A society of models
for video and image
libraries

I
by R. W. Picard

The average person with a computer will soon
have access to the world’s collections of digital
video and images. However, unlike text that can be
alphabetized or numbers that can be ordered,
image and video has no general language to aid in
its organization. Tools that can “see” and
“understand” the content of imagery are still in
their infancy, but they are now at the point where
they can provide substantial assistance to users in
navigating through visual media. This paper
describes new tools based on “vision texture” for
modeling image and video. The focus of this
research is the use of a society of low-level
models for performing relatively high-level tasks,
such as retrieval and annotation of image and
video libraries. This paper surveys recent and

ing relatively high-level decisions about images. Such

features tend to produce faster results than the tradi-
tional computer vision algorithms aimed at construct-

ing detailed representations of everything in a picture.

In this paper | describe several of the models we have
explored, and the important additional step of com-

bining them into systems that interact with humans.

Vision texture

Consider a computer solution to the scenario previ-
ously described. A simple measure of local orienta-
tion over scale, a low-level operation designed to
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present research in this fast-growing area. mimic part of what scientists believe occurs in the

human visual systehi was used with some simple

decision rules for classifying a set of 98 vacation pho-
tos. Based on only a quick decision with the low-level
orientation information, 91 out of 98 of the photos

ture. Suppose you have a set of vacation photosVere correctly classified into the categories “city or
of Paris and the surrounding countryside, and you suburb” or “other? Two of these photos are shown in

accidentally drop them on the floor. Although they are Figure 17 The careful use of low-level collective
out of order, you pick them up, sorting them back into Properties of image data for relatively high-level
two stacks—city and country. With only a quick Visual tasks is referred to aision texture

glance at each photo, you are able to re-sort them to

the right categories with high accuracy. How do you Low-level features such as color and texture are not

do this so quickly, without taking time to look at the Just for low-level tasks. Although vision texture is not
precise content of each photo? sufficient for completing high-level relational tasks

such as “find an image with an oak tree on the left and
In this scenario, and many other picture recognition & lake on the right,” there are numerous demonstra-

and sprtlng ta.SkS’ people "?‘pp‘?‘ar FO use relaslve.ly low ©Copyright 1996 by International Business Machines Corpora-
level mfo_rr_natlon for_ maklng qu'Ck glance hl_gh- tion. Copying in printed form for private use is permitted without
level decisions. Studies have shown that even pigeonsyayment of royalty provided that (1) each reproduction is done
with their pea-sized brains can discriminate images of without alteration and (2) thiournalreference and IBM copyright
water and treésas well as impressionist and cubist nor:ice are includfedh(_)n the first pa%e. The_ tidtle argjq a_tl))stragt, butI no
o - : other portions, of this paper may be copied or distributed royalty
palntlngs% Insplred by these. kinds  of SUCCGSSfL.H free without further permission by computer-based and other infor-
behavior, we have been exploring the use of collective mation-service systems. Permissiondpublishany other portion

low-level features, such as texture and color, for mak- of this paper must be obtained from the Editor.

( :onsider the following scenario about vision tex-
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Figure 1 Quick glance recognition: city or country?

tions of the success of vision texture for achieving or three that follow. These three properties are not mutu-
helping achieve relatively high-level tasks. Swain and ally exclusive, but are separated for easier discussion
Ballarc illustrated the use of simple color histograms of how they influence applications.
for retrieving images from a diverse database, and
Syeda-Mahmood has shown how a combination of Property 1: lack of specific complexifyhe first prop-
color and texture features can speed up selection oferty is illustrated by considering three categories of
items of interest in photdsTexture has also been patterns, shown by the one-dimensiona) (strings
shown to be powerful for recognition of motiofs. of letters in Figure 2. (These strings were inspired by
the discussion of different kinds of entropy in Refer-
Texture: beyond the traditional definition. There is ence 11.)
much more texture in the world than most people real-
ize. Texture is ubiquitous; it is felt on the tiny surface The first string (String 1) is @ periodic texture. It
of a shriveled pea, can be heard in the interwoven has a basic primitive, a specific set of rules for replica-
melodies of a fugue, can be seen in the rocking tion of the primitive, and allowance for minor pertur-
motion of a boat, and even shows up in human affectbations. The primitve may be complex, but its
and behavior patterns. Eluding precise definition, tex- complexity is leveraged over the whole pattern, result-
ture is usually distinguished by being tactile, pat- ing in low overall complexity as the string becomes
terned, rhythmic, or noisy. longer. Periodic textures like this show up in physical
materials such as nylon and crystals, and in audio seg-
It is generally an ill-posed problem to say “find the ments such as the sound of a copy machine repeatedly
texture in this picture.” Texture eludes precise defini- sounding “ker-chunk ker-chunk slurp,...” Periodic
tion. Some researchers define it like pornography, textures also occur in two-dimensionab) imagery
“you know it when you see it.” | find it helpful to list  of tile floors, and in repetitive space-time patterns
properties usually associated with texture, such as thesuch as the two feet of a person riding a bicycle.
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, — : . odicity along the other. The Wold model, which will
Figure 2 Defining texture: two texture strings and a 2 . .
third string that is not a texture be highlighted later, is based on such a separation of
random and deterministic components.

