retrieval. Each image has precomputed
(off-line) features associated with it, so that when a
user selects an image of interest, the system instantly
updates the screen showing other images in the data-
base most similar to the selected image.

The problems of what models to use for image repre-
sentation and how to measure image similarity are
challenging research problems for the image process-
ing community.58 Photobook, like the systems of Ref-
erences 56 and 57, allows the user to select manually
from a variety of models and associated feature com-
binations. As a research tool, Photobook assists in
rapid benchmarking of new pattern recognition and
computer vision algorithms. An example interaction
with Photobook, looking at video keyframes, is shown

in Figure 11. The query is “Are there any images sim-
ilar to the image of the violin player shown at the top
left?” After searching a database of several hundred
video keyframes, the result is the series of images
shown in the figure, ranked by similarity to the query
image in terms of their visual content.

Experience interacting with the Photobook system has
taught us that although it saves time in browsing and
retrieval tasks, the job of selecting which model to
use, or which combination of features for searching is
generally nonintuitive. Although an expert who works
with the models can learn which of them tend to work
best on which data, this kind of expertise only holds
across uniform databases, such as fingerprint images
or face images. For general consumer photos, stock
photos, or clip-art services, there may not be one win-
ning model or fixed combination of models, but these
may need to vary within the database, or vary with
each new search. Even the expert with good intuitive
understanding of the features rapidly becomes frus-
trated at how often the settings to combine features
need to be changed for optimal performance.

The model combination in Photobook and similar
industrial systems is feature-based, and tends to be
limited to linear combinations of features—e.g., “Use
60 percent of texture model A, 20 percent of texture
model D, 10 percent of color model B, and 10 percent
of shape model A.” Unfortunately, users do not natu-
rally sort images by similarity using this kind of lan-
guage. In particular, as the dimensionality (based on
total number of model features) increases, intuition
about how to pick relative weightings among features
is lost. The need to determine all the weightings for
multiple features, and hence for the society of models,
is a problem that plagues all existing retrieval systems
to date. A solution to this harder problem was a key
motivation for the system described next.

FourEyes: learning from user interaction. People
have different goals when they interact with a digital
library retrieval system. Even if they are nominally
interested only in annotation, or only in retrieval, they
are likely to have different criteria for the labels they
would give images and the associations they would
like retrieved. These criteria tend to be data-depen-
dent, goal-dependent, culture-dependent, and even
mood-dependent. On top of this unpredictability, the
average user has no idea how to set all the system
knobs to provide the right balance of color, texture,
shape, and other model features to retrieve the desired
data.
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A society of models is most powerful when the mod-
els are well-matched to the problems, where the prob-
lems may depend significantly not just on the data, but
on the present user’s notion of similarity. The request
“find more exampleslike this” has many right
answers, and different models or model combinations
may perform best for different answers. We have
found that combinations of low-level models well-
chosen to suit a particular task can outperform single

more sophisticated models that do not suit the task
well. We have also found cases where a single sophis-
ticated model can outperform combinations of low-
level models. What is needed is a system that can
learn how to best exploit multiple models and their
combinations, freeing the user from this concern.

Our goal has been twofold: to develop a system that
(1) can select the best model when one is best, and

Figure 11 Photobook vision-based content query: a series of images selected based on the original in the top left
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figure out how to combine models when that is best,
and (2) canlearn to recognize, remember, and refine
best model choices and combinations, by looking
both at the data features and at the user interaction,
and thereby increase its speed and knowledge with
continuous use. The system FourEyes was developed
for this two-part goal.

FourEyes not only looks at precomputed features
of the data (as does Photobook), but additionally,
FourEyes looks at the user’s interaction with the data.
The user can give the system examples of data in
which the user is interested, e.g., by clicking on some
buildings and then on the “positive” example button.
The user can also give negative examples, providing
corrective feedback to the system. The use of the
FourEyes user examples is a kind of relevance feed-
back, a well-known and powerful technique used in
the latest text-based retrieval systems. However,
FourEyes goes beyond relevance feedback in its abili-
ties to combine models and to learn.

Given a set of positive and negative examples,
FourEyes looks at all the models and determines
which model or combination of models best describes
the positive examples chosen by the user, while satis-
fying the constraints of the negative examples.
FourEyes is able to choose or combine models in
interactive time with each set of positive and negative
examples, allowing the features used by the system to
change with each query.

FourEyes achieves model combination by multiple
stages of processing. Instead of combining features in
a numerical feature space (say, by concatenating all
the model features into one vector and conducting
some kind of subsequent feature selection or linear
feature combination), FourEyes abandons numerical
feature spaces after they have been used for an initial
(first-stage) off-line formation of groupings. This is a
key step that distinguishes FourEyes from other exist-
ing systems that work with multiple models. The
groupings in FourEyes act as a new language through
which models can interact; all the models can group
all the data, either individually or cooperatively. The
problem at this point becomes which models best
group the data of interest to the user.

The final stage of the model combination involves an
on-line learning method. FourEyes can currently use
one of several possible methods (e.g., set cover, deci-
sion list, or decision tree) to choose which groupings
best cover the user’s positive examples, cover none of

their negative examples, and satisfy some additional
criteria. (See References 59 and 60 for details on the
learning, as well as on other stages of processing in
FourEyes.) The learner can select groupings all from
one model, or groupings from any combination of the
models available to it. FourEyes might, for example,
use a mixture of groupings from motion, color, and
texture models.