There is no hard boundary between the three cases.

HiccupHiccupHiiccup Consider the following two examples:
sh ysSTehtignaSio m
This Says Something Example 1: String 3 can be replicated, resulting in a

periodic texture like the case of String 1. The bound-
ary between nontexture and texture is analogous to
the boundary between nouns used for counting and
nouns used to describe mass: Asking how many repli-
chastic texture, perhaps generated with a randomC&tions of a nontexture it takes to make a texture is
number generator or filtered noise. A random I|I_<e asking how many grains of sand it takes to make a
sequence may look complex, but it has no specific pile.

order; it is characterized by a probability distribution. ) )
Random polymers, the sound of applause, and nucleicExample 2: String 3 can be gradually permuted until
acids are otherp examples; turbulent water and the the order is no longer recognizable as a meaningful
footsteps of children playing tag make higher-dimen- Sentence, and it becomes like the case of String 2. An

The second string (String 2) is a sample abasto-

sional stochastic textures. analogy in the image domain would be to overlay
multiple views of a face, so that it suddenly had multi-
The third string (String 3), like the structure miA ple eyes, noses, and mouths, no longer in the expected

(deoxyribonucleic acid) and proteins, is distinguished SPecific arrangement. The result is an effect similar to
by having both specific order and complexity. that achieved by Picasso with cubism, and may
Although it is an anagram of the second, and may be€xXplain why people (and pigeons, perhaps) sometimes
extracted from the same probability distribution, its think such paintings look like textures.

specificity makes it qualitatively different. (Note that ) )

Shannon deliberately left “meaning” out of his proba- Property 2: high frequencieslthough both texture
bility-based information theor) This third string  and nontexture can contain high-frequency changes,
and its higher-dimensional analogues are not textures.these tend to occur more with texture. This property is
For example, an analogous image would be a humanperhaps most important, and annoying, to researchers

face; without its underlying specific arrangement of in image coding where standardized coding methods
eyes, nose, and mouth, it would cease to be recog-Utilize basis-functions such as the discrete cosine

nized as a face. A single face is not a texture. transform. These methods attain the best compression
in smooth (low-frequency content) areas, so that pic-
Note that my use of “texture” here includes most tex- tures with lots of texture tend to be hard to compress

tures used in computer graphics, but is not as broad agfficiently.

the use of the term “texture” in the “texture-mapping”

literature. The latter refers to arbitrary pixel maps Note that extreme smoothness can still be considered

placed over a three-dimensionab) structure to add  to be a texture, especially in the tactile domain (“feel

realism to the scene. In computer graphics, an imagethe ‘silky smooth’ texture of this garment”) but in dig-

of a face might be “texture mapped” onto polygons or ital imagery, smooth regions generally are considered

a finite-element mesh to render a more real@tic  as nontextured.

face. The face is not a texture by the properties out-

lined here, but is being treated like a texture with Property 3: restricted range of scal@extures, unless

respect to the surface onto which it is being mapped.they are truly fractal tend to exist over a finite range

Similarly, a texture image such as sand might be tex- of scales. Tree bark may look smooth from a distance,

ture-mapped onto 3D polygon shaped like a mound grooved as you move in closer, and pitted when you

to render the effect of # pile of sand. press your nose to the trunk. A brick wall looks peri-
odic from a distance, but loses its periodicity when

The three strings may also be combined in higher you are so close that you can see only a few bricks.

dimensions. For example, an image of a plowed field This lack of persistence of texture over scale compli-

combines randomness along one direction with peri- cates the association of objects with texture; a range
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of scale and “typical views” must be a part of the Figure 3 contains several models that have been used
association. in computer vision, image processing, and computer

graphics. Some of these are general enough to repre-
Scaling similarity also shows up in a less obvious way sent arbitrary signals and may be used for synthesiz-
—across very different phenomena at different scales.ing data—perhaps for simultaneous compression and
In his delightful book on patterns in nature, Stetens recognition in digital libraries. Other models only
shows pictures of gas clouds and of milk poured into a capture some features of a given signal that are useful
black slate sink—two different materials at scales for recognition or query. “Analysis” usually refers to
ranging from a centimeter to over ten quintillion kilo- the estimation of features or parameters of the model.
meters, both of which can be generated as “turbu- Sometimes model features might be used (for exam-
lence” textures. Stevens examines many of the ple, within an optimization framework) to approxi-
common behaviors of natural patterns, including close mate a reconstruction to the data, but in general they
packing, spirals, branching, shrinking surfaces, and need not be sufficient for reconstructing the data.
turbulence—revealing a small number of underlying Such features might be useful, however, for discrimi-
mechanisms responsible for an astronomical variety nating among several categories of data. Both kinds of
of patterns. This variety of mechanisms for forming models—those that can resynthesize the data, and
patterns in nature suggests that we might find morethose that cannot, have applications in digital librar-
than one model useful in forming digital patterns. ies.

The three properties just described—lack of specific One of the realities of research is that each model
complexity, presence of high frequencies, and tends to have a trendy period of use, and then it is
restricted scale—hint at the difficulty of characteriz- apandoned in pursuit of a presumably newer and bet-
ing textures, but more importantly, illustrate an ter model. Instead of searching for one “best” model,
expanse of possible forms. Texture occurs in audio, the approach here is that it is important to study a
chemical structures, motion, imagery, and even variety of models, to learn what they do best, and to
human behavior patterns. A significant research chal-jearn how they may be effectively combined. This
lenge is to develop a family of models useful for rep- approach shares the spirit of Minsky’s Society of
resenting, manipulating, comparing, and recognizing Mind,s whereby specialized agents, or models in this
textures in digital libraries. case, interact to make sense of what they see. Just
because a model is capable of representing everything

In the rest of this paper, the focus will be on texture does not mean that it is the best one to use for every-
models for image and video and on the systems wething.

have developed using vision texture for applications

such as browsing, retrieval, and annotation. In the rest of this section | will survey six models that

have been the focus of our recent research. These six
models are chosen to represent a variety of forms,
including deterministic, stochastic, mixed, linear, and
A ski jumper “shoots” out of the starting gate, speeds nonlinear forms. Some have parameters that are phys-
down the snowy slope, forms an airfoil—flying— ically motivated, some that are perceptual, and some
steady—then lands. To predict the jumper's motion, that are semantic. Most can be applied to arbitrary
one might picture a straight trajectory lifting at the top digital signals, although the emphasis here is on mod-
of the hill, lowering at the bottom, and followed by a eling imagery in space and time. Information on the
switch into two possibilities at the instant of landing. other models in Figure 3 can be found in the refer-
At that instant, the predictor may switch from a ences, especially overviews such as Reference 16 and
“straight-ahead” model, to a “tumbling-out-of-con- Reference 17. There is not space here for equations
trol” model. Two models—straight, or random—are and details, but these are referenced for each model.
useful for efficiently describing the motion. Similarly The focus in the descriptions that follow is to famil-

in football, whether we watch the motion of the ball iarize the reader with each model, highlight some
being passed, carried, or fumbled, we switch naturally apparent strengths and weaknesses of each model, and
between different mental models of prediction. The point to important relations between the models. A
right repertoire of models, and their proper combina- following section of this paper then discusses two sys-
tion, is more effective than trying to use one model for tems we have built that rely on a society of models for
all tasks. more effective performance.

A society of models
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Figure 3 A society of models. Although some of these can model any signal, each has different strengths and
weaknesses.
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Figure 4 Biological patterns like these can be mimicked by digital texture models.

Reaction-diffusion models: beyond zebra stripes  description of most natural patterns involving spots
and leopard spotsNature appears to use simple non- and stripes.

linear mechanisms for pattern formation,noorpho-

genesis For example, butterfly wings exhibit a great Turing proposed in 1952that dappled patterns could
variety of patterns, all of which must be produced be synthesized by a set of coupled nonlinear partial
within a simple, light-weight, insect structure. The differential equations known as raaction-diffusion
spots and stripes on lepidoptera are also found onsystem. Under certain conditions, reaction-diffusion
brightly-colored tropical fish, zebras, leopards, tigers, models also can be used for analysliaspired by
cheetahs, birds, and more. In a digital library of such Turing’s work, we have developed a new nonlinear
imagery, one might expect a reaction-diffusion model “M-Lattice” model that solves the biggest practical
to be powerful for both representation and retrieval. problem of the original Turing model (boundedness),
The painting by Lenore Ramm in Figure 4 illustrates and is still good at making spots and stripes.

some of the variety of animal patterns that are well

modeled by digital texture models. In particular, reac- Figure 5 demonstrates an application to halftoning,
tion-diffusion models may be used for efficient the representation of gray-level images by black spots
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Figure 5 Use of a reaction-diffusion model (stripes and spots) for halftone images
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on a white backgrourdIn Figure 5, a reaction-diffu-  problems, such as the creation of the “Wall Street
sion model was used to make a “faithful” halftone in Journal style” halftone, that grows patterns along
Figure 5A, a “special effects” halftone in 5B, and, visually dominant directions, much like the hand-
using an original noisy fingerprint image (5C), a drawn versions made by artistsThe basic idea here