It is important to emphasize that FourEyes is a learn-
ing system; itlearns which methods of combination
best solve a particular problem, and remembers these
combinations. In this sense it is quite different from
traditional relevance feedback systems. When pre-
sented with a new problem similar to one FourEyes
has solved before, then FourEyes can solve it more
quickly than it could the first time. If the new problem
is dissimilar, then FourEyes learns a new combination
of models for solving it. FourEyes gets faster as it sees
problems similar to those it has seen before. (Faster is
defined by an ability to retrieve or label the desired
concepts given a smaller number of examples of what
the user wants.) FourEyes has also demonstrated
faster learning across new related (but different) prob-
lems.60 Current research on FourEyes aims to improve
its abilities as acontinuous learner, using knowledge
from problems it has been trained on to improve its
performance across new problems for which it has not
been trained. This is important in digital libraries,
enabling users to change their minds and queries as
they see more of the available data.

Power-assisted annotation. Much of image retrieval
depends on text descriptions, orannotations, which
have been tediously typed in by humans. Ideally,
semantic annotations and perceptual image features
work together, with annotations describing visual
relations, and visual features helping to propagate
annotations to “visual synonyms.”61 The first version
of FourEyes was designed to use vision texture and a
society of models to assist the user in annotation.

In annotation, the user labels prototypes in a handful
of images, and FourEyes then labels the rest of the
database based on the examples of the user. Figure 12
shows an example annotation—the user selected two
patches and labeled them “building” (red boxes indi-
cate patches selected by the user), two patches of
“car” and two patches of “street.” The system then
responded by finding the 31 additional labels shown
in Figure 12. At the same time, the system went
through all the other images in the database, and
labeled other places it found to “look like” building,
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car, and street. In small-scale tests on a set of vacation
photos, this power-assisted annotation process cut the
cost of annotating by more than 80 percent.62

Once images are partially annotated, retrieval systems
can use semantic search criteria as well as the present
visual-feature-based criteria. For example, after using
FourEyes to annotate less than 20 percent of the Brit-
ish Telecommunications (BT) image database, queries
for “semantically similar” scenes could be made, as
illustrated by Figure 13, where an image was retrieved

as similar if it contained a similar percentage of
regions with labels of building and street. The loca-
tion of the labeled regions was not considered, but
only their relative area within the image. Effectively
the model is a histogram of labels, equipped with a
distance on the histogram. At this semantically
labeled stage there are many existing tools available
that can be used, e.g., an on-line text thesaurus.

It is worth mentioning that no one model available to
FourEyes was able to represent the variety of build-

Figure 12 Screen shot of FourEyes during the labeling of examples of building, car, and street
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ings and streets shown in Figure 13. Instead,
FourEyes constructed a concept of “building” and a
concept of “street” by combining groupings found by
several different models. The exact combinations are
transparent to the user, but are learned by the system
for speeding up future similar requests.

In general, the performance of power-assisted annota-
tion depends on the data, the nature of the annota-
tions, and the learning algorithm. A benefit of
building a learning algorithm into an annotation sys-
tem is that the FourEyes system saves the most useful
label-visual feature associations, essentially con-
structing a representation that acts as a “visual thesau-
rus.”61 A cluster labeled “building” that looks like

white buildings viewed from a sharp perspective can
therefore get associated with a cluster labeled “build-
ing” that looks like white-trimmed, red brick from a
different perspective. Different prototypes of visual
building become linked to the same semantic label.
Not only does the system accumulate knowledge and
improve its performance, but it ultimately helps vision
researchers study the connections between high-level
visual descriptions and low-level vision texture.

The learning ability of FourEyes allows retrieval algo-
rithms to be customized for each user’s goals, while
freeing the user from having to figure out how to
hand-set the nonintuitive weights and combinations of
the model every time the user’s query goals change.

Figure 13 Results after labeling data in FourEyes. “Computer, go find scenes like this one (upper left), with buildings or
street.”
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The reliance on the society of models by FourEyes
means that it can simultaneously provide for many
notions of similarity—including color, texture, shape,
motion, position, and even user-defined subjective
associations. The latter are particularly important as
many queries (indeed, the most common ones for
stock photos in advertising63) are for images with a
certain “mood.” Giving computers the ability to learn
about affect will make huge new demands on tools for
learning and pattern modeling, but is essential for
improving their performance in tasks involving
human interaction.64

Summary

This paper surveys recent research in the Vision Tex-
ture group of theMIT Media Laboratory. This research
broadens the definition of texture to include all signals
best described by collective properties of low-level
features—for images, the visual equivalent of “mass
nouns.” Several texture models have been investi-
gated, including reaction-diffusion, Markov random
fields, cluster-based probability distributions, Wold
features,STAR models, and modified particle systems,
for describing combinations of visual features that
occur in image, video, and graphics. This paper
briefly describes each of these models, highlighting
their strengths, relations to other models, and poten-
tial uses in digital libraries.

Understanding multiple models and their interactions
is an essential part of a greater goal, the construction
of an effective “society of models.” The society of
models approach allows a system to flexibly choose
the best solution, whether it is a combination of low-
level models or a single sophisticated model. This
approach is especially important in interactive sys-
tems for image browsing and retrieval, where a vari-
ety of models tailored to different goals are necessary
for best performance.

This paper describes two such systems for interactive
browsing, retrieval, and annotation of image and
video data. One of these systems, FourEyes, looks not
only at precomputed features of the data (like the
other system, Photobook), but also looks at the user’s
interaction with the data. Using a learning algorithm,
FourEyes determines which models or combinations
of models perform best for the user’s task. It accumu-
lates knowledge from the user, becoming more effec-
tive with increased use. Together, the vision texture
models and learning algorithm contribute to new sys-
tems that save the user’s time organizing, manipulat-

ing, browsing, querying, and annotating large sets of
visual information.

Additional technical information on this topic is avail-
able in Reference 65.
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