binary enhanced fingerprint image in 5D. The new M- is that the error introduced by halftoning gets pushed
Lattice solves a variety of nonlinear optimization into perceptually favorable directions, along lines that
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already exist in the image. We have also demonstratedfor its ability to relate the Markov conditional proba-
the creation of color halftones with these effects using bilities to the Gibbs joint probability. It can be easily
the M-Latticez incorporated into a Bayesian framework, making it
flexible for a variety of applications.
Stripes, such as those on zebras and fish, are well-
modeled by the nonlinear Turing and corresponding Hassner and SklansRyappear to have been the first
M-Lattice models. However, digital libraries of zebras to suggest the use of Markov and Gibbs models for
and fish are not presently as abundant as those of finimage texture. Cross and Jilconducted the first
gerprints. Human fingerprints, which resemble bifur- explorations of theiRr for gray-level texture model-
cating stripes on zebras, have recently beening and showed that it generated natural-appearing
successfully modeled with the new M-Lattice for the microtextures such as grass or sand. A Gaus&kan
purposes of enhancement and binarization. Instead ofhas been applied to texture classification and model-
merely removing noise, the M-Lattice boosts the ing by Chellappa and Chatterjgé® and Cohen et &t.
underlying fingerprint pattern, effectively suppressing
unwanted noise and intensity variatiéhs. Given successful use in these small sets of data, the
MRF should also be useful in large digital library prob-
The reaction-diffusion model has found applications lems, when the library data are well-described by the
in image processing2computer visior¥? and com- model. For example, the aura framework derived from
puter graphic&2¢In the latter, the emphasis has been anMRF model has been shown to be useful for charac-
on synthesis, although the synthesizing parametersterizing spatial yields of semiconductor waf&rs.
could certainly be stored in a database of synthetic Searches through a database of wafer-yield imagery
imagery and used for data manipulation, annotation, might therefore favor this model for finding similar
and retrieval. The effectiveness of reaction-diffusion patterns.
as a biological model, not just for animal coat pattern
formation, but also for emergence of structure of all The interplay between microscopic dynamics and
kinds, is an ongoing research topic in mathematical macroscopic force, such as that associated with a
biology?” In the digital arena, the model has been phase transitich triggered by temperature, is an
most successful in the synthesis of textures or imagesimportant factor in natural pattern formation. The
comprised of spots and stripes. However, the model iseffects of a temperature parameter on pattern forma-
still new and largely unexplored. As a nonlinear tion with MRFs have been studi&tevealing relation-
model with a huge space of possible behaviors, it will ships between structuring models within math-
be some time before its strengths and weaknesses arematical morphology and the useful statistical fea-
fully characterized. tures of co-occurrencé However, these relationships
also indicate limitations on the patterns that can occur
Markov random field models: from grass and sand at low temperatur@&. Although in theory thearRF can
to monkey fur. The reaction-diffusion model is deter- model anything, these low-temperature relationships
ministic. However, there is another class of models point to weaknesses of th&kF model.
that bears a resemblance to reaction-diffusion but
which is stochastic—the class of Markov random In particular, although theirRF can make structures
field (MRF) models. Unlike most texture models, an such as the stripes and spots favored by the reaction-
MRF is capable of generating random, regular, and diffusion model, it does not typically make such pat-
even highly structured patterns. In theory, it can pro- terns unless coupled with an external structuring
duce any pattern. It does not just describe some charforce, or forced into a low-temperature stat&or
acteristics for distinguishing textures, but it can be example, running at low temperature on low-fre-
used for both texture analysis and synthesis. quency structural cloud images was successful at
simultaneously capturing cloud texture while preserv-
TheMRF has simultaneous roots in the Gibbs distribu- ing cloud shapé.In general, the expertise of ther
tion of statistical mechanics and the Markov models does not seem to lie in large-scale structured patterns,
of probability. The Gibbs distribution has a rich his- except in a few special cases, and when careful tem-
tory of applications in physics including the modeling perature control is exercised.
of lattice gases, molecular interactions in magnets,
and ordering processes in condensed matter. In com-The strength of theiRF appears to lie with homoge-
puter vision and image processing, ther is touted neous microtextures and simple attractive-repulsive
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Figure 6 lllustration of a strength of the MRF model. The top image is the 256 by 512 original; the bottom image is the
same except for two 64 by 64 patches of synthetic fur. Can you see them?

interactions. Figure 6 shows the use ofveeF model not typically successful on nonhomogeneous or non-
for synthesizing the microtexture of fur in two patches microtextures, and was not found to be successful
of a mandrill image. Details as to how this was done, when trained on other parts of the mandrill image. To
as well as its potential for model-based semantic summarize: in theory theRrRF can represent all pat-
image compression, are discussed in Reference 40terns; however, in practice, its strengths make it suit-
Although the model is successful for fur in this exam- able to only certain kinds of imagery that might occur
ple, the reader should keep in mind that the model isin a digital library. Like all the models we have exam-
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Figure 7 Top row: 256 by 256 patches used to train cluster-based probability models. Bottom row: deterministic
multiresolution synthesis. The textures are, from left to right, D1 (aluminum wire mesh), D15 (straw), D20
(magnified French canvas), D22 (reptile skin), and D103 (loose burlap).

ined, its utility depends greatly on the contents of the tured features, its parameters have been trained on five

digital library. patterns shown in Figure 7, using 14th order joint
probability statistics. To jointly model 14 variables is

Cluster-based probability modeling: audiovisual a significant increase over tivRF; the latter is com-

patterns. As previously mentioned, theérF can theo- putationally tractable usually only for up to 3rd-order

retically represent any pattern, but is typically only joint statistics. A multiresolution maximum-likeli-
good at capturing low-order interactions due to the hood method was used to synthesize textures from the
complexity of its parameter estimation. The mandrill model parameters; these results are shown in the bot-
fur is a typical example of what it is good at synthe- tom row of Figure 7. Notice that the probability distri-
sizing. TheMRF fails at capturing patterns like those butions did not involve enough variables to enforce
shown in the top row of Figure 7 (from the Brodatz  globally regular structures; nonetheless, much of the
album). To capture more complicated structures thancharacter of the original is present in the full-resolu-
in microtextures, we now consider a higher-order tion result. For example, the probabilistic model
probabilistic model. trained on the wire mesh in the first column captures
relatively high-level features such as shading, bend-
The key problem with increasing the order of a proba- ing, and even occlusion of the wire strands.
bilistic model is that it exponentially increases the
space of possibilities. For example, to consider joint The cluster-based probability model implemented
interactions among a set of 14 pixels in a 256 gray- here is related to several other models, such as Gauss-
level image results in2 possibilities. This number ian mixture models; these relations, along with the
dwarfs even the total number of images all of human- application of this model to image restoration and
kind could have ever seen, a mereé possibilities. compression, are discussed further in Reference 43.
(The latter assumes 10 billion humans with their eyes One of the drawbacks of the model is that it presently
open 24 hours per day, watching 30 frames per sec-requires a lot of parameters compared to other texture
ond, living 100 years each.) Clearly, a model dealing models. Research is under way to determine how the
with this many possibilities will run into practical parameters can be leveraged across large classes of
problems. patterns, to make the model more efficient for use in
digital libraries.
The approach taken to make this model practical is
described in Reference 42. To illustrate its power at The cluster-based probability model has recently been
capturing both microtexture features and higher-struc- shown to be capable of realistic sound texture synthe-
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Figure 8 Two examples of using Wold features for pattern retrieval, searching for patterns similar to the pattern at upper
left
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sis# and to perform well on certain perceptual simi- may be described by (1) periodicity, (2) directionality,
larity comparisons of sounds.Indeed, a truly and (3) randomness. A model that explicitly gives
effective society of models will include models that control over these features would potentially provide
work not just for visual features, but also for arbitrary more perceptual control over pattern formation and
perceptual and semantic information features. Digital visual queries.

libraries often contain mixed media such as audio and

image; models that can handle multiple media offer In statistics, there is a theorem by Wold that provides
savings in design time, development time, and overall for the decomposition of regulap stochastic pro-

system cost. cesses into mutually orthogonal deterministic and sto-
chastic components. For images, this results in a
A new Wold model for perceptual pattern match- decomposition into three components, which approxi-

ing. What features are important to people when mea- mately correspond to periodicity, directionality, and
suring similarity in pictures? A perceptual study by randomness. As such, the Wold model is one of the
Rao and Lohgehas shown that the top three features few models that has intuitive parameters, or semantic
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contro_l knobs.” An |m_plementat|on of this model for Figure 9 Top: original river video sequence. Bottom:
analysis and synthesis of homogeneous textures can synthetic sequence made from STAR model,
be found in Reference 47. illustrating similarity to the original.

For the purposes of image retrieval, we have devel-
oped a new implementation of the Wold model. This
implementation facilitates the finding of perceptually
similar patterns in a database containing both homo-
geneous and nonhomogeneous textured infages.
When the user selects a given image, similar-looking
images are retrieved. Examples are shown in Figure 8.
The upper left image in each of the two parts of the
figure is the one selected by the user. The images tha
follow represent the closest images in raster-scan
order from the selected image. Although the images
here are from the Brodatz database, they could just as
well be from a large database of fabrics, tiles, wall-
coverings, and other textiles, facilitating searches by
consumers and designers.

Although the Wold model was found to be the most
successful of five texture mod&lfor retrieval in the
Brodatz database, it is not necessarily the best for an
arbitrary set of imagery. To summarize, its strengths
appear to lie in natural pattern similarity, especially
when periodicity, directionality, and randomness are
distinguishing features. One of the weaknesses can b¢
seen in the second row of Figure 8, in the right-most
image, where round stones were retrieved, due largely
to the presence of high contrast horizontal edges neal
the center of this image.

Stochastic model for temporal textures.Video is son is walking?” Like spatial texture, temporal texture
full of motion, providing a new challenge for texture will need to be augmented with other information
models. Some motions are rigid, like a car moving before it can address relational queries such as “find
across a scene, and can be captured by simple nondogs chasing cars.”
textural models. However, motions such as blowing
leaves and wavy water are nonrigid, and require mod-In an effort to first formulate a general temporal tex-
els that exploit local collective properties—temporal ture model, a linear auto-regressive model (of the
texture models. auto-regressive moving averagerpiA] family in
Figure 3j° was extended for stochastic temporal tex-
Temporal texture is a relatively new research area;tures. The standazb model was augmented to form
only in the last few years have researchers been ablea linear spatio-temporal auto-regressiveTAR)
to deal with the growth in computational complexity model, which predicts new image values based on a
and storage caused by an extra dimension of raw datavolume of values lagged in space and titésing the
Our work in this area has focused on treating video assSTAR model, parameters for stochastic temporal tex-
a spatio-temporal image volume. Patterns in the vol- tures were estimated, and the motions were resynthe-
ume show up as a result of periodic or random sized from the parameters. Resynthesis of motion
motions—for example, a person walking across a textures such as steam, river water, and boiling water
scene results in a periodic braided pattern at leg-were found to look natural. These patterns might be
level® The types of queries we hope to address with thought of as temporal microtextures in that their per-
this research are queries such as “find scenes withceptual characteristics are well-captured by pair-wise
moving water,” or “are there other scenes where a per-(2nd order) statistics over a small volume of the data.
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Figure 10 Synthetic flames

An “x-y-t” volume of an original river sequence and a
synthetic river sequence are shown in Figure 9, show-
ing how perceptually similar they appear even though
the one at the bottom was synthesized from mode
parameters. Although tilsTAR model was found to be
strong at characterizing such homogeneous tempora
textures, it was not found to be able to capture the
structure in less homogeneous temporal patterns, suc
as swirling water going down a drain. Such patterns,
like their spatial counterparts, seem to require either a
larger joint interpixel characterization, or coupling
with some global structure, as provided by kirrF
external field. Nonetheless, a digital library might
contain data for which theTaArR model is the best
choice. Alternatively, a model that directly incorpo-
rates mechanisms of swirling and other fluid motions
might be better for some types of queries. The sixth
model, described next, is an example of a model with
explicit physically motivated mechanisms to control
motion behavior.

Synthetic flames via polygonal particle systems.

i

is extremely difficult to control, and results in the
expensive construction and subsequent destruction of
objects on the set. Valuable resources are spent trying
to exploit the power of fire through pyrotechnic tech-
nigues, and ultimately the range of available effects is
limited by the laws of physics.

We have developed an interactive model for synthe-
sizing fires that look real, respond properly to wind
and gravity, light their environment, and spread over
and chanbD objects? The flames are rendered using a
technique based on modified particle systems. Each
particle is a shaded translucent polygon, which com-
bines with others to build the flickering flames. The
flames are coupled with a physically based spreading
mechanism to achieve realistic movement around
polygonal 3D objects. The model parameters were
designed to give graphic engineers semantic control
knobs to change factors such as flammability of the
underlying material or velocity of the wind, and to
have the fire respond in the expected natural way. The
resulting model makes it easier for realistic-looking
synthetic fires to be placed into both artificial and nat-
ural scenes. Hence, the model avoids the costs and
dangers associated with real fires, while giving a
greater possible variety of effects. Additionally, the
parameters can be set to control flame density, shape,
blending, and noisiness, allowing nonphysical special
effects. A few flames are shown in Figure 10.

Models with semantic parameters such as this flame
model have a variety of uses beyond synthesis. As

|designers construct digital libraries of synthetic video

and graphics, it becomes useful to use synthesis
arameters for retrieval: “what was the name of that
le that contained flames blowing in the wind but not
spreading?” It is also possible that some of the param-
eters of the synthetic models might be estimated from
natural footage, given that the parameters are physi-
cally motivated; this is an unexplored research area.
Currently, the model parameters also allow fast and
easy manipulation, so that a user may craft a variety
of fires (candle flame, roof fire, etc.) either for modi-
fying a particular retrieved scene to be closer to what
the user wants, or for creating a prototype to search
on. An example is “find fires spreading up vertical
structures.”

Systems for browsing, retrieval, and
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One of the most challenging temporal textures t0 5nnotation

model is fire. Fire is one of nature’'s greatest actors,

able to evoke a wide range of feelings through its The six models previously highlighted do not solve all
emotional and destructive power. For filmmaking, fire the problems in texture modeling, muchless all the
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problems in digital libraries. However, they illustrate in Figure 11. The query is “Are there any images sim-
a variety of areas of expertise, which can work indi- ilar to the image of the violin player shown at the top
vidually or collectively to assist in representing, left?” After searching a database of several hundred
manipulating, comparing, recognizing, and annotating video keyframes, the result is the series of images
data in digital libraries. Which one or ones should be shown in the figure, ranked by similarity to the query
used? Unless a digital library contains a highly image in terms of their visual content.
restricted set of data, which is known in advance, we
cannot expect a single model to be best at all the taskxperience interacting with the Photobook system has
demanded of the digital library. A model that is good taught us that although it saves time in browsing and
for finding flames that move in a particular way is retrieval tasks, the job of selecting which model to
probably not going to be good for finding particular use, or which combination of features for searching is
human motions. In this section | briefly survey two generally nonintuitive. Although an expert who works
systems we have built that incorporate vision texture with the models can learn which of them tend to work
and a society of models for assisting in browsing, pest on which data, this kind of expertise only holds
retrieval, and annotation of image and video. Both across uniform databases, such as fingerprint images
systems are flexible in their abilities to incorporate a or face images. For general consumer photos, stock
variety of models. The first depends on the user to photos, or clip-art services, there may not be one win-
select the models; the second learns to select or comning model or fixed combination of models, but these
bine models automatically. may need to vary within the database, or vary with
each new search. Even the expert with good intuitive
Photobook: browsing and retrieval. Both academic  understanding of the features rapidly becomes frus-
and industrial scientists have begun researching andtrated at how often the settings to combine features
developing systems to assist users in navigating need to be changed for optimal performance.
through digital imagery. Some of the earliest and larg-
est research efforts have beensat Almaden® the The model combination in Photobook and similar

Institute of Systems Sciencesg),* andmiT.* Early industrial systems is feature-based, and tends to be
results have already been made into products, and camimited to linear combinations of features—e.g., “Use
be explored interactively on the World Wide We#. 60 percent of texture model A, 20 percent of texture
model D, 10 percent of color model B, and 10 percent
The first system developed at ther Media Labora- of shape model A.” Unfortunately, users do not natu-

tory was Photobook. Photobook is an interface that rally sort images by similarity using this kind of lan-
displays still images and video keyframes, and offers guage. In particular, as the dimensionality (based on
access to a variety of tools for browsing and retrieval. total number of model features) increases, intuition
Photobook currently interfaces to databases including about how to pick relative weightings among features
faces, animals, artwork, tools, fabric samples, brain- is lost. The need to determine all the weightings for
ventricles, and vacation photos. Depending on the cat-multiple features, and hence for the society of models,
egory of images, different algorithms are available for is a problem that plagues all existing retrieval systems
assisting in retrieval. Each image has precomputedto date. A solution to this harder problem was a key
(off-line) features associated with it, so that when a motivation for the system described next.
user selects an image of interest, the system instantly
updates the screen showing other images in the dataFourEyes: learning from user interaction. People
base most similar to the selected image. have different goals when they interact with a digital
library retrieval system. Even if they are nominally
The problems of what models to use for image repre- interested only in annotation, or only in retrieval, they
sentation and how to measure image similarity are are likely to have different criteria for the labels they
challenging research problems for the image process-would give images and the associations they would
ing community® Photobook, like the systems of Ref- like retrieved. These criteria tend to be data-depen-
erences 56 and 57, allows the user to select manuallydent, goal-dependent, culture-dependent, and even
from a variety of models and associated feature com-mood-dependent. On top of this unpredictability, the
binations. As a research tool, Photobook assists inaverage user has no idea how to set all the system
rapid benchmarking of new pattern recognition and knobs to provide the right balance of color, texture,
computer vision algorithms. An example interaction shape, and other model features to retrieve the desired
with Photobook, looking at video keyframes, is shown data.
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Figure 11 Photobook vision-based content query: a series of images selected based on the original in the top left

A society of models is most powerful when the mod- more sophisticated models that do not suit the task
els are well-matched to the problems, where the prob-well. We have also found cases where a single sophis-
lems may depend significantly not just on the data, butticated model can outperform combinations of low-
on the present user’s notion of similarity. The request level models. What is needed is a system that can
“find more exampleslike this' has many right learn how to best exploit multiple models and their
answers, and different models or model combinations combinations, freeing the user from this concern.

may perform best for different answers. We have

found that combinations of low-level models well- Our goal has been twofold: to develop a system that
chosen to suit a particular task can outperform single (1) can select the best model when one is best, and
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figure out how to combine models when that is best, their negative examples, and satisfy some additional
and (2) carlearn to recognize, remember, and refine criteria. (See References 59 and 60 for details on the
best model choices and combinations, by looking learning, as well as on other stages of processing in
both at the data features and at the user interactionfourEyes.) The learner can select groupings all from
and thereby increase its speed and knowledge withone model, or groupings from any combination of the
continuous use. The system FourEyes was developednodels available to it. FourEyes might, for example,
for this two-part goal. use a mixture of groupings from motion, color, and
texture models.
FourEyes not only looks at precomputed features
of the data (as does Photobook), but additionally, It is important to emphasize that FourEyes is a learn-
FourEyes looks at the user’s interaction with the data. ing system; ilearns which methods of combination
The user can give the system examples of data inbest solve a particular problem, and remembers these
which the user is interested, e.g., by clicking on some combinations. In this sense it is quite different from
buildings and then on the “positive” example button. traditional relevance feedback systems. When pre-
The user can also give negative examples, providingsented with a new problem similar to one FourEyes
corrective feedback to the system. The use of thehas solved before, then FourEyes can solve it more
FourEyes user examples is a kind of relevance feed-quickly than it could the first time. If the new problem
back, a well-known and powerful technique used in is dissimilar, then FourEyes learns a new combination
the latest text-based retrieval systems. However, of models for solving it. FourEyes gets faster as it sees
FourEyes goes beyond relevance feedback in its abili-problems similar to those it has seen befdtasieris
ties to combine models and to learn. defined by an ability to retrieve or label the desired
concepts given a smaller number of examples of what
Given a set of positive and negative examples, the user wants.) FourEyes has also demonstrated
FourEyes looks at all the models and determines faster learning across new related (but different) prob-
which model or combination of models best describes lems® Current research on FourEyes aims to improve
the positive examples chosen by the user, while satis-its abilities as @ontinuous learnerusing knowledge
fying the constraints of the negative examples. from problems it has been trained on to improve its
FourEyes is able to choose or combine models in performance across new problems for which it has not
interactive time with each set of positive and negative been trained. This is important in digital libraries,
examples, allowing the features used by the system toenabling users to change their minds and queries as
change with each query. they see more of the available data.

FourEyes achieves model combination by multiple Power-assisted annotationMuch of image retrieval
stages of processing. Instead of combining features independs on text descriptions, amnotations which
a numerical feature space (say, by concatenating allhave been tediously typed in by humans. Ideally,
the model features into one vector and conducting semantic annotations and perceptual image features
some kind of subsequent feature selection or linearwork together, with annotations describing visual
feature combination), FourEyes abandons numericalrelations, and visual features helping to propagate
feature spaces after they have been used for an initialannotations to “visual synonym%."The first version
(first-stage) off-line formation of groupings. This is a of FourEyes was designed to use vision texture and a
key step that distinguishes FourEyes from other exist- society of models to assist the user in annotation.
ing systems that work with multiple models. The
groupings in FourEyes act as a new language throughin annotation, the user labels prototypes in a handful
which models can interact; all the models can group of images, and FourEyes then labels the rest of the
all the data, either individually or cooperatively. The database based on the examples of the user. Figure 12
problem at this point becomes which models best shows an example annotation—the user selected two
group the data of interest to the user. patches and labeled them “building” (red boxes indi-
cate patches selected by the user), two patches of
The final stage of the model combination involves an “car” and two patches of “street.” The system then
on-line learning method. FourEyes can currently use responded by finding the 31 additional labels shown
one of several possible methods (e.g., set cover, deciin Figure 12. At the same time, the system went
sion list, or decision tree) to choose which groupings through all the other images in the database, and
best cover the user’s positive examples, cover none oflabeled other places it found to “look like” building,
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Figure 12 Screen shot of FourEyes during the labeling of examples of building, car, and street
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car, and street. In small-scale tests on a set of vacatioras similar if it contained a similar percentage of
photos, this power-assisted annotation process cut theegions with labels of building and street. The loca-
cost of annotating by more than 80 percéént. tion of the labeled regions was not considered, but
only their relative area within the image. Effectively
Once images are partially annotated, retrieval systemsthe model is a histogram of labels, equipped with a
can use semantic search criteria as well as the presendistance on the histogram. At this semantically
visual-feature-based criteria. For example, after using labeled stage there are many existing tools available
FourEyes to annotate less than 20 percent of the Brit-that can be used, e.g., an on-line text thesaurus.
ish Telecommunication®t) image database, queries
for “semantically similar” scenes could be made, as It is worth mentioning that no one model available to
illustrated by Figure 13, where an image was retrieved FourEyes was able to represent the variety of build-
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Figure 13 Results after labeling data in FourEyes. “Computer, go find scenes like this one (upper left), with buildings or
street.”

ings and streets shown in Figure 13. Instead, white buildings viewed from a sharp perspective can
FourEyes constructed a concept of “building” and a therefore get associated with a cluster labeled “build-
concept of “street” by combining groupings found by ing” that looks like white-trimmed, red brick from a
several different models. The exact combinations are different perspective. Different prototypes of visual
transparent to the user, but are learned by the systenbuilding become linked to the same semantic label.
for speeding up future similar requests. Not only does the system accumulate knowledge and
improve its performance, but it ultimately helps vision
In general, the performance of power-assisted annota-researchers study the connections between high-level
tion depends on the data, the nature of the annota-visual descriptions and low-level vision texture.
tions, and the learning algorithm. A benefit of
building a learning algorithm into an annotation sys- The learning ability of FourEyes allows retrieval algo-
tem is that the FourEyes system saves the most usefutithms to be customized for each user’s goals, while
label-visual feature associations, essentially con- freeing the user from having to figure out how to
structing a representation that acts as a “visual thesauhand-set the nonintuitive weights and combinations of
rus.®t A cluster labeled “building” that looks like the model every time the user’'s query goals change.
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The reliance on the society of models by FourEyes ing, browsing, querying, and annotating large sets of
means that it can simultaneously provide for many visual information.

notions of similarity—including color, texture, shape,

motion, position, and even user-defined subjective Additional technical information on this topic is avail-
associations. The latter are particularly important as able in Reference 65.
